JP5028529B2 - 試料分析方法 - Google Patents

試料分析方法 Download PDF

Info

Publication number
JP5028529B2
JP5028529B2 JP2010533790A JP2010533790A JP5028529B2 JP 5028529 B2 JP5028529 B2 JP 5028529B2 JP 2010533790 A JP2010533790 A JP 2010533790A JP 2010533790 A JP2010533790 A JP 2010533790A JP 5028529 B2 JP5028529 B2 JP 5028529B2
Authority
JP
Japan
Prior art keywords
sample
wave
interface
analysis method
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010533790A
Other languages
English (en)
Other versions
JPWO2010044193A1 (ja
Inventor
雄一 小川
伸一郎 林
誠治 神波
孝志 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Murata Manufacturing Co Ltd
Original Assignee
Tohoku University NUC
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Murata Manufacturing Co Ltd filed Critical Tohoku University NUC
Priority to JP2010533790A priority Critical patent/JP5028529B2/ja
Publication of JPWO2010044193A1 publication Critical patent/JPWO2010044193A1/ja
Application granted granted Critical
Publication of JP5028529B2 publication Critical patent/JP5028529B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、テラヘルツ波を用いて試料の分析を行う技術に関する。テラヘルツ波とは、20GHzから120THzの周波数を有する電磁波をいう。分析の一例としては、試料自体の物性や寸法を測定したり、試料に付着した生体高分子の量を測定することが挙げられる。
被測定物である試料にテラヘルツ波を照射すると、その試料の物性に応じた測定結果が得られる。例えば、試料に対して波長の異なるテラヘルツ波を照射すると、試料の電磁波吸収により特定波長のテラヘルツ波が吸収されるので、テラヘルツ波の透過率の周波数特性は、試料の物性に応じた固有の波形となって現れる。
テラヘルツ波の透過率を測定する方法としては、テラヘルツ時間領域分光法(以下、THz−TDSと呼ぶ)が知られている。特許文献1の実施例2には、反射光学系によるTHz−TDSが示されている。この実施例においては、テラヘルツ波発生器から出射したテラヘルツ波が放物面鏡を経ることで試料上に集光照射され、その後、試料上を反射したテラヘルツ波を放物面鏡を用いてテラヘルツ検出器に集光している。
特開2008−83020号公報
ここで、従来の試料保持部およびテラヘルツ波伝送経路を図11に示す。なお、図11は特許文献1の記載に基づき出願人が作成したものである。
図11のとおり、従来の試料保持部100は、被測定対象である試料102と、試料102に当接された金属膜101により構成される。金属膜101はテラヘルツ波をほぼ100%反射するミラーである。
試料102のテラヘルツ波に対する透過率を測定するため、試料102にテラヘルツ波を照射する。そのときの試料内でのテラヘルツ波伝搬経路を図11にて説明する。
まず、試料102にテラヘルツ波である照射波Iが入射される。照射波Iの一部は試料102に直接当たって反射する反射波Rとなり、残りの一部は試料102内を透過する試料内伝搬波rとなる。このとき大気中と試料102との誘電率の違いにより反射波R、試料内伝搬波rそれぞれに屈折が起きる。試料内伝搬波rは金属膜101で反射され、試料内伝搬波rとなり、さらに試料内伝搬波rの一部は試料102と大気の界面で反射して試料内伝搬波rとなり、残りの一部は界面を通過して出射され、出射波Rとなる。
このときの反射波Rと出射波Rの振幅の大きさを時間軸で求め、フーリエ変換することにより、試料102の組成、物性、質量を求める。これが従来からあるTHz−TDSである。
しかし、この従来のTHz−TDSにおいては次のような問題があった。
1つは、試料内でのテラヘルツ波の吸収が十分に行われずに、反射波R、出射波Rの振幅の差が試料のあるときと無いときで変わらず、十分な試料102の分析ができない問題があった。特に、試料102が微小であったり厚みが薄い場合はテラヘルツ波の伝送経路自体が短くなり、電磁波吸収が十分に行われない事態が起きる。また、試料102に含まれる測定対象物質の量が微量であったときも電磁波吸収が十分に行われず、1mg以下という微量を測定するには従来の方法では不可能であった。
さらに、試料102を面方向にスキャンして面全体の分析をする場合、試料面の凹凸が大きいと試料102からの反射波や出射波の角度が安定せず精確に測定できないという問題があった。
本発明が解決しようとする課題は、微小試料、微量試料もしくは薄層試料の組成、物性、質量、寸法を精確に測定することである。
本発明に係る試料分析方法は、テラヘルツ波に対し透過性を有する試料を分析するための試料分析方法であって、該試料の第一の主面側に反射部材を当接して設け、該試料の第二の主面側に入射部材を当接して設け、該入射部材の外側から該試料に向けてテラヘルツ波を照射し、該試料の第一の主面と該反射部材との界面における第一面反射波、および、該試料の第二の主面と該入射部材との界面における第二面反射波、により生じる干渉波を利用して該試料を分析する試料分析方法である。テラヘルツ波とは、20GHzから120THzの周波数を有する電磁波をいう。
本発明のある特定の局面では、前記試料の第一の主面と前記反射部材との界面、および、前記試料の第二の主面と前記入射部材との界面、が平行である。
本発明の他の特定の局面では、前記干渉波は、前記第一面反射波から前記試料および前記入射部材を通過して出射された出射波と、前記第二面反射波から前記入射部材を通過して出射された出射波と、により生じるものである。
