JP5019358B2 - How to deal with absorption tower deactivation in flue gas desulfurization equipment - Google Patents

How to deal with absorption tower deactivation in flue gas desulfurization equipment Download PDF

Info

Publication number
JP5019358B2
JP5019358B2 JP2007013398A JP2007013398A JP5019358B2 JP 5019358 B2 JP5019358 B2 JP 5019358B2 JP 2007013398 A JP2007013398 A JP 2007013398A JP 2007013398 A JP2007013398 A JP 2007013398A JP 5019358 B2 JP5019358 B2 JP 5019358B2
Authority
JP
Japan
Prior art keywords
absorption tower
deactivation
flue gas
value
gas desulfurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007013398A
Other languages
Japanese (ja)
Other versions
JP2008178783A (en
Inventor
浩一 岡村
靖 黒谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2007013398A priority Critical patent/JP5019358B2/en
Publication of JP2008178783A publication Critical patent/JP2008178783A/en
Application granted granted Critical
Publication of JP5019358B2 publication Critical patent/JP5019358B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treating Waste Gases (AREA)

Description

本発明は、排煙脱硫装置における吸収塔内で吸収剤の活性低下(以下「失活」と略称する)時の対応方法に関し、特に吸収剤スラリと排煙とを接触させて排煙中の硫黄酸化物を吸収除去する排煙脱硫装置において、吸収剤の溶解が阻害されて硫黄酸化物の吸収速度が低下した場合に、迅速かつ効率よく硫黄酸化物の吸収速度を復活させることが可能な排煙脱硫装置における吸収塔失活時の対応方法に関する。
The present invention relates to a method for dealing with a decrease in the activity of an absorbent (hereinafter abbreviated as “deactivation”) in an absorption tower in a flue gas desulfurization apparatus, and in particular, by contacting an absorbent slurry with flue gas during flue gas. In flue gas desulfurization equipment that absorbs and removes sulfur oxides, it is possible to quickly and efficiently restore the absorption rate of sulfur oxides when dissolution of the absorbent is hindered and the absorption rate of sulfur oxides decreases. The present invention relates to a method for dealing with deactivation of an absorption tower in a flue gas desulfurization apparatus.

近年、各種のプラントや自動車等の排気ガスの影響による大気汚染が深刻化している。このため、大気汚染に関して、国民の健康を保護するとともに、生活環境を保全することを目的として大気汚染防止法が制定されている。また、各地方自治体においても、大気汚染防止のための条例や要綱等を定め、大気汚染物質の排出量を規制している。   In recent years, air pollution due to the influence of exhaust gases from various plants and automobiles has become serious. For this reason, the Air Pollution Control Law has been enacted for the purpose of protecting the health of the people and preserving the living environment with regard to air pollution. Each local government also establishes regulations and outlines for air pollution prevention and regulates the amount of air pollutants emitted.

これに応じて、各企業等では、大気汚染物質の排出を極力抑制して環境保護に努めている。例えば、ボイラユニットを有する発電プラントでは、大気汚染防止法や公害防止協定等に規定された環境基準を遵守するため、ボイラユニットからの排煙中に含まれる煤塵、NOx、SOx等の大気汚染物質を十分に除去してクリーンな排気を行っている。   In response to this, each company is striving to protect the environment by minimizing the emission of air pollutants. For example, in a power plant with a boiler unit, air pollutants such as soot, NOx, SOx, etc. contained in the flue gas from the boiler unit in order to comply with environmental standards stipulated in the Air Pollution Control Act and pollution control agreements, etc. The exhaust is sufficiently removed and clean exhaust is performed.

特に、SOxは環境に重大な影響を及ぼすため、排煙脱硫装置を安定して稼働することが重要な責務となっている。このような状況の中、従来より、排煙脱硫装置を安定して稼働することにより、効率的にSOxの除去を行うための技術が種々開示されている。   In particular, since SOx has a significant impact on the environment, it is an important duty to operate the flue gas desulfurization apparatus stably. Under such circumstances, conventionally, various techniques for efficiently removing SOx by operating a flue gas desulfurization apparatus stably have been disclosed.

例えば、特開平6−238126号公報「湿式排煙脱硫装置の異常診断装置」(特許文献1)に、石膏純度を常に監視し、石膏の品質に影響する要因を診断することにより石膏の品質を保つための最適な各種成分の操作量を支援する技術が開示されている。   For example, in JP-A-6-238126, “Abnormality diagnosis apparatus for wet flue gas desulfurization apparatus” (Patent Document 1), gypsum quality is constantly monitored by diagnosing factors that affect gypsum quality. A technique for supporting the optimum operation amount of various components to maintain is disclosed.

この特許文献1に記載された「湿式排煙脱硫装置の異常診断装置」は、ボイラなどの燃焼装置から排出される排ガス中の硫黄酸化物を吸収塔循環用吸収剤スラリにより気液接触させて吸収除去する湿式排煙脱硫装置に関するものである。この「湿式排煙脱硫装置の異常診断装置」は、以下の手順により、石膏の品質を保つための最適な各種成分の操作量を支援する。   This "abnormality diagnosis device for wet flue gas desulfurization device" described in Patent Document 1 makes sulfur-oxide in exhaust gas discharged from a combustion device such as a boiler gas-liquid contact with an absorbent slurry for absorption tower circulation. The present invention relates to a wet flue gas desulfurization apparatus for absorbing and removing. This “wet flue gas desulfurization apparatus abnormality diagnosis apparatus” supports the operation amounts of various optimum components for maintaining the quality of gypsum by the following procedure.

