JP5014239B2 - Fluid filled vibration isolator - Google Patents

Fluid filled vibration isolator Download PDF

Info

Publication number
JP5014239B2
JP5014239B2 JP2008116627A JP2008116627A JP5014239B2 JP 5014239 B2 JP5014239 B2 JP 5014239B2 JP 2008116627 A JP2008116627 A JP 2008116627A JP 2008116627 A JP2008116627 A JP 2008116627A JP 5014239 B2 JP5014239 B2 JP 5014239B2
Authority
JP
Japan
Prior art keywords
elastic
orifice passage
fluid
movable plate
partition member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008116627A
Other languages
Japanese (ja)
Other versions
JP2009264524A (en
Inventor
栄治 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2008116627A priority Critical patent/JP5014239B2/en
Priority to US12/382,924 priority patent/US20090243171A1/en
Publication of JP2009264524A publication Critical patent/JP2009264524A/en
Application granted granted Critical
Publication of JP5014239B2 publication Critical patent/JP5014239B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Combined Devices Of Dampers And Springs (AREA)

Description

本発明は、内部に封入された非圧縮性流体のオリフィス通路を通じての流動作用に基づいて防振効果を得るようにした流体封入式防振装置に係り、特に互いに異なる周波数域の振動に対して防振効果を発揮するようにチューニングされた複数のオリフィス通路を備えた流体封入式防振装置に関するものである。   The present invention relates to a fluid-filled vibration isolator that obtains a vibration-proof effect based on the flow action of an incompressible fluid sealed inside through an orifice passage, and particularly to vibrations in different frequency ranges. The present invention relates to a fluid filled type vibration damping device having a plurality of orifice passages tuned so as to exhibit a vibration damping effect.

従来から、振動伝達系を構成する部材間に介装される防振連結体や防振支持体等の防振装置の一種として、流体封入式防振装置が知られている。この流体封入式防振装置では、第一の取付部材と第二の取付部材が本体ゴム弾性体で連結されていると共に、壁部の一部が本体ゴム弾性体で構成された受圧室と壁部の一部が可撓性膜で構成された平衡室が形成されて、それら受圧室と平衡室に非圧縮性流体が封入されている。また、受圧室と平衡室はオリフィス通路を通じて相互に連通されており、オリフィス通路を通じて流動せしめられる流体の共振作用等の流動作用に基づいてオリフィス効果である防振効果が発揮されるようになっている。かくの如き流体封入式防振装置は、例えば、自動車用のエンジンマウントやボデーマウント、デフマウント、サスペンションメンバマウント、サスペンションブッシュ等への適用が検討されている。   2. Description of the Related Art Conventionally, a fluid-filled vibration isolator is known as a type of vibration isolator such as an anti-vibration coupling body and an anti-vibration support body interposed between members constituting a vibration transmission system. In this fluid-filled vibration isolator, the first mounting member and the second mounting member are connected by a main rubber elastic body, and a pressure receiving chamber and a wall in which a part of the wall portion is configured by the main rubber elastic body. An equilibrium chamber in which a part of the portion is formed of a flexible film is formed, and an incompressible fluid is sealed in the pressure receiving chamber and the equilibrium chamber. Further, the pressure receiving chamber and the equilibrium chamber are communicated with each other through the orifice passage, and an anti-vibration effect that is an orifice effect is exhibited based on a fluid action such as a resonance action of a fluid that flows through the orifice passage. Yes. Such a fluid-filled vibration isolator has been studied for application to, for example, automobile engine mounts, body mounts, differential mounts, suspension member mounts, suspension bushings, and the like.

ところで、上述の流体封入式防振装置においては、例えば自動車用エンジンマウントへの適用に際して、自動車の走行状態に応じてエンジンシェイク等に相当する低周波振動や、アイドリング振動や走行こもり音等に相当する中乃至高周波振動等の異なる周波数域の振動に対して、それぞれ、防振性能が要求される。しかし、オリフィス通路による有効な防振効果は特定のチューニング周波数域で発揮されるため、複数種類の振動に対する高度な防振効果を実現することが難しい。特に、オリフィス通路のチューニング周波数よりも高周波側の振動が入力されると、オリフィス通路を通じての流体の***振作用によって流動抵抗が著しく増大してしまい、マウント特性が大幅に高動ばね化して防振性能が低下する問題があった。   By the way, in the above-described fluid-filled vibration isolator, for example, when applied to an engine mount for an automobile, it corresponds to low-frequency vibration corresponding to an engine shake or the like, idling vibration, traveling noise, etc. Antivibration performance is required for vibrations in different frequency ranges such as medium to high frequency vibration. However, since the effective vibration isolation effect by the orifice passage is exhibited in a specific tuning frequency range, it is difficult to realize a high level vibration isolation effect for a plurality of types of vibrations. In particular, when vibration on the high frequency side of the tuning frequency of the orifice passage is input, the flow resistance is significantly increased due to the anti-resonant action of the fluid through the orifice passage, and the mount characteristics are greatly increased to make the spring dynamic and vibration-proof. There was a problem that performance deteriorated.

このような問題に対処するために、本出願人は、特許文献1(特開2005−233243号公報)において、低周波数域にチューニングした第一のオリフィス通路と高周波数域にチューニングした第二のオリフィス通路を並設すると共に、第二のオリフィス通路の受圧室または平衡室への開口部に可動部材を配設して流体流動量を制限した構造を提案した。この特許文献1記載の流体封入式防振装置では、例えば、エンジンシェイク等の低周波大振幅振動に対しては、第二のオリフィス通路の流体流動量が制限されて第一のオリフィス通路による防振効果が発揮される一方、アイドリング振動等の高周波小振幅振動に対しては、第二のオリフィス通路による防振効果が発揮される。   In order to cope with such a problem, the applicant of the present invention in Japanese Patent Application Laid-Open No. 2005-233243 discloses a first orifice passage tuned to a low frequency region and a second tuned to a high frequency region. In addition to arranging the orifice passages in parallel, a structure has been proposed in which a movable member is disposed at the opening of the second orifice passage to the pressure receiving chamber or the equilibrium chamber to limit the amount of fluid flow. In the fluid-filled vibration isolator described in Patent Document 1, for example, against low-frequency large-amplitude vibration such as engine shake, the amount of fluid flow in the second orifice passage is limited and the first orifice passage prevents vibration. While the vibration effect is exhibited, the vibration isolation effect by the second orifice passage is exhibited against high-frequency small-amplitude vibration such as idling vibration.

ところが、かかる特許文献1記載の流体封入式防振装置に対しても、更なる防振性能の向上が要求される場合があった。具体的には、第一のオリフィス通路による低周波振動に対する防振効果の更なる向上を、第二のオリフィス通路による中乃至高周波振動に対する防振性能を確保しつつ、しかも、異音等の問題を伴うことなく、達成することが要求されている。   However, there is a case where further improvement of the vibration isolating performance is required even for the fluid filled type vibration isolating device described in Patent Document 1. Specifically, further improvement of the anti-vibration effect against low-frequency vibrations by the first orifice passage, while securing the anti-vibration performance against medium to high-frequency vibrations by the second orifice passage, and problems such as abnormal noise Is required to achieve without.

ところで、第一のオリフィス通路による防振効果の更なる向上のためには、低周波大振幅振動の入力時に可動部材の変位を確実に抑えて第二のオリフィス通路を通じての流体流動量を確実に制限することが有効である。また、可動部材の変位を確実に抑えるためには、例えば可動部材の支持ばね剛性を大きくして、可動部材の変位を小さく抑えることが有効である。しかしながら、小振幅振動入力時には、第二のオリフィス通路による中乃至高周波振動に対する防振効果を確保するために、第二のオリフィス通路を通じての流体流動量を、小さな流動抵抗で充分に確保することが必要であり、かかる目的からは、可動部材の支持ばね剛性を小さくすることが望ましい。それ故、第一のオリフィス通路による防振効果の更なる向上のために、単純に、可動部材の支持ばね剛性を大きくすることは、第二のオリフィス通路による防振効果の低下につながり、採用し難い。   By the way, in order to further improve the vibration isolation effect by the first orifice passage, the displacement of the movable member is surely suppressed when the low frequency large amplitude vibration is inputted, and the fluid flow amount through the second orifice passage is ensured. It is effective to restrict. Further, in order to reliably suppress the displacement of the movable member, it is effective to increase the support spring rigidity of the movable member, for example, and suppress the displacement of the movable member to be small. However, when a small amplitude vibration is input, it is possible to sufficiently secure the amount of fluid flow through the second orifice passage with a small flow resistance in order to ensure the vibration-proofing effect against the medium to high-frequency vibration by the second orifice passage. For this purpose, it is desirable to reduce the support spring rigidity of the movable member. Therefore, simply increasing the support spring rigidity of the movable member to further improve the vibration isolation effect by the first orifice passage leads to a decrease in the vibration isolation effect by the second orifice passage. It is hard to do.

一方、小振幅振動入力時には可動部材が容易に変位し得るようにすると共に、大振幅振動の入力時には可動部材の変位が確実に阻止されるように、可動部材自体を硬質板構造とすると共に、小振幅振動入力時における変位量分だけ可動部材が板厚方向に自由に変位し得るように、可動部材を板厚方向に微小隙間をもって変位可能に配設することも考えられる。しかしながら、可動部材を微小隙間をもって変位可能に配設すると、かかる微小隙間を通じての流体の逃げが発生してしまい、その逃げ分だけ、大振幅振動の入力時における第一のオリフィス通路を通じての流体流動量が少なくなって第一のオリフィス通路による防振効果が充分に発揮され難くなるという問題がある。加えて、可動部材を板厚方向に微小変位可能に配設すると、大振幅振動の入力時に可動部材が打ち当たって大きな打音や衝撃を発生することが問題となり易い。   On the other hand, the movable member itself has a hard plate structure so that the movable member can be easily displaced when a small amplitude vibration is input, and the displacement of the movable member is reliably prevented when a large amplitude vibration is input. It is also conceivable to dispose the movable member so as to be displaceable with a minute gap in the plate thickness direction so that the movable member can be freely displaced in the plate thickness direction by the amount of displacement when the small amplitude vibration is input. However, if the movable member is disposed so as to be displaceable with a minute gap, fluid escapes through the minute gap, and the fluid flow through the first orifice passage at the time of input of large-amplitude vibration corresponds to the escaped amount. There is a problem that the amount is reduced and the vibration isolation effect by the first orifice passage is not sufficiently exhibited. In addition, when the movable member is disposed so as to be capable of being minutely displaced in the plate thickness direction, it is likely to be a problem that a large hitting sound or impact is generated when the movable member strikes when large amplitude vibration is input.

なお、上記特許文献1において、本出願人は、硬質板で補強した可動部材を微小変位可能に配設すると共に、この可動部材の外周側に広がるゴム薄膜を一体形成せしめて、可動部材の外周側の微小隙間をこのゴム薄膜で閉塞することにより、可動部材の外周側の微小隙間を通じての流体の逃げを防止せしめた構造を提案した。しかしながら、可動部材の外周側のゴム薄膜は、弾性変形によって受圧室の圧力を逃がすことになるから、第一のオリフィス通路の防振効果を、未だ充分に向上させることが難しい場合があったのである。   In the above-mentioned patent document 1, the present applicant arranges a movable member reinforced with a hard plate so as to be capable of minute displacement, and integrally forms a rubber thin film spreading on the outer peripheral side of the movable member, thereby A structure has been proposed in which the minute gap on the side is closed with this rubber thin film, thereby preventing the escape of fluid through the minute gap on the outer peripheral side of the movable member. However, since the rubber thin film on the outer peripheral side of the movable member releases the pressure in the pressure receiving chamber due to elastic deformation, it may still be difficult to sufficiently improve the vibration isolation effect of the first orifice passage. is there.

特開2005−233243号公報JP 2005-233243 A

ここにおいて、本発明は、上述の如き事情を背景として為されたものであって、その解決課題とするところは、低周波数域の大振幅振動に対する防振効果を発揮する第一のオリフィス通路と中乃至高周波数域の小振幅振動に対する防振効果を発揮する第二のオリフィス通路とを併せ備えた流体封入式防振装置において、以下に記載の如き目的(i),(ii),(iii)を達成し、防振特性の更なる向上を実現することにある。
(i) 低周波数域の大振幅振動の入力時には、第二のオリフィス通路への流体の逃げを抑えて第一のオリフィス通路を通じての流体流動量を充分に確保することにより、第一のオリフィス通路による防振効果の更なる向上を図ること。
(ii) 上記(i)において第二のオリフィス通路への流体の逃げを抑えるに際して、可動部材の打音や衝撃の発生を防止すること。
(iii)中乃至高周波数域の小振幅振動の入力時には、第二のオリフィス通路を通じての流体流動に対する可動部材の抵抗を抑えて、第二のオリフィス通路を通じての流体流動量を確保することにより、第二のオリフィス通路による防振効果の更なる向上を図ること。
Here, the present invention has been made in the background as described above, and the problem to be solved is a first orifice passage that exhibits an anti-vibration effect against large amplitude vibrations in a low frequency range, and In a fluid-filled vibration isolator having a second orifice passage that exhibits an anti-vibration effect against small-amplitude vibration in a medium to high frequency range, the following objects (i), (ii), (iii) ) To achieve further improvements in vibration isolation characteristics.
(I) At the time of inputting a large amplitude vibration in a low frequency range, the fluid flow through the first orifice passage is sufficiently secured by suppressing the escape of fluid to the second orifice passage, whereby the first orifice passage To further improve the anti-vibration effect.
(Ii) When suppressing the escape of the fluid to the second orifice passage in the above (i), the occurrence of a hitting sound or impact of the movable member is prevented.
(Iii) At the time of inputting small-amplitude vibration in the middle to high frequency range, by suppressing the resistance of the movable member against the fluid flow through the second orifice passage and securing the fluid flow amount through the second orifice passage, To further improve the vibration isolation effect by the second orifice passage.

以下、このような課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様において採用される構成要素は、可能な限り任意な組み合わせで採用可能である。また、本発明の態様乃至は技術的特徴は、以下に記載のものに限定されることなく、明細書全体および図面に記載されたもの、或いはそれらの記載から当業者が把握することの出来る発明思想に基づいて認識されるものであることが理解されるべきである。   Hereinafter, the aspect of this invention made | formed in order to solve such a subject is described. In addition, the component employ | adopted in each aspect as described below is employable by arbitrary combinations as much as possible. Further, aspects or technical features of the present invention are not limited to those described below, but are described in the entire specification and drawings, or an invention that can be understood by those skilled in the art from those descriptions. It should be understood that it is recognized based on thought.

すなわち、本発明の特徴とするところは、第一の取付部材と第二の取付部材が本体ゴム弾性体で連結されていると共に、該第二の取付部材で支持された仕切部材の一方の側において該本体ゴム弾性体で壁部の一部が構成された受圧室が形成されると共に、該仕切部材の他方の側において壁部の一部が可撓性膜で構成された平衡室が形成されており、それら受圧室と平衡室に非圧縮性流体が封入されていると共に、それら受圧室と平衡室を相互に連通するオリフィス通路が形成されている流体封入式防振装置において、前記オリフィス通路として第一のオリフィス通路と該第一のオリフィス通路よりも高周波数域にチューニングされた第二のオリフィス通路を設けると共に、該第二のオリフィス通路の前記受圧室への開口部分において開口方向に対して直交する方向に広がる円板形状の可動板部材を前記仕切部材に対して板厚方向に変位可能に配設せしめて、該可動板部材における該第二のオリフィス通路の開口方向となる板厚方向への変位量を該仕切部材への当接で制限することにより小振幅振動の入力時における該第二のオリフィス通路を通じての流体流動を許容すると共に大振幅振動の入力時における該第一のオリフィス通路を通じての流体流動量を確保する流体流動量制限機構を構成する一方、硬質の拘束板に対して膜状ゴムを被着せしめて該可動板部材を構成し、該拘束板は外径寸法を周方向に異ならせて小径部と大径部が周方向で交互に設けられた異形状として、該拘束板における該小径部の形成部分を膜状ゴムの単層構造からなる弾性膜部とすると共に、該可動板部材の外周部分において周上の複数箇所に設けられた該弾性膜部には板厚方向両側に突出する弾性当接突部を一体形成して該可動板部材の板厚方向への変位に際してそれら複数の弾性当接突部が該仕切部材に対して最初に当接せしめられるようにすると共に、それら複数の弾性当接突部を周方向につないで該可動板部材の外周部分を周方向に延びる控え弾性突条を該拘束板の該大径部上において該弾性膜部と一体形成して該可動板部材の板厚方向への変位に際して該弾性当接突部に続いて該控え弾性突条が該仕切部材に対して当接せしめられるようにし、更に、該控え弾性突条にはその周上の複数箇所において該拘束板の該大径部上を径方向内方に向かって延び出す内方延出突条を一体形成し、該可動板部材の板厚方向への変位に際して該内方延出突条も該仕切部材に対して当接せしめられるようにすると共に、前記拘束板における前記大径部の上において、該大径部の外周縁部に沿って周方向に延びるようにして前記控え弾性突条が形成すると共に、該大径部の周方向両側縁部に沿って径方向に延びるようにして前記内方延出突条が形成した流体封入式防振装置にある。
That is, the present invention is characterized in that the first mounting member and the second mounting member are connected by the main rubber elastic body, and one side of the partition member supported by the second mounting member. A pressure receiving chamber in which a part of the wall portion is formed of the rubber elastic body in the body, and an equilibrium chamber in which a part of the wall portion is formed of a flexible film is formed on the other side of the partition member. In the fluid-filled vibration isolator, in which an incompressible fluid is sealed in the pressure receiving chamber and the equilibrium chamber, and an orifice passage that communicates the pressure receiving chamber and the equilibrium chamber is formed. As the passage, a first orifice passage and a second orifice passage tuned in a higher frequency range than the first orifice passage are provided, and the opening direction of the opening portion of the second orifice passage to the pressure receiving chamber is provided. A disk-shaped movable plate member extending in a direction orthogonal to the partition member is disposed so as to be displaceable in the plate thickness direction with respect to the partition member, and a plate that is an opening direction of the second orifice passage in the movable plate member By restricting the amount of displacement in the thickness direction by contact with the partition member, fluid flow through the second orifice passage at the time of inputting a small amplitude vibration is permitted and the first at the time of inputting a large amplitude vibration. The fluid flow amount limiting mechanism that secures the fluid flow amount through the orifice passage of the fluid is configured, while the movable plate member is configured by attaching a film-like rubber to a hard constraining plate, and the constraining plate has an outer diameter. An elastic film part having a single layer structure of a film-like rubber in which the small diameter part of the constraining plate is formed in a different shape in which the small diameter part and the large diameter part are alternately provided in the circumferential direction. And the movable plate member The elastic film portions provided at a plurality of locations on the circumference of the outer peripheral portion are integrally formed with elastic contact projections projecting on both sides in the plate thickness direction, and when the movable plate member is displaced in the plate thickness direction, The elastic abutting protrusions are first brought into contact with the partition member, and the plurality of elastic abutting protrusions are connected in the circumferential direction so that the outer peripheral portion of the movable plate member extends in the circumferential direction. An elastic protrusion is formed integrally with the elastic film portion on the large-diameter portion of the constraining plate, and when the movable plate member is displaced in the plate thickness direction, the retaining elastic protrusion is formed following the elastic contact protrusion. Further, the inner portion of the constraining elastic protrusion extends radially inward on the large diameter portion of the restraint plate at a plurality of locations on the circumference. An extending protrusion is integrally formed, and the inward extending is performed when the movable plate member is displaced in the thickness direction. The protrusions are also brought into contact with the partition member, and on the large diameter portion of the restraining plate, the protrusions extend in the circumferential direction along the outer peripheral edge portion of the large diameter portion. In addition to the formation of the elastic protrusions, the fluid-filled vibration isolator is formed by the inwardly extending protrusions extending in the radial direction along both circumferential edges of the large diameter portion .

このような本発明に従う構造とされた流体封入式防振装置において、低周波数域の大振幅振動の入力時には、流体流動量制限機構によって第二のオリフィス通路を通じての流体流動が確実に制限されることにより、第一のオリフィス通路を通じての流体流動量が充分に確保され得て、前述の本発明の目的(i)が有効に達成される。   In such a fluid-filled vibration isolator having a structure according to the present invention, when a large amplitude vibration in the low frequency range is input, the fluid flow through the second orifice passage is reliably restricted by the fluid flow amount limiting mechanism. As a result, the amount of fluid flow through the first orifice passage can be sufficiently secured, and the object (i) of the present invention described above can be effectively achieved.

すなわち、低周波数域の大振幅振動の入力時には、可動板部材の一方の面に受圧室の圧力が及ぼされるが、この可動板部材の弾性変形が拘束板で抑えられていると共に、拘束板の大径部が控え弾性突条と内方延出突条を介して仕切部材に当接することによって、該拘束板が直接的に変位制限されることとなる。それ故、可動板部材の変位量が確実に制限されて、可動板部材の変位に伴う受圧室の圧力の逃げが阻止される。しかも、拘束板の外周縁部において、弾性当接突部を周方向に繋ぐようにして控え弾性突条が形成されていることから、控え弾性突条が仕切部材に当接した状態では、可動板部材の外周縁部と仕切部材の間が全周に亘って実質的に密着状態となる。それ故、可動板部材の外周部分において仕切部材との間に隙間があっても、そこからの受圧室の圧力の逃げは可及的に防止される。従って、低周波数域の大振幅振動の入力時には、流体流動量制限機構を構成する可動板部材による受圧室の圧力の逃げが確実に防止されることとなり、第一のオリフィス通路を通じての流体流動量が充分に確保されることによって、第一のオリフィス通路を流動せしめられる流体の流動作用に基づく防振効果が一層効果的に発揮されるのである。   That is, when a large amplitude vibration in the low frequency range is input, the pressure of the pressure receiving chamber is exerted on one surface of the movable plate member, and the elastic deformation of the movable plate member is suppressed by the constraint plate, When the large-diameter portion abuts against the partition member via the constraining elastic protrusion and the inwardly extending protrusion, the restraint plate is directly limited in displacement. Therefore, the displacement amount of the movable plate member is surely limited, and escape of the pressure in the pressure receiving chamber due to the displacement of the movable plate member is prevented. In addition, the elastic elastic protrusions are formed on the outer peripheral edge of the restraining plate so as to connect the elastic abutting protrusions in the circumferential direction. The outer peripheral edge of the plate member and the partition member are substantially in close contact over the entire circumference. Therefore, even if there is a gap between the outer peripheral portion of the movable plate member and the partition member, escape of the pressure in the pressure receiving chamber from the gap is prevented as much as possible. Accordingly, when a large amplitude vibration in the low frequency range is input, escape of the pressure in the pressure receiving chamber by the movable plate member constituting the fluid flow amount limiting mechanism is surely prevented, and the fluid flow amount through the first orifice passage is prevented. Is sufficiently secured, the vibration-proofing effect based on the fluid action of the fluid flowing through the first orifice passage is more effectively exhibited.

しかも、低周波数域の大振幅振動の入力時に、可動板部材は、弾性当接突部の次に控え弾性突条と内方延出突条が仕切部材に対して当接することにより、かかる当接に際して段階的な緩衝機能が発揮される。加えて、弾性当接突部は、拘束板を外れて形成されていることから、柔らかいばね特性によって優れた緩衝機能を発揮し得る。これにより、可動板部材が仕切部材に対して当接して変位制限される際にも、打音や衝撃の発生が効果的に防止されることとなり、前述の本発明の目的(ii)が有効に達成され得る。   In addition, when the large amplitude vibration in the low frequency range is input, the movable plate member is pressed by the retaining elastic protrusion and the inwardly extending protrusion contacting the partition member next to the elastic contact protrusion. A step-by-step buffering function is exhibited upon contact. In addition, since the elastic contact protrusion is formed away from the restraint plate, it can exhibit an excellent buffering function due to the soft spring characteristics. As a result, even when the movable plate member abuts against the partition member and displacement is restricted, generation of hitting sound and impact is effectively prevented, and the object (ii) of the present invention is effective. Can be achieved.

さらに、本発明に従う構造とされた流体封入式防振装置において、中乃至高周波数域の小振幅振動の入力時には、可動板部材による抵抗が充分に小さく抑えられて、第二のオリフィス通路を通じての流体流動量が充分に確保されることにより、前述の本発明の目的(iii)が有効に達成される。   Furthermore, in the fluid-filled vibration isolator constructed according to the present invention, when a small amplitude vibration in the middle to high frequency range is input, the resistance due to the movable plate member is sufficiently reduced to pass through the second orifice passage. By sufficiently securing the fluid flow rate, the above-mentioned object (iii) of the present invention is effectively achieved.

すなわち、中乃至高周波数域の小振幅振動の入力時には、可動板部材の一方の面に及ぼされる受圧室の圧力で可動板部材が変位することとなり、この可動板部材の変位量に対応する流体量が第二のオリフィス通路を流動せしめられることとなる。ここにおいて、可動板部材は拘束板で補強されているが、弾性当接突部の形成部分は拘束板を外れた膜状ゴムの単層構造からなる弾性膜部とされているから、控え弾性突条が当接するまでの変位領域では非常に柔らかいばね特性が発揮されて、小さな抵抗力で容易に変位許容される。しかも、拘束板の配設領域の全体が変位せしめられることから、かかる変位に基づいて第二のオリフィス通路に流動せしめられる流体量が効率的に確保される。加えて、控え弾性突条が当接するまでの可動板部材の変位領域では、可動板部材の外周側を回り込んで受圧室から直接に第二のオリフィス通路に至る流体流動も許容され得ることから、可動板部材の変位相当量以上の流体流動量を第二のオリフィス通路において確保することも可能である。   That is, when a small amplitude vibration in the middle to high frequency range is input, the movable plate member is displaced by the pressure of the pressure receiving chamber exerted on one surface of the movable plate member, and the fluid corresponding to the displacement amount of the movable plate member. The amount will be allowed to flow through the second orifice passage. Here, the movable plate member is reinforced with a restraint plate, but the elastic contact protrusion is formed as an elastic membrane portion having a single-layer structure of a film-like rubber that is removed from the restraint plate. A very soft spring characteristic is exhibited in the displacement region until the ridge contacts, and the displacement is easily allowed with a small resistance. In addition, since the entire arrangement area of the restraint plate is displaced, the amount of fluid that is caused to flow into the second orifice passage based on the displacement is efficiently ensured. In addition, in the displacement region of the movable plate member until the stay elastic protrusion contacts, the fluid flow that goes around the outer peripheral side of the movable plate member and directly from the pressure receiving chamber to the second orifice passage can be allowed. It is also possible to ensure a fluid flow amount equal to or greater than the displacement equivalent amount of the movable plate member in the second orifice passage.

しかも、可動板部材の外周部分の表面には、径方向に延びる内方延出突条が突設されており、これらの内方延出突条によって、可動板部材の変位等に伴って可動板部材の表面に惹起される流体流動の整流作用が発揮されることとなる。そして、この整流作用に基づいて、可動板部材の変位に対する流体抵抗や、可動板部材の周囲に生ぜしめられる流体流動抵抗も軽減されることから、上述の如き可動板部材の変位に伴って第二のオリフィス通路に惹起される流体流動量や、可動板部材の外周側を回り込んで第二のオリフィス通路に惹起される流体流動量が、何れも、一層効果的に確保され得て、前述の本発明の目的(iii)が一層効果的に達成されるのである。   In addition, radially extending inwardly extending ridges are provided on the surface of the outer peripheral portion of the movable plate member, and are movable along with the displacement of the movable plate member by these inwardly extending ridges. The rectifying action of the fluid flow induced on the surface of the plate member is exhibited. Based on this rectifying action, the fluid resistance against the displacement of the movable plate member and the fluid flow resistance generated around the movable plate member are also reduced, so that the first is accompanied by the displacement of the movable plate member as described above. Both the amount of fluid flow induced in the second orifice passage and the amount of fluid flow induced in the second orifice passage around the outer peripheral side of the movable plate member can be ensured more effectively. The object (iii) of the present invention is achieved more effectively.

さらに、本発明の構造によれば、控え弾性突条および内方延出突条を、拘束板において中心から最も離れた外周縁部分に対して効率的に配設することが出来る。その結果、控え弾性突条および内方延出突条の仕切部材への当接により、拘束板の全体をバランス良く且つ高強度で変位規制することが可能となる。
Furthermore, according to the structure of the present invention, it is possible to efficiently dispose the retaining elastic ridge and the inwardly extending ridge with respect to the outer peripheral edge portion farthest from the center in the restraint plate. As a result, it is possible to regulate the displacement of the entire restraint plate in a well-balanced and high-strength manner by contacting the retaining elastic ridge and the inwardly extending ridge with the partition member.

また、本発明に係る流体封入式防振装置では、前述の如き特徴的な構成に加え、例えば、前記控え弾性突条および前記内方延出突条が何れも前記弾性当接突部に比して小さい高さ寸法で前記拘束板から板厚方向両側に突出している構造が、採用され得る。   In addition, in the fluid filled type vibration damping device according to the present invention, in addition to the characteristic configuration as described above, for example, the stay elastic protrusion and the inwardly extending protrusion are both compared to the elastic contact protrusion. Thus, a structure that protrudes from the constraining plate to both sides in the thickness direction with a small height dimension can be adopted.

このような構造によれば、可動板部材の弾性当接突部や控え弾性突条や内方延出突条が当接せしめられる仕切部材側の当接面の全体を、可動板部材の変位方向となる板厚方向に直交する平坦面形状で形成することが可能となる。   According to such a structure, the entire abutting surface on the partition member side on which the elastic abutting protrusions, the retaining elastic ridges, and the inwardly extending ridges of the movable plate member abut are displaced by the movable plate member. It becomes possible to form in the flat surface shape orthogonal to the plate | board thickness direction used as a direction.

また、本発明に係る流体封入式防振装置では、前述の如き特徴的な構成に加え、例えば、前記仕切部材には径方向内方に開口して周方向に延びる環状の支持周溝が形成され、前記可動板部材の外周部分が該支持周溝に差し入れられて支持されており、該可動板部材における前記弾性当接突部の突出先端面が該支持周溝の両側壁内面に当接されていると共に、前記控え弾性突条および前記内方延出突条の各突出先端面が何れも該支持周溝の両側壁内面に対して隙間をもって対向せしめられている構造が、採用され得る。   In addition, in the fluid filled type vibration damping device according to the present invention, in addition to the characteristic configuration as described above, for example, the partition member is formed with an annular support circumferential groove that opens radially inward and extends in the circumferential direction. The outer peripheral portion of the movable plate member is inserted into and supported by the support circumferential groove, and the protruding front end surfaces of the elastic contact protrusions of the movable plate member are in contact with the inner surfaces of both side walls of the support circumferential groove. In addition, a structure in which each of the projecting tip surfaces of the retaining elastic ridge and the inwardly extending ridge is opposed to the inner surfaces of both side walls of the supporting circumferential groove with a gap may be employed. .

更に、そのような環状の支持周溝を採用するに際しては、例えば、前記可動板部材の外周面と前記支持周溝の内周面との径方向対向面間に径方向隙間が設けられており、振動が入力されていない静置状態下において、この径方向隙間を通じて前記受圧室が前記第二のオリフィス通路に連通されている構成も、併せて採用され得る。   Furthermore, when adopting such an annular support circumferential groove, for example, a radial clearance is provided between the radially opposing surfaces of the outer peripheral surface of the movable plate member and the inner peripheral surface of the support peripheral groove. A configuration in which the pressure receiving chamber communicates with the second orifice passage through the radial gap under a stationary state where no vibration is input may be employed.

かくの如き環状の支持周溝による可動板部材の支持構造を採用すれば、可動板部材の外周部分を支持すると共に、可動板部材における弾性当接突部や控え弾性突条や内方延出突条の仕切部材に対する当接面を、容易に形成することが出来る。また、可動板部材の外周面上に設けられた径方向隙間を通じての受圧室から第二のオリフィス通路への流体流路も、支持周溝の内面に沿って短い流路長で形成されることから、前述の如き中乃至高周波数域の小振幅振動の入力時におけるかかる径方向隙間を通じての流体流動が、一層小さな流動抵抗でより効率的に生ぜしめられ得て、第二のオリフィス通路による防振効果の更なる向上が図られ得る。   If such a support structure of the movable plate member by the annular support circumferential groove is adopted, the outer peripheral portion of the movable plate member is supported, and the elastic contact protrusion, the stay elastic protrusion and the inward extension of the movable plate member are supported. The contact surface of the protrusions with respect to the partition member can be easily formed. In addition, the fluid flow path from the pressure receiving chamber to the second orifice passage through the radial gap provided on the outer peripheral surface of the movable plate member is also formed with a short flow path length along the inner surface of the support circumferential groove. Therefore, the fluid flow through the radial gap at the time of inputting a small amplitude vibration in the middle to high frequency range as described above can be generated more efficiently with a smaller flow resistance, and is prevented by the second orifice passage. The vibration effect can be further improved.

また、本発明に係る流体封入式防振装置では、前述の如き特徴的な構成に加え、例えば、前記仕切部材の外周部分を周方向に延びるようにして前記第一のオリフィス通路が形成されている一方、該第一のオリフィス通路から独立して該第一のオリフィス通路の内周側を周方向に延びるように前記第二のオリフィス通路が形成されており、該第二のオリフィス通路における前記受圧室への開口部分が該仕切部材の中央に設けられ、かかる開口部分に前記可動板部材が配設されている構造が、採用され得る。   Further, in the fluid filled type vibration damping device according to the present invention, in addition to the characteristic configuration as described above, for example, the first orifice passage is formed so as to extend in the circumferential direction of the outer peripheral portion of the partition member. On the other hand, the second orifice passage is formed so as to extend in the circumferential direction on the inner peripheral side of the first orifice passage independently of the first orifice passage. A structure in which an opening portion to the pressure receiving chamber is provided in the center of the partition member and the movable plate member is disposed in the opening portion may be employed.

このような構造によれば、可動板部材の配設位置において、第二のオリフィス通路の流体流動方向が可動板部材の変位方向となる板厚方向とされる。それ故、受圧室の圧力作用に基づく可動板部材の変位により、第二のオリフィス通路における流体流動が一層効率的に生ぜしめられて、第二のオリフィス通路による防振効果の更なる向上が図られ得る。   According to such a structure, the fluid flow direction of the second orifice passage is the plate thickness direction that is the displacement direction of the movable plate member at the position where the movable plate member is disposed. Therefore, the displacement of the movable plate member based on the pressure action of the pressure receiving chamber causes the fluid flow in the second orifice passage to be generated more efficiently, thereby further improving the vibration isolation effect by the second orifice passage. Can be.

また、本発明に係る流体封入式防振装置では、前述の如き特徴的な構成に加え、例えば、前記第二のオリフィス通路には、長さ方向の中間部分で該第二のオリフィス通路と前記平衡室とを隔てる隔壁部分に開口窓が形成されていると共に、該開口窓が仕切弾性膜で流体密に閉塞されており、該仕切弾性膜の弾性変形に基づいて該第二のオリフィス通路における液圧吸収機構が構成されている構造が、採用され得る。   In addition, in the fluid filled type vibration damping device according to the present invention, in addition to the characteristic configuration as described above, for example, the second orifice passage includes the second orifice passage and the above-described intermediate portion in the longitudinal direction. An opening window is formed in a partition wall that separates the equilibrium chamber, and the opening window is fluid-tightly closed by a partition elastic membrane. Based on the elastic deformation of the partition elastic membrane, the second orifice passage A structure in which a hydraulic pressure absorbing mechanism is configured may be employed.

このような構造によれば、受圧室から可動板部材を介して第二のオリフィス通路に及ぼされる圧力変動が、第二のオリフィス通路上に配された弾性仕切膜を介して平衡室に短絡的に逃がされる。それ故、第二のオリフィス通路のチューニング周波数よりも更に高周波数域の振動入力時にも、第二のオリフィス通路の***振による著しい高動ばね化を回避して、低ばね特性による防振性能を得ることが可能となる。   According to such a structure, the pressure fluctuation exerted from the pressure receiving chamber via the movable plate member to the second orifice passage is short-circuited to the equilibrium chamber via the elastic partition film disposed on the second orifice passage. To escape. Therefore, even when vibration is input in a higher frequency range than the tuning frequency of the second orifice passage, it avoids a significant increase in the dynamic spring due to anti-resonance of the second orifice passage, and provides vibration-proof performance due to low spring characteristics. Can be obtained.

また、本発明に係る流体封入式防振装置では、前述の如き特徴的な構成に加え、例えば、前記第二の取付部材が筒状部を備えており、該筒状部の一方の開口部側に前記第一の取付部材が離隔配置されて前記本体ゴム弾性体で弾性連結されることによって該筒状部の該一方の開口部が流体密に閉塞されると共に、該筒状部の他方の開口部側に前記可撓性膜が配設されて該筒状部の該他方の開口部が該可撓性膜で流体密に閉塞されている一方、前記仕切部材が該筒状部に組み付けられて該筒状部の内側における該本体ゴム弾性体と該可撓性膜の対向面間の領域を仕切ることで該仕切部材を挟んだ両側に前記受圧室と前記平衡室が形成されていると共に、該仕切部材によって前記可動板部材が支持されて該受圧室と該平衡室の対向方向で変位可能に配設されている構造が、採用され得る。   Further, in the fluid filled type vibration damping device according to the present invention, in addition to the characteristic configuration as described above, for example, the second mounting member includes a cylindrical portion, and one opening portion of the cylindrical portion is provided. The first mounting member is spaced apart on the side and elastically connected by the main rubber elastic body, whereby the one opening of the cylindrical part is closed fluid-tightly, and the other of the cylindrical part The flexible membrane is disposed on the opening side of the cylindrical portion, and the other opening portion of the cylindrical portion is fluid-tightly closed with the flexible membrane, while the partition member is disposed on the cylindrical portion. The pressure receiving chamber and the equilibrium chamber are formed on both sides of the partition member by partitioning a region between the opposing surfaces of the main rubber elastic body and the flexible membrane inside the cylindrical portion. And the movable plate member is supported by the partition member so as to be displaceable in the opposing direction of the pressure receiving chamber and the equilibrium chamber. Structure being set, it can be employed.

このような構造によれば、受圧室と平衡室の対向方向を振動の入力方向にあわせることが出来、更に、可動板部材の変位方向もかかる振動の入力方向に設定することが出来る。これにより、受圧室と平衡室の圧力変動を可動板部材に対して簡単な構造で効率的に及ぼすことが可能となり、防振装置全体のサイズもコンパクトに設計することができる。
According to such a structure, the opposing direction of the pressure receiving chamber and the equilibrium chamber can be matched with the vibration input direction, and the displacement direction of the movable plate member can be set to the vibration input direction. As a result, it is possible to efficiently apply pressure fluctuations in the pressure receiving chamber and the equilibrium chamber to the movable plate member with a simple structure, and the size of the entire vibration isolator can be designed compactly.

以下、本発明を更に具体的に明らかにするために、本発明の一実施形態について図面を参照しつつ、詳細に説明する。先ず、図1には、本発明の第一の実施形態としての自動車用エンジンマウント10が示されている。この自動車用エンジンマウント10は、第一の取付部材としての第一の取付金具12と第二の取付部材としての第二の取付金具14が本体ゴム弾性体16で弾性連結された基本構造を備えている。かかるエンジンマウント10は、第一の取付金具12が図示しない自動車のパワーユニットに取り付けられると共に、第二の取付金具14が図示しない自動車の車両ボデーに取り付けられることによって、自動車に装着されることとなる。そして、かかる自動車用エンジンマウント10を含む複数のエンジンマウントを介して、パワーユニットが車両ボデーに防振支持される。   Hereinafter, in order to clarify the present invention more specifically, an embodiment of the present invention will be described in detail with reference to the drawings. First, FIG. 1 shows an automobile engine mount 10 as a first embodiment of the present invention. The automobile engine mount 10 has a basic structure in which a first mounting bracket 12 as a first mounting member and a second mounting bracket 14 as a second mounting member are elastically connected by a main rubber elastic body 16. ing. The engine mount 10 is attached to a vehicle by attaching a first mounting bracket 12 to a power unit of a vehicle (not shown) and attaching a second mounting bracket 14 to a vehicle body of a vehicle (not shown). . The power unit is supported by the vehicle body in a vibration-proof manner through a plurality of engine mounts including the automobile engine mount 10.

なお、図1では、自動車に装着する前の自動車用エンジンマウント10の単体での状態が示されているが、自動車への装着状態では、パワーユニットの分担支持荷重がマウント軸方向(図1中、上下)に入力されることにより、第一の取付金具12と第二の取付金具14がマウント軸方向で相互に接近する方向に変位して、本体ゴム弾性体16が弾性変形する。また、かかる装着状態下、防振すべき主たる振動は、略マウント軸方向に入力されることとなる。以下の説明中、特に断りのない限り、上下方向は、マウント軸方向となる図1中の上下方向をいう。   In FIG. 1, the state of the vehicle engine mount 10 alone before being mounted on the vehicle is shown, but in the mounted state on the vehicle, the shared support load of the power unit is in the mount axis direction (in FIG. 1), the first mounting bracket 12 and the second mounting bracket 14 are displaced toward each other in the mount axis direction, and the main rubber elastic body 16 is elastically deformed. In addition, under such a mounted state, main vibrations to be vibrated are input substantially in the mount axis direction. In the following description, unless otherwise specified, the vertical direction refers to the vertical direction in FIG.

より詳細には、第一の取付金具12は、逆向きの円錐台形状とされている。第一の取付金具12の大径側の上端面には、中央から上方に向かって固定ボルト18が突設されており、この固定ボルト18が図示しないパワーユニット側の部材に固着されることにより、第一の取付金具12がパワーユニットに取り付けられるようになっている。   More specifically, the first mounting member 12 has a truncated conical shape. A fixing bolt 18 protrudes upward from the center on the upper end surface on the large diameter side of the first mounting bracket 12, and this fixing bolt 18 is fixed to a member on the power unit side (not shown). The first mounting bracket 12 is attached to the power unit.

また、第二の取付金具14は、第一の取付金具12よりも大径の略円筒形状を有しており、その略全体で筒状部を構成している。第二の取付金具14の上部において、径方向内方に向かって円環形状に広がる段部20が形成されていると共に、段部20の内周縁部から上方に向かって径寸法が次第に大きくなるテーパ筒状部22が形成されており、更にテーパ筒状部22の上端縁部には、外フランジ状部24が形成されている。   Further, the second mounting bracket 14 has a substantially cylindrical shape having a larger diameter than that of the first mounting bracket 12, and the entire portion forms a cylindrical portion. In the upper part of the second mounting bracket 14, a stepped portion 20 is formed that expands in an annular shape toward the inside in the radial direction, and the diameter dimension gradually increases upward from the inner peripheral edge of the stepped portion 20. A tapered tubular portion 22 is formed, and an outer flange-shaped portion 24 is formed at the upper edge of the tapered tubular portion 22.

更にまた、第二の取付金具14には、ブラケット金具26が外嵌固着されている。ブラケット金具26は、大径の略有底円筒形状を有しており、その上端部に外フランジ状部28が形成されていると共に、ブラケット金具26の外周面に複数の脚部30が固設されている。このブラケット金具26に対して第二の取付金具14が下端部側から圧入されて、第二の取付金具14の外フランジ状部24がブラケット金具26の外フランジ状部28に軸方向で重ね合わされていることにより、第二の取付金具14の下端部がブラケット金具26の底部から上方に所定距離を隔てて位置せしめられた形態で、ブラケット金具26が第二の取付金具14に固定されている。   Furthermore, a bracket fitting 26 is externally fixed to the second mounting fitting 14. The bracket fitting 26 has a large-diameter, generally bottomed cylindrical shape, and an outer flange-like portion 28 is formed at the upper end portion thereof, and a plurality of leg portions 30 are fixed to the outer peripheral surface of the bracket fitting 26. Has been. The second mounting bracket 14 is press-fitted into the bracket bracket 26 from the lower end side, and the outer flange portion 24 of the second mounting bracket 14 is overlapped with the outer flange portion 28 of the bracket bracket 26 in the axial direction. Thus, the bracket fitting 26 is fixed to the second fitting 14 in a form in which the lower end portion of the second fitting 14 is positioned at a predetermined distance upward from the bottom of the bracket fitting 26. .

そして、ブラケット金具26の脚部30が、図示しない車両ボデー側の部材にボルト等で固定されることにより、第二の取付金具14がブラケット金具26を介して車両ボデーに取り付けられるようになっている。   Then, the leg portion 30 of the bracket fitting 26 is fixed to a vehicle body side member (not shown) with a bolt or the like, so that the second attachment fitting 14 is attached to the vehicle body via the bracket fitting 26. Yes.

かくの如き第二の取付金具14の上側開口部の外方に離隔して、第一の取付金具12が配設されている。これら第一の取付金具12と第二の取付金具14は、略同一の中心軸上に配設されており、本体ゴム弾性体16によって相互に弾性連結されている。   The first mounting bracket 12 is disposed outside the upper opening of the second mounting bracket 14 as described above. The first mounting bracket 12 and the second mounting bracket 14 are disposed on substantially the same central axis and are elastically connected to each other by a main rubber elastic body 16.

かかる本体ゴム弾性体16は、全体として略円錐台形状を有しており、その小径側の上端部に対して、第一の取付金具12が上端面を露出せしめられた状態で、略全体を埋め込まれて加硫接着されている。また、本体ゴム弾性体16の大径側端部外周面に対して、第二の取付金具14の内周面が、テーパ筒状部22や段部20において加硫接着されている。   The main rubber elastic body 16 has a substantially frustoconical shape as a whole, with the upper end surface of the first mounting member 12 being exposed to the upper end portion on the small diameter side. Embedded and vulcanized. Further, the inner peripheral surface of the second mounting bracket 14 is vulcanized and bonded to the outer peripheral surface of the large-diameter side end portion of the main rubber elastic body 16 at the tapered tubular portion 22 or the stepped portion 20.

本実施形態では、本体ゴム弾性体16が第一の取付金具12と第二の取付金具14を備えた一体加硫成形品として形成されており、第二の取付金具14の上側の開口部が本体ゴム弾性体16で流体密に閉塞されている。また、本体ゴム弾性体16の大径側の下端面には、下方に開口する略逆すり鉢形状の大径凹所32が形成されている。更に、本体ゴム弾性体16には、大径凹所32の開口縁部から第二の取付金具14の内周面に沿って軸方向下方に延び出す薄肉のシールゴム層34が一体形成されており、このシールゴム層34が、第二の取付金具14における段部20や段部20の外周縁部から第二の取付金具14の下端部付近に至るまでの略全面に被着されている。   In the present embodiment, the main rubber elastic body 16 is formed as an integrally vulcanized molded product including the first mounting bracket 12 and the second mounting bracket 14, and the opening on the upper side of the second mounting bracket 14 is formed. The main rubber elastic body 16 is closed fluid-tightly. Also, a large diameter recess 32 having a substantially inverted mortar shape that opens downward is formed on the lower end surface of the main rubber elastic body 16 on the large diameter side. Further, the main rubber elastic body 16 is integrally formed with a thin seal rubber layer 34 that extends downward in the axial direction along the inner peripheral surface of the second mounting bracket 14 from the opening edge of the large-diameter recess 32. The seal rubber layer 34 is attached to substantially the entire surface of the second mounting bracket 14 from the step 20 and the outer peripheral edge of the step 20 to the vicinity of the lower end of the second mounting bracket 14.

上述の如くブラケット金具26が第二の取付金具14に取り付けられるのに先立って、本体ゴム弾性体16の一体加硫成形品には、仕切部材36と可撓性膜としてのダイヤフラム38が組み付けられている。仕切部材36は、全体として略円形ブロック状を呈しており、金属材や合成樹脂材等からなる硬質部材を用いて形成されている。本実施形態の仕切部材36は、仕切部材本体40、第一蓋部材42、第二蓋部材44を含んで構成されている。   Prior to the bracket fitting 26 being attached to the second attachment fitting 14 as described above, the partition member 36 and the diaphragm 38 as a flexible film are assembled to the integrally vulcanized molded product of the main rubber elastic body 16. ing. The partition member 36 has a substantially circular block shape as a whole, and is formed using a hard member made of a metal material, a synthetic resin material, or the like. The partition member 36 of the present embodiment includes a partition member main body 40, a first lid member 42, and a second lid member 44.

仕切部材本体40は、図2〜6にも示されているように、略円形ブロック状を呈しており、その中心軸上には、中央流路46が貫通形成されている。特に、中央流路46は、仕切部材本体40の下端面から一定の円形断面で延びていると共に、上側開口部分が、上方に向かって拡開するテーパ状部48とされている。また、テーパ状部48の大径側の開口端部は、段差状に拡開されて溝底凹所50とされている。溝底凹所50は、径方向外方に広がる円環状の底部と該底部の外周縁部から円筒状に立ち上がる周壁部を備えている。   As shown in FIGS. 2 to 6, the partition member main body 40 has a substantially circular block shape, and a central flow path 46 is formed through the central axis thereof. In particular, the central flow path 46 extends from the lower end surface of the partition member main body 40 with a constant circular cross section, and the upper opening portion is a tapered portion 48 that expands upward. Further, the opening end portion on the large diameter side of the tapered portion 48 is widened in a step shape to form a groove bottom recess 50. The groove bottom recess 50 includes an annular bottom that extends radially outward, and a peripheral wall that rises in a cylindrical shape from the outer peripheral edge of the bottom.

また、仕切部材本体40の外周面には、上下二段でそれぞれ周方向に延びる外周溝52,54が形成されており、これら外周溝52,54が各周方向一方の端部において相互に直列的に接続されている。更に、これら外周溝52,54で協働形成された所定長さの溝は、その両端部が連通溝58、60を通じて、仕切部材本体40の軸方向の各一方の端面に開口せしめられている。   The outer circumferential surface of the partition member body 40 is formed with outer circumferential grooves 52 and 54 that extend in the circumferential direction in two upper and lower stages, and these outer circumferential grooves 52 and 54 are in series with each other at one end in each circumferential direction. Connected. Further, the grooves having a predetermined length formed in cooperation with the outer peripheral grooves 52 and 54 are opened at one end face in the axial direction of the partition member main body 40 through the communication grooves 58 and 60 at both ends. .

更にまた、仕切部材本体40の下端面には、径方向中間部分を周方向に一周弱の長さで延びる中間周溝62が形成されている。この中間周溝62の周方向一方の端部は、径方向溝64を通じて、中央流路46の下端部に接続されている。   Furthermore, an intermediate circumferential groove 62 is formed on the lower end surface of the partition member main body 40 so as to extend the radial intermediate portion in the circumferential direction with a length of a little less than one round. One end of the intermediate circumferential groove 62 in the circumferential direction is connected to the lower end of the central flow path 46 through the radial groove 64.

そして、かくの如き仕切部材本体40の上面に対して、第一蓋部材42が重ね合わされている。この第一の蓋部材42は、図7にも示されているように、薄肉の略円板形状を有しており、その外径寸法が仕切部材本体40の外径寸法と略同じとされている。また、第一蓋部材42の中央部分には、円形の中央透孔70が貫通形成されている。この中央透孔70の内径寸法は、仕切部材本体40に形成された溝底凹所50の開口径寸法より小さくされており、溝底凹所50の底部の内径寸法、換言するとテーパ状部48の大径側端部の外径寸法と略同じとされている。更にまた、第一蓋部材42の外周部分には、切り欠き状の第一連通窓72が形成されている。 The first lid member 42 is overlaid on the upper surface of the partition member body 40 as described above. As shown in FIG. 7, the first lid member 42 has a thin, substantially disk shape, and its outer diameter is substantially the same as the outer diameter of the partition member body 40. ing. Further, a circular central through hole 70 is formed through the central portion of the first lid member 42. The inner diameter of the central through hole 70 is smaller than the opening diameter of the groove bottom recess 50 formed in the partition member main body 40, and in other words, the inner diameter of the bottom of the groove bottom recess 50, in other words, the tapered portion 48. The outer diameter of the large-diameter side end is substantially the same. Furthermore, a notch-shaped first through window 72 is formed on the outer peripheral portion of the first lid member 42.

かかる第一蓋部材42は、仕切部材本体40の上面に対して、周方向に位置合わせされて組み付けられている。特に本実施形態では、仕切部材本体40の上面に突設された複数本の位置決め突起66が、第一蓋部材42の対応位置に貫設された各挿通孔74に係合されることにより、周方向の位置合わせがされている。そして、この第一蓋部材42が仕切部材本体40の上面に固着されることにより、溝底凹所50の開口部分が第一蓋部材42の内周縁部で覆われており、中央流路46の上側開口部分において、仕切部材36の径方向内方に開口して周方向に連続に延びる円環形状の支持周溝82が形成されている。   The first lid member 42 is aligned and assembled in the circumferential direction with respect to the upper surface of the partition member main body 40. Particularly in the present embodiment, the plurality of positioning protrusions 66 projecting from the upper surface of the partition member main body 40 are engaged with the respective insertion holes 74 penetrating at corresponding positions of the first lid member 42, It is aligned in the circumferential direction. The first lid member 42 is fixed to the upper surface of the partition member main body 40, so that the opening portion of the groove bottom recess 50 is covered with the inner peripheral edge of the first lid member 42, and the central flow path 46. In the upper opening portion, an annular support circumferential groove 82 that is opened inward in the radial direction of the partition member 36 and extends continuously in the circumferential direction is formed.

さらに、仕切部材本体40の下面には、第二蓋部材44が重ね合わされている。この第二蓋部材44は、図8にも示されているように、薄肉の略円板形状を有しており、その外径寸法が、仕切部材本体40の下端面より小さいが、仕切部材本体40に形成された中間周溝62を覆蓋せしめるに充分な大きさとされている。   Further, a second lid member 44 is superimposed on the lower surface of the partition member main body 40. As shown in FIG. 8, the second lid member 44 has a thin and substantially disk shape, and its outer diameter is smaller than the lower end surface of the partition member body 40. The intermediate circumferential groove 62 formed in the main body 40 is large enough to cover.

なお、第二蓋部材44の外周縁部には、仕切部材本体40に形成された連通溝60を開口させるための切り欠き状の第二連通窓76が形成されている。また、第二蓋部材44の径方向中間部分には、連通孔78が貫設されており、仕切部材本体40に形成された中間周溝62の周方向他方の端部(中央流路46への接続側と反対側の端部)が、かかる連通孔78を通じて開口せしめられている。特に本実施形態では、仕切部材本体40の下面と第二蓋部材44との各対応する位置に複数の固定用穴68と挿通孔80が形成されており、圧入ピンやボルト等によって、第二の蓋部材44が仕切部材本体40に対して位置決め固定されるようになっている。   A notch-shaped second communication window 76 for opening the communication groove 60 formed in the partition member main body 40 is formed on the outer peripheral edge portion of the second lid member 44. In addition, a communication hole 78 is provided in the radially intermediate portion of the second lid member 44, and the other circumferential end of the intermediate circumferential groove 62 formed in the partition member main body 40 (to the central channel 46). The end portion on the opposite side of the connection side) is opened through the communication hole 78. In particular, in the present embodiment, a plurality of fixing holes 68 and insertion holes 80 are formed at the corresponding positions of the lower surface of the partition member main body 40 and the second lid member 44, and the second is inserted by press-fit pins, bolts, or the like. The lid member 44 is positioned and fixed with respect to the partition member main body 40.

このように第二の蓋部材44が仕切部材本体40の下面に固着されることにより、中間周溝62が第二蓋部材44で覆蓋されて、仕切部材36の軸方向に延びる中央流路46の下端部から延び出して周方向に一周弱の長さで延び、軸方向下端面に開口する中間流路84が形成されている。   As the second lid member 44 is fixed to the lower surface of the partition member main body 40 in this way, the intermediate circumferential groove 62 is covered with the second lid member 44 and the central flow path 46 extending in the axial direction of the partition member 36. An intermediate flow path 84 is formed which extends from the lower end of each of the two channels and extends in the circumferential direction with a length of a little less than one round and opens to the lower end surface in the axial direction.

そして、かくの如く仕切部材本体40の上下面に第一及び第二の蓋部材42,44が組み付けられてなる仕切部材36は、本体ゴム弾性体16の一体加硫成形品を構成する第二の取付金具14に対して下側開口部から軸方向に差し入れられ、第二の取付金具14の縮径加工で嵌着固定されている。その組付状態下、仕切部材36における第一蓋部材42の外周部分が、本体ゴム弾性体16のシールゴム層34を介して段部20と軸方向に重ね合わされて軸方向で位置決めされている。   The partition member 36 in which the first and second lid members 42 and 44 are assembled to the upper and lower surfaces of the partition member main body 40 as described above constitutes a second vulcanized molded product of the main rubber elastic body 16. The mounting bracket 14 is inserted in the axial direction from the lower opening, and is fitted and fixed by reducing the diameter of the second mounting bracket 14. Under the assembled state, the outer peripheral portion of the first lid member 42 in the partition member 36 is overlapped with the step portion 20 in the axial direction via the seal rubber layer 34 of the main rubber elastic body 16 and positioned in the axial direction.

さらに、第二の取付金具14の下側開口部には、ダイヤフラム38が組み付けられている。かかるダイヤフラム38は、全体として弛みをもった円形の膜状とされており、ゴム弾性体で形成されている。また、ダイヤフラム38の外周縁部には、大径の略円筒形状を有する固定筒金具86が加硫接着されている。この固定筒金具86の外周面には、シールゴム層88がダイヤフラム38と一体形成されている。   Further, a diaphragm 38 is assembled in the lower opening of the second mounting bracket 14. The diaphragm 38 has a circular film shape with a slack as a whole, and is formed of a rubber elastic body. Further, a fixed cylinder fitting 86 having a large-diameter, generally cylindrical shape is vulcanized and bonded to the outer peripheral edge of the diaphragm 38. A seal rubber layer 88 is integrally formed with the diaphragm 38 on the outer peripheral surface of the fixed cylinder fitting 86.

そして、固定筒金具86が第二の取付金具14の下側開口部から差し入れられて、固定筒金具86が仕切部材本体40の下端面に当接されて軸方向に位置決めされている。かくの如き固定筒金具86の組付状態下で第二の取付金具14が縮径加工されることにより、第二の取付金具14の下側開口部分に対して、固定筒金具86が嵌着固定されている。これによって、第二の取付金具14の下側開口部がダイヤフラム38で流体密に覆蓋されており、第二の取付金具14の内側で本体ゴム弾性体16とダイヤフラム38の対向面間に画成された領域が、仕切部材36を挟んで上下に二分されている。   The fixed cylinder fitting 86 is inserted from the lower opening of the second attachment fitting 14, and the fixed cylinder fitting 86 is brought into contact with the lower end surface of the partition member main body 40 and positioned in the axial direction. When the diameter of the second mounting bracket 14 is reduced while the fixed cylindrical bracket 86 is assembled as described above, the fixed cylindrical bracket 86 is fitted to the lower opening of the second mounting bracket 14. It is fixed. As a result, the lower opening of the second mounting bracket 14 is fluid-tightly covered with the diaphragm 38 and is defined between the opposing surfaces of the main rubber elastic body 16 and the diaphragm 38 inside the second mounting bracket 14. The region thus formed is divided into two parts up and down across the partition member 36.

仕切部材36の上方には、本体ゴム弾性体16の大径凹所32が仕切部材36で閉塞された構造の受圧室90が形成されている。この受圧室90は、壁部の一部が本体ゴム弾性体16で構成されており、振動入力時に本体ゴム弾性体16の弾性変形に基づいて圧力変動が生ぜしめられるようになっている。   Above the partition member 36, a pressure receiving chamber 90 having a structure in which the large-diameter recess 32 of the main rubber elastic body 16 is closed by the partition member 36 is formed. In this pressure receiving chamber 90, a part of the wall portion is composed of the main rubber elastic body 16, and pressure fluctuation is generated based on elastic deformation of the main rubber elastic body 16 when vibration is input.

一方、仕切部材36の下方には、壁部の一部がダイヤフラム38で構成されてダイヤフラム38の変形に基づいて容積変化が容易に許容される平衡室92が形成されている。   On the other hand, below the partition member 36, an equilibrium chamber 92 is formed in which a part of the wall portion is constituted by a diaphragm 38 and volume change is easily allowed based on deformation of the diaphragm 38.

また、これら受圧室90と平衡室92には、水やポリアルキレングリコール等の非圧縮性流体が封入されている。なお、特に流体の共振作用等の流動作用に基づく防振効果を有効に得るためには、0.1Pa・s以下の低粘性流体を採用することが望ましい。   The pressure receiving chamber 90 and the equilibrium chamber 92 are filled with incompressible fluid such as water or polyalkylene glycol. In particular, in order to effectively obtain a vibration isolation effect based on a fluid action such as a resonance action of a fluid, it is desirable to employ a low viscosity fluid of 0.1 Pa · s or less.

更にまた、仕切部材36の外周面における外周溝52,54等の外周面が、シールゴム層34を介して、第二の取付金具14で流体密に覆蓋されることにより、仕切部材36の外周部分を周方向に一周以上の長さで略螺旋状に延びる第一のオリフィス通路94が形成されている。この第一のオリフィス通路94の一方の端部が、連通溝58と連通窓72を通じて受圧室90に連通されていると共に、他方の端部が、連通溝60と連通窓76を通じて平衡室92に連通されている。これにより、受圧室90と平衡室92の間で、第一のオリフィス通路94を通じての流体流動が許容されるようになっている。   Furthermore, the outer peripheral surface of the partition member 36 is covered with the second mounting bracket 14 through the sealing rubber layer 34 so that the outer peripheral surface of the outer peripheral grooves 52, 54, etc. on the outer peripheral surface of the partition member 36 is fluid-tight. A first orifice passage 94 is formed that extends in a spiral shape with a length of one round or more in the circumferential direction. One end portion of the first orifice passage 94 communicates with the pressure receiving chamber 90 through the communication groove 58 and the communication window 72, and the other end portion enters the equilibrium chamber 92 through the communication groove 60 and the communication window 76. It is communicated. As a result, fluid flow through the first orifice passage 94 is allowed between the pressure receiving chamber 90 and the equilibrium chamber 92.

また、仕切部材36の中央部分には、中央流路46と中間流路84が直列的に接続されて第二のオリフィス通路96が形成されている。この第二のオリフィス通路96は、第一のオリフィス通路94よりも高周波数域にチューニングされており、特に本実施形態では、第一のオリフィス通路94を通じて流動せしめられる流体の共振周波数がエンジンシェイクに相当する10Hz程度の低周波数域にチューニングされていると共に、第二のオリフィス通路96を通じて流動せしめられる流体の共振周波数がアイドリング振動等に相当する20〜30Hz程度の中周波数域にチューニングされている。   In addition, a central orifice 46 and an intermediate passage 84 are connected in series in the central portion of the partition member 36 to form a second orifice passage 96. The second orifice passage 96 is tuned to a higher frequency range than the first orifice passage 94. In particular, in this embodiment, the resonance frequency of the fluid that flows through the first orifice passage 94 is the engine shake. It is tuned to the corresponding low frequency range of about 10 Hz, and the resonance frequency of the fluid flowing through the second orifice passage 96 is tuned to the mid frequency range of about 20 to 30 Hz corresponding to idling vibration or the like.

さらに、第二のオリフィス通路96における受圧室90側への開口部分には、可動板部材98が配設されている。この可動板部材98は、図9〜12にも示されているように、全体として略円板形状を有しており、拘束板100に対して膜状ゴム102が被着された一体的な構造とされている。   Further, a movable plate member 98 is disposed at an opening portion of the second orifice passage 96 toward the pressure receiving chamber 90 side. As shown in FIGS. 9 to 12, the movable plate member 98 has a substantially disc shape as a whole, and is integrally formed with a membrane rubber 102 attached to the restraint plate 100. It is structured.

拘束板100は、金属や合成樹脂等の硬質材料で形成されており、薄肉の平板形状とされている。特に本実施形態の拘束板100では、図13にも示されているように、円板形状の拘束板本体104の外周縁部から円弧板形状の板片部110の複数(本実施形態では4つ)が径方向外方に突出して一体形成されている。各板片部110は、周方向に略等間隔に形成されており、換言すれば、一枚の円板の外周縁部を、周方向で等間隔に4箇所で円弧状に切り欠いた形状とされている。更に換言すれば、かかる拘束板100は、その周上において板片部110が形成されていない部分の小径部112と、板片部110としての大径部とが、周方向に交互に設けられた異形状とされている。   The restraining plate 100 is made of a hard material such as metal or synthetic resin, and has a thin flat plate shape. In particular, in the restraint plate 100 of the present embodiment, as shown in FIG. 13, a plurality of arc plate-shaped plate pieces 110 (four in the present embodiment) from the outer peripheral edge of the disc-shaped restraint plate main body 104. Are integrally formed protruding outward in the radial direction. Each plate piece part 110 is formed at substantially equal intervals in the circumferential direction. In other words, the shape of the outer peripheral edge of one disc cut out in an arc shape at four positions at equal intervals in the circumferential direction. It is said that. In other words, the constraining plate 100 has a small-diameter portion 112 where the plate piece portion 110 is not formed on the circumference and a large-diameter portion as the plate piece portion 110 alternately provided in the circumferential direction. It has a different shape.

特に本実施形態では、小径部112の外径寸法が、仕切部材36における支持周溝82の上下両側壁部の内径寸法(即ち、溝底凹所50における円環状下面の内径寸法および第一蓋部材42の内径寸法)と同じか僅かに小さく設定されている。一方、大径部(板片部)110の外径寸法は、仕切部材36における支持周溝82の上下両側壁部内径寸法よりも大きく、且つ支持周溝82の底面(円筒状面)の内径寸法よりも小さく設定されている。   In particular, in this embodiment, the outer diameter of the small-diameter portion 112 is the inner diameter of the upper and lower side walls of the support circumferential groove 82 in the partition member 36 (that is, the inner diameter of the annular lower surface in the groove bottom recess 50 and the first lid). It is set to be the same as or slightly smaller than the inner diameter dimension of the member 42. On the other hand, the outer diameter of the large diameter portion (plate piece portion) 110 is larger than the inner diameter of the upper and lower side walls of the support circumferential groove 82 in the partition member 36 and the inner diameter of the bottom surface (cylindrical surface) of the support circumferential groove 82. It is set smaller than the dimensions.

さらに、拘束板100の全面を全体に亘って覆うようにして膜状ゴム102が加硫接着されている。なお、拘束板100には、適当な位置に複数の貫通孔108が形成されており、この貫通孔108に充填されたゴムによって、拘束板100の表裏両側を覆う膜状ゴム102が相互に一体化されている。   Further, the membrane rubber 102 is vulcanized and bonded so as to cover the entire surface of the restraint plate 100. A plurality of through holes 108 are formed at appropriate positions in the restraint plate 100, and film rubbers 102 covering both the front and back sides of the restraint plate 100 are integrated with each other by the rubber filled in the through holes 108. It has become.

膜状ゴム102によって拘束板100が覆われることにより、可動板部材98が全周に亘って外径寸法が一定の円板形状とされており、その外径寸法が、仕切部材36における支持周溝82の底面(円筒状面)の内径寸法よりも僅かに小さくされている。また、膜状ゴム102は、拘束板100の表面を覆うだけでなく、小径部112の外周側において周方向で隣り合う大径部110,110の間を充填するように広がっており、そこに拘束板100の埋設領域と同じ平板状のゴム単体からなる弾性膜部114を形成している。要するに、この弾性膜部114は、拘束板100が埋設されていないことにより、弾性変形が容易に許容されるようになっているのである。また、この弾性膜部114は、全ての小径部112の外周側に形成されており、弾性膜部114の表裏両面は、何れも、拘束板100の埋設領域において拘束板100の表裏に被着された膜状ゴム102の表面と同一平面とされている。それによって、小径部112と大径部110との何れの部位に拘わらず全体として外径寸法が一定の円板形状を有する可動板部材98が形成されている。   By covering the constraining plate 100 with the film rubber 102, the movable plate member 98 is formed into a disk shape having a constant outer diameter over the entire circumference. The inner diameter of the bottom surface (cylindrical surface) of the groove 82 is slightly smaller. Further, the film rubber 102 not only covers the surface of the restraining plate 100 but also spreads so as to fill the space between the large diameter portions 110 and 110 adjacent in the circumferential direction on the outer peripheral side of the small diameter portion 112. An elastic film portion 114 made of the same flat rubber as the embedding region of the restraining plate 100 is formed. In short, the elastic film portion 114 is easily allowed to be elastically deformed because the restraint plate 100 is not embedded. The elastic film portion 114 is formed on the outer peripheral side of all the small-diameter portions 112, and both the front and back surfaces of the elastic film portion 114 are attached to the front and back surfaces of the restraint plate 100 in the embedded region of the restraint plate 100. The surface of the formed film rubber 102 is flush with the surface. As a result, a movable plate member 98 having a disk shape with a constant outer diameter is formed as a whole regardless of which portion of the small diameter portion 112 and the large diameter portion 110 is formed.

また、各弾性膜部114には、中央部分において表裏両面にそれぞれ突出する弾性当接突部118,118が一体形成されている。本実施形態では、弾性当接突部118が略円弧形又は略矩形の平面形状を有するブロック状とされており、その基端側の外周縁部が、拘束板100の外周縁部から離れた位置に設定されている。これにより、弾性当接突部118の周囲には、拘束板100で拘束されずに弾性膜部114の弾性変形が許容される領域が設けられている。また、弾性当接突部118の突出先端面は、略平坦な当接面とされている。   Further, each elastic film portion 114 is integrally formed with elastic contact protrusions 118, 118 that protrude on both the front and back surfaces at the center portion. In the present embodiment, the elastic contact protrusion 118 has a block shape having a substantially arc shape or a substantially rectangular planar shape, and the outer peripheral edge portion on the base end side is separated from the outer peripheral edge portion of the restraining plate 100. Is set to the correct position. Thus, a region where the elastic film portion 114 is allowed to be elastically deformed without being restrained by the restraining plate 100 is provided around the elastic contact protrusion 118. Further, the protruding front end surface of the elastic contact protrusion 118 is a substantially flat contact surface.

更にまた、可動板部材98の外周縁部には、表裏両面においてそれぞれ周方向に延びる控え弾性突条120,120が、膜状ゴム102に対して一体形成されている。かかる控え弾性突条120は、可動板部材98の外周縁部に突設された複数の弾性当接突部118の間を周方向に連続して延びるように円弧帯状に形成されている。また、この控え弾性突条120は、その幅方向(可動板部材98の径方向)の少なくとも一部(本実施形態では、殆ど全部)が、拘束板100における大径部110の外周縁部の上に位置せしめられている。要するに、大径部110の形成部分では、控え弾性突条120が、大径部110の外周縁部を周方向に延びるようにして形成されているのである。   Furthermore, on the outer peripheral edge portion of the movable plate member 98, elastic elastic ridges 120, 120 extending in the circumferential direction on both the front and back surfaces are integrally formed with the film rubber 102. The pre-elastic elastic ridge 120 is formed in an arc belt shape so as to continuously extend in the circumferential direction between a plurality of elastic contact protrusions 118 protruding from the outer peripheral edge of the movable plate member 98. In addition, at least a part (almost all in the present embodiment) in the width direction (the radial direction of the movable plate member 98) of the reserve elastic protrusion 120 is the outer peripheral edge of the large-diameter portion 110 in the restraint plate 100. It is located on the top. In short, in the portion where the large-diameter portion 110 is formed, the constraining elastic ridge 120 is formed so as to extend in the circumferential direction on the outer peripheral edge of the large-diameter portion 110.

なお、控え弾性突条120は、一定の断面形状で形成されており、好適には、半円形状や台形状などの先細の断面形状をもって形成される。また、控え弾性突条120の突出高さは、弾性当接突部118の突出高さよりも小さくされている。   Note that the resilient elastic protrusion 120 is formed with a constant cross-sectional shape, and preferably has a tapered cross-sectional shape such as a semicircular shape or a trapezoidal shape. In addition, the protrusion height of the back elastic protrusion 120 is smaller than the protrusion height of the elastic contact protrusion 118.

さらに、可動板部材98の外周部分には、表裏両面において、それぞれ、径方向に所定長さで延びる内方延出突条122が、周方向で互いに所定距離を隔てて複数形成されている。これらの内方延出突条122は、控え弾性突条120から径方向内方に向かって一定の断面形状で延び出して形成されている。また、何れの内方延出突条122も、拘束板100における大径部110の上に形成されており、特に本実施形態では、各大径部110の周方向両側縁部に沿って延びるように形成されており、板片部110の径方向基端部と略同じ径方向位置に至るまで径方向内方に向かって延び出している。   Furthermore, a plurality of inwardly extending protrusions 122 extending in the radial direction by a predetermined length are formed on the outer peripheral portion of the movable plate member 98 on the front and back surfaces, respectively, at a predetermined distance in the circumferential direction. These inwardly extending ridges 122 are formed so as to extend from the constraining elastic ridge 120 in the radially inward direction with a constant cross-sectional shape. In addition, any inwardly extending protrusion 122 is formed on the large-diameter portion 110 of the restraining plate 100. In particular, in the present embodiment, it extends along both circumferential edges of each large-diameter portion 110. It is formed as described above, and extends inward in the radial direction until reaching the same radial position as the radial base end of the plate piece 110.

なお、内方延出突条122も、控え弾性突条120と同様に、先細の断面形状をもって形成されることが望ましい。また、内方延出突条122の突出高さは、控え弾性突条120の突出高さと同じにされている。   The inwardly extending ridge 122 is also preferably formed with a tapered cross-sectional shape in the same manner as the constraining elastic ridge 120. Further, the protruding height of the inwardly extending protrusion 122 is the same as the protruding height of the refracting elastic protrusion 120.

上述の如き弾性当接突部118,控え弾性突条120,内方延出突条122が表裏の外周部分にそれぞれ形成された可動板部材98は、仕切部材36における第二のオリフィス通路96の受圧室90側への開口部分に配設されている。かかる配設状態下、可動板部材98の外周部分が、仕切部材36の支持周溝82に差し入れられて組み付けられており、第二のオリフィス通路96の受圧室90側への開口部分である第一蓋部材42の中央透孔70を可動板部材98が略蓋するようになっている。   The movable plate member 98 in which the elastic contact protrusion 118, the back elastic protrusion 120, and the inwardly extending protrusion 122 are formed on the front and back outer peripheral portions, respectively, of the second orifice passage 96 in the partition member 36 as described above. It is disposed at the opening to the pressure receiving chamber 90 side. Under such an arrangement state, the outer peripheral portion of the movable plate member 98 is inserted into the support peripheral groove 82 of the partition member 36 and assembled, and the second orifice passage 96 is an opening portion toward the pressure receiving chamber 90 side. The movable plate member 98 substantially covers the central through hole 70 of the one lid member 42.

本実施形態では、可動板部材98における最大厚さ寸法である表裏の弾性当接突部118,118の両突出面間距離が、仕切部材36の支持周溝82の両側壁の対向内面間距離と同一かそれよりも大きくされている。これにより、可動板部材98の仕切部材36への組付状態下、可動板部材98の表裏の弾性当接突部118,118の各突出先端面が、支持周溝82の両側壁の対向内面に対して当接されている。   In the present embodiment, the distance between the projecting surfaces of the elastic contact projections 118 on the front and back, which is the maximum thickness dimension of the movable plate member 98, is the distance between the opposing inner surfaces of both side walls of the support circumferential groove 82 of the partition member 36. Is the same or larger. As a result, under the assembled state of the movable plate member 98 to the partition member 36, the protruding front end surfaces of the elastic contact protrusions 118, 118 on the front and back sides of the movable plate member 98 are opposed to the inner surfaces facing both side walls of the support circumferential groove 82. Is abutted against.

一方、可動板部材98における表裏の控え弾性突条120および内方延出突条122は、その突出先端面が、仕切部材36の支持周溝82の両側壁の対向内面に対して僅かな距離を隔てて非当接状態で対向位置せしめられている。   On the other hand, the front and back constraining elastic ridges 120 and the inwardly extending ridges 122 of the movable plate member 98 are slightly spaced from the opposed inner surfaces of the side walls of the support circumferential groove 82 of the partition member 36. They are opposed to each other in a non-contact state.

かかる可動板部材98は、その上面(表面)に対して受圧室90の圧力が、第一蓋部材42の中央透孔70を通じて作用せしめられるようになっていると共に、その下面(裏面)に対しては、第二のオリフィス通路96を通じて、平衡室92の圧力が及ぼされるようになっている。そして、可動板部材98は、その表裏両面に及ぼされる圧力差に基づいて、表裏の弾性当接突部118,118の弾性変形によって、板厚方向に変位せしめられることとなる。   The movable plate member 98 is configured such that the pressure of the pressure receiving chamber 90 is applied to the upper surface (front surface) through the central through hole 70 of the first lid member 42 and to the lower surface (back surface). Thus, the pressure of the equilibrium chamber 92 is exerted through the second orifice passage 96. The movable plate member 98 is displaced in the plate thickness direction by elastic deformation of the elastic contact protrusions 118 on the front and back sides based on the pressure difference exerted on both the front and back surfaces.

ここにおいて、可動板部材98は、弾性当接突部118の形成部分回りを除く略全体に亘って拘束板100で補強されており、変形が実質的に阻止されていることから、表裏の作用圧力差に基づく上述の如き板厚方向への変位が、可動板部材98の全体として生ぜしめられるようになっている。   Here, the movable plate member 98 is reinforced by the restraint plate 100 over substantially the entire area except for the portion where the elastic contact protrusion 118 is formed, and the deformation is substantially prevented. The displacement in the plate thickness direction as described above based on the pressure difference is generated as a whole of the movable plate member 98.

また、可動板部材98の板厚方向への変位量がある程度大きくなると、弾性当接突部118の当接に続いて、控え弾性突条120および内方延出突条122も、仕切部材36の支持周溝82の両側壁の対向内面に対して当接せしめられる。これにより、可動板部材98の変位に対する弾性的な抵抗力が大きくなり、非線形的に増大したばね特性によって可動板部材98の変位が抑えられる。   When the amount of displacement of the movable plate member 98 in the plate thickness direction increases to some extent, following the contact of the elastic contact protrusion 118, the back elastic protrusion 120 and the inwardly extending protrusion 122 are also separated by the partition member 36. It is made to contact | abut with the opposing inner surface of the both sides wall of this support circumferential groove 82. As shown in FIG. Thereby, the elastic resistance force with respect to the displacement of the movable plate member 98 is increased, and the displacement of the movable plate member 98 is suppressed by the non-linearly increased spring characteristics.

ここにおいて、控え弾性突条120と内方延出突条122は、弾性当接突部118が先に仕切部材36に当接してその弾性に基づいて可動板部材98の変位を弾性的に抑えたあとに仕切部材36に当接することから、可動板部材98の変位抑制が二段階のばね特性をもって非線形的に作用せしめられることとなる。それ故、控え弾性突条120や内方延出突条122の仕切部材36への当接に際しての衝撃や異音の発生が効果的に低減され得る。   Here, the back elastic protrusion 120 and the inwardly extending protrusion 122 are configured such that the elastic contact protrusion 118 first contacts the partition member 36 and elastically suppresses the displacement of the movable plate member 98 based on the elasticity. After that, since it abuts against the partition member 36, the displacement suppression of the movable plate member 98 is caused to act nonlinearly with two-stage spring characteristics. Therefore, it is possible to effectively reduce the occurrence of impact and abnormal noise when the stay elastic protrusion 120 and the inwardly extending protrusion 122 are brought into contact with the partition member 36.

しかも、初期における弾性当接突部118の当接時には、その周囲に形成されたゴム単体からなる薄肉の弾性膜部114における剪断変形によって非常に柔らかいばね特性が発揮される一方、後から仕切部材36に当接する控え弾性突条120と内方延出突条122は、拘束板100の面上に形成されており、圧縮変形によって硬いばね特性が発揮される。それ故、それら弾性当接突部118と控え弾性突条120および内方延出突条122との仕切部材36への当接に際して、非線形的なばね特性が効率的に発揮され得るのである。   In addition, when the elastic contact protrusion 118 is in contact with the initial stage, a very soft spring characteristic is exhibited due to shear deformation in the thin elastic film portion 114 made of a single rubber formed around the elastic contact protrusion 118, while the partition member is used later. The resilient elastic ridge 120 and the inwardly extending ridge 122 that abut on 36 are formed on the surface of the constraining plate 100 and exhibit a hard spring characteristic by compressive deformation. Therefore, a non-linear spring characteristic can be efficiently exhibited when the elastic contact protrusions 118, the stay elastic protrusions 120, and the inwardly extending protrusions 122 abut on the partition member 36.

加えて、控え弾性突条120および内方延出突条122は、拘束板100において最も径方向外方に位置せしめられている各大径部110の周縁部に沿って形成されていることから、これら控え弾性突条120と内方延出突条122が仕切部材36に当接することにより、拘束板100の全体に対して変位制限効果が効率的に且つ安定して作用せしめられることとなり、可動板部材98の変位量が一層効果的に実現され得る。   In addition, the back elastic ridge 120 and the inwardly extending ridge 122 are formed along the peripheral edge portion of each large-diameter portion 110 positioned most radially outward in the restraint plate 100. In addition, the restraining elastic ridge 120 and the inwardly extending ridge 122 abut against the partition member 36, so that the displacement limiting effect is efficiently and stably applied to the entire restraint plate 100. The displacement amount of the movable plate member 98 can be realized more effectively.

そして、上述の如き弾性当接突部118と控え弾性突条120および内方延出突条122の仕切部材36への当接の後、更に可動板部材98の変位量が大きくなった場合には、可動板部材98の外周部分の略全体が、支持周溝82の上下両側壁部の対向内面に対して当接せしめられる。この当接部分には、拘束板100の各大径部110が配設されていることから、可動板部材98に対して確実な変位量の制限効果が発揮されるのである。   When the displacement amount of the movable plate member 98 is further increased after the elastic contact protrusion 118, the stay elastic protrusion 120, and the inwardly extending protrusion 122 are in contact with the partition member 36 as described above. The substantially entire outer peripheral portion of the movable plate member 98 is brought into contact with the opposed inner surfaces of the upper and lower side walls of the support circumferential groove 82. Since each large-diameter portion 110 of the restraining plate 100 is disposed at the contact portion, a reliable displacement amount limiting effect with respect to the movable plate member 98 is exhibited.

上述の如き構造とされた自動車用エンジンマウント10においては、自動車の走行状態下、エンジンシェイクに相当する低周波大振幅振動が入力されると、可動板部材98に受圧室90の大きな圧力が及ぼされて拘束板100が板厚方向に大きく変位し、弾性当接突部118や控え弾性突条120及び内方延出突条122が仕切部材36に当接せしめられて可動板部材98の変位が実質的に拘束される。これにより、第二のオリフィス通路96を通じての流体流動量が制限されて、それ以上の受圧室90の圧力変動分により、第一のオリフィス通路94を通じての流体流動が生ぜしめられることとなる。この第一のオリフィス通路94を通じて流動せしめられる流体の共振作用に基づいて、エンジンシェイクに対する防振効果が発揮されるのである。   In the automobile engine mount 10 having the above-described structure, a large pressure in the pressure receiving chamber 90 is exerted on the movable plate member 98 when a low-frequency large-amplitude vibration corresponding to an engine shake is input under the traveling state of the automobile. As a result, the restraining plate 100 is greatly displaced in the thickness direction, and the elastic contact protrusion 118, the stay elastic protrusion 120, and the inwardly extending protrusion 122 are brought into contact with the partition member 36, and the movable plate member 98 is displaced. Is substantially constrained. As a result, the amount of fluid flow through the second orifice passage 96 is limited, and the fluid flow through the first orifice passage 94 is caused by the amount of pressure fluctuation in the pressure receiving chamber 90 beyond that. Based on the resonance action of the fluid flowing through the first orifice passage 94, an anti-vibration effect against the engine shake is exhibited.

ここにおいて、可動板部材98の変位量制限に際しては、前述の如き弾性当接突部118や控え弾性突条120及び内方延出突条122による緩衝作用により、可動板部材98の仕切部材36に対する当接に伴う異音や振動の発生が効果的に防止される。しかも、前述の如き拘束板100の補強作用により、可動板部材98の弾性変形等に起因する必要以上の受圧室90の圧力の逃げが防止されることにより、第一のオリフィス通路94を通じての流体流動量が確実且つ安定して確保され得て、第一のオリフィス通路94による目的とする防振効果が一層効果的に発揮され得るのである。   Here, when the displacement amount of the movable plate member 98 is limited, the partition member 36 of the movable plate member 98 is buffered by the elastic contact projection 118, the back elastic projection 120, and the inwardly extending projection 122 as described above. Occurrence of abnormal noise and vibration accompanying the contact with respect to is effectively prevented. In addition, the reinforcing action of the restraint plate 100 as described above prevents the pressure receiving chamber 90 from escaping more than necessary due to the elastic deformation of the movable plate member 98, so that the fluid through the first orifice passage 94 can be prevented. The flow amount can be ensured reliably and stably, and the intended vibration isolation effect by the first orifice passage 94 can be more effectively exhibited.

また、本実施形態の自動車用エンジンマウント10に対して、アイドリング振動に相当する中周波中振幅振動が入力された場合には、第一のオリフィス通路94が***振的な作用によって実質的に閉塞状態とされる。一方、弾性当接突部118や控え弾性突条120及び内方延出突条122の弾性変形に基づいて許容される可動板部材98の変位によって、かかる変位に相当する量の容積変化が受圧室90から第二のオリフィス通路96に伝達される。これにより、第二のオリフィス通路96を通じての流体流動が生ぜしめられて、かかる流体の共振作用に基づいてアイドリング振動に対する防振効果が発揮されるのである。即ち、本実施形態では、流体流動量制限機構が、可動板部材98を含んで構成されている。   In addition, when medium-frequency medium amplitude vibration corresponding to idling vibration is input to the automobile engine mount 10 of the present embodiment, the first orifice passage 94 is substantially blocked by an anti-resonant action. State. On the other hand, due to the displacement of the movable plate member 98 that is allowed based on the elastic deformation of the elastic contact protrusion 118, the stay elastic protrusion 120, and the inwardly extending protrusion 122, a volume change corresponding to the displacement is received by the pressure. It is transmitted from the chamber 90 to the second orifice passage 96. As a result, a fluid flow through the second orifice passage 96 is generated, and an anti-vibration effect against idling vibration is exhibited based on the resonance action of the fluid. In other words, in the present embodiment, the fluid flow amount limiting mechanism includes the movable plate member 98.

ここにおいて、可動板部材98は、その略全体に拘束板100が配設されており、拘束板100を外れた位置において弾性当接突部118で弾性支持されていることから、弾性当接突部118の当接状態下でも拘束板100の配設領域となる略全体が容易に変位することとなる。それ故、アイドリング振動の入力時には、小さな流動抵抗のもとで第二のオリフィス通路96を通じての流体流動量が効率的に確保可能であり、第二のオリフィス通路96を流動せしめられる流体の共振作用に基づく防振効果が有効に発揮され得る。   Here, the movable plate member 98 is provided with the restraint plate 100 on substantially the entire surface, and is elastically supported by the elastic contact projection 118 at a position away from the restraint plate 100. Even under the abutting state of the portion 118, the substantially entire region where the restraint plate 100 is disposed is easily displaced. Therefore, when idling vibration is input, the amount of fluid flow through the second orifice passage 96 can be efficiently secured under a small flow resistance, and the resonance action of the fluid flowing through the second orifice passage 96 can be ensured. The anti-vibration effect based on can be effectively exhibited.

加えて、本実施形態では、可動板部材98の外周面と支持周溝82の底面との径方向対向面間に僅かな隙間が設けられており、控え弾性突条120や内方延出突条122が仕切部材36に当接する前の状態下では、可動板部材98の外周縁部を回り込んでかかる隙間を通じて、受圧室90と第二のオリフィス通路96との間での直接的な流体流動も許容される。それ故、第二のオリフィス通路96を通じての流体流動量の確保とそれに基づく防振効果の向上が、一層効果的に達成され得るのである。   In addition, in the present embodiment, a slight gap is provided between the radially opposing surfaces of the outer peripheral surface of the movable plate member 98 and the bottom surface of the support peripheral groove 82, so that the elastic elastic ridge 120 and the inwardly extending protrusion are provided. In a state before the strip 122 abuts against the partition member 36, the direct fluid between the pressure receiving chamber 90 and the second orifice passage 96 passes through the outer peripheral edge of the movable plate member 98 and passes through the gap. Flow is also acceptable. Therefore, securing of the fluid flow amount through the second orifice passage 96 and improvement of the vibration isolation effect based thereon can be achieved more effectively.

また、可動板部材98の表面上に突設された内方延出突条122は、径方向に延び出していることから、可動板部材98の変位に際し、特に可動板部材98の外周部分と支持周溝82の上下両側壁部内面との対向面間において支持周溝82を出入り方向に流動せしめられる流体に対して、これら内方延出突条122による整流効果が発揮される。これにより、可動板部材98の変位に際しての流体による抵抗が軽減されて、受圧室90の圧力変動に対する可動板部材98の変位追従性能が向上されることにより、例えばアイドリング振動の入力時における可動板部材98の変位に伴う第二のオリフィス通路96を通じての流体流動に対する抵抗の更なる低減が図られ得る。   Further, since the inwardly extending protrusion 122 projecting on the surface of the movable plate member 98 extends in the radial direction, when the movable plate member 98 is displaced, in particular, the outer peripheral portion of the movable plate member 98 and The rectifying effect by the inwardly extending protrusions 122 is exerted on the fluid that flows in the support circumferential groove 82 in the direction of entering and exiting between the opposing surfaces of the support circumferential groove 82 to the upper and lower side wall portions. As a result, the resistance due to the fluid when the movable plate member 98 is displaced is reduced, and the displacement follow-up performance of the movable plate member 98 with respect to the pressure fluctuation of the pressure receiving chamber 90 is improved, so that the movable plate at the time of input of idling vibration, for example. Further reduction in resistance to fluid flow through the second orifice passage 96 as the member 98 is displaced can be achieved.

次に、図14には、本発明の流体封入式防振装置に係る第二の実施形態としての自動車用エンジンマウント130が示されている。なお、以下の説明において、前記第一の実施形態と実質的に同一の構造とされた部材及び部位については、第一の実施形態と同一の符号を付することにより、それらの詳細な説明を省略する。   Next, FIG. 14 shows an automobile engine mount 130 as a second embodiment according to the fluid filled type vibration damping device of the present invention. In the following description, members and parts having substantially the same structure as those of the first embodiment are given the same reference numerals as those of the first embodiment, and detailed descriptions thereof are given. Omitted.

すなわち、本実施形態では、第二のオリフィス通路96を構成する中央流路46の下端開口部を覆蓋する第二蓋部材44の中央部分に開口窓としての下側中央透孔132が貫通形成されている。更に、この下側中央透孔132の形成部位に仕切弾性膜としての弾性ゴム膜134が配されており、弾性ゴム膜134の外周縁部が下側中央透孔132の開口周縁部に加硫接着されることによって、下側中央透孔132が弾性ゴム膜134で流体密に閉塞されている。   That is, in the present embodiment, the lower central through hole 132 as an opening window is formed through the central portion of the second lid member 44 that covers the lower end opening of the central flow path 46 that constitutes the second orifice passage 96. ing. Further, an elastic rubber film 134 as a partitioning elastic film is disposed at a portion where the lower central through hole 132 is formed, and the outer peripheral edge portion of the elastic rubber film 134 is vulcanized to the opening peripheral edge portion of the lower central through hole 132. By bonding, the lower central through hole 132 is fluid-tightly closed by the elastic rubber film 134.

この弾性ゴム膜134は、そのばね剛性が適当に調節されることにより、第二のオリフィス通路96のチューニング周波数域では、受圧室90から可動板部材98を介して第二のオリフィス通路96に及ぼされる圧力変動に対して充分な剛性を発揮し得るようになっており、第二のオリフィス通路96を通じての流体流動量が確保されて、第一の実施形態と同様に第二のオリフィス通路96を流動せしめられる流体の共振作用に基づく防振効果が発揮されるようになっている。   The elastic rubber film 134 is stretched from the pressure receiving chamber 90 to the second orifice passage 96 via the movable plate member 98 in the tuning frequency region of the second orifice passage 96 by appropriately adjusting the spring rigidity thereof. It is possible to exhibit sufficient rigidity against pressure fluctuations, and a fluid flow amount through the second orifice passage 96 is ensured, so that the second orifice passage 96 is provided in the same manner as in the first embodiment. An anti-vibration effect based on the resonance action of the fluid to be fluidized is exhibited.

一方、走行こもり音等の第二のオリフィス通路96のチューニング周波数を超えた高周波数域の小振幅振動の入力時には、第二のオリフィス通路96の***振作用に基づいて第二のオリフィス通路96が実質的に閉塞状態とされることに伴い、受圧室90から可動板部材98を介して第二のオリフィス通路96に及ぼされる圧力変動が過大となることにより、かかる弾性ゴム膜134が弾性変形するようになっている。この弾性ゴム膜134の弾性変形により、第二のオリフィス通路96に及ぼされた過大な圧力変動が、第二のオリフィス通路96を構成する中間流路84を通ずることなく、第二のオリフィス通路96の途中から短絡的に平衡室92に逃がされることとなる。   On the other hand, when a small amplitude vibration in a high frequency range exceeding the tuning frequency of the second orifice passage 96 such as a running-over noise is input, the second orifice passage 96 is based on the anti-resonance action of the second orifice passage 96. In association with the substantially closed state, the pressure fluctuation applied from the pressure receiving chamber 90 to the second orifice passage 96 via the movable plate member 98 becomes excessive, whereby the elastic rubber film 134 is elastically deformed. It is like that. Due to the elastic deformation of the elastic rubber film 134, an excessive pressure fluctuation exerted on the second orifice passage 96 does not pass through the intermediate passage 84 constituting the second orifice passage 96, and the second orifice passage 96. Will be released to the equilibration chamber 92 in a short circuit from the middle.

その結果、受圧室90の圧力変動が可動板部材98から第二のオリフィス通路96へ及ぼされて弾性ゴム膜134を通じて平衡室92に逃がされ、第二のオリフィス通路96の実質的な閉塞化に起因する受圧室90における過大な圧力発生が軽減乃至は回避される。これにより、走行こもり音等の高周波小振幅振動に対しても、良好な防振性能が維持され得るのである。   As a result, the pressure fluctuation in the pressure receiving chamber 90 is exerted from the movable plate member 98 to the second orifice passage 96 and is released to the equilibrium chamber 92 through the elastic rubber film 134, so that the second orifice passage 96 is substantially blocked. Excessive pressure generation in the pressure receiving chamber 90 due to the above is reduced or avoided. As a result, good anti-vibration performance can be maintained even for high-frequency small-amplitude vibrations such as running-over noise.

特に、本実施形態では、受圧室90から第二のオリフィス通路96に圧力伝達する可動板部材98の変位方向と、第二のオリフィス通路96の途中から平衡室92に圧力伝達する弾性ゴム膜134の変形変位方向とが同じ方向とされると共に、それら可動板部材98と弾性ゴム膜134が、振動入力方向で中央流路46の流体流動方向に所定距離を隔てて互いに重なるように直列的に配設されていることから、可動板部材98と弾性ゴム膜134を介しての、受圧室90から平衡室92への短絡的な圧力の逃げが効率的に且つ速やかに許容されることとなり、目的とする高周波数域の低動ばね化が一層効果的に達成され得る。   In particular, in this embodiment, the displacement direction of the movable plate member 98 that transmits pressure from the pressure receiving chamber 90 to the second orifice passage 96 and the elastic rubber film 134 that transmits pressure from the middle of the second orifice passage 96 to the equilibrium chamber 92. And the movable plate member 98 and the elastic rubber film 134 are serially arranged so as to overlap each other with a predetermined distance in the fluid flow direction of the central flow path 46 in the vibration input direction. Therefore, the short-circuit pressure escape from the pressure receiving chamber 90 to the equilibrium chamber 92 through the movable plate member 98 and the elastic rubber film 134 is allowed efficiently and quickly. The target low dynamic spring in the high frequency range can be achieved more effectively.

なお、かくの如き高周波小振幅振動の入力時において、受圧室90と平衡室92との間には、弾性ゴム膜134の変形変位に相当する流量分だけ中央流路46を通じての流体流動が生ぜしめられることとなる。それ故、この中央流路46を、防振すべき走行こもり音等の周波数域(例えば、100〜300Hz程度の適当な周波数)にチューニングして第三のオリフィス通路を構成することも可能である。   When such high-frequency small-amplitude vibration is input, fluid flow through the central flow path 46 is generated between the pressure receiving chamber 90 and the equilibrium chamber 92 by a flow rate corresponding to the deformation displacement of the elastic rubber film 134. It will be squeezed. Therefore, the third orifice passage can be configured by tuning the central flow path 46 to a frequency range (for example, an appropriate frequency of about 100 to 300 Hz) such as a running-over sound to be vibrated. .

因みに、上述の第一の実施形態の自動車用エンジンマウント10(実施例1)と、第二の実施形態の自動車用エンジンマウント130(実施例2)について、それぞれ防振特性を実測した。何れのエンジンマウント10,130においても、第一のオリフィス通路94をエンジンシェイクに相当する低周波大振幅振動(周波数:略10Hz、振幅:±1.0mm)にチューニングすると共に、第二のオリフィス通路96をアイドリング振動に相当する中周波中振幅振動(周波数:略25Hz、振幅:±0.1mm)にチューニングした。また、第二の実施形態の自動車用エンジンマウント130における第三のオリフィス通路としての中央流路46は、走行こもり音に相当する高周波小振幅振動(周波数:100〜300Hz、振幅:±0.03mm)よりも充分に高周波数域にチューニングした。更に、比較例として、第一の実施形態の自動車用エンジンマウント10において可動板部材98や第二のオリフィス通路96を設けずに第一のオリフィス通路94だけを設けた従来構造のものを準備した。   Incidentally, the vibration-proof characteristics were measured for the automotive engine mount 10 (Example 1) of the first embodiment and the automotive engine mount 130 (Example 2) of the second embodiment. In both engine mounts 10 and 130, the first orifice passage 94 is tuned to low-frequency large-amplitude vibration (frequency: approximately 10 Hz, amplitude: ± 1.0 mm) corresponding to the engine shake, and the second orifice passage 94 96 was tuned to medium frequency medium amplitude vibration (frequency: approximately 25 Hz, amplitude: ± 0.1 mm) corresponding to idling vibration. Further, the central flow path 46 as the third orifice passage in the automobile engine mount 130 of the second embodiment is a high-frequency small-amplitude vibration (frequency: 100 to 300 Hz, amplitude: ± 0.03 mm) corresponding to the traveling noise. ) Tuned to a sufficiently high frequency range. Furthermore, as a comparative example, a conventional structure having only the first orifice passage 94 without providing the movable plate member 98 and the second orifice passage 96 in the automobile engine mount 10 of the first embodiment was prepared. .

これら実施例1,2および比較例の各エンジンマウントについては、装着状態下で及ぼされるエンジン分担支持荷重相当の静的荷重を第一の取付金具12と第二の取付金具14の間に及ぼしめた状態下で、第一の取付金具12と第二の取付金具14の間に防振対象とする振動を入力することによって、防振特性を測定した。具体的には、±1.0mm,±0.1mm,±0.03mmの一定振幅でそれぞれ加振させた時の周波数に対する減衰係数、絶対ばね定数を測定した。それらの測定結果を、図15〜17に示す。   For each of the engine mounts of Examples 1 and 2 and the comparative example, a static load equivalent to the engine shared support load exerted in the mounted state is exerted between the first mounting bracket 12 and the second mounting bracket 14. Under the condition, the vibration isolation characteristics were measured by inputting the vibration to be subjected to vibration isolation between the first mounting bracket 12 and the second mounting bracket 14. Specifically, the damping coefficient and the absolute spring constant with respect to the frequency when vibrating with constant amplitudes of ± 1.0 mm, ± 0.1 mm, and ± 0.03 mm were measured. The measurement results are shown in FIGS.

これら図15〜17に示された測定結果からも理解できるように、5〜20Hzまでの低周波大振幅(±1.0mm)時振動に対しては、実施例1、2の減衰(減衰係数)が、比較例よりもブロードになっているため、減衰ピークを保持しつつ広い周波数領域で、減衰が高くなっていることがわかる。また、アイドリング振動領域に相当する20〜28Hz付近の中振幅(±0.1mm)時振動に対しては、実施例1、2の動的ばね定数(絶対ばね定数)が、比較例よりも大幅に低減されていることがわかる。さらに、100〜300Hzの高周波小振幅(±0.03mm)時振動に対しては、実施例1、2の動的ばね定数(絶対ばね定数)が、比較例と同等かそれ以下に抑えられていることがわかる。以上の結果から、アイドリング振動時の動的ばね定数を低減させることによる、低周波大振幅振動時の減衰の低下や高周波小振幅振動時の動的ばね定数のアップを招くことなく、それを負圧や電気的な切り替え機構を持たない流体封入式防振装置で成し得たことがわかる。よって、本発明に従う構造とされたエンジンマウント10,130においては、防振を目的とする複数の周波数域の振動に対して、何れも、非常に優れた防振効果を発揮し得る。   As can be understood from the measurement results shown in FIGS. 15 to 17, the attenuation (attenuation coefficient) of Examples 1 and 2 is observed with respect to vibration at a low frequency and large amplitude (± 1.0 mm) up to 5 to 20 Hz. ) Is broader than that of the comparative example, and it can be seen that attenuation is high in a wide frequency region while maintaining an attenuation peak. In addition, the dynamic spring constants (absolute spring constants) of Examples 1 and 2 for the medium amplitude (± 0.1 mm) vibration in the vicinity of 20 to 28 Hz corresponding to the idling vibration region are much larger than those of the comparative example. It can be seen that it is reduced. Furthermore, with respect to vibration at high frequency and small amplitude (± 0.03 mm) of 100 to 300 Hz, the dynamic spring constant (absolute spring constant) of Examples 1 and 2 is suppressed to be equal to or less than that of the comparative example. I understand that. From the above results, it is possible to reduce the dynamic spring constant during idling vibration without negatively reducing the attenuation during low-frequency large-amplitude vibration or increasing the dynamic spring constant during high-frequency small-amplitude vibration. It can be seen that the fluid-filled vibration isolator having no pressure or electrical switching mechanism can be achieved. Therefore, the engine mounts 10 and 130 having the structure according to the present invention can exhibit a very excellent anti-vibration effect against vibrations in a plurality of frequency ranges for the purpose of anti-vibration.

以上、本発明の実施形態について詳述してきたが、これら実施形態における具体的な記載によって、本発明は、何等限定されるものでなく、当業者の知識に基づいて種々なる変更、修正、改良等を加えた態様で実施可能であり、また、そのような実施態様が、本発明の趣旨を逸脱しない限り、何れも、本発明の範囲内に含まれるものであることは、言うまでもない。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the specific descriptions in these embodiments, and various changes, modifications, and improvements based on the knowledge of those skilled in the art. Needless to say, any of these embodiments can be included in the scope of the present invention without departing from the spirit of the present invention.

例えば、可動板部材98における弾性当接突部118は、支持周溝82の上下両側壁部の対向内面に対して当初から当接状態とされている必要はなく、所定距離の隙間を隔てて対向位置せしめられていても良い。この場合でも、弾性当接突部118と、控え弾性突条120および内方延出突条122との段階的な当接に基づく緩衝的な可動板部材98の変位量制限機能等は有効に発揮され得る。   For example, the elastic contact protrusions 118 in the movable plate member 98 need not be in contact with the opposing inner surfaces of the upper and lower side walls of the support circumferential groove 82 from the beginning, with a predetermined distance between them. You may be made to oppose. Even in this case, the function of limiting the amount of displacement of the movable movable plate member 98 based on the stepwise contact between the elastic contact protrusion 118, the back elastic protrusion 120, and the inwardly extending protrusion 122 is effective. Can be demonstrated.

また、前記実施形態では、可動板部材98が仕切部材36に対して、支持周溝82に差し入れられた外周部分だけで支持されており、支持周溝82の溝幅方向両側の大径の開口部分を通じて、可動板部材98の中央部分が受圧室90と第二のオリフィス通路96に対して直接的に大きな面積が晒されており、それによって、特に可動板部材98に対する受圧室90の圧力伝達と、可動板部材98から第二のオリフィス通路96への圧力伝達とが、何れも効率的に行なわれるようになっていた。この圧力伝達の効率化は、可動板部材98が配設された支持周溝82と第二のオリフィス通路96との間に形成されたテーパ状部48によっても更なる向上が図られていた。尤も、これらテーパ状部48や可動板部材98の中央部分を受圧室90や第二のオリフィス通路96に対して晒す大口径の中央透孔70等の構造は、本発明において必須ではない。   In the above-described embodiment, the movable plate member 98 is supported by the partition member 36 only at the outer peripheral portion inserted into the support circumferential groove 82, and the large-diameter openings on both sides of the support circumferential groove 82 in the groove width direction. Through the portion, the central portion of the movable plate member 98 is directly exposed to a large area with respect to the pressure receiving chamber 90 and the second orifice passage 96, so that the pressure transmission of the pressure receiving chamber 90, particularly with respect to the movable plate member 98. In addition, the pressure transmission from the movable plate member 98 to the second orifice passage 96 can be efficiently performed. The efficiency of the pressure transmission is further improved by the tapered portion 48 formed between the support circumferential groove 82 in which the movable plate member 98 is disposed and the second orifice passage 96. However, a structure such as a large-diameter central through hole 70 that exposes the central portion of the tapered portion 48 and the movable plate member 98 to the pressure receiving chamber 90 and the second orifice passage 96 is not essential in the present invention.

本発明の第一の実施形態としての自動車用エンジンマウントの縦断面図であって、図2のI−I断面に相当する図。It is a longitudinal cross-sectional view of the engine mount for motor vehicles as 1st embodiment of this invention, Comprising: The figure equivalent to the II cross section of FIG. 図1に示された自動車用エンジンマウントを構成する仕切部材本体の平面図。The top view of the partition member main body which comprises the engine mount for motor vehicles shown by FIG. 図2に示された仕切部材本体の正面図。The front view of the partition member main body shown by FIG. 図2に示された仕切部材本体の底面図。The bottom view of the partition member main body shown by FIG. 図2のV−V断面図。VV sectional drawing of FIG. 図2のVI−VI断面図。FIG. 6 is a sectional view taken along line VI-VI in FIG. 2. 図1に示された自動車用エンジンマウントを構成する第一蓋部材の平面図。The top view of the 1st cover member which comprises the engine mount for motor vehicles shown by FIG. 図1に示された自動車用エンジンマウントを構成する第二蓋部材の底面図。The bottom view of the 2nd cover member which comprises the engine mount for motor vehicles shown by FIG. 図1に示された自動車用エンジンマウントを構成する可動板部材の平面図。The top view of the movable plate member which comprises the engine mount for motor vehicles shown by FIG. 図9に示された可動板部材の底面図。FIG. 10 is a bottom view of the movable plate member shown in FIG. 9. 図9のXI−XI断面図。XI-XI sectional drawing of FIG. 図9のXII−XII断面図。XII-XII sectional drawing of FIG. 図9に示された可動板部材を構成する拘束板の平面図。The top view of the restraint board which comprises the movable plate member shown by FIG. 本発明の第二の実施形態としての自動車用エンジンマウントの縦断面図。The longitudinal cross-sectional view of the engine mount for motor vehicles as 2nd embodiment of this invention. 本発明の実施例である自動車用エンジンマウントの低周波数域の防振特性の測定結果を比較例と共に示すグラフ。The graph which shows the measurement result of the vibration proof characteristic of the low frequency range of the engine mount for motor vehicles which is an Example of this invention with a comparative example. 本発明の実施例である自動車用エンジンマウントの中周波数域の防振特性の測定結果を比較例と共に示すグラフ。The graph which shows the measurement result of the anti-vibration characteristic of the middle frequency range of the engine mount for motor vehicles which is an Example of this invention with a comparative example. 本発明の実施例である自動車用エンジンマウントの高周波数域の防振特性の測定結果を比較例と共に示すグラフ。The graph which shows the measurement result of the vibration proof characteristic of the high frequency range of the engine mount for motor vehicles which is an Example of this invention with a comparative example.

符号の説明Explanation of symbols

10:自動車用エンジンマウント、12:第一の取付金具、14:第二の取付金具、16:本体ゴム弾性体、36:仕切部材、38:ダイヤフラム、40:仕切部材本体、42:第一蓋部材、90:受圧室、92:平衡室、94:第一のオリフィス通路、96:第二のオリフィス通路、98:可動板部材、100:拘束板、102:膜状ゴム、110:大径部、112:小径部、114:弾性膜部、118:弾性当接突部、120:控え弾性突条、122:内方延出突条 DESCRIPTION OF SYMBOLS 10: Engine mount for motor vehicles, 12: 1st mounting bracket, 14: 2nd mounting bracket, 16: Main body rubber elastic body, 36: Partition member, 38: Diaphragm, 40: Partition member main body, 42: First lid Member: 90: pressure receiving chamber, 92: equilibrium chamber, 94: first orifice passage, 96: second orifice passage, 98: movable plate member, 100: constraining plate, 102: membrane rubber, 110: large diameter portion 112: small diameter portion, 114: elastic membrane portion, 118: elastic contact protrusion, 120: stay elastic protrusion, 122: inwardly extending protrusion

Claims (7)

第一の取付部材と第二の取付部材が本体ゴム弾性体で連結されていると共に、該第二の取付部材で支持された仕切部材の一方の側において該本体ゴム弾性体で壁部の一部が構成された受圧室が形成されると共に、該仕切部材の他方の側において壁部の一部が可撓性膜で構成された平衡室が形成されており、それら受圧室と平衡室に非圧縮性流体が封入されていると共に、それら受圧室と平衡室を相互に連通するオリフィス通路が形成されている流体封入式防振装置において、
前記オリフィス通路として第一のオリフィス通路と該第一のオリフィス通路よりも高周波数域にチューニングされた第二のオリフィス通路を設けると共に、該第二のオリフィス通路の前記受圧室への開口部分において開口方向に対して直交する方向に広がる円板形状の可動板部材を前記仕切部材に対して板厚方向に変位可能に配設せしめて、該可動板部材における該第二のオリフィス通路の開口方向となる板厚方向への変位量を該仕切部材への当接で制限することにより小振幅振動の入力時における該第二のオリフィス通路を通じての流体流動を許容すると共に大振幅振動の入力時における該第一のオリフィス通路を通じての流体流動量を確保する流体流動量制限機構を構成する一方、
硬質の拘束板に対して膜状ゴムを被着せしめて該可動板部材を構成し、該拘束板は外径寸法を周方向に異ならせて小径部と大径部が周方向で交互に設けられた異形状として、該拘束板における該小径部の形成部分を膜状ゴムの単層構造からなる弾性膜部とすると共に、該可動板部材の外周部分において周上の複数箇所に設けられた該弾性膜部には板厚方向両側に突出する弾性当接突部を一体形成して該可動板部材の板厚方向への変位に際してそれら複数の弾性当接突部が該仕切部材に対して最初に当接せしめられるようにすると共に、それら複数の弾性当接突部を周方向につないで該可動板部材の外周部分を周方向に延びる控え弾性突条を該拘束板の該大径部上において該弾性膜部と一体形成して該可動板部材の板厚方向への変位に際して該弾性当接突部に続いて該控え弾性突条が該仕切部材に対して当接せしめられるようにし、更に、該控え弾性突条にはその周上の複数箇所において該拘束板の該大径部上を径方向内方に向かって延び出す内方延出突条を一体形成し、該可動板部材の板厚方向への変位に際して該内方延出突条も該仕切部材に対して当接せしめられるようにすると共に、
前記拘束板における前記大径部の上において、該大径部の外周縁部に沿って周方向に延びるようにして前記控え弾性突条が形成すると共に、該大径部の周方向両側縁部に沿って径方向に延びるようにして前記内方延出突条が形成したことを特徴とする流体封入式防振装置。
The first attachment member and the second attachment member are connected by a main rubber elastic body, and one side of the partition member supported by the second attachment member is connected to the wall portion by the main rubber elastic body. A pressure receiving chamber having a portion is formed, and an equilibrium chamber in which a part of the wall portion is formed of a flexible film is formed on the other side of the partition member. In a fluid-filled vibration isolator in which an incompressible fluid is sealed and an orifice passage that connects the pressure receiving chamber and the equilibrium chamber to each other is formed.
As the orifice passage, a first orifice passage and a second orifice passage tuned in a higher frequency range than the first orifice passage are provided, and the second orifice passage is opened at an opening portion to the pressure receiving chamber. A disc-shaped movable plate member extending in a direction orthogonal to the direction is arranged to be displaceable in the plate thickness direction with respect to the partition member, and the opening direction of the second orifice passage in the movable plate member By restricting the amount of displacement in the plate thickness direction by contact with the partition member, fluid flow through the second orifice passage at the time of input of small amplitude vibration is allowed and the flow at the time of input of large amplitude vibration is allowed. While configuring a fluid flow rate limiting mechanism to ensure fluid flow rate through the first orifice passage,
The movable plate member is configured by attaching a film-like rubber to a hard restraint plate, and the restraint plate is provided with a small diameter portion and a large diameter portion alternately in the circumferential direction with different outer diameter dimensions in the circumferential direction. As the deformed shape, the portion where the small-diameter portion of the constraining plate is formed is an elastic film portion having a single-layer structure of a film-like rubber, and is provided at a plurality of locations on the periphery of the outer peripheral portion of the movable plate member The elastic film portion is integrally formed with elastic contact protrusions protruding on both sides in the plate thickness direction, and when the movable plate member is displaced in the plate thickness direction, the plurality of elastic contact protrusions are in contact with the partition member. The large diameter portion of the constraining plate is configured so that the first elastic contact protrusions are brought into contact with each other in the circumferential direction, and the elastic elastic protrusions extending in the circumferential direction of the movable plate member are connected in the circumferential direction. When the movable plate member is displaced in the plate thickness direction by being integrally formed with the elastic film portion above, The constraining elastic ridge is made to abut against the partition member following the elastic abutting protrusion, and the constraining elastic ridge has a large diameter of the restraining plate at a plurality of locations on the circumference. An inwardly extending ridge that extends radially inward on the part is integrally formed, and when the movable plate member is displaced in the plate thickness direction, the inwardly extending ridge also contacts the partition member. To be able to touch ,
On the large-diameter portion of the restraining plate, the constraining elastic protrusions are formed so as to extend in the circumferential direction along the outer peripheral edge of the large-diameter portion, and both circumferential edges of the large-diameter portion in the circumferential direction The fluid-filled vibration isolator is characterized in that the inwardly extending ridge is formed so as to extend in the radial direction along the line .
前記控え弾性突条および前記内方延出突条が何れも前記弾性当接突部に比して小さい高さ寸法で前記拘束板から板厚方向両側に突出している請求項1に記載の流体封入式防振装置。 2. The fluid according to claim 1, wherein each of the retaining elastic protrusion and the inwardly extending protrusion protrudes from the restraint plate to both sides in the plate thickness direction with a height dimension smaller than that of the elastic contact protrusion. Enclosed vibration isolator. 前記仕切部材には径方向内方に開口して周方向に延びる環状の支持周溝が形成され、前記可動板部材の外周部分が該支持周溝に差し入れられて支持されており、該可動板部材における前記弾性当接突部の突出先端面が該支持周溝の両側壁内面に当接されていると共に、前記控え弾性突条および前記内方延出突条の各突出先端面が何れも該支持周溝の両側壁内面に対して隙間をもって対向せしめられている請求項1又は2に記載の流体封入式防振装置。 The partition member is formed with an annular support circumferential groove that opens radially inward and extends in the circumferential direction, and an outer peripheral portion of the movable plate member is inserted into and supported by the support circumferential groove. The protruding tip surfaces of the elastic contact protrusions of the member are in contact with the inner surfaces of both side walls of the support circumferential groove, and the protruding tip surfaces of the retaining elastic protrusion and the inwardly extending protrusion are both The fluid-filled vibration isolator according to claim 1 or 2 , which is opposed to the inner surfaces of both side walls of the support circumferential groove with a gap. 前記可動板部材の外周面と前記支持周溝の内周面との径方向対向面間に径方向隙間が設けられており、振動が入力されていない静置状態下において、この径方向隙間を通じて前記受圧室が前記第二のオリフィス通路に連通されている請求項に記載の流体封入式防振装置。 A radial gap is provided between the radially opposing surfaces of the outer peripheral surface of the movable plate member and the inner peripheral surface of the support circumferential groove, and through the radial gap under a stationary state where no vibration is input. The fluid filled type vibration damping device according to claim 3 , wherein the pressure receiving chamber communicates with the second orifice passage. 前記仕切部材の外周部分を周方向に延びるようにして前記第一のオリフィス通路が形成されている一方、該第一のオリフィス通路から独立して該第一のオリフィス通路の内周側を周方向に延びるように前記第二のオリフィス通路が形成されており、該第二のオリフィス通路における前記受圧室への開口部分が該仕切部材の中央に設けられ、かかる開口部分に前記可動板部材が配設されている請求項1乃至の何れか一項に記載の流体封入式防振装置。 The first orifice passage is formed so as to extend in the circumferential direction on the outer peripheral portion of the partition member, while the inner circumferential side of the first orifice passage is arranged in the circumferential direction independently of the first orifice passage. The second orifice passage is formed so as to extend to the center of the partition member, and an opening portion to the pressure receiving chamber in the second orifice passage is provided in the center of the partition member. fluid-filled vibration damping device according to any one of claims 1 to 4 is set. 前記第二のオリフィス通路には、長さ方向の中間部分で該第二のオリフィス通路と前記平衡室とを隔てる隔壁部分に開口窓が形成されていると共に、該開口窓が仕切弾性膜で流体密に閉塞されており、該仕切弾性膜の弾性変形に基づいて該第二のオリフィス通路における液圧吸収機構が構成されている請求項1乃至の何れか一項に記載の流体封入式防振装置。 In the second orifice passage, an opening window is formed in a partition wall portion separating the second orifice passage and the equilibrium chamber at an intermediate portion in the lengthwise direction, and the opening window is a fluid made of a partition elastic membrane. The fluid-filled type prevention according to any one of claims 1 to 5 , wherein the fluid pressure-absorbing mechanism in the second orifice passage is configured based on elastic deformation of the partition elastic membrane. Shaker. 前記第二の取付部材が筒状部を備えており、該筒状部の一方の開口部側に前記第一の取付部材が離隔配置されて前記本体ゴム弾性体で弾性連結されることによって該筒状部の該一方の開口部が流体密に閉塞されると共に、該筒状部の他方の開口部側に前記可撓性膜が配設されて該筒状部の該他方の開口部が該可撓性膜で流体密に閉塞されている一方、前記仕切部材が該筒状部に組み付けられて該筒状部の内側における該本体ゴム弾性体と該可撓性膜の対向面間の領域を仕切ることで該仕切部材を挟んだ両側に前記受圧室と前記平衡室が形成されていると共に、該仕切部材によって前記可動板部材が支持されて該受圧室と該平衡室の対向方向で変位可能に配設されている請求項1乃至の何れか一項に記載の流体封入式防振装置。 The second mounting member includes a cylindrical portion, and the first mounting member is spaced apart and elastically connected by the main rubber elastic body on one opening side of the cylindrical portion. The one opening of the tubular portion is fluid-tightly closed, and the flexible film is disposed on the other opening side of the tubular portion so that the other opening of the tubular portion is While the fluid is closed fluid-tightly by the flexible membrane, the partition member is assembled to the cylindrical portion, and between the main rubber elastic body and the opposing surface of the flexible membrane inside the cylindrical portion. The pressure receiving chamber and the equilibrium chamber are formed on both sides of the partition member by partitioning the region, and the movable plate member is supported by the partition member in a direction opposite to the pressure receiving chamber and the equilibrium chamber. The fluid-filled vibration isolator according to any one of claims 1 to 6 , which is disposed so as to be displaceable.
JP2008116627A 2008-03-28 2008-04-28 Fluid filled vibration isolator Active JP5014239B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008116627A JP5014239B2 (en) 2008-04-28 2008-04-28 Fluid filled vibration isolator
US12/382,924 US20090243171A1 (en) 2008-03-28 2009-03-26 Fluid filled type vibration damping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008116627A JP5014239B2 (en) 2008-04-28 2008-04-28 Fluid filled vibration isolator

Publications (2)

Publication Number Publication Date
JP2009264524A JP2009264524A (en) 2009-11-12
JP5014239B2 true JP5014239B2 (en) 2012-08-29

Family

ID=41390611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008116627A Active JP5014239B2 (en) 2008-03-28 2008-04-28 Fluid filled vibration isolator

Country Status (1)

Country Link
JP (1) JP5014239B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5595369B2 (en) * 2011-12-14 2014-09-24 東海ゴム工業株式会社 Fluid filled vibration isolator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3198603B2 (en) * 1992-03-23 2001-08-13 東海ゴム工業株式会社 Fluid-filled mounting device
JP4075066B2 (en) * 2004-02-17 2008-04-16 東海ゴム工業株式会社 Fluid filled engine mount
JP4120828B2 (en) * 2004-06-30 2008-07-16 東海ゴム工業株式会社 Fluid filled active vibration isolator
JP2006057675A (en) * 2004-08-18 2006-03-02 Toyo Tire & Rubber Co Ltd Liquid sealing type vibration control device and liquid sealing type vibration control device unit

Also Published As

Publication number Publication date
JP2009264524A (en) 2009-11-12

Similar Documents

Publication Publication Date Title
JP5095763B2 (en) Liquid-filled vibration isolator
JP4348553B2 (en) Fluid-filled vibration isolator and manufacturing method thereof
JP5535958B2 (en) Liquid-filled vibration isolator
JP5363093B2 (en) Fluid filled vibration isolator
JP4820792B2 (en) Fluid filled vibration isolator
JP4392667B2 (en) Fluid filled vibration isolator
JP2008002618A (en) Fluid filled vibration isolating device
JP2007085523A (en) Fluid-enclosed type vibration isolator
JP2009243510A (en) Fluid-filled type engine mount for automobile
JP5431982B2 (en) Liquid-filled vibration isolator
JP6240482B2 (en) Fluid filled vibration isolator
JP2013217391A (en) Fluid filled vibration absorbing device
JP2007139024A (en) Fluid-sealed vibration control device
JP2009243511A (en) Fluid-filled engine mount for automobile
JP2008185152A (en) Fluid filled vibration absorbing device and engine mount using the same
JP2007271004A (en) Fluid-sealed vibration isolating device
JP5014239B2 (en) Fluid filled vibration isolator
JP5510713B2 (en) Liquid-filled vibration isolator
JP4871902B2 (en) Fluid filled vibration isolator
JP4075066B2 (en) Fluid filled engine mount
JP5108659B2 (en) Fluid filled vibration isolator
JP2010007837A (en) Fluid sealed type vibration control device
JP2010007836A (en) Fluid sealed type vibration control device
JP2007032745A (en) Fluid-filled vibration isolator
JP4792414B2 (en) Fluid filled vibration isolator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120605

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5014239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350