本発明の別の特定の局面では、前記干渉波は、前記試料の第一の主面と前記反射部材との界面、および、前記試料の第二の主面と前記入射部材との界面、におけるテラヘルツ波の反射が複数回行われた多重反射波から形成される。多重反射波とは、試料に向けてテラヘルツ波を照射してから出射されるまでの過程において、試料と反射部材との界面、および試料と入射部材との界面において複数回反射した反射波をいう。
本発明のさらに他の局面では、前記反射部材の屈折率は前記試料の屈折率より大きく、前記入射部材の屈折率は前記試料の屈折率より大きく、かつ、前記入射部材の屈折率は前記入射部材の外側に存在する大気の屈折率より大きい。
本発明のさらに別の局面では、前記入射部材の外側に当接してテラヘルツ波反射抑制層を設ける。
本発明のまたさらに他の局面では、試料分析方法は、前記試料が誘電率の異なる複数層で形成されているときの試料分析方法であって、前記試料の複数層のうちの分析対象となる層を前記反射部材に当接して該試料を分析する。
本発明のまたさらに別の局面では、試料分析方法は、テラヘルツ波に対し透過性を有する試料を分析するための試料分析方法であって、該試料の第一の主面側に反射部材を当接して設け、該試料の第二の主面側に入射部材を当接して設け、該入射部材の外側から該試料に向けてテラヘルツ波を照射し、該試料の第一の主面と該反射部材との界面における反射波と、該試料の第二の主面と該入射部材との界面における反射波と、該入射部材と該入射部材の外側の界面における反射波と、を生じさせた後、最終的に該入射部材を透過して外側へ出射された複数の出射波により生じる干渉波を利用して該試料を分析する試料分析方法である。最終的に外側へ出射された出射波とは、試料や入射部材内を1回であろうが複数回であろうが伝搬した後に、結局、外側へ出射されることになったテラヘルツ波をいう。
本発明による試料分析方法によれば、微小試料、微量試料もしくは薄層試料の組成、物性、質量、寸法を精確に測定することができる。
図1は、実施形態における試料保持部および試料保持部でのテラヘルツ波伝搬経路を示した図である。 図2は、実施例1におけるTHz−TDSのイメージング装置全体を示した図である。 図3は、実施例1における試料保持部の具体的構造を示した図である。 図4(a)は、実施例1のTHz−TDSによる時間波形を示した図であり、(b)は、実施例1における試料保持部および試料保持部でのテラヘルツ波伝搬経路を示した図である。 図5は、実施例1による透過率の周波数特性を表した図である。 図6(a)は、本実施例の試料保持部40を示す図であり、(b)は、図6(a)のA部の拡大図である。 図7は、実施例3における試料保持部を示した図である。 図8は、実施例4におけるビオチンメンブレンアレイの模式図と比較例である蛍光検出画像である。 図9は、実施例4におけるビオチンメンブレンアレイ上のストレプトアビジンの検出画像である。 図10は、実施例5における糖鎖メンブレンアレイ上のレクチンの検出画像である。 図11は、従来のTHz−TDSにおける試料保持部およびテラヘルツ波伝搬経路を説明する図である。 図12は、比較例であるATR法による試料保持部およびテラヘルツ伝搬経路を示した図である。
本発明の実施形態として、本発明が従来技術と大きく異なる点を中心に説明する。従来技術と異なる点は、試料保持部10および試料保持部内でのテラヘルツ波の伝送経路にある。なお、テラヘルツ波の光源、光学系、データ処理方法等については実施例にて具体的に説明する。
図1を用いて本実施形態の試料保持部10および試料保持部内でのテラヘルツ波伝搬経路の説明をする。本実施形態の試料保持部10は、被測定対象である試料12と、試料12の一方の主面に当接された反射部材11と、試料12のもう一方の主面に当接された入射部材13により構成される。
反射部材11は試料12より屈折率が大きくテラヘルツ波をほぼ100%反射するミラーである。その他に、メタマテリアルのように負の屈折率を有する部材を用いることもできる。
入射部材13は試料12と屈折率が異なり、かつ、大気よりも屈折率が大きい材料からなる。より好ましくは、入射部材13の屈折率は試料12の屈折率より大きいほうがよく、例えば入射部材13の材料としては高抵抗シリコン(Si)や透光性セラミックが用いられる。後に説明する多重反射を有効に使えるからである。
試料12はテラヘルツ波に対し、透過性、吸収性を有する素材である。
ここで、反射部材11と試料12の間の境界を第一界面21と呼び、試料12と入射部材13の間の境界を第二界面22と呼び、入射部材13と大気との間の境界を第三界面23と呼ぶ。さらに第一界面21にて生じる反射波を第一面反射波と呼び、第二界面22にて生じる反射波を第二面反射波と呼び、第三界面23にて生じる反射波を第三面反射波と呼ぶ。
本発明は、第一界面21にて生じる第一面反射波、および、第二界面22にて生じる第二面反射波、により生じる干渉波を利用して試料12を分析することに特徴がある。以下、その説明を行う。
まず、入射部材13の外側(大気側)から試料保持部10に向けてテラヘルツ波が照射される。この照射波Iは第三界面23を通過し入射部材内伝搬波tとなる。このとき大気と入射部材13との誘電率の違いによりテラヘルツ波に屈折が起きる。入射部材内伝搬波tの一部は試料12に入射し、残りの一部は第二界面22にて反射して入射部材内伝搬波t(反射波)となる。入射部材内伝搬波tの一部は第三界面23で反射して入射部材内伝搬波t(反射波)となり、残りの一部は第三界面を通過して出射波Rとして出射される。
一方、試料12に入射された伝搬波は試料内伝搬波rとなって所定の角度をもって試料内を伝搬する。所定の角度は、入射部材13と試料12の誘電率の違いにより決まる。試料内伝搬波rは第一界面21で反射され、試料内伝搬波r(反射波)となる。さらに試料内伝搬波rの一部は第二界面22を反射するが、残りの一部は第二界面22を通過して更に第三界面23を通過して出射波Rとなって出射される。第三界面23を通過せずに反射した波は入射部材内伝搬波r(反射波)となる。
試料内伝搬波rから第二界面22で反射した伝搬波は試料内伝搬波rとなる。試料内伝搬波rは第一界面21で反射したのち、一部が第二界面22を通過して更に一部が第三界面23を通過して出射され、もうひとつの出射波Rとなる。
このときの出射波Rと出射波Rにより形成される干渉波の振幅の大きさを時間軸で求め、フーリエ変換することにより、試料12の組成、物性、質量、寸法を求めることができる。また、出射波Rと出射波Rおよび出射波Rより形成される干渉波の振幅の大きさを時間軸で求め、フーリエ変換することもできる。さらに、第一界面21、第二界面22、第三界面23での多重反射により形成される干渉波の振幅の大きさを時間軸で求め、フーリエ変換することにより、より精確に試料12の組成、物性、質量、寸法を求めることができる。
従来技術のTHz−TDSでは試料を面内方向に走査して多点測定を行う際、試料面の凹凸が大きいと試料102からの反射波Rや出射波R(図11のR、R)の角度が安定せず精確に測定できない問題があった。
それに対し本発明は図1のように、試料保持部10に表面平滑な入射部材13を設けたので、第二界面22からの反射波の角度を安定して計測できる利点がある。さらに、本発明は試料保持部10に表面平滑な入射部材13を設け、第二界面22と検出素子36の距離を一定にしたので、試料を面内方向に走査して多点測定を行う際、第二界面22からの反射波を同じ時間基準で計測できる利点がある。そのため試料12の物性等を精確に測定できるようになった。
従来技術のTHz−TDSでは、試料102が微小であったり厚みが薄い場合は試料内のテラヘルツ波の伝送経路自体が短くなり電磁波吸収が十分に行われず精確に測定できないという問題があった。また、試料102に含まれる測定対象物質の量が微量であった場合も電磁波吸収が十分に行われず精確に測定できないという問題が起きた。
それに対し本発明は、試料保持部10に表面平滑な入射部材13を設け、第二界面および第一界面でのテラヘルツ波の多重反射を積極的に用いることにより、テラヘルツ波の伝送経路を実質的に長くして、微小微量な試料でも測定可能にしている。
従来技術のTHz−TDSでは、試料102を測定装置に配置するまでに、試料表面が大気中に触れるのでその間に大気中の不純物が付着し精確な測定の妨げとなっていた。それに対し本発明は、試料12を反射部材11と入射部材13で挟み込むので、試料12が大気中に直接触れることはなくなり、不純物が後に付着するという問題も解決できる。
さらにここで、比較例としてATR(attenuated total reflection)法を挙げ、比較例と本発明の対比を行う。
ATR法は赤外光を用いた赤外分光分析法である。図12に示したとおり、試料202と、それより屈折率の大きいSi(シリコン)プリズム203を接触させ、赤外光である照射波Iの入射角を調整し、プリズム内部で全反射が起こるようにして出射波Rを測定する方法である。
このとき赤外光は試料202にわずかに、所定の深さだけ入り込んでから反射するので、試料202表面の赤外吸収スペクトルが得られる。このスペクトルを解析することにより試料202の構造解析や定性定量分析を行うことができる。このように試料202に所定の深さだけ入り込むエバネッセント波Eを用いるのがATR法の特徴である。
また、図12のようにプリズム内での多重反射を用いたATR法では、プリズム203の長さと厚さと光源から出た照射波Iの入射角度で決まる多重反射回数が試料202のサンプリング回数となる。
本発明は次に示す点でATR法と異なる。本発明とATR法ではテラヘルツ波の多重反射を用いる点で同じであるが、ATR法は試料202の外表面で全反射を起こさせプリズム203内で起きた多重反射を利用しているのに対し、本発明は試料12内で起きた多重反射も利用している点で原理が異なる。
試料表面による電磁波の吸収を利用するATR法より、試料内における電磁波吸収を利用する本発明は、電磁波の吸収が起き易く、試料12の微小微量検出に適している。
また、ATR法は入射部材内(プリズム内)での多重反射であり、試料内での多重反射を利用しないので、テラヘルツ波を透過してしまう試料の測定には適していない。本発明はテラヘルツ波を透過する試料12に適した測定方法であり、かつ、試料内の多重反射を利用しているという点でATR法とは全く異なる方法である。
以上が、本発明が従来技術と大きく異なる点である。以下、図面を参照しつつ本発明の実施例を具体的に説明する。
(実施例1)
図2は、テラヘルツ時間領域分光法(THz−TDS)を用いたイメージングシステム30である。イメージングシステム30は、THz−TDSの光路中に試料駆動用のXYステージ34を配置し、試料12のラスタスキャンにより画像を取得できるように構成されており、各周波数での透過率画像や、吸光度画像を得ることができる。
テラヘルツ波は、バイアス電圧を印加した光スイッチ(発生素子32)にフェムト秒パルスレーザーを当てた際に生じるキャリアによって瞬時電流を生じさせ、この時間微分に比例したテラヘルツパルス波を発生させることにより出力される。一方、テラヘルツ波の光スイッチ(検出素子36)はこの反対の構成をとっており、電圧を印加する代わりに電流計を取り付けている。
テラヘルツ波発生時と同様にフェムト秒レーザーをアンテナのギャップに照射して光キャリアを生成させると、ギャップ領域の電気伝導度が増加して一時的にアンテナ回路が閉じた状態になる。この時、テラヘルツ波が検出素子36に到着していると、検出素子36にテラヘルツ波の電場による電界が加わることによってアンテナ回路にテラヘルツ波の振幅に比例した電流が流れ、その電流値が検出される。
また、プローブ光とテラヘルツ波の間に光学遅延を与えることにより、その光学遅延に応じた時刻のテラヘルツ波の電場強度を検出することができる。THz−TDSではこの光学遅延により生じた僅かに異なる時間の電場強度を測定し、ひとつの時間波形とするサンプリング法を用いる。このようにして得られた時間波形をフーリエ変換し、位相と強度両方の周波数スペクトルに変換することがTHz−TDSの大きな特長である。
イメージングシステム30では、波長840nm、出力650mW、パルス幅100fs以下、繰り返し周波数80MHzのフェムト秒レーザーを使用し、光スイッチ32、36には低温成長型GaAs膜(Low−temperature grown GaAs、LT−GaAs)を用いた。
図3は試料12の具体的な固定方法を示したものである。試料12の第一の主面(図3において上側)および第二の主面(図3において下側)にそれぞれ反射部材11、入射部材13を配置した状態で固定する。次に、穴の開いた下側保持プレート15に下側凸形状の入射部材13をはめ込み、入射部材13の上から上側保持プレート14を重ね、その後、取り付けネジ16でこれらを固定する。このとき、試料12の第一の主面と第二の主面は平行となり、厚みのばらつきは1%以内であった。
試料12の第一の主面と第二の主面を平行にすることにより、第一界面21と検出素子36との距離、および第二界面22と検出素子36との距離をそれぞれ一定にでき、試料を面内方向に走査して多点測定を行う際、界面からの反射波を同じ時間基準で計測できる利点がある。
試料12を入れる試料室(図示せず)およびレーザー光路は、水蒸気の影響を取り除くために、窒素パージを行ってから測定を行う。
図2にイメージングシステム30の光学系概略図を示す。光スイッチ32から放射されたテラヘルツ波は放物面鏡33で反射され、試料12の置かれた集光位置に入射される。被測定対象となる試料12はXYステージ34に載置され、二次元的に移動してポイント毎に分光測定を行いながら、順次XYステージ34を動かしてイメージングを行う。
本実施例における反射測定系では、光スイッチ32から放射されたテラヘルツ波は放物面鏡33(f=237.1mm、NA=0.26)により集光され、試料12に対して下から20°の角度で斜め入射する。
試料保持部10からの反射波を測定して面方向にスキャンする際、試料面は平滑で傾きを持たないことが望ましい。
また、本実施例では、高抵抗シリコン(Si)単結晶(抵抗率10kΩ・cm以上)による入射部材13を試料面に当接して設置した。高抵抗シリコン(Si)はテラヘルツ波の吸収ロスが小さく入射部材に適している。
Siはテラヘルツ波帯における屈折率が3.415と一定であり、ポリエチレンなどのプラスチック素材より屈折率が大きいため空気からSiにテラヘルツ波が入射する際の損失は大きいが、テラヘルツ波帯におけるSiの吸収係数は小さく、Si内部でのテラヘルツ波の損失がほぼ0と見なすことができる。このSi材の入射部材13を設けたことにより、テラヘルツ波は集光しながら5.8度の入射角で試料12に入射することとなる。
本実施例の反射測定系ではSi表面と試料12との界面からの反射波が検出されるが、検出する試料が微小微量であることから、図3に示すように試料12のもう一方の面に反射部材11となるミラーを配置し、往復分の光路長による吸収を期待した光学系とした。
これらの影響を確認するために厚みの異なるポリエチレン板を試料12とし、反射測定系(試料12の上面にミラーを配置した系)による時間波形ならびに周波数スペクトルを比較した。
図4に板厚500μmと板厚400μmのポリエチレン板を試料12としたときの時間波形を示す。図4右下に示すように、(i)シリコンと試料(サンプル)界面での反射、(ii)試料上面のミラーからの反射、(iii)2往復目のミラーからの反射信号が時間波形に観測された。この結果をフーリエ変換し周波数軸のグラフで表すと、図5に示すように、透過率スペクトルが干渉波となった。これは、先述の(i)や(ii)による干渉である。
図5に記載されている透過スペクトルは以下のようにして求めた。まず、図4の時間波形における3つのデータ(ref、400μm、500μm)それぞれをフーリエ変換した。次に、図4の400μmのフーリエ変換を図4のrefのフーリエ変換で割って求め、図5の400μmの透過スペクトルとした。また、図4の500μmのフーリエ変換を図4のrefのフーリエ変換で割って求め、図5の500μmの透過スペクトルとした。
図5からわかるとおり、厚み変化に伴う試料内を伝搬する光路長に応じて干渉がずれて観測された。この結果、厚みが100μmしか変わらないポリエチレンの板でも、図中破線で示す周波数(1.5THz)において、透過率が80%も変化して観測された。
このような測定系においては、試料をXYステージ34でXY方向にスキャンし、任意の周波数で切り出した画像により、透過率や透過強度の分布を測定することができる。その他にも、屈折率や誘電率などの物性値も測定可能となる。
(実施例2)
図6(a)に本実施例の試料保持部40を示す。試料保持部40は、反射部材11、試料12、入射部材13およびテラヘルツ波反射抑制層41からなる。実施例1と同じ構成には同じ符号を付し説明を省略する。
試料保持部40の特徴は、入射部材13の外側(大気側)に当接して別層を設けたことにある。この層は、照射波Iの反射を抑制するためのテラヘルツ波反射抑制層41である。
実施例1で説明したとおり、入射部材13はSi材であるが、それでも少なからず照射波Iを反射する。照射の時点ですぐに反射が起きるとテラヘルツ波検出の効率が低くなってしまい、微小微量な試料12の測定が難しくなる。また、干渉波形の解析も複雑になる。そこで、本実施例の構成により照射波Iの反射を抑えようというのが実施例2の意図するところである。
図6(b)は、図6(a)のA部の拡大図である。図6(b)に示したとおり、テラヘルツ波反射抑制層41は、底辺w、高さhの三角突起42を周期的に配列した構造からなる。三角突起42は円錐でも四角推でもよい。
三角突起42の材質は入射部材13と同じSi材である。三角突起42はSi基板に対するエッチング、もしくは溝加工により形成される。
このような三角突起42を有することにより、大気を含めた周囲の誘電率が徐々に変化する状態を作り出している。テラヘルツ波反射抑制層41の三角突起42により、大気の誘電率(およそ1)からSiの誘電率(およそ3.4)への変化が滑らかに行われ、その結果、照射波Iが反射しにくくなる。
なお、実施例2では三角突起42の例を示したが、他の例として、誘電率の異なる層を複数用いて、誘電率が段階的に変化するように複数重ねた構造としてもよい。要するに誘電率が徐々に変化する状態となっていればテラヘルツ波反射抑制層として機能する。
(実施例3)
図7に本実施例の試料保持部50を示す。試料保持部50は、反射部材11、試料12、入射部材13からなる。実施例1と同じ構成には同じ符号を付し説明を省略する。
試料保持部50の特徴は、試料12が誘電体基板51と薄膜52で構成される点である。試料12は誘電体セラミック材を焼結し、その上に薄膜形成法を用いて薄膜52を形成したものである。誘電体基板51と薄膜52の誘電率は当然異なる。
このような試料12の場合、どちらを主に測定したいかで試料12の上下の向きを変え、より精確な測定結果を得ることができる。例えば薄膜52についての物性を主に測定したい場合は、薄膜52側を反射部材11に当接して設ければよい。誘電体基板51についての物性を主に測定したい場合は、誘電体基板51側を反射部材11に当接して設ければよい。
すなわち、試料12が誘電率の異なる複数層で形成されているときは、試料12の複数層のうちの分析対象となる層を反射部材11に当接して、試料12を分析するとより精確な測定値を得ることができる。
(実施例4)
実施例4では、電気泳動後のタンパク質やDNAの転写に用いられるメンブレンと呼ばれる高分子膜を、小分子とタンパク質の結合検出のために用いた例を示す。メンブレンの材質はポリフッ化ビニリデン(PVDF)からなる。このメンブレンに生体高分子を付着させた試料の分析例を以下に示す。
メンブレンの屈折率は約1.1と低く、そこに生体高分子が付着、浸透することで屈折率が大きくなる事が期待される。このことは屈折率変化に伴う入射部材(Si)界面での反射強度の減少とともに、往復時の実効的な光路長が長くなる事が予想される。
メンブレンは多孔質の膜であり、材質や空隙率が異なることで、生体高分子に対する結合能が異なる。例として、BIO−RAD社製のタンパク質吸着能に優れたPDVFメンブレンとニトロセルロースメンブレンおよび、精密ろ過フィルターとして使用されるMILLIPORE社製のメンブレンなどが挙げられる。
メンブレンは、さまざまな材質でテラヘルツ波帯に特徴的な吸収を示すことから、各種応用法に合わせて選択することが可能である。また、タンパク質やDNAなどの分析を行う際に、メンブレンの仕様として明記されている吸着能が必ずしも重要ではなく、メンブレン上に化学的な処理を行うことで選択的にホストとなる生体高分子を吸着できるようになる。
DNAのような液体サンプルを基板上に滴下し、乾燥させてTHz−TDSなどで分光測定を行う際、乾燥ムラにより試料の状態が不均一になり測定結果に影響を与えることがある。しかし、メンブレンのように浸透性のある基板を採用することにより、その問題を解決できることも知られている。
低分子化合物そのものは、メンブレンとまったく相互作用しないか、極めて弱い相互作用しかしないため、タンパク質との反応後に行う洗浄によって容易に流れ出してしまう。
そこで本実施例では、低分子化合物に化学処理によって疎水性を付加し、メンブレンと疎水結合によって固定化する方法を用いた。疎水性の付加には、低分子化合物に疎水性ポリエチレングリコール(PEG)を結合する公知の手法で疎水性を与え、表面が疎水性の特性を持つPVDFメンブレンに結合(固定化)させた。
なお、本実施例ではPEG(平均分子量3400)と分子量の異なるMPEG(Methyl PEG、平均分子量5000)においても同様に低分子化合物を結合させ、固定化法の違いによる測定結果の比較を行った。
低分子化合物とタンパク質は、強固な結合をすることで知られているビオチンとストレプトアビジンを用いた。ビオチンをPEGとMPEGにそれぞれ結合させ、メンブレンとの疎水性相互作用により固定化した。固定化の際、ビオチンは1×10−3M(Mはモル/リットルの意味)から3.2×10−6Mまで濃度を段階的に変化させ、再現性を確認するために各2連でドットブロットを行った。それぞれに滴下した量は0.2μリットルずつで、メンブレン上では約3mmの円状に広がった。
その後、未処理のメンブレン上にストレプトアビジンが結合することを防ぐために、スキムミルクでブロッキング処理を施した。以後、このように作成された試料をメンブレンアレイと記す。
一方、ストレプトアビジンの結合を確認するために、同様の処理を行って作成したメンブレンアレイに対し、蛍光標識(Alexa633:Alexa Fluorは登録商標)付のストレプトアビジンを反応させて、別途蛍光検出にて結合の確認を行った。
図8に先の方法で作成したメンブレンアレイの模式図と、蛍光標識による検出結果を示す。図8右図の蛍光画像において濃い色に見える部分が標識されたストレプトアビジンが検出されている箇所である。
メンブレンに固定化せず、ビオチン溶液を滴下しただけの下段2列は、洗浄過程でメンブレンからビオチンが洗い流されたため、ストレプトアビジンと結合できなかった。このことから、PEGによるビオチンの固定化が正しく出来ており、そのビオチンがストレプトアビジンとの結合能を有していることが確認できた。
THz−TDSの反射測定系で得た1.5テラヘルツでの画像結果を図9に示す。こちらの画像は標識無しのストレプトアビジンを反応させた非標識検出の結果で、明るいほど吸収が大きいことを示す。蛍光画像と同様に、下段2列のビオチン溶液のみを滴下した場所ではストレプトアビジンの存在が確認できなかった。
さらにMPEGを使ってメンブレン上にビオチンを固定化した方の反応性が高く、この結果は蛍光法による傾向と同じであった。
このようなリンカーとなる物質はさまざまなものが報告されており、小分子やメンブレンの種類に合わせた最適な手法がある。
またわずかではあるが、蛍光画像では確認できていない低濃度(1.6×10−5M)でも吸収が見られ、Alexa633を用いた蛍光検出よりも少ない量まで検出できている。
(実施例5)
実施例5では、他の生体高分子に対して本発明を用いた非標識検出を行っており、糖と糖蛋白(レクチン)の結合についての結合の有無を画像化した。画像化したものを図10に示す。
糖鎖は複数の糖が連なった化合物で、特に細胞表面上に存在する糖鎖はレクチンやウイルス、脂質などと結合し、細胞に情報を伝達する。細胞の成長や感染、免疫機能などと密接に関連することから、生命活動においても重要な物質と言われている。しかし、結合力が抗原や抗体との結合のように高くないことから、相互作用の分析が難しいとされている。
本実施例では、糖鎖中のガラクトースに選択的な結合性を示すレクチンとの反応を先の実施例と同じ方法でイメージングし、非標識検出を試みた。糖鎖は、5糖、4糖、ラクトース(Lac)をそれぞれ上下2連ずつメンブレンに固定化し、一番下の段には固定化処理を行わないラクトースを用いた。
その結果、先のビオチンのメンブレンアレイと同様に、固定化していない場合は洗浄などの処理によりメンブレンからはがれ落ち、レクチンと反応できていない様子が確認できた。
また、5糖や4糖の方がラクトースよりもレクチンと反応性が高い結果が得られたことは、各分子あたり5糖、4糖にはガラクトースが2個、ラクトースにはガラクトースが1個含まれることから妥当な結果と考えられる。
本手法を発展させた低分子化合物のメンブレンアレイによる非標識検査は、創薬分野において候補物質を迅速に探査するスクリーニング技術になりうると期待できる。
スクリーニングとして本手法を導入し、既知の候補物質アレイと未知のタンパク質群(混合物)とを反応、画像化する。その結果、結合が見つかるとその部分を切り出し、電気泳動法を利用して分子量を求め、さらにその部分を切り出して結晶化し、X線構造解析法を利用して立体構造を調べることが可能となる。こういった利用法は、従来の標識化が困難な物質や、生体から抽出した混合物の状態のタンパク質群の分析に適している。例えば、Aβタンパク質などは、凝集性が高いので、好適に用いられる。
10 試料保持部
11 反射部材
12 試料
13 入射部材
21 第一界面
22 第二界面
23 第三界面
31 レーザ光源部
32 光スイッチ(発生素子)
33、35 放物面鏡
34 XYステージ
36 光スイッチ(検出素子)
37 データ処理部
I 照射波
、t、t、t、r、r 入射部材内伝搬波
、r、r、r、t 試料内伝搬波
、R、R 出射波
反射波

Claims (8)

  1. テラヘルツ波に対し透過性を有する試料を分析するための試料分析方法であって、
    該試料の第一の主面側に反射部材を当接して設け、
    該試料の第二の主面側に入射部材を当接して設け、
    該入射部材の外側から該試料に向けてテラヘルツ波を照射し、
    該試料の第一の主面と該反射部材との界面における第一面反射波、および、該試料の第二の主面と該入射部材との界面における第二面反射波、により生じる干渉波を利用して該試料を分析する試料分析方法。
  2. 前記試料の第一の主面と前記反射部材との界面、および、前記試料の第二の主面と前記入射部材との界面、が平行であることを特徴とする請求項1に記載の試料分析方法。
  3. 前記干渉波は、前記第一面反射波から前記試料および前記入射部材を通過して出射された出射波と、前記第二面反射波から前記入射部材を通過して出射された出射波と、により生じるものであることを特徴とする請求項1または2に記載の試料分析方法。
  4. 前記干渉波は、前記試料の第一の主面と前記反射部材との界面、および、前記試料の第二の主面と前記入射部材との界面、におけるテラヘルツ波の反射が複数回行われた多重反射波から形成されることを特徴とする請求項1〜3のいずれかに記載の試料分析方法。
  5. 前記反射部材の屈折率は前記試料の屈折率より大きく、前記入射部材の屈折率は前記試料の屈折率より大きく、かつ、前記入射部材の屈折率は前記入射部材の外側に存在する大気の屈折率より大きいことを特徴とする請求項1〜4のいずれかに記載の試料分析方法。
  6. 前記入射部材の外側に当接してテラヘルツ波反射抑制層を設けたことを特徴とする請求項1〜5のいずれかに記載の試料分析方法。
  7. 前記試料が誘電率の異なる複数層で形成されているときの試料分析方法であって、前記試料の複数層のうちの分析対象となる層を前記反射部材に当接して該試料を分析することを特徴とする請求項1〜5のいずれかに記載の試料分析方法。
  8. テラヘルツ波に対し透過性を有する試料を分析するための試料分析方法であって、
    該試料の第一の主面側に反射部材を当接して設け、
    該試料の第二の主面側に入射部材を当接して設け、
    該入射部材の外側から該試料に向けてテラヘルツ波を照射し、
    該試料の第一の主面と該反射部材との界面における反射波と、
    該試料の第二の主面と該入射部材との界面における反射波と、
    該入射部材と該入射部材の外側の界面における反射波と、を生じさせた後、
    最終的に該入射部材を透過して外側へ出射された複数の出射波により生じる干渉波を利用して該試料を分析する試料分析方法。
JP2010533790A 2008-10-14 2009-09-18 試料分析方法 Active JP5028529B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010533790A JP5028529B2 (ja) 2008-10-14 2009-09-18 試料分析方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008265415 2008-10-14
JP2008265415 2008-10-14
JP2010533790A JP5028529B2 (ja) 2008-10-14 2009-09-18 試料分析方法
PCT/JP2009/004735 WO2010044193A1 (ja) 2008-10-14 2009-09-18 試料分析方法

Publications (2)

Publication Number Publication Date
JPWO2010044193A1 JPWO2010044193A1 (ja) 2012-03-08
JP5028529B2 true JP5028529B2 (ja) 2012-09-19

Family

ID=42106370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010533790A Active JP5028529B2 (ja) 2008-10-14 2009-09-18 試料分析方法

Country Status (3)

Country Link
US (1) US8514403B2 (ja)
JP (1) JP5028529B2 (ja)
WO (1) WO2010044193A1 (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101802551A (zh) * 2007-07-12 2010-08-11 派克米瑞斯有限责任公司 测量时域数据中脉冲的渡越时间位置的***和方法
JP2011232289A (ja) * 2010-04-30 2011-11-17 Pola Chem Ind Inc テラヘルツ波を用いた皮膚角層の計測方法
JP5418916B2 (ja) * 2010-06-04 2014-02-19 日本電気株式会社 反射型イメージング装置
GB201011459D0 (en) * 2010-07-07 2010-08-25 Melys Diagnostics Ltd Optical element, assembly and method for determining analyte concentration
JP5580251B2 (ja) * 2011-06-13 2014-08-27 株式会社日立ハイテクマニファクチャ&サービス ウェーハ接合強度検査装置及び方法
JP2013024639A (ja) * 2011-07-19 2013-02-04 Murata Mfg Co Ltd 被測定物の測定方法
JP5807303B2 (ja) * 2011-09-02 2015-11-10 一般財団法人電力中央研究所 塗膜下鋼材腐食の検出方法、検出装置及び検出プログラム
JP6169614B2 (ja) * 2012-01-23 2017-07-26 ザ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・ミシガンThe Regents Of The University Of Michigan プラズモン電極を有する光伝導装置
JP2013238401A (ja) * 2012-05-11 2013-11-28 Canon Inc 電磁波を用いる測定装置及び測定方法
US9370465B2 (en) * 2012-10-09 2016-06-21 Bwt Property, Inc. Smart IV bag with optical IV drug identification tag
JP6117506B2 (ja) 2012-10-09 2017-04-19 国立大学法人 東京大学 テラヘルツ波測定装置及び方法
JP2014122875A (ja) * 2012-11-26 2014-07-03 Canon Inc 層状物体の測定装置および方法
JP2014209094A (ja) * 2013-03-29 2014-11-06 キヤノン株式会社 テラヘルツ波を用いて試料の情報を取得する情報取得装置および情報取得方法
JP2015083964A (ja) * 2013-09-17 2015-04-30 キヤノン株式会社 テラヘルツ波を用いて検体の情報を取得する情報取得装置および情報取得方法
JP6454498B2 (ja) * 2014-09-03 2019-01-16 国立大学法人京都大学 テラヘルツ波を用いた皮膚角層水分量の計測方法
JP6331140B2 (ja) * 2014-09-03 2018-05-30 国立大学法人京都大学 水分量測定方法
JP2016090550A (ja) * 2014-11-11 2016-05-23 パイオニア株式会社 情報取得装置及び固定具
EP3302224B1 (en) 2015-05-27 2020-10-14 The Regents of The University of California Terahertz endoscopy through laser-driven terahertz sources and detectors
JP6808336B2 (ja) * 2016-03-15 2021-01-06 株式会社東芝 半導体レーザ装置
CN105811118B (zh) * 2016-03-16 2019-08-20 深圳光启高等理工研究院 一种天线
US11099001B2 (en) * 2016-12-06 2021-08-24 Pioneer Corporation Inspection apparatus, inspection method, computer program and recording medium
EP3612812A4 (en) 2017-04-20 2021-01-06 The Regents of the University of California SYSTEMS AND PROCEDURES FOR HIGH FREQUENCY NANOSCOPY
JP6843013B2 (ja) * 2017-07-19 2021-03-17 浜松ホトニクス株式会社 テラヘルツ波分光計測装置およびテラヘルツ波分光計測方法
WO2019180556A1 (en) 2018-03-22 2019-09-26 3M Innovative Properties Company Time-domain terahertz measurement system having a single reference surface
US10539504B1 (en) * 2018-09-30 2020-01-21 Agilent Technologies, Inc. Method and apparatus for automating contact between an ATR crystal and a specimen
US11906424B2 (en) 2019-10-01 2024-02-20 The Regents Of The University Of California Method for identifying chemical and structural variations through terahertz time-domain spectroscopy
WO2021087459A1 (en) * 2019-10-31 2021-05-06 The Regents Of The University Of California Methods and systems for detecting water status in plants using terahertz radiation
JP7008303B2 (ja) * 2020-02-27 2022-01-25 アイレック技建株式会社 収納物検査装置
JP2022154998A (ja) * 2021-03-30 2022-10-13 横河電機株式会社 測定装置及び測定方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003058212A1 (en) * 2001-12-28 2003-07-17 Nikon Corporation Spectral measuring device
JP2004101510A (ja) * 2002-07-15 2004-04-02 Tochigi Nikon Corp パルス光を用いた分光計測方法および装置
JP2004198250A (ja) * 2002-12-18 2004-07-15 Tochigi Nikon Corp 時間分解反射測定方法およびテラヘルツ時間分解反射測定装置
WO2006030756A1 (ja) * 2004-09-13 2006-03-23 The University Of Tokyo 高周波電磁波を用いた計測方法及び計測装置
JP2007192607A (ja) * 2006-01-18 2007-08-02 Canon Inc 積層体の情報を検出する検出装置
JP2008175794A (ja) * 2007-01-17 2008-07-31 Tohoku Univ 反射測定装置および方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10033259C2 (de) * 2000-07-10 2003-06-26 Univ Braunschweig Tech Optisches Bauelement
GB2410081B (en) * 2004-01-19 2007-02-21 Limited Cambridge University T Terahertz radiation sensor and imaging system
JP2006275910A (ja) * 2005-03-30 2006-10-12 Canon Inc 位置センシング装置及び位置センシング方法
JP5132146B2 (ja) 2006-03-17 2013-01-30 キヤノン株式会社 分析方法、分析装置、及び検体保持部材

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003058212A1 (en) * 2001-12-28 2003-07-17 Nikon Corporation Spectral measuring device
JP2004101510A (ja) * 2002-07-15 2004-04-02 Tochigi Nikon Corp パルス光を用いた分光計測方法および装置
JP2004198250A (ja) * 2002-12-18 2004-07-15 Tochigi Nikon Corp 時間分解反射測定方法およびテラヘルツ時間分解反射測定装置
WO2006030756A1 (ja) * 2004-09-13 2006-03-23 The University Of Tokyo 高周波電磁波を用いた計測方法及び計測装置
JP2007192607A (ja) * 2006-01-18 2007-08-02 Canon Inc 積層体の情報を検出する検出装置
JP2008175794A (ja) * 2007-01-17 2008-07-31 Tohoku Univ 反射測定装置および方法

Also Published As

Publication number Publication date
US20110205528A1 (en) 2011-08-25
WO2010044193A1 (ja) 2010-04-22
JPWO2010044193A1 (ja) 2012-03-08
US8514403B2 (en) 2013-08-20

Similar Documents

Publication Publication Date Title
JP5028529B2 (ja) 試料分析方法
US7977116B2 (en) Analysis method and analysis apparatus
KR100966503B1 (ko) 센서 장치
JP4829669B2 (ja) 検体情報取得装置、及び検体情報取得方法
JP3897703B2 (ja) センサ装置およびそれを用いた検査方法
JP3579321B2 (ja) 2次元イメージング表面プラズモン共鳴測定装置および測定方法
US20070009935A1 (en) Arrangements, systems and methods capable of providing spectral-domain optical coherence reflectometry for a sensitive detection of chemical and biological sample
US8969805B2 (en) Terahertz wave measurement device and method
JP2005099007A (ja) センサ
JP2005016963A (ja) 化学センサ、化学センサ装置
WO2006101252A1 (en) Inspection apparatus using terahertz waves
US8106368B2 (en) Fluorescence detecting method
JP2007078621A (ja) センシング装置
JP2007286045A (ja) 検出装置、検出素子用基板、検出素子、検出素子用キット及び検出方法
CA2757007C (en) Photonic crystal sensor
JP2009192259A (ja) センシング装置
JP2015111063A (ja) 表面プラズモン増強蛍光測定方法および表面プラズモン増強蛍光測定装置
KR102103077B1 (ko) 고소광계수 표지자와 유전체기판을 이용한 고감도 바이오센서칩, 측정시스템 및 측정방법
JP2004061286A (ja) 表面プラズモン共鳴角センサー
JP2008232719A (ja) 標的物質検出のための装置及び方法
JP4030796B2 (ja) 測定チップ
JP2005221274A (ja) 測定方法および測定装置
Zimmerer et al. Optical biosensor array based on natural ion channels
CN117778169A (zh) 太赫兹生物检测芯片及其制备方法和应用
Jiang et al. Design of a reusable VCSEL sensor chip integrated with multilayer grating

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5028529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250