すなわち、給炭量信号と石炭性状信号と排ガス流量信号を排ガス性状演算器に入力してHCL濃度とHF濃度を算出する。続いて、信号と入口SO2濃度信号と出口SO2濃度信号と入口煤塵濃度信号と吸収剤スラリ流量信号と吸収塔抜出流量信号と酸化用空気流量信号と吸収塔レベル信号と演算器での算出HCL濃度とHF濃度を液性状演算器に入力して吸収液中のCaCO3濃度とCaSO3・1/2H2O濃度とCaSO3・2H2O濃度と不純物濃度とCaF2濃度を算出する。続いて、演算器の算出液性状から石膏純度演算器で石膏純度を算出し、異常診断装置で石膏純度の評価診断を行う。続いて、石膏純度が異常と判定した場合には、純度異常をガイダンスし、正常な状態に戻すための操作量(吸収剤スラリ流量、酸化用空気流量、硫酸流量)を制御装置に出力する。 That is, the HCL concentration and the HF concentration are calculated by inputting the coal supply amount signal, the coal property signal, and the exhaust gas flow rate signal to the exhaust gas property calculator. Subsequently, the signal, the inlet SO 2 concentration signal, the outlet SO 2 concentration signal, the inlet dust concentration signal, the absorbent slurry flow signal, the absorption tower extraction flow signal, the oxidizing air flow signal, the absorption tower level signal, and the calculator The calculated HCL concentration and HF concentration are input to the liquid property calculator to calculate the CaCO 3 concentration, CaSO 3 .1 / 2H 2 O concentration, CaSO 3 .2H 2 O concentration, impurity concentration, and CaF 2 concentration in the absorbing solution. . Subsequently, the gypsum purity calculator calculates the gypsum purity from the calculated liquid properties of the calculator, and the abnormality diagnosis device performs evaluation diagnosis of the gypsum purity. Subsequently, when it is determined that the gypsum purity is abnormal, the operation amount (absorbent slurry flow rate, oxidizing air flow rate, sulfuric acid flow rate) for returning to the normal state is output to the control device.

また、特開平11−244646号公報「排煙脱硫装置の吸収剤スラリ流量制御方法及び装置」(特許文献2)に、吸収塔における吸収液の循環量が最大である状態において、万一、吸収塔へ導入される排ガスの流量が過渡的に計画値を超えて上昇したような場合であっても、脱硫率を保持して吸収塔出口SO2濃度を規制値以下に抑え得る技術が開示されている。 Further, in Japanese Patent Laid-Open No. 11-244646 “Absorbent slurry flow rate control method and apparatus for flue gas desulfurization apparatus” (Patent Document 2), in the unlikely event that the absorption liquid circulation amount in the absorption tower is maximum, absorption Even when the flow rate of the exhaust gas introduced into the tower transiently rises above the planned value, a technique is disclosed that can maintain the desulfurization rate and suppress the absorption tower outlet SO 2 concentration below the regulation value. ing.

この特許文献2に記載された「排煙脱硫装置の吸収剤スラリ流量制御方法及び装置」は、吸収塔における複数台の循環ポンプが全台運転されており、かつ吸収剤の活性低下が発生していない状態で、吸収塔出口SO2濃度が高設定濃度以上、あるいは脱硫率が低設定脱硫率以下となった異常発生時には、設定pH値を一時的に上昇させ、設定吸収剤スラリ流量を増加させ、吸収剤スラリ流量が設定吸収剤スラリ流量と等しくなるように制御器から流量調整弁へ開度指令を出力するようにしたものである。この「排煙脱硫装置の吸収剤スラリ流量制御方法及び装置」によれば、吸収塔における吸収液の循環量が最大である状態において、万一、吸収塔へ導入される排ガスの流量が過渡的に計画値を超えて上昇したような場合であっても、脱硫率を保持して吸収塔出口SO2濃度を規制値以下に抑え得ることができるとしている。 In the “method and apparatus for controlling the amount of absorbent slurry in the flue gas desulfurization apparatus” described in Patent Document 2, all of the circulation pumps in the absorption tower are operated, and the activity of the absorbent is reduced. in not state, the absorption tower outlet sO 2 concentration is high set concentration or more, or at the time of the desulfurization rate abnormality became less low setting desulfurization rate, temporarily increases the set pH value, the setting absorbent slurry flow rate increases The opening command is output from the controller to the flow rate adjustment valve so that the absorbent slurry flow rate becomes equal to the set absorbent slurry flow rate. According to this "method and apparatus for controlling the flow rate of the absorbent slurry in the flue gas desulfurization apparatus", the flow rate of the exhaust gas introduced into the absorption tower should be transient in the state where the circulation amount of the absorption liquid in the absorption tower is maximum. Even if it exceeds the planned value, the desulfurization rate can be maintained and the absorption tower outlet SO 2 concentration can be kept below the regulation value.

特開平6−238126号公報JP-A-6-238126 特開平11−244646号公報JP 11-244646 A

しかしながら、上記特許文献1に記載された「湿式排煙脱硫装置の異常診断装置」は、グリッド塔と称される排煙脱硫装置に関する技術であり、この技術をそのまま液注塔と称される排煙脱硫装置に適用することはできない。   However, the “wet flue gas desulfurization device abnormality diagnosis device” described in Patent Document 1 is a technology related to a flue gas desulfurization device called a grid tower, and this technology is directly referred to as a liquid injection tower. It cannot be applied to smoke desulfurization equipment.

また、特許文献2に記載された「排煙脱硫装置の吸収剤スラリ流量制御方法及び装置」は、吸収塔における複数台の循環ポンプが全台運転されており、かつ吸収剤の活性低下が発生していない状態を想定したものであり、吸収塔において失活懸念が発生した場合、あるいは実際に失活状態となった場合に適用できる技術ではない。   In addition, the “method and apparatus for controlling the flow rate of absorbent slurry in the flue gas desulfurization apparatus” described in Patent Document 2 has a plurality of circulating pumps in the absorption tower operated, and the activity of the absorbent is reduced. This is not a technique that can be applied when there is a concern about deactivation in the absorption tower or when the absorption tower is actually deactivated.

本発明は、上述した事情に鑑み提案されたもので、吸収剤スラリと排煙とを接触させて排煙中の硫黄酸化物を吸収除去する排煙脱硫装置において、吸収剤の溶解が阻害されて硫黄酸化物の吸収速度が低下した場合に、迅速かつ効率よく硫黄酸化物の吸収速度を復活させることが可能な排煙脱硫装置における吸収塔失活時の対応方法を提供することを目的とする。   The present invention has been proposed in view of the above-described circumstances. In the flue gas desulfurization apparatus that absorbs and removes sulfur oxides in flue gas by bringing the absorbent slurry and flue gas into contact with each other, dissolution of the absorbent is inhibited. It is an object of the present invention to provide a method for dealing with deactivation of an absorption tower in a flue gas desulfurization apparatus that can quickly and efficiently restore the absorption rate of sulfur oxide when the absorption rate of sulfur oxide decreases. To do.

本発明に係る排煙脱硫装置における吸収塔失活時の対応方法は、上述した目的を達成するため、以下の特徴点を有している。
吸収剤スラリと排煙とを接触させて排煙中の硫黄酸化物を吸収除去する排煙脱硫装置において吸収塔失活が発生した際の対応方法であって、吸収塔におけるCaCO 濃度の運転基準値が所定の範囲を超えた場合に、排煙脱硫装置に取り入れる排煙からの煤塵濃度を制御する工程の後に、吸収塔内のpH値を測定し、pH値の運転基準値が規定値よりも低い失活懸念状態と、吸収塔内のpH値が失活懸念状態よりもさらに低い失活状態に対応して、吸収剤循環ポンプの動翼を制御して吸収剤スラリ循環量を調整する工程を行った後に、吸収塔におけるCaCO 濃度の運転基準値が降下しない場合に、吸収塔へ供給する酸化空気流量を減少させる工程と、吸収塔へ供給する吸収剤スラリ流量を減少させる工程を行い、吸収塔内のpH値を測定し、pH値が規定値よりも低い失活懸念状態と、吸収塔内のpH値が失活懸念状態よりもさらに低い失活状態にそれぞれ対応して、吸収剤スラリ循環量を調整する工程を行うことにより吸収塔失活状態を解消することを特徴とするものである。
The response method at the time of deactivation of the absorption tower in the flue gas desulfurization apparatus according to the present invention has the following characteristics in order to achieve the above-described object.
In a flue gas desulfurization apparatus that absorbs and removes sulfur oxides in flue gas by bringing an absorbent slurry and flue gas into contact with each other, this is a countermeasure method when absorption tower deactivation occurs, and the operation of CaCO 3 concentration in the absorption tower When the reference value exceeds the specified range , the pH value in the absorption tower is measured after the step of controlling the dust concentration from the flue gas to be taken into the flue gas desulfurization unit, and the operation reference value of the pH value is the specified value. In response to the lower deactivation concern state and the deactivation state in which the pH value in the absorption tower is lower than the deactivation concern state, the absorbent slurry circulation amount is adjusted by controlling the moving blades of the absorbent circulation pump. When the operation reference value of the CaCO 3 concentration in the absorption tower does not drop after performing the step, the step of reducing the oxidizing air flow rate supplied to the absorption tower and the step of reducing the absorbent slurry flow rate supplied to the absorption tower And measure the pH value in the absorption tower. And a step of adjusting the amount of circulating absorbent slurry corresponding to a deactivation concern state where the pH value is lower than a specified value and a deactivation state where the pH value in the absorption tower is lower than the deactivation concern state, respectively. This is characterized by eliminating the absorption tower deactivation state.

この排煙脱硫装置における吸収塔失活時の対応方法は、前記吸収剤スラリとして、石灰石を溶質とするとともに水を溶媒とした炭酸カルシウムスラリを用いることを特徴とするものである。   The countermeasure method at the time of deactivation of the absorption tower in the flue gas desulfurization apparatus is characterized in that a calcium carbonate slurry using limestone as a solute and water as a solvent is used as the absorbent slurry.

本発明に係る排煙脱硫装置における吸収塔失活時の対応方法によれば、排煙からの煤塵除去量、吸収剤スラリの循環量、酸化空気流量、吸収剤スラリ流量、脱水機へ供給する吸収剤スラリ流量を調節することにより、吸収剤の溶解が阻害されて硫黄酸化物の吸収速度が低下し、吸収塔失活懸念となった場合、あるいは吸収塔失活状態となった場合に、迅速かつ効率よく硫黄酸化物の吸収速度を復活させることができる。これにより、排煙脱硫装置における脱硫能力を既定値以上に保って、環境基準等に適合したクリーンな排気ガスを排出して環境保護に貢献することが可能となる。   According to the method for dealing with deactivation of the absorption tower in the flue gas desulfurization apparatus according to the present invention, the amount of soot removed from the flue gas, the circulation amount of the absorbent slurry, the flow rate of the oxidized air, the flow rate of the absorbent slurry, and the supply to the dehydrator By adjusting the absorbent slurry flow rate, the dissolution of the absorbent is hindered and the absorption rate of sulfur oxides is reduced, and when the absorption tower is in danger of deactivation, or when the absorption tower is deactivated, The absorption rate of sulfur oxide can be restored quickly and efficiently. This makes it possible to contribute to environmental protection by keeping the desulfurization capacity in the flue gas desulfurization apparatus above a predetermined value and discharging clean exhaust gas that meets environmental standards and the like.

以下、図面を参照して、本発明に係る排煙脱硫装置における吸収塔失活時の対応方法の実施形態を説明する。
吸収塔において吸収剤の溶解が阻害されて硫黄酸化物の吸収速度が低下することを吸収塔失活と称する。例えば、石炭焚きボイラの場合には、特に排ガス中に含まれるダスト(フライアッシュ)が多くなる。このダストの主成分はシリカやアルミナであり、また排ガス中に塩素分(HCL)、フッ素分(HF)等を含んでいるため、これらの物質が吸収塔において吸収剤スラリ中に混入すると、吸収剤の主成分である炭酸カルシウム(CaCO3)の溶解が阻害され、排ガス中に含まれるSO2の吸収速度を低下させて、失活現象(pH低下)が発生する。
Hereinafter, with reference to the drawings, an embodiment of a method for dealing with the absorption tower deactivation in the flue gas desulfurization apparatus according to the present invention will be described.
The fact that the absorption rate of the sulfur oxide is reduced due to the inhibition of the dissolution of the absorbent in the absorption tower is called absorption tower deactivation. For example, in the case of a coal-fired boiler, particularly dust (fly ash) contained in the exhaust gas increases. The main components of this dust are silica and alumina, and the exhaust gas contains chlorine (HCL), fluorine (HF), etc., so if these substances are mixed in the absorbent slurry in the absorption tower, they will be absorbed. Dissolution of calcium carbonate (CaCO 3 ), which is the main component of the agent, is hindered, reducing the absorption rate of SO 2 contained in the exhaust gas, and causing a deactivation phenomenon (pH reduction).

本発明に係る排煙脱硫装置における吸収塔失活時の対応方法は、吸収剤スラリと排ガスとを接触させて排煙中のSO2を吸収除去する排煙脱硫装置において、吸収剤の溶解が阻害されてSO2の吸収速度が低下した場合(失活状態となった場合、あるいは失活の懸念が生じた場合)に、迅速かつ効率よくSO2の吸収速度を復活させるための技術である。 In the flue gas desulfurization apparatus according to the present invention, the absorption tower is deactivated in the flue gas desulfurization apparatus that absorbs and removes SO 2 in the flue gas by bringing the absorbent slurry and exhaust gas into contact with each other. This is a technique for quickly and efficiently reviving the absorption rate of SO 2 when it is inhibited and the absorption rate of SO 2 is reduced (when inactivated or when there is a concern about deactivation). .

<排煙脱硫装置>
図1は、本発明の実施形態に係る吸収塔失活時の対応方法を適用する排煙脱硫装置の模式図である。
本発明の実施形態に係る吸収塔失活時の対応方法を適用する排煙脱硫装置は、図1に示すように、吸収剤スラリを排煙と気液接触させる装置であり、さらに酸化空気を接触させるための空気供給手段61を備えている。
<Smoke flue gas desulfurization equipment>
FIG. 1 is a schematic view of a flue gas desulfurization apparatus to which a countermeasure method at the time of deactivation of an absorption tower according to an embodiment of the present invention is applied.
The flue gas desulfurization device to which the absorption tower deactivation method according to the embodiment of the present invention is applied is a device for bringing the absorbent slurry into contact with the flue gas as shown in FIG. Air supply means 61 for contacting is provided.

気液接触装置10は、吸収剤スラリ(例えば、石灰石を溶質とするとともに水を溶媒とした炭酸カルシウムスラリ)が供給されるタンク60と、導入側吸収塔(接触処理塔)70と、導出側吸収塔80とを備えている。   The gas-liquid contact device 10 includes a tank 60 to which an absorbent slurry (for example, calcium carbonate slurry using limestone as a solute and water as a solvent) is supplied, an introduction side absorption tower (contact treatment tower) 70, and a discharge side An absorption tower 80.

導入側吸収塔70は、タンク60の一側部から上方に向かって延設されるとともに、未処理排煙Aを導入するための排煙導入部71がその上端部に形成されており、排煙が下方に向って流れるようになっている。   The introduction side absorption tower 70 extends upward from one side of the tank 60 and has a flue gas introduction part 71 for introducing untreated flue gas A formed at its upper end. Smoke flows downward.

導出側吸収塔80は、タンク60の他側部(図では右側)から上方に向かって延設されるとともに、処理済排煙Bを導出するための排煙導出部81がその上端部に形成されており、導入側吸収塔70を通過しタンク60内上部を経由した排煙が上方に向って流れるようになっている。   The outlet side absorption tower 80 is extended upward from the other side part (right side in the drawing) of the tank 60, and a smoke exhausting part 81 for leading the processed exhaust gas B is formed at the upper end thereof. Thus, the flue gas passing through the introduction side absorption tower 70 and passing through the upper part of the tank 60 flows upward.

また、導入側吸収塔70には、スプレーパイプ72が設けられており、スプレーパイプ72には、吸収剤スラリを上方に向って液柱状に噴射するための複数のスプレーノズル73が形成されている。また、タンク60には、タンク60内の吸収剤スラリを吹上げる循環ポンプ74が連通接続されており、供給ヘッダ75を介して吸収剤スラリがスプレーパイプ72に送り込まれ、各スプレーノズル73から噴射されるようになっている。   The introduction side absorption tower 70 is provided with a spray pipe 72. The spray pipe 72 is formed with a plurality of spray nozzles 73 for injecting the absorbent slurry upward in a liquid column shape. . In addition, a circulation pump 74 that blows up the absorbent slurry in the tank 60 is connected to the tank 60, and the absorbent slurry is sent to the spray pipe 72 through the supply header 75 and sprayed from each spray nozzle 73. It has come to be.

さらに、導出側吸収塔80の後方部には、同伴ミストを捕集除去するためのミストエリミネータ82が設けられている。なお、このミストエリミネータ82で捕集されたミストは、例えば導出側吸収塔80内を滴下することにより直接タンク60内に戻るようになっている。   Further, a mist eliminator 82 for collecting and removing the accompanying mist is provided at the rear portion of the outlet side absorption tower 80. The mist collected by the mist eliminator 82 is returned directly into the tank 60 by, for example, dropping in the outlet side absorption tower 80.

スプレーパイプ72は、詳細には図示しないが、導入側吸収塔70の内部の横方向全域にわたって、平行に複数並べて配設されており、スプレーパイプ72の他端側が供給ヘッダ75の長手方向の複数箇所にそれぞれ接続されている。   Although not shown in detail, a plurality of spray pipes 72 are arranged in parallel across the entire lateral direction inside the introduction side absorption tower 70, and the other end side of the spray pipe 72 is a plurality in the longitudinal direction of the supply header 75. Connected to each location.

この供給ヘッダ75は、スプレーパイプ72が接続された範囲において、閉塞された一端側に向って縮径した先細り形状となっている。この供給ヘッダ75の流路断面積の低下率は、内部の平均流速が長手方向に略一定となるように設定される。   The supply header 75 has a tapered shape with a diameter reduced toward the closed one end side in a range where the spray pipe 72 is connected. The rate of decrease in the flow path cross-sectional area of the supply header 75 is set so that the internal average flow velocity is substantially constant in the longitudinal direction.

また、タンク60内には、空気供給手段61が設けられており、スプレーノズル73から吹上げられた吸収剤スラリは亜硫酸ガスを吸収しながら流下して、空気供給手段61を用いて吹込んだ空気により酸化し、石膏を生成するようになっている。   In addition, air supply means 61 is provided in the tank 60, and the absorbent slurry blown up from the spray nozzle 73 flows down while absorbing sulfurous acid gas and is blown in using the air supply means 61. Oxidized with air to produce gypsum.

なお、本実施形態における空気供給手段61は、アーム回転式となっており、タンク60内に中空回転軸62を用いて支持されたモータ(図示せず)により水平回転するアーム63と、中空回転軸62から延長されるとともに開口端がアーム63の下側に延長された空気供給管64と、中空回転軸62の基端側を空気源に供給するためのロータリージョイント65とを備えている。この空気供給手段61では、ロータリージョイント65から空気Cを圧入しつつ中空回転軸62を回転させて、空気供給管64よりアーム63の回転方向背面側に生じる気相域に空気Cを供給する。さらに、アーム63の回転により生じる渦力により、気相域終縁部の千切れ現象を起こして略均一な微細気泡を多数発生させ、タンク60内で亜硫酸ガスを吸収した吸収剤スラリ溶液と空気とを効率良く接触させるようになっている。   The air supply means 61 in the present embodiment is an arm rotation type, and includes an arm 63 that rotates horizontally by a motor (not shown) supported in the tank 60 using a hollow rotation shaft 62, and a hollow rotation. An air supply pipe 64 extending from the shaft 62 and having an open end extending below the arm 63 and a rotary joint 65 for supplying the proximal end side of the hollow rotary shaft 62 to the air source are provided. In this air supply means 61, the hollow rotary shaft 62 is rotated while the air C is being press-fitted from the rotary joint 65, and the air C is supplied from the air supply pipe 64 to the gas phase region generated on the rear side in the rotation direction of the arm 63. Further, the vortex force generated by the rotation of the arm 63 causes a tearing phenomenon at the end of the gas phase region to generate a large number of substantially uniform fine bubbles and absorbs the sulfurous acid gas in the tank 60 and the air. And come to contact efficiently.

そして、タンク60内のスラリ(石膏と吸収剤である少量の石灰石が懸濁または溶存したもの)は、抜出ポンプ20により吸出されて脱水機30に送出され、この脱水機30により濾過されて、水分含有量の少ない石膏(例えば、水分含有率10%程度)として取り出される。一方、脱水機30からの濾液は、スラリ槽40に送出されて、補給水とともに石灰石が加えられ、再び吸収剤スラリとしてスラリポンプ50によりタンク60内に供給される。   Then, the slurry in the tank 60 (in which a small amount of limestone that is gypsum and an absorbent is suspended or dissolved) is sucked out by the extraction pump 20, sent to the dehydrator 30, and filtered by the dehydrator 30. , Gypsum with a low water content (for example, about 10% water content). On the other hand, the filtrate from the dehydrator 30 is sent to the slurry tank 40, limestone is added together with makeup water, and is supplied again into the tank 60 by the slurry pump 50 as an absorbent slurry.

<吸収塔失活時の対応方法>
本発明の実施形態に係る吸収塔失活時の対応方法は、上述した構成を備えた排煙脱硫装置において、吸収剤の溶解が阻害されて硫黄酸化物の吸収速度が低下した場合に、迅速かつ効率よく硫黄酸化物の吸収速度を復活させるための技術である。
<Measures for absorption tower deactivation>
In the flue gas desulfurization apparatus having the above-described configuration, the countermeasure method at the time of deactivation of the absorption tower according to the embodiment of the present invention is rapid when dissolution of the absorbent is inhibited and the absorption rate of sulfur oxide is reduced. This is a technique for efficiently restoring the absorption rate of sulfur oxide.

以下、図2および図3を参照して、本発明の実施形態に係る吸収塔失活時の対応方法の手順を説明する。図2および図3は、本発明の実施形態に係る吸収塔失活時の対応方法の手順を示すフローチャートである。   Hereinafter, with reference to FIG. 2 and FIG. 3, the procedure of the response | compatibility method at the time of deactivation of the absorption tower which concerns on embodiment of this invention is demonstrated. FIG. 2 and FIG. 3 are flowcharts showing a procedure of a method for dealing with absorption tower deactivation according to an embodiment of the present invention.

本発明の実施形態に係る吸収塔失活時の対応方法では、図2および図3に示すように、吸収塔におけるpH値が低下した場合に、まず、CaCO3濃度を観察し、CaCO3濃度が運転基準値の範囲内であるか否かを判断する(S1)。ここで、CaCO3濃度の運転基準値は、例えば既定値+10mmol/lであり、より具体的には20〜60mmol/lの範囲を吸収塔における運転基準値とする。
ここで、CaCO3濃度が運転基準値の範囲内である場合には、動向を監視し(S2)、失活懸念が発生した場合には、速やかに失活対応操作に移行する。
In the countermeasure method at the time of deactivation of the absorption tower according to the embodiment of the present invention, as shown in FIGS. 2 and 3, when the pH value in the absorption tower is lowered, first, the CaCO 3 concentration is observed, and the CaCO 3 concentration Is determined to be within the range of the operation reference value (S1). Here, the operation reference value of the CaCO 3 concentration is, for example, a predetermined value +10 mmol / l, and more specifically, the operation reference value in the absorption tower is in a range of 20 to 60 mmol / l.
Here, when the CaCO 3 concentration is within the range of the operation reference value, the trend is monitored (S2), and when there is a fear of deactivation, the operation immediately proceeds to the deactivation correspondence operation.

一方、CaCO3濃度が運転基準値の範囲を逸脱した場合には、失活懸念が発生したと判断して、煤塵濃度の制御を行う(S3)。本工程の煤塵濃度の制御では、吸収塔の上流側に設けられた電気式集塵機を全荷電運転として集塵能力を上げ、吸収塔へ送出される排ガス中に含まれる煤塵を極力除去して、吸収塔入口における煤塵濃度を下げる操作を行う。 On the other hand, when the CaCO 3 concentration deviates from the range of the operation reference value, it is determined that there is a fear of deactivation, and the dust concentration is controlled (S3). In the control of the soot concentration in this process, the dust collector is raised by using an electric dust collector provided upstream of the absorption tower as a fully charged operation to remove dust contained in the exhaust gas sent to the absorption tower as much as possible. Perform the operation to reduce the dust concentration at the entrance of the absorption tower.

続いて、吸収塔内のpH値が所定値の範囲内(例えば5.5以上)であるか否かを判断する(S4)。ここで、吸収塔内のpH値が所定値の範囲を逸脱して、例えば5.5〜5.6となった場合には、失活の懸念が発生したと判断して(S5)、吸収剤スラリ循環量を調節する(S6)。吸収剤スラリ循環量の調節では、例えば、循環ポンプの動翼開度を50〜80%とすることにより、吸収剤スラリ循環量を増加させて、失活状態の解消を試みる。   Subsequently, it is determined whether or not the pH value in the absorption tower is within a predetermined value range (for example, 5.5 or more) (S4). Here, when the pH value in the absorption tower deviates from the range of the predetermined value and becomes, for example, 5.5 to 5.6, it is determined that there is a fear of deactivation (S5), and absorption is performed. The amount of the agent slurry is adjusted (S6). In the adjustment of the amount of absorbent slurry circulation, for example, by setting the moving blade opening of the circulation pump to 50 to 80%, the amount of absorbent slurry circulation is increased to try to eliminate the deactivated state.

また、吸収塔内のpH値が所定値の範囲を逸脱して、例えば4.0〜5.5(未満)となった場合には、失活状態が発生したと判断して(S7)、吸収剤スラリ循環量を調節する(S8)。吸収剤スラリ循環量の調節では、例えば、循環ポンプの動翼開度を80〜100%とすることにより、吸収剤スラリ循環量を増加させて、失活状態の解消を試みる。なお、吸収塔内のpH値が境界値である5.5となった場合には、失活状態を速やかに解消するため、循環ポンプの動翼開度を80〜100%に設定することが好ましい。   Further, when the pH value in the absorption tower deviates from the predetermined value range and becomes, for example, 4.0 to 5.5 (less than), it is determined that a deactivated state has occurred (S7), The amount of absorbent slurry circulation is adjusted (S8). In the adjustment of the circulating amount of the absorbent slurry, for example, by setting the moving blade opening of the circulation pump to 80 to 100%, the absorbent slurry circulating amount is increased to try to eliminate the deactivated state. In addition, when the pH value in the absorption tower reaches the boundary value of 5.5, the moving blade opening of the circulation pump can be set to 80 to 100% in order to quickly eliminate the deactivated state. preferable.

続いて、吸収塔内のpH値が上昇したか否か、および吸収塔内のCaCO3濃度が降下したか否かを判断する(S9)。ここで、吸収塔内のpH値が上昇するとともに、吸収塔内のCaCO3濃度が降下した場合には、失活状態が解消したものと判断して、失活対応処理を終了する。 Subsequently, it is determined whether or not the pH value in the absorption tower has increased and whether or not the CaCO 3 concentration in the absorption tower has decreased (S9). Here, when the pH value in the absorption tower rises and the CaCO 3 concentration in the absorption tower falls, it is determined that the deactivated state has been eliminated, and the deactivation handling process is terminated.

一方、吸収塔内のpH値が上昇しないとともに、吸収塔内のCaCO3濃度が降下しない場合には、吸収塔へ供給する吸収剤スラリ流量を調節する(S10)。本工程の吸収剤スラリ流量の調節では、例えば、吸収剤スラリ流量を、脱硫に最低限必要な5.0t/h〜8.0t/hとする。すなわち、CaCO3濃度が高すぎると石膏純度が低下し、製品としての基準を満たさなくなるおそれがある。また、CaCO3は石膏と比較して粒度が小さいため、CaCO3濃度が高すぎると濾布の目詰まりを生じやすい。さらに、CaCO3濃度が高すぎると排水処理膜のフラックスも低下する。そこで、本工程では、吸収塔へ吸収剤スラリを供給するためのスラリポンプの流量を制御し、吸収塔へ供給する吸収剤スラリ流量を減少させるような調節を行うことにより、失活状態の解消を試みる。 On the other hand, when the pH value in the absorption tower does not increase and the CaCO 3 concentration in the absorption tower does not decrease, the flow rate of the absorbent slurry supplied to the absorption tower is adjusted (S10). In the adjustment of the absorbent slurry flow rate in this step, for example, the absorbent slurry flow rate is set to 5.0 t / h to 8.0 t / h which is the minimum necessary for desulfurization. That is, if the CaCO 3 concentration is too high, the gypsum purity is lowered and the product standards may not be satisfied. Further, since CaCO 3 has a smaller particle size than gypsum, if the CaCO 3 concentration is too high, the filter cloth is likely to be clogged. Furthermore, if the CaCO 3 concentration is too high, the flux of the wastewater treatment membrane also decreases. Therefore, in this process, the flow rate of the slurry pump for supplying the absorbent slurry to the absorption tower is controlled, and the adjustment to reduce the flow rate of the absorbent slurry to be supplied to the absorption tower is performed to eliminate the inactivated state. Try.

続いて、酸化空気流量の調節を行う(S11)。なお、本実施形態では、排ガス中のSO2を除去するために石灰石を用いているが、反応の過程においてまず亜硫酸石膏(CaSO3)が生成され、この亜硫酸石膏が酸化されて最終生成物である石膏(CaSO4)が生成される。そこで、亜硫酸石膏を効率良く酸化させて最終生成物である石膏を得るために、空気供給手段を用いて酸化空気を供給している。酸化空気流量の調節は、通常の状態では、ORP(Oxidation Reduction Potential)制御を行って、吸収塔における吸収剤スラリの電位を測定し、所定値となるように酸化空気の供給量を増減することにより行っている。そして、失活状態が発生した場合には、酸化空気流量を減少させる操作が行われる。 Subsequently, the oxidizing air flow rate is adjusted (S11). In this embodiment, limestone is used to remove SO 2 in the exhaust gas, but sulfite gypsum (CaSO 3 ) is first generated in the course of the reaction, and this sulfite gypsum is oxidized to form the final product. A certain gypsum (CaSO 4 ) is produced. Therefore, in order to efficiently oxidize sulfite gypsum to obtain gypsum as a final product, oxidized air is supplied using an air supply means. In the normal state, the flow rate of the oxidized air is controlled by ORP (Oxidation Reduction Potential), and the potential of the absorbent slurry in the absorption tower is measured, and the supply amount of oxidized air is increased or decreased to a predetermined value. It is done by. And when a deactivated state generate | occur | produces, operation which reduces an oxidizing air flow volume is performed.

続いて、吸収塔内のpH値が未だ失活状態(例えば4.0〜5.5)であるか否かを判断する(S12)。ここで、吸収塔内のpH値が未だ失活状態の範囲内である場合には、脱水機(ベルトフィルタ)へ供給する吸収剤スラリ流量を増加させる(S13)。すなわち、本工程では、脱水機へ吸収剤スラリを供給するための抜出ポンプの流量を制御し、吸収塔内に存在する吸収剤スラリの入れ替えによって、吸収塔における液質改善を図ることにより、失活状態の解消を試みる。   Subsequently, it is determined whether or not the pH value in the absorption tower is still in a deactivated state (for example, 4.0 to 5.5) (S12). Here, when the pH value in the absorption tower is still within the deactivated range, the flow rate of the absorbent slurry supplied to the dehydrator (belt filter) is increased (S13). That is, in this step, by controlling the flow rate of the extraction pump for supplying the absorbent slurry to the dehydrator and replacing the absorbent slurry present in the absorption tower, the liquid quality in the absorption tower is improved, Attempts to resolve the inactive state.

一方、吸収塔内のpH値が失活状態を脱した場合(例えば5.5以上)には、脱水機へ供給する吸収剤スラリ流量を自動調節して(S14)、失活状態の解消を継続する。   On the other hand, when the pH value in the absorption tower is out of the deactivated state (for example, 5.5 or more), the absorbent slurry flow rate supplied to the dehydrator is automatically adjusted (S14) to eliminate the deactivated state. continue.

続いて、吸収塔内のpH値が上昇したか否か、および吸収塔内のCaCO3濃度が降下したか否かを判断する(S15)。ここで、吸収塔内のpH値が上昇するとともに、吸収塔内のCaCO3濃度が降下した場合には、失活状態が解消したものと判断して、失活対応処理を終了する。 Subsequently, it is determined whether or not the pH value in the absorption tower has increased and whether or not the CaCO 3 concentration in the absorption tower has decreased (S15). Here, when the pH value in the absorption tower rises and the CaCO 3 concentration in the absorption tower falls, it is determined that the deactivated state has been eliminated, and the deactivation handling process is terminated.

一方、吸収塔内のpH値が上昇しないとともに、吸収塔内のCaCO3濃度が降下しない場合には、抜出ポンプによる脱水機への吸収剤スラリ供給を停止する(S16)。この工程では、抜出ポンプから予備タンクに吸収剤スラリを短時間で大量かつ一時的に受け入れ、そのタンク受入相当分(減少分)を、液室内に工水を大量に注入して希釈操作を行うことにより、液質改善を図って失活状態の解消を試みる。なお、脱水機への吸収剤スラリ供給を停止することは、石膏の製造中止を意味する。そして、ステップ8(S8)の処理へ戻って失活状態の解消を継続する。 On the other hand, when the pH value in the absorption tower does not increase and the CaCO 3 concentration in the absorption tower does not decrease, the supply of the absorbent slurry to the dehydrator by the extraction pump is stopped (S16). In this process, a large amount of absorbent slurry is temporarily received from the extraction pump into the reserve tank in a short time, and a portion corresponding to the tank reception (decrease) is injected into the liquid chamber in a large amount for dilution. By trying to improve the liquid quality, try to eliminate the inactivated state. Note that stopping the supply of the absorbent slurry to the dehydrator means that the production of gypsum is stopped. And it returns to the process of step 8 (S8) and continues cancellation | release of a deactivated state.

なお、上述した実施形態では、CaCO3濃度、pH値、循環ポンプの動翼開度等について具体的数値を示したが、各数値は一例であり、本実施形態を適用する排煙脱硫装置の形状および規模や、プラントの規模および稼働状態等に応じて、各数値を適宜変更して実施できることは勿論である。 In the above-described embodiment, specific numerical values are shown for the CaCO 3 concentration, the pH value, the moving blade opening degree of the circulation pump, etc., but each numerical value is an example, and the flue gas desulfurization apparatus to which the present embodiment is applied is shown. Of course, each numerical value can be appropriately changed according to the shape and scale, the scale and operating state of the plant, and the like.

本発明に係る排煙脱硫装置における吸収塔失活時の対応方法は、主として、発電プラント等で使用されている吸収剤スラリと排煙とを接触させて排煙中の硫黄酸化物を吸収除去する排煙脱硫装置において、吸収剤の溶解が阻害されて硫黄酸化物の吸収速度が低下した場合に、迅速かつ効率よく硫黄酸化物の吸収速度を復活させるために使用することができる。   The countermeasure method at the time of deactivation of the absorption tower in the flue gas desulfurization apparatus according to the present invention mainly absorbs and removes sulfur oxides in the flue gas by contacting the flue gas with an absorbent slurry used in a power plant or the like. In the flue gas desulfurization apparatus, when dissolution of the absorbent is inhibited and the absorption rate of sulfur oxide is reduced, it can be used to restore the absorption rate of sulfur oxide quickly and efficiently.

本発明の実施形態に係る吸収塔失活時の対応方法を適用する排煙脱硫装置の模式図である。It is a mimetic diagram of a flue gas desulfurization device to which a response method at the time of deactivation of an absorption tower concerning an embodiment of the present invention is applied. 本発明の実施形態に係る吸収塔失活時の対応方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the response | compatibility method at the time of absorption tower deactivation which concerns on embodiment of this invention. 本発明の実施形態に係る吸収塔失活時の対応方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the response | compatibility method at the time of absorption tower deactivation which concerns on embodiment of this invention.

符号の説明Explanation of symbols

10 気液接触装置
20 抜出ポンプ
30 脱水機(ベルトフィルタ)
40 スラリ槽
50 スラリポンプ
60 タンク
61 空気供給手段
62 中空回転軸
63 アーム
64 空気供給管
65 ロータリージョイント
70 導入側吸収塔(接触処理塔)
71 排煙導入部
72 スプレーパイプ
73 スプレーノズル
74 循環ポンプ
75 供給ヘッダ
80 導出側吸収塔
81 排煙導出部
82 ミストエリミネータ
10 Gas-liquid contact device 20 Extraction pump 30 Dehydrator (belt filter)
40 Slurry tank 50 Slurry pump 60 Tank 61 Air supply means 62 Hollow rotating shaft 63 Arm 64 Air supply pipe 65 Rotary joint 70 Introduction side absorption tower (contact treatment tower)
71 Smoke exhaust introduction part 72 Spray pipe 73 Spray nozzle 74 Circulation pump 75 Supply header 80 Outlet absorption tower 81 Smoke exhaust part 82 Mist eliminator

Claims (2)

吸収剤スラリと排煙とを接触させて排煙中の硫黄酸化物を吸収除去する排煙脱硫装置において吸収塔内で吸収剤の活性低下(以下「失活」と略称する)が発生した際の対応方法であって、
吸収塔におけるCaCO 濃度の運転基準値が所定の範囲を超えた場合に、
排煙脱硫装置に取り入れる排煙からの煤塵濃度を制御する工程の後に、
吸収塔内のpH値を測定し、pH値の運転基準値が規定値よりも低い失活懸念状態と、吸収塔内のpH値が失活懸念状態よりもさらに低い失活状態に対応して、吸収剤循環ポンプの動翼を制御して吸収剤スラリ循環量を調整する工程を行った後に、
吸収塔におけるCaCO 濃度の運転基準値が降下しない場合に、
吸収塔へ供給する酸化空気流量を減少させる工程と、吸収塔へ供給する吸収剤スラリ流量を減少させる工程を行い、
吸収塔内のpH値を測定し、pH値が規定値よりも低い失活懸念状態と、吸収塔内のpH値が失活懸念状態よりもさらに低い失活状態にそれぞれ対応して、吸収剤スラリ循環量を調整する工程を行うことにより吸収塔失活状態を解消することを特徴とする排煙脱硫装置における吸収塔失活時の対応方法。
In the flue gas desulfurization device that absorbs and removes sulfur oxides in the flue gas by bringing the absorbent slurry and flue gas into contact with each other, when a decrease in the activity of the absorbent (hereinafter abbreviated as “deactivation”) occurs in the absorption tower The correspondence method of
When the operating reference value of the CaCO 3 concentration in the absorption tower exceeds a predetermined range,
After the process of controlling the dust concentration from the flue gas introduced into the flue gas desulfurization unit ,
Measure the pH value in the absorption tower, corresponding to the deactivation concern state where the operation reference value of the pH value is lower than the specified value, and the deactivation state where the pH value in the absorption tower is lower than the deactivation concern state After performing the process of adjusting the amount of absorbent slurry circulation by controlling the moving blades of the absorbent circulation pump,
When the operating standard value of CaCO 3 concentration in the absorption tower does not drop,
Performing a step of reducing the flow rate of oxidizing air supplied to the absorption tower and a step of reducing the flow rate of absorbent slurry supplied to the absorption tower;
Measure the pH value in the absorption tower, and correspond to the deactivation concern state where the pH value is lower than the specified value and the deactivation state where the pH value in the absorption tower is lower than the deactivation concern state, respectively. A method for coping with deactivation of an absorption tower in a flue gas desulfurization apparatus, wherein the deactivation state of the absorption tower is canceled by performing a step of adjusting a slurry circulation rate .
前記吸収剤スラリとして、石灰石を溶質とするとともに水を溶媒とした炭酸カルシウムスラリを用いることを特徴とする請求項1に記載の排煙脱硫装置における吸収塔失活時の対応方法。   The method for coping with deactivation of an absorption tower in a flue gas desulfurization apparatus according to claim 1, wherein a calcium carbonate slurry using limestone as a solute and water as a solvent is used as the absorbent slurry.
JP2007013398A 2007-01-24 2007-01-24 How to deal with absorption tower deactivation in flue gas desulfurization equipment Expired - Fee Related JP5019358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007013398A JP5019358B2 (en) 2007-01-24 2007-01-24 How to deal with absorption tower deactivation in flue gas desulfurization equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007013398A JP5019358B2 (en) 2007-01-24 2007-01-24 How to deal with absorption tower deactivation in flue gas desulfurization equipment

Publications (2)

Publication Number Publication Date
JP2008178783A JP2008178783A (en) 2008-08-07
JP5019358B2 true JP5019358B2 (en) 2012-09-05

Family

ID=39723092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007013398A Expired - Fee Related JP5019358B2 (en) 2007-01-24 2007-01-24 How to deal with absorption tower deactivation in flue gas desulfurization equipment

Country Status (1)

Country Link
JP (1) JP5019358B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3348743B2 (en) * 1993-12-29 2002-11-20 千代田化工建設株式会社 Control method of exhaust gas desulfurization treatment equipment
JPH08243348A (en) * 1995-03-08 1996-09-24 Babcock Hitachi Kk Operation of wet desulfurizer
JP3300734B2 (en) * 1995-06-26 2002-07-08 三菱重工業株式会社 Flue gas treatment equipment
JP3931383B2 (en) * 1997-06-17 2007-06-13 石川島播磨重工業株式会社 Absorbent pH prediction method for controlling the number of absorption tower circulation pumps in flue gas desulfurization equipment
JPH11244648A (en) * 1998-03-05 1999-09-14 Ishikawajima Harima Heavy Ind Co Ltd Control of absorbent slurry flow rate of wet stack gas desulfurizer and device therefor

Also Published As

Publication number Publication date
JP2008178783A (en) 2008-08-07

Similar Documents

Publication Publication Date Title
US10704835B2 (en) Method of spray drying and washing and method of controlling air pollution
JP6223654B2 (en) Flue gas desulfurization equipment
WO2014156985A1 (en) Seawater flue-gas desulfurization device and method for operating same
JP6230818B2 (en) Exhaust gas treatment apparatus and exhaust gas treatment method
JP5717382B2 (en) Smoke exhaust treatment device and smoke exhaust treatment method
JP5953342B2 (en) Sulphite control to reduce mercury re-emissions
JP6522114B2 (en) Wet flue gas desulfurization device and operating method of wet flue gas desulfurization device
JP2012200721A (en) Spray-drying device for dehydrated filtrate from desulfurization wastewater, method of spray-drying dehydrated filtrate, and exhaust gas treatment system
WO2014156984A1 (en) Seawater flue gas desulfurization apparatus and operating method therefor
JP2015174025A (en) Seawater flue gas desulfurization apparatus and application method of the same
JP2011177674A (en) Finishing flue gas desulfurization apparatus and exhaust gas treatment system using the same
JP2007222824A (en) Gas purification apparatus and exhaust-gas treatment method
JP5019360B2 (en) How to deal with peroxidation conditions in flue gas desulfurization equipment
JP5019359B2 (en) How to cope with increase of calcium sulfite concentration in flue gas desulfurization equipment
JP5106479B2 (en) Method and apparatus for suppressing mercury re-release in desulfurization equipment
TWI531538B (en) Oxidation tank, seawater desulfurization system and power generation system
JP2016120438A (en) Wet-type desulfurization apparatus and wet-type desulfurization method
JP3332678B2 (en) Wet flue gas desulfurization equipment
JP2009172541A (en) Air supply amount control method for oxidization of wet-type flue gas desulfurization apparatus
JP2009219999A (en) Flue gas treatment apparatus
JP5019361B2 (en) How to cope with increase of absorbent slurry concentration in flue gas desulfurization equipment
JP5019358B2 (en) How to deal with absorption tower deactivation in flue gas desulfurization equipment
JP3337382B2 (en) Exhaust gas treatment method
JP5583037B2 (en) Aeration apparatus, seawater flue gas desulfurization apparatus equipped with the aeration apparatus, and operation method of aeration apparatus
JP2012196611A (en) Flue gas desulfurization apparatus and flue gas desulfurization method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120229

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120606

R150 Certificate of patent or registration of utility model

Ref document number: 5019358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees