JP5024886B2 - Planarization processing method and crystal growth method - Google Patents

Planarization processing method and crystal growth method Download PDF

Info

Publication number
JP5024886B2
JP5024886B2 JP2008084546A JP2008084546A JP5024886B2 JP 5024886 B2 JP5024886 B2 JP 5024886B2 JP 2008084546 A JP2008084546 A JP 2008084546A JP 2008084546 A JP2008084546 A JP 2008084546A JP 5024886 B2 JP5024886 B2 JP 5024886B2
Authority
JP
Japan
Prior art keywords
sic
sic substrate
temperature
hydrogen gas
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008084546A
Other languages
Japanese (ja)
Other versions
JP2009239103A (en
Inventor
広明 斎藤
章憲 関
由加里 谷
柴田  典義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Fine Ceramics Center
Toyota Motor Corp
Original Assignee
Japan Fine Ceramics Center
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Fine Ceramics Center, Toyota Motor Corp filed Critical Japan Fine Ceramics Center
Priority to JP2008084546A priority Critical patent/JP5024886B2/en
Publication of JP2009239103A publication Critical patent/JP2009239103A/en
Application granted granted Critical
Publication of JP5024886B2 publication Critical patent/JP5024886B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

この発明は、SiC基板(SiCウェハーということもある)表面の平坦化処理方法およびSiCエピタキシャル結晶成長法に関し、さらに詳しくはカーボンの供給を抑えた反応室内条件下に、特定の条件で前処理した後、水素ガス雰囲気下にSiC基板表面をエッチングすることによってSiドロップレットが抑制されて平滑な表面が得られるSiC基板表面の平坦化処理方法およびSiCエピタキシャル結晶成長法に関する。 The present invention relates to a method for planarizing a surface of a SiC substrate (sometimes referred to as a SiC wafer) and a SiC epitaxial crystal growth method , and more particularly, pre-treatment is performed under specific conditions under reaction chamber conditions in which carbon supply is suppressed. Then, the present invention relates to a method for planarizing a SiC substrate surface and a SiC epitaxial crystal growth method in which a Si droplet is suppressed by etching the SiC substrate surface in a hydrogen gas atmosphere to obtain a smooth surface.

近年、エレクトロニクス分野における低損失化や小型化の実現に向けて、従来のSi半導体に比べて高い電気変換効率および高い熱伝導率などによって大幅な性能向上が期待できるSiC単結晶半導体がパワー半導体デバイス材料として有望視されている。このSiC単結晶半導体はCVD(Chemical Vapor Deposition)装置などの製膜装置を用いて半導体基板上へのエピタキシャル薄膜の形成によって得られる。
このCVD装置によれば、サセプタおよび断熱材を備えた反応室に原料ガスをキャリアガスとともに供給してSiC基板にSiC単結晶薄膜をエピタキシャル結晶成長させることができる。
In recent years, SiC single crystal semiconductors that can be expected to significantly improve performance due to high electrical conversion efficiency and high thermal conductivity compared to conventional Si semiconductors are becoming power semiconductor devices in order to achieve low loss and miniaturization in the electronics field. Promising as a material. This SiC single crystal semiconductor is obtained by forming an epitaxial thin film on a semiconductor substrate using a film forming apparatus such as a CVD (Chemical Vapor Deposition) apparatus.
According to this CVD apparatus, an SiC single crystal thin film can be epitaxially grown on an SiC substrate by supplying a source gas together with a carrier gas to a reaction chamber equipped with a susceptor and a heat insulating material.

しかし、一般的なグラファイトサセプタやグラファイト断熱材などを備えた製膜装置を使用してエピタキシャル結晶成長させると、この製膜装置を起源とするハイドロカーボン・不純物の発生があり、その発生量や種類の制御が難しく、SiC単結晶の成長条件の精密な制御が困難である。
このため、サセプタとしてSiCを用いるかサセプタ表面をSiCでコートしたSiCコートグラファイトを用いるなどのカーボンの供給を抑えた反応室内条件下にSiC基板上にSiC単結晶をエピタキシャル成長させる技術が検討されている。
However, when epitaxial film growth is performed using a film-forming device equipped with a general graphite susceptor or graphite heat insulating material, hydrocarbons and impurities are generated from this film-forming device. Is difficult to control, and it is difficult to precisely control the growth conditions of the SiC single crystal.
For this reason, a technique for epitaxially growing a SiC single crystal on a SiC substrate under reaction chamber conditions in which the supply of carbon is suppressed, such as using SiC as a susceptor or using SiC-coated graphite whose susceptor surface is coated with SiC, has been studied. .

一方、SiC基板のスライス技術や研磨技術がシリコン基板(シリコンウェハー)の技術に比べて未だ十分でないため、SiC基板には研磨によるダメージ層やスクラッチと呼ばれる傷が全面に発生する。最終的なデバイス性能の多くはSiC基板上に成長させたエピタキシャル薄膜の膜質に左右され、エピタキシャル薄膜は下地層の影響を受けるから、高品質のエピタキシャル薄膜を得るためには、エピタキシャル薄膜の成膜前にSiC基板表面のダメージ層を除去して平坦かつ清浄な表面を得ることが必要となる。
このため、エピタキシャル成長の前処理として、SiC基板の水素雰囲気によるエッチング処理が提案された(特許文献1〜3)。
On the other hand, since the SiC substrate slicing technique and polishing technique are not yet sufficient as compared with the silicon substrate (silicon wafer) technique, a damage layer or scratches called scratches are generated on the entire surface of the SiC substrate. Much of the final device performance depends on the quality of the epitaxial thin film grown on the SiC substrate, and the epitaxial thin film is affected by the underlying layer. To obtain a high-quality epitaxial thin film, the epitaxial thin film must be formed. It is necessary to obtain a flat and clean surface by removing the damaged layer on the surface of the SiC substrate before.
For this reason, the etching process by the hydrogen atmosphere of a SiC substrate was proposed as a pretreatment of epitaxial growth (patent documents 1-3).

特開2002−255692号公報JP 2002-255692 A 特開2005−277229号公報JP 2005-277229 A 特開2005−311348号公報JP 2005-311348 A

上記の特許文献1には、炭化珪素単結晶ウェハーを1550℃以上の温度で水素ガス又は塩化水素ガス流通雰囲気中で前処理を行った後に、該ウェハー上に炭化珪素薄膜をエピタキシャル成長する炭化珪素エピタキシャル基板の製造方法が記載されている。そして、具体例として、グラファイトサセプタを用いて前記温度および雰囲気で前処理を行った例が示されている。   In the above-mentioned Patent Document 1, a silicon carbide single crystal wafer is pretreated in a hydrogen gas or hydrogen chloride gas circulation atmosphere at a temperature of 1550 ° C. or higher, and then a silicon carbide epitaxial film is epitaxially grown on the wafer. A method for manufacturing a substrate is described. As a specific example, an example in which pretreatment is performed at the temperature and atmosphere using a graphite susceptor is shown.

上記の特許文献2には、炭化珪素基板の平滑化における水素エッチング時に原料ガスを添加する炭化珪素平滑化基板の作製方法が記載されている。そして、原料ガスとしてシランが記載され、サセプタの種類については記載がない。   Patent Document 2 described above describes a method for manufacturing a silicon carbide smoothed substrate in which a source gas is added during hydrogen etching in smoothing a silicon carbide substrate. And silane is described as source gas and there is no description about the kind of susceptor.

上記の特許文献3には、炭化珪素基板の表面を水素エッチングで処理した後に、この処理面から炭化珪素をエピタキシャル成長させてエピタキシャル層を形成するバイポーラ型半導体装置の製造方法が記載されているが、サセプタの種類については記載がない。   Patent Document 3 described above describes a method for manufacturing a bipolar semiconductor device in which after the surface of a silicon carbide substrate is treated by hydrogen etching, silicon carbide is epitaxially grown from the treated surface to form an epitaxial layer. There is no description of the type of susceptor.

このように、公知文献に記載の方法は、グラファイトサセプタを用いるなどカーボンの供給を前提とする反応室内条件下あるいはカーボンの供給を抑えることが不明な反応室内条件下での水素エッチングによるエピタキシャル成長の前処理であり、カーボンの供給を抑えた反応室内条件下で平滑な表面を有するSiC基板表面の平坦化処理法は知られていない。
従って、この発明の目的は、カーボンの供給を抑えた反応室内条件下で平滑な表面を形成することが出来るSiC基板表面の平坦化処理方法を提供することである。
As described above, the method described in the publicly known literature is based on the pre-epitaxial growth by hydrogen etching under the reaction chamber conditions that require the supply of carbon, such as using a graphite susceptor, or under the reaction chamber conditions where it is unknown to suppress the supply of carbon. There is no known method for flattening the surface of a SiC substrate having a smooth surface under reaction chamber conditions in which carbon supply is suppressed.
Accordingly, an object of the present invention is to provide a method for planarizing a SiC substrate surface, which can form a smooth surface under conditions in a reaction chamber in which the supply of carbon is suppressed.

この発明者らは、前記の目的を達成することを目的として鋭意検討した結果、カーボンの供給を抑えた反応室内条件下に水素ガスを供給してSiC基板を高温熱処理すると基板表面がSi過剰となりSiドロップレットが生じることを見出し、さらに検討を行った結果、この発明を完成した。
この発明は、水素ガスによるSiC基板表面の平坦化処理において、サセプタをSiC、SiCコートグラファイト又はTaCコートグラファイトによって構成するカーボンの供給を抑えた反応室内条件下にSiC基板の昇温中にハイドロカーボンを供給し、エピタキシャル成長温度に到達後にハイドロカーボンの供給を停止又は減らして、引き続き水素ガスを供給してSiC基板表面をエッチングすることを特徴とするSiC基板表面の平坦化処理方法に関する。
また、この出願の発明は、前記の平坦化処理方法によって得られた平滑な表面を有するSiC基板表面に、エピタキシャル結晶成長法によってSiC薄膜を形成するSiCエピタキシャル結晶成長法に関する。
As a result of intensive studies aimed at achieving the above object, the present inventors have found that when the SiC substrate is heated at a high temperature by supplying hydrogen gas under the reaction chamber conditions in which the supply of carbon is suppressed, the substrate surface becomes Si-excessive. As a result of finding out that Si droplets are generated and conducting further studies, the present invention has been completed.
In the planarization treatment of the SiC substrate surface with hydrogen gas, the present invention provides a hydrocarbon during the temperature rise of the SiC substrate under a reaction chamber condition in which the supply of carbon in which the susceptor is composed of SiC, SiC-coated graphite or TaC-coated graphite is suppressed. And then, after reaching the epitaxial growth temperature, the supply of hydrocarbons is stopped or reduced, and hydrogen gas is subsequently supplied to etch the SiC substrate surface.
The invention of this application also relates to a SiC epitaxial crystal growth method in which a SiC thin film is formed by an epitaxial crystal growth method on a SiC substrate surface having a smooth surface obtained by the planarization method.

この発明によれば、カーボンの供給を抑えた反応室内条件下でSiC基板表面を平坦化処理して、基板表面のSiドロップレットが抑制されて平滑な表面を形成することができる。   According to the present invention, the SiC substrate surface can be planarized under the reaction chamber conditions in which the supply of carbon is suppressed, and the Si droplets on the substrate surface can be suppressed to form a smooth surface.

この発明における好適な態様を次に示す。
1)カーボンの供給を抑えた反応室内条件が、サセプタをSiC、SiCコートグラファイト又はTaCコートグラファイトによって構成することである前記の平坦化処理方法。
2)カーボンの供給を抑えた反応室内条件が、さらに断熱材をSiC、SiCコートグラファイト又はTaCコートグラファイトによって構成することである前記の平坦化処理方法。
3)水素ガスを5〜30分間供給してSiC基板表面をエッチングする前記の平坦化処理方法。
A preferred embodiment of the present invention will be described below.
1) The planarization method as described above, wherein the reaction chamber condition in which the supply of carbon is suppressed is that the susceptor is composed of SiC, SiC-coated graphite, or TaC-coated graphite.
2) The planarization method as described above, wherein the reaction chamber condition in which the supply of carbon is suppressed is that the heat insulating material is further composed of SiC, SiC-coated graphite, or TaC-coated graphite.
3) The said planarization method of supplying a hydrogen gas for 5 to 30 minutes and etching the SiC substrate surface.

以下、この発明を図面を参照して説明する。図1は、この発明の平坦化処理方法に用いる製膜装置の1実施態様の概略図であり、図2はこの発明の1実施態様における加熱温度の時間変化およびハイドロカーボン供給の時間変化を示すグラフである。
図1において、製膜装置は、反応室1内にサセプタ2および断熱材3を備え、サセプタ2上のSiC基板4に薄膜を形成するためのチャンバー、例えば、石英製チャンバーからなり、反応室1外に装置内加熱装置5、例えば、高周波電源と装置内加熱温度測定用の熱電対温度計6と、ガス、例えば水素キャリアガス、原料ガスの供給配管(図示せず)、排気管(図示せず)および形成された薄膜を取り出す薄膜取り出し装置(図示せず)を備えている。
The present invention will be described below with reference to the drawings. FIG. 1 is a schematic view of one embodiment of a film forming apparatus used in the planarization processing method of the present invention, and FIG. 2 shows the time variation of heating temperature and the time variation of hydrocarbon supply in one embodiment of the present invention. It is a graph.
In FIG. 1, a film forming apparatus includes a susceptor 2 and a heat insulating material 3 in a reaction chamber 1, and includes a chamber for forming a thin film on a SiC substrate 4 on the susceptor 2, for example, a quartz chamber. In addition, an in-apparatus heating device 5, for example, a high-frequency power source and a thermocouple thermometer 6 for measuring the in-apparatus heating temperature, a supply pipe (not shown) for a gas, for example, a hydrogen carrier gas and a source gas, and an exhaust pipe (not shown) And a thin film take-out device (not shown) for taking out the formed thin film.

この発明は、例えば図1に一例を示す製膜装置を用いたSiC基板表面の平坦化処理方法に関するものであり、先ずカーボンの供給を抑えた反応室内条件下に水素ガス供給下にSiC基板の昇温中にハイドロカーボンを供給することが必要である。
前記のカーボンの供給を抑えた反応室内条件としては、好適にはサセプタをSiC、SiCコートグラファイト又はTaCコートグラファイトで構成することが挙げられ、さらに断熱材もSiC、SiCコートグラファイト又はTaCコートグラファイトで構成することが挙げられる。
The present invention relates to a method for flattening the surface of an SiC substrate using, for example, a film forming apparatus shown in FIG. 1, for example. First, an SiC substrate under a reaction chamber condition in which carbon supply is suppressed under supply of hydrogen gas. It is necessary to supply hydrocarbon during the temperature rise.
As the reaction chamber conditions in which the supply of carbon is suppressed, preferably, the susceptor is composed of SiC, SiC-coated graphite or TaC-coated graphite, and the heat insulating material is also SiC, SiC-coated graphite or TaC-coated graphite. It may be configured.

そして、前記のカーボンの供給を抑えた反応室内条件下とSiC基板の水素ガス供給下の昇温中にハイドロカーボンを供給する方法としては、図2に示すように、昇温の最初は水素ガスを供給し、次いで水素ガスとともにハイドロカーボンを昇温の途中、好適には500℃以上の温度、特に750℃以上の温度、その中でも1000℃以上の温度に達した段階で供給することが好ましい。この温度は、図1に示すように熱伝対温度計で測定される加熱温度を意味する。また、前記の昇温中とは、エピタキシャル成長温度に到達するまでの温度範囲内で熱電対温度計が示す温度が上昇している状態を示す。昇温の条件については特に制限はなく、図2に示すように一定の昇温速度で温度上昇させてもよく又は、温度上昇−温度保持−温度上昇等の段階的な昇温を繰り返しても良い。   And, as shown in FIG. 2, as a method of supplying hydrocarbons during the temperature increase in the reaction chamber with the carbon supply suppressed and during the temperature increase under the hydrogen gas supply of the SiC substrate, as shown in FIG. Then, it is preferable to supply the hydrocarbon together with hydrogen gas in the course of raising the temperature, preferably at a temperature of 500 ° C. or higher, particularly 750 ° C. or higher, particularly 1000 ° C. or higher. This temperature means the heating temperature measured with a thermocouple thermometer as shown in FIG. The term “during temperature rise” means that the temperature indicated by the thermocouple thermometer is rising within the temperature range until the epitaxial growth temperature is reached. There are no particular restrictions on the temperature raising conditions, and the temperature may be raised at a constant rate of temperature rise as shown in FIG. good.

この発明の方法において、水素ガス単独で供給した後に水素ガスとともにハイドロカーボンを供給する条件については特に制限はないが、圧力は、1torr〜1atm、特に2torr〜1atmであることが好ましい。また、水素ガスは、好適には10〜5000sccm(standard cc/minの略号、0℃で規格化したsccmを表示する。)、特に50〜2500sccm程度の供給量で供給することが好ましい。
また、水素ガスとともに供給するハイドロカーボンとしては、特に制限はなく、例えばメタン、プロパン、アセチレンなどを使用することができる。
前記のハイドロカーボンは、水素ガスの供給量中の割合が0.1〜50容積%、特に1〜10容積%、その中でも2〜10容積%で供給することが好ましい。
In the method of the present invention, there is no particular limitation on the conditions for supplying hydrocarbons together with hydrogen gas after supplying hydrogen gas alone, but the pressure is preferably 1 torr to 1 atm, particularly 2 torr to 1 atm. The hydrogen gas is preferably supplied at a supply amount of about 10 to 5000 sccm (abbreviation of standard cc / min, sccm normalized at 0 ° C.), particularly about 50 to 2500 sccm.
Moreover, there is no restriction | limiting in particular as hydrocarbon supplied with hydrogen gas, For example, methane, a propane, acetylene etc. can be used.
The above-mentioned hydrocarbon is preferably supplied at a ratio of 0.1 to 50% by volume, particularly 1 to 10% by volume, particularly 2 to 10% by volume in the supply amount of hydrogen gas.

この発明においては、前記のカーボンの供給を抑えた反応室内条件下で昇温中に水素ガスとともにハイドロカーボンを供給することが必要であり、ハイドロカーボンを供給せず水素ガスを単独で供給したのではSiC基板表面にシリコンドロップレットが生じる。
この従来の昇温中での水素ガスの単独供給によるSiドロップレット生成の要因として、水素雰囲気下でSiC基板を加熱することによって下記の反応がおきることによると考えられる。
In the present invention, it is necessary to supply hydrocarbon together with hydrogen gas during the temperature rise under the above-described reaction chamber conditions in which supply of carbon is suppressed, and hydrogen gas is supplied alone without supplying hydrocarbon. Then, silicon droplets are generated on the surface of the SiC substrate.
It is considered that the following reaction occurs by heating the SiC substrate in a hydrogen atmosphere as a factor for the generation of Si droplets by the single supply of hydrogen gas during the conventional temperature increase.

SiC+2H→Si(s)+CH(g)+0.72eV
このSiC基板表面に発生したSi(s)がドロップレットとして表面に残ると考えられる。
このSi(s)は加熱により次式に従って蒸発すると考えられる。
Si(s)→Si(g)+4.4eV
この反応によるSiの蒸発は、活性化エネルギーの関係から低温域では遅く、高温域では早い。また、飽和蒸気圧の関係から、蒸発速度は圧力の平方根分の1に比例するため温度や圧力によってSiC基板表面に残るSi量が異なり、結局水素ガス雰囲気ではSiC基板表面にSiがドロップレットとして残ることは避けられない。
SiC + 2H 2 → Si (s) + CH 4 (g) +0.72 eV
It is considered that Si (s) generated on the surface of the SiC substrate remains on the surface as droplets.
This Si (s) is considered to evaporate by heating according to the following formula.
Si (s) → Si (g) +4.4 eV
The evaporation of Si due to this reaction is slow in the low temperature range and fast in the high temperature range due to the activation energy. In addition, because of the saturation vapor pressure, the evaporation rate is proportional to 1 / square root of the pressure, so the amount of Si remaining on the SiC substrate surface varies depending on the temperature and pressure. As a result, in the hydrogen gas atmosphere, Si becomes droplets on the SiC substrate surface. It is inevitable to remain.

これに対して、この発明においてSiドロップレットが抑制される要因としては、SiC基板の昇温中に水素ガスとともにハイドロカーボンを供給するため、下記の反応がおきることによると考えられる。
Si+CH→SiC+H−0.72eV
3Si+C→3SiC+4H−0.88eV
2Si+C→2SiC+H+0.91eV
この反応式に示すように、ハイドロカーボンの種類によって反応式は異なるが、いずれによってもSiC基板でSiCの再生成が起き、Siのドロップレットが解消されると考えられる。
On the other hand, it is considered that the reason why the Si droplets are suppressed in the present invention is that the following reaction occurs because the hydrocarbon is supplied together with the hydrogen gas during the temperature rise of the SiC substrate.
Si + CH 4 → SiC + H 2 −0.72 eV
3Si + C 3 H 8 → 3SiC + 4H 2 −0.88 eV
2Si + C 2 H 2 → 2SiC + H 2 +0.91 eV
As shown in this reaction equation, although the reaction equation varies depending on the type of hydrocarbon, it is considered that in any case, SiC is regenerated on the SiC substrate, and Si droplets are eliminated.

この発明においては、SiC基板の昇温中に水素ガスとともにハイドロカーボンを供給し、エピタキシャル成長温度に到達後にハイドロカーボンの供給を停止又は減らして、引き続き水素ガスを供給してSiC基板表面をエッチングすることが必要である。後者の場合はハイドロカーボン(特にアセチレン)の供給を昇温中の3分の1以下、特に5分の1以下に減らすことが好ましい。エピタキシャル成長温度に到達後にハイドロカーボンの供給を停止又は減らさないで、そのまま水素ガスとともにハイドロカーボンを供給すると、SiC基板表面が曇り等の現象が現れ平坦面が得られないので好ましくない。   In the present invention, hydrocarbon is supplied together with hydrogen gas during the temperature rise of the SiC substrate, the supply of hydrocarbon is stopped or reduced after reaching the epitaxial growth temperature, and the surface of the SiC substrate is etched by subsequently supplying hydrogen gas. is required. In the latter case, it is preferable to reduce the supply of hydrocarbon (particularly acetylene) to 1/3 or less, particularly 1/5 or less of the temperature rising. If the hydrocarbon is supplied together with hydrogen gas without stopping or reducing the supply of the hydrocarbon after reaching the epitaxial growth temperature, a phenomenon such as cloudiness appears on the surface of the SiC substrate and a flat surface cannot be obtained.

前記のエピタキシャル成長温度に到達後は、図2に示すように一定温度で水素ガスを供給してSiC基板表面をエッチングすることが好ましいが、エピタキシャル成長温度以上の温度であれば加熱温度について特に制限はなく、前記の範囲で温度を上昇又は降温させてSiC基板表面を水素ガスエッチングしてもよい。
前記のエピタキシャル成長温度としては、1300℃以上〜2000℃未満、特に1500℃以上〜1800℃、その中でも特に1500〜1550℃の温度が好適である。
また、前記のハイドロカーボンの供給を停止した後に引き続き水素ガスを供給してSiC基板表面をエッチングする条件としては、10〜5000sccm、特に50〜2500sccm程度の水素ガス供給量、1500℃以上〜2000℃未満、特に1500〜1800℃程度、その中でも特に1500〜1550℃の温度、5分間〜2時間、特に5〜30分間の時間が好ましい。
After reaching the epitaxial growth temperature, it is preferable to etch the SiC substrate surface by supplying hydrogen gas at a constant temperature as shown in FIG. 2, but there is no particular limitation on the heating temperature as long as the temperature is equal to or higher than the epitaxial growth temperature. The SiC substrate surface may be subjected to hydrogen gas etching by raising or lowering the temperature within the above range.
As said epitaxial growth temperature, 1300 degreeC or more-less than 2000 degreeC, Especially 1500 degreeC or more-1800 degreeC, Among these, the temperature of 1500-1550 degreeC is especially suitable.
The conditions for etching the SiC substrate surface by continuously supplying hydrogen gas after stopping the supply of the hydrocarbon are 10 to 5000 sccm, particularly about 50 to 2500 sccm, and about 1500 to 2000 ° C. Less than, especially about 1500-1800 degreeC, Among these, the temperature of 1500-1550 degreeC is especially preferable for the time for 5 minutes-2 hours, especially 5-30 minutes.

前記の一連の工程によるこの発明の方法によりSiC基板表面をエッチングすることによって、SiCドロップレットの発生が抑制され、表面の研磨ひずみ層が除去されてSRq(粗さ曲面の自乗平均平方根粗さを示す)が好適には1nm以下、特に0.5nm以下、その中でも0.4nm以下の平坦面を有するSiC基板を得ることができる。
前記のエッチング処理されたSiC基板に、引き続いてキャリアガス(前記の水素ガスを使用しても良い。)および原料ガスを供給してSiC単結晶をエピタキシャル成長させることができる。
By etching the surface of the SiC substrate by the method of the present invention through the above-described series of steps, the generation of SiC droplets is suppressed, the polishing strain layer on the surface is removed, and SRq (root mean square roughness of the roughness curved surface is reduced. It is preferable to obtain a SiC substrate having a flat surface of 1 nm or less, particularly 0.5 nm or less, and more preferably 0.4 nm or less.
The SiC single crystal can be epitaxially grown by supplying a carrier gas (the hydrogen gas may be used) and a raw material gas to the etched SiC substrate.

前記のSiC単結晶をエピタキシャル成長させる方法としては特に制限はなく、任意の方法を採用することが出来る。
例えば、エピタキシャル成長によって形成される薄膜は単一層であってもよく2種以上の多層であってもよい。また、SiCのみからなる薄膜の場合、p型およびn型の単結晶が相互に接合されて構成されてもよく、異種の結晶からなる薄膜が相互に接合されて構成されてもよい。
前記のSiCをエピタキシャル結晶成長させるために原料ガスとしては、シリコン源としてSiHやジクロルシランなどを挙げることができ、カーボン源としてメタン、プロパン、アセチレンなどを使用することができる。
The method for epitaxially growing the SiC single crystal is not particularly limited, and any method can be adopted.
For example, the thin film formed by epitaxial growth may be a single layer or two or more types of multilayers. Further, in the case of a thin film made of only SiC, p-type and n-type single crystals may be joined to each other, or thin films made of different types of crystals may be joined to each other.
Examples of the source gas for epitaxial crystal growth of SiC include SiH 4 and dichlorosilane as the silicon source, and methane, propane, acetylene, and the like as the carbon source.

さらに、反応室内の温度(サセプタの熱電対温度)は1000℃以上2000℃未満、特に1500〜1800℃の範囲内の温度であることが好ましく、1torr〜2atmの圧力、厚みによって異なるが5〜10μmの場合には通常1〜2時間の反応時間(素子1枚ごとの成長時間)でエピタキシャル成長を行うことが好ましい。
前記の各サセプタおよび断熱材のうちどれを組み合わせて使用するかによって、原料のシリコン源およびカーボン源の割合を変えることが好ましく、例えば、SiCサセプタおよびSiC断熱材の場合、SiCエピタキシャル結晶成長時の適切な原料供給比:C/Siは6である。
Furthermore, the temperature in the reaction chamber (thermocouple temperature of the susceptor) is preferably 1000 ° C. or more and less than 2000 ° C., particularly 1500 to 1800 ° C., preferably 5 to 10 μm, depending on the pressure and thickness of 1 torr to 2 atm. In this case, it is preferable to perform epitaxial growth usually with a reaction time of 1 to 2 hours (growth time for each element).
It is preferable to change the ratio of the raw silicon source and carbon source depending on which of the above susceptors and heat insulating materials is used in combination. For example, in the case of SiC susceptor and SiC heat insulating material, during the epitaxial growth of SiC Appropriate raw material supply ratio: C / Si is 6.

この発明のSiC基板表面の平坦化処理方法によって得られるSiドロップレットがなく平滑な表面を有するSiC基板表面に、前記のSiCエピタキシャル結晶成長法によってSiC薄膜を得ることができる。   A SiC thin film can be obtained by the above-described SiC epitaxial crystal growth method on the surface of a SiC substrate having no smooth surface and having a smooth surface obtained by the method for planarizing a surface of a SiC substrate of the present invention.

以下にこの発明の実施例を示すが、この発明は以下の実施例に限定されるものではない。
以下の各例において、SiC基板の表面粗さをAFM(Atomic Force Microscopo、原子間力顕微鏡)によって測定し、SRqで表示する。
Examples of the present invention are shown below, but the present invention is not limited to the following examples.
In each of the following examples, the surface roughness of the SiC substrate is measured by an AFM (Atomic Force Microscope) and displayed as SRq.

実施例1
図1に示す製膜装置を用いて、下記の工程でSiC基板の表面平坦化処理を行った。
1)洗浄したSiC基板を、SiCサセプタおよびSiC断熱材を備えた製膜装置の反応室に設置した。
2)水素ガス500sccmを流しながら2torrの圧力下で加熱を始め、40℃/分の一定の昇温速度で昇温し、温度が1000℃になったところで水素ガス希釈5%メタンの供給を開始した。この際の水素ガス希釈5%メタンの供給量を0.5sccm、1sccm、1.4sccmおよび2sccmで行った。
3)引き続き一定速度で昇温し、エピタキシャル成長温度の1500℃になったところでメタンの供給を停止し、そのまま30分間水素ガスを供給しながら温度を保持して、SiC基板を表面平坦化処理した。
Example 1
Using the film forming apparatus shown in FIG. 1, the surface flattening process of the SiC substrate was performed in the following steps.
1) The cleaned SiC substrate was placed in a reaction chamber of a film forming apparatus equipped with a SiC susceptor and a SiC heat insulating material.
2) Heating is started at a pressure of 2 torr while flowing 500 sccm of hydrogen gas, the temperature is raised at a constant rate of 40 ° C./min, and supply of hydrogen gas diluted 5% methane is started when the temperature reaches 1000 ° C. did. At this time, hydrogen gas diluted 5% methane was supplied at 0.5 sccm, 1 sccm, 1.4 sccm, and 2 sccm.
3) Subsequently, the temperature was raised at a constant rate, and when the epitaxial growth temperature reached 1500 ° C., the supply of methane was stopped, and the temperature was maintained as it was for 30 minutes while supplying the hydrogen gas.

SiC基板の表面平坦化処理が終了後、降温してSiC基板を取り出し、SiC基板の表面形状をAFMを用いて評価した。
この加熱温度の時間変化およびハイドロカーボン供給の時間変化の概略を示すグラフを図2に示す。
また、表面平坦化処理によって得られたSiC基板の表面粗さを測定した結果を比較例の結果とともにまとめて図5に、AFMによるSiC基板の表面形状を図6に示す。
After finishing the surface flattening process of the SiC substrate, the temperature was lowered, the SiC substrate was taken out, and the surface shape of the SiC substrate was evaluated using AFM.
FIG. 2 shows a graph showing an outline of the time change of the heating temperature and the time change of the hydrocarbon supply.
Moreover, the result of having measured the surface roughness of the SiC substrate obtained by the surface flattening process is shown together with the result of the comparative example in FIG. 5, and the surface shape of the SiC substrate by AFM is shown in FIG.

比較例1
下記の工程に変えた他は、実施例1と同様にしてSiC基板の表面平坦化処理を行った。
1)洗浄したSiC基板を、SiCサセプタおよびSiC断熱材を備えた製膜装置の反応室に設置した。
2)水素ガス500sccmを流しながら2torrの圧力下で加熱を始め、40℃/分の一定の昇温速度で昇温した。
3)引き続き一定速度で昇温し、エピタキシャル成長温度の1500℃になるまで加熱を続けて、SiC基板を表面平坦化処理した。
Comparative Example 1
The surface flattening treatment of the SiC substrate was performed in the same manner as in Example 1 except that the following steps were changed.
1) The cleaned SiC substrate was placed in a reaction chamber of a film forming apparatus equipped with a SiC susceptor and a SiC heat insulating material.
2) Heating was started under a pressure of 2 torr while flowing 500 sccm of hydrogen gas, and the temperature was increased at a constant temperature increase rate of 40 ° C./min.
3) Subsequently, the temperature was raised at a constant rate, and heating was continued until the epitaxial growth temperature reached 1500 ° C., thereby surface-treating the SiC substrate.

SiC基板の表面平坦化処理が終了後、降温してSiC基板を取り出し、SiC基板の表面形状をAFMを用いて評価した。
この加熱温度の時間変化を示すグラフを図3に示す。
また、AFMによるSiC基板の表面形状を図7に示す。
After finishing the surface flattening process of the SiC substrate, the temperature was lowered, the SiC substrate was taken out, and the surface shape of the SiC substrate was evaluated using AFM.
A graph showing the time change of the heating temperature is shown in FIG.
Moreover, the surface shape of the SiC substrate by AFM is shown in FIG.

比較例2
下記の工程に変えた他は、実施例1と同様にしてSiC基板の表面平坦化処理を行った。
1)洗浄したSiC基板を、SiCサセプタおよびSiC断熱材を備えた製膜装置の反応室に設置した。
2)水素ガス500sccmを流しながら2torrの圧力下で加熱を始め、40℃/分の一定の昇温速度で昇温し、温度が1000℃になったところで水素ガス希釈5%メタンの供給を開始した。この際のメタンの供給量を0.5sccm、1.4sccm、2.8sccm、10sccmおよび100sccmで行った。
3)引き続き一定速度で昇温し、エピタキシャル成長温度の1500℃になったところで昇温を停止し、そのまま30分間水素ガスおよびメタンを供給しながら温度を保持して、SiC基板を表面平坦化処理した。
Comparative Example 2
The surface flattening treatment of the SiC substrate was performed in the same manner as in Example 1 except that the following steps were changed.
1) The cleaned SiC substrate was placed in a reaction chamber of a film forming apparatus equipped with a SiC susceptor and a SiC heat insulating material.
2) Heating is started at a pressure of 2 torr while flowing 500 sccm of hydrogen gas, the temperature is raised at a constant rate of 40 ° C./min, and supply of hydrogen gas diluted 5% methane is started when the temperature reaches 1000 ° C. did. At this time, the supply amount of methane was 0.5 sccm, 1.4 sccm, 2.8 sccm, 10 sccm, and 100 sccm.
3) Subsequently, the temperature was raised at a constant rate, and when the epitaxial growth temperature reached 1500 ° C., the temperature raising was stopped, and the temperature was maintained as it was for 30 minutes while supplying the hydrogen gas and methane, and the SiC substrate was surface planarized. .

SiC基板の表面平坦化処理が終了後、降温してSiC基板を取り出し、SiC基板の表面形状をAFMを用いて評価した。
この加熱温度の時間変化を示すグラフを図4に示す。
また、表面平坦化処理によって得られたSiC基板の表面は曇り、表面粗さを測定したところ、SRqが数十〜200nmで、且つ晶癖を有した形状であった。メタンの供給量が0.5sccm、1.4sccmおよび2.8sccmの場合のSiC基板のAFMによる表面形状を図8に示す。
After finishing the surface flattening process of the SiC substrate, the temperature was lowered, the SiC substrate was taken out, and the surface shape of the SiC substrate was evaluated using AFM.
The graph which shows the time change of this heating temperature is shown in FIG.
Further, the surface of the SiC substrate obtained by the surface flattening treatment was cloudy, and the surface roughness was measured. As a result, the SRq was several tens to 200 nm and had a crystal habit. FIG. 8 shows the surface shape of the SiC substrate by AFM when the supply amount of methane is 0.5 sccm, 1.4 sccm, and 2.8 sccm.

比較例3
下記の工程に変えた他は、実施例1と同様にしてSiC基板の表面平坦化処理を行った。
1)洗浄したSiC基板を、SiCサセプタおよびSiC断熱材を備えた製膜装置の反応室に設置した。
2)水素ガス500sccmを流しながら2torrの圧力下で加熱を始め、40℃/分の一定の昇温速度で昇温した。
3)引き続き一定速度で昇温し、エピタキシャル成長温度の1500℃になったところで昇温を停止し、そのまま水素ガスを供給しながら30分間保持して、SiC基板を表面平坦化処理した。
Comparative Example 3
The surface flattening treatment of the SiC substrate was performed in the same manner as in Example 1 except that the following steps were changed.
1) The cleaned SiC substrate was placed in a reaction chamber of a film forming apparatus equipped with a SiC susceptor and a SiC heat insulating material.
2) Heating was started under a pressure of 2 torr while flowing 500 sccm of hydrogen gas, and the temperature was increased at a constant temperature increase rate of 40 ° C./min.
3) Subsequently, the temperature was raised at a constant rate, and when the epitaxial growth temperature reached 1500 ° C., the temperature raising was stopped, and the SiC substrate was flattened by maintaining the hydrogen gas as it was for 30 minutes.

SiC基板の表面平坦化処理が終了後、降温してSiC基板を取り出し、SiC基板の表面形状をAFMを用いて評価した。
この加熱温度の時間変化を示すグラフは図4と同じである。
また、表面平坦化処理によって得られたSiC基板の表面形状をAFMにより評価した。
SiC基板の表面形状をAFMにより評価した結果について、実施例1と比較例1〜3の結果をまとめて表1に示す。
After finishing the surface flattening process of the SiC substrate, the temperature was lowered, the SiC substrate was taken out, and the surface shape of the SiC substrate was evaluated using AFM.
The graph showing the change over time in the heating temperature is the same as in FIG.
Moreover, the surface shape of the SiC substrate obtained by the surface flattening treatment was evaluated by AFM.
About the result of having evaluated the surface shape of a SiC substrate by AFM, the result of Example 1 and Comparative Examples 1-3 is put together in Table 1, and is shown.

実施例2
図1に示す製膜装置を用いて、下記の工程でSiC基板の表面平坦化処理を行った。
1)洗浄したSiC基板を、SiCサセプタおよびSiC断熱材を備えた製膜装置の反応室に設置した。
2)水素ガス500sccmを流しながら2torrの圧力下で加熱を始め、40℃/分の一定の昇温速度で昇温し、温度が1000℃になったところで水素ガス希釈1%アセチレンの供給を開始した。この際のアセチレンの供給量を7sccmで行った。
3)引き続き一定速度で昇温し、エピタキシャル成長温度の1500℃になったところでアセチレンの供給量を1sccmに減らし、そのまま30分間温度を維持して、SiC基板を表面平坦化処理した。
Example 2
Using the film forming apparatus shown in FIG. 1, the surface flattening process of the SiC substrate was performed in the following steps.
1) The cleaned SiC substrate was placed in a reaction chamber of a film forming apparatus equipped with a SiC susceptor and a SiC heat insulating material.
2) Start heating at a pressure of 2 torr while flowing 500 sccm of hydrogen gas, raise the temperature at a constant rate of 40 ° C / min, and start supplying hydrogen gas diluted 1% acetylene when the temperature reaches 1000 ° C did. At this time, the supply amount of acetylene was 7 sccm.
3) Subsequently, the temperature was raised at a constant rate, and when the epitaxial growth temperature reached 1500 ° C., the amount of acetylene supplied was reduced to 1 sccm, and the temperature was maintained for 30 minutes to planarize the SiC substrate.

SiC基板の表面平坦化処理が終了後、降温してSiC基板を取り出し、SiC基板の表面形状をAFMを用いて評価した。
表面粗さSRqは0.3nmと平坦になった。
Raman散乱測定から、表面にSiドロップレットが発生していないことを確認した。
After finishing the surface flattening process of the SiC substrate, the temperature was lowered, the SiC substrate was taken out, and the surface shape of the SiC substrate was evaluated using AFM.
The surface roughness SRq became flat at 0.3 nm.
From Raman scattering measurement, it was confirmed that Si droplets were not generated on the surface.

図1は、この発明の平坦化処理方法に用いる製膜装置の1実施態様の概略図である。FIG. 1 is a schematic view of one embodiment of a film forming apparatus used in the planarization method of the present invention. 図2は、この発明の1実施態様における加熱温度の時間変化およびハイドロカーボン供給の時間変化を示すグラフである。FIG. 2 is a graph showing temporal changes in heating temperature and temporal changes in the supply of hydrocarbons in one embodiment of the present invention. 図3は、比較例1における加熱温度の時間変化を示すグラフである。FIG. 3 is a graph showing temporal changes in heating temperature in Comparative Example 1. 図4は、比較例2における加熱温度の時間変化を示すグラフである。FIG. 4 is a graph showing temporal changes in the heating temperature in Comparative Example 2. 図5は、実施例1および比較例2の表面平坦化処理によって得られたSiC基板の表面粗さをまとめて示すグラフである。FIG. 5 is a graph collectively showing the surface roughness of the SiC substrate obtained by the surface flattening process of Example 1 and Comparative Example 2. 図6は、実施例1の表面平坦化処理によって得られたSiC基板のAFMによる表面形状写真である。FIG. 6 is a surface shape photograph by AFM of the SiC substrate obtained by the surface flattening process of Example 1. 図7は、比較例1の表面平坦化処理によって得られたSiC基板のAFMによる表面形状写真である。FIG. 7 is a surface shape photograph by AFM of the SiC substrate obtained by the surface flattening process of Comparative Example 1. 図8は、比較例2の表面平坦化処理によって得られたSiC基板のAFMによる表面形状写真である。FIG. 8 is a surface shape photograph by AFM of the SiC substrate obtained by the surface flattening process of Comparative Example 2.

符号の説明Explanation of symbols

1 反応室
2 サセプタ
3 断熱材
4 基板
5 装置内加熱装置
6 熱電対温度計
10 製膜装置
DESCRIPTION OF SYMBOLS 1 Reaction chamber 2 Susceptor 3 Heat insulation material 4 Board | substrate 5 In-apparatus heating apparatus 6 Thermocouple thermometer 10 Film-forming apparatus

Claims (4)

水素ガスによるSiC基板表面の平坦化処理において、サセプタをSiC、SiCコートグラファイト又はTaCコートグラファイトによって構成するカーボンの供給を抑えた反応室内条件下にSiC基板の昇温中にハイドロカーボンを供給し、エピタキシャル成長温度に到達後にハイドロカーボンの供給を停止又は減らして、引き続き水素ガスを供給してSiC基板表面をエッチングすることを特徴とするSiC基板表面の平坦化処理方法。 In the planarization treatment of the SiC substrate surface with hydrogen gas, the hydrocarbon is supplied during the temperature increase of the SiC substrate under the reaction chamber conditions in which the supply of carbon comprising the susceptor with SiC, SiC-coated graphite or TaC-coated graphite is suppressed, A method of planarizing a SiC substrate surface, wherein the supply of hydrocarbons is stopped or reduced after reaching an epitaxial growth temperature, and then the SiC substrate surface is etched by supplying hydrogen gas. カーボンの供給を抑えた反応室内条件が、さらに断熱材をSiC、SiCコートグラファイト又はTaCコートグラファイトによって構成することである請求項1に記載の平坦化処理方法。 The planarization method according to claim 1, wherein the reaction chamber condition in which the supply of carbon is suppressed is that the heat insulating material is further composed of SiC, SiC-coated graphite, or TaC-coated graphite. 水素ガスを5〜30分間供給してSiC基板表面をエッチングする請求項1又は2に記載の平坦化処理方法。 The planarization method according to claim 1 or 2 , wherein the surface of the SiC substrate is etched by supplying hydrogen gas for 5 to 30 minutes. 請求項1に記載の平坦化処理方法によって得られた平滑な表面を有するSiC基板表面に、エピタキシャル結晶成長法によってSiC薄膜を形成するSiCエピタキシャル結晶成長法。The SiC epitaxial crystal growth method which forms a SiC thin film by the epitaxial crystal growth method on the SiC substrate surface which has the smooth surface obtained by the planarization processing method of Claim 1.
JP2008084546A 2008-03-27 2008-03-27 Planarization processing method and crystal growth method Expired - Fee Related JP5024886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008084546A JP5024886B2 (en) 2008-03-27 2008-03-27 Planarization processing method and crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008084546A JP5024886B2 (en) 2008-03-27 2008-03-27 Planarization processing method and crystal growth method

Publications (2)

Publication Number Publication Date
JP2009239103A JP2009239103A (en) 2009-10-15
JP5024886B2 true JP5024886B2 (en) 2012-09-12

Family

ID=41252683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008084546A Expired - Fee Related JP5024886B2 (en) 2008-03-27 2008-03-27 Planarization processing method and crystal growth method

Country Status (1)

Country Link
JP (1) JP5024886B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11155490B1 (en) 2020-04-22 2021-10-26 Waymo Llc Superomniphobic thin film
US11603329B2 (en) 2020-04-22 2023-03-14 Waymo Llc Methods for preparing a superomniphobic coating

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6032759B2 (en) * 2014-02-10 2016-11-30 日本電信電話株式会社 Fabrication method of micro mechanical resonator
JP2021141199A (en) 2020-03-05 2021-09-16 日立金属株式会社 Silicon carbide wafer and production method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0952796A (en) * 1995-08-18 1997-02-25 Fuji Electric Co Ltd Method for growing silicon carbide crystal and silicon carbide semiconductor device
JPH11329974A (en) * 1998-05-12 1999-11-30 Fuji Electric Co Ltd Method for growing silicon carbide epitaxially
JP2002043303A (en) * 2000-07-28 2002-02-08 Sony Corp Cvd apparatus
JP4238357B2 (en) * 2003-08-19 2009-03-18 独立行政法人産業技術総合研究所 Silicon carbide epitaxial wafer, method of manufacturing the same, and semiconductor device manufactured on the wafer
JP4139306B2 (en) * 2003-10-02 2008-08-27 東洋炭素株式会社 Vertical hot wall CVD epitaxial apparatus and SiC epitaxial growth method
JP2007182330A (en) * 2004-08-24 2007-07-19 Bridgestone Corp Silicon carbide monocrystal wafer and its manufacturing method
JP4946202B2 (en) * 2006-06-26 2012-06-06 日立金属株式会社 A method for manufacturing a silicon carbide semiconductor epitaxial substrate.
JP4853364B2 (en) * 2007-04-11 2012-01-11 トヨタ自動車株式会社 Method for growing SiC single crystal epitaxial thin film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11155490B1 (en) 2020-04-22 2021-10-26 Waymo Llc Superomniphobic thin film
US11603329B2 (en) 2020-04-22 2023-03-14 Waymo Llc Methods for preparing a superomniphobic coating

Also Published As

Publication number Publication date
JP2009239103A (en) 2009-10-15

Similar Documents

Publication Publication Date Title
US7329593B2 (en) Germanium deposition
JP5152435B2 (en) Epitaxial silicon carbide single crystal substrate manufacturing method
JP6177295B2 (en) Method for producing graphene nanoribbons on h-BN
US9957638B2 (en) Method for manufacturing silicon carbide semiconductor device
JP6304699B2 (en) Method for manufacturing epitaxial silicon carbide wafer
CN104867818B (en) A kind of method for reducing silicon carbide epitaxy material defect
JP5024886B2 (en) Planarization processing method and crystal growth method
CN105441902A (en) Epitaxial silicon carbide-graphene composite film preparation method
CN106169497B (en) Silicon carbide substrate and method for producing silicon carbide substrate
JP2015160750A (en) Method for manufacturing silicon carbide epitaxial wafer
JP4894390B2 (en) Manufacturing method of semiconductor substrate
JP4916479B2 (en) Manufacturing method of silicon carbide epitaxial substrate
CN102057463B (en) Method for manufacturing nitrogen compound semiconductor substrate, nitrogen compound semiconductor substrate, method for manufacturing single crystal SiC substrate, and single crystal SiC substrate
JP6786939B2 (en) Silicon Carbide Semiconductor Substrate and Method for Manufacturing Silicon Carbide Semiconductor Substrate
JP2020100528A (en) Laminate, method for manufacturing laminate and method for manufacturing silicon carbide polycrystal substrate
JP2018067736A (en) Silicon carbide semiconductor device and method of manufacturing the same
JP6573514B2 (en) Pretreatment method for SiC single crystal substrate and method for producing epitaxial SiC wafer
JP7432119B2 (en) Method for growing diamond on a silicon substrate and method for selectively growing diamond on a silicon substrate
CN112136203A (en) Method for manufacturing SiC epitaxial substrate
JP7415831B2 (en) Method for manufacturing silicon carbide semiconductor epitaxial substrate
US9269572B2 (en) Method for manufacturing silicon carbide semiconductor substrate
Hashim et al. Carbonization Layer Grown By Acetylene Reaction On Si (100) And (111) Surface Using Low Pressure Chemical Vapor Deposition
KR101383295B1 (en) Synthesis Method of Graphene using 3C-SiC Thin Film
JP2022067842A (en) Deposition method for silicon carbide polycrystalline film, and production method for silicon carbide polycrystalline substrate
JP2021102796A (en) Method for producing polycrystalline substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120614

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5024886

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees