JP5011617B2 - Method for producing conductive resin particles - Google Patents

Method for producing conductive resin particles Download PDF

Info

Publication number
JP5011617B2
JP5011617B2 JP2001222362A JP2001222362A JP5011617B2 JP 5011617 B2 JP5011617 B2 JP 5011617B2 JP 2001222362 A JP2001222362 A JP 2001222362A JP 2001222362 A JP2001222362 A JP 2001222362A JP 5011617 B2 JP5011617 B2 JP 5011617B2
Authority
JP
Japan
Prior art keywords
particles
resin
conductive
resin particles
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001222362A
Other languages
Japanese (ja)
Other versions
JP2003034727A (en
Inventor
康 富永
雅明 釣谷
高弘 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2001222362A priority Critical patent/JP5011617B2/en
Publication of JP2003034727A publication Critical patent/JP2003034727A/en
Application granted granted Critical
Publication of JP5011617B2 publication Critical patent/JP5011617B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Glanulating (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a conductive particle having excellent electroconductivity, good dispersibility and high thermal resistance by a simple step. SOLUTION: The method for producing the conductive particle obtained by coating a resin particle with a metal particle is characterized in that the resin particle and the metal particle are treated by a stirring apparatus of rotating at a peripheral velocity of 15 m/second or more in a medium.

Description

【0001】
【発明の属する技術分野】
本発明は、導電性樹脂粒子の製造方法に関するものである。本発明の製造方法は例えば、異方性導電接着材や異方性導電膜に使用される導電性樹脂粒子の製造に好適に用いられる。
【0002】
【従来の技術】
近年の電子部品の小型薄型化、高機能化に伴い、プリント配線基板やこれに搭載する半導体チップの接続回路は微細化、高密度化が進んでいる。これらの微細回路の接続は、従来のワイヤボンド方式や半田ボール溶融方式などとともに、最近では分解能に優れ、異方導電性を有する接着剤や膜状物のような接続部材である異方導電材が多用されるようになってきた。異方導電材は、高密度かつ多数の電極を一括して接続する材料であり、導電性粒子で相対峙する電極間の電気的接続を行い、接着剤によって両電極の固定と隣接電極間の絶縁性を得ている。これらは接続時の加熱加圧により接着剤が溶融し、分散されている導電粒子が電極間で保持されることにより厚み方向での高い導電性が得られ、面方向では導電粒子は互いに接触しない程度に分散されていることで高い絶縁性が得られるものである。
【0003】
このような異方導電材において、その分解能を向上させるためには、異方導電材中の導電材料である導電性粒子の粒径を微小化して隣接回路間の絶縁部分より小さくするとともに、絶縁部分における導電性粒子どうしの接触を防止できるように導電性粒子の添加量を調節し、回路接続部における導通性を確実にすることが必要である。しかし、導電性粒子の粒径を小さくすると表面積の増加と粒子個数の増加により、粒子は2次凝集しやすくなることで隣接回路との絶縁性が保持できなくなることがあり、また粒子の添加量を減少させると接続すべき回路上の導電性粒子の数が減少することから接続点数が不足し接続回路間での十分な導通が得られなくなり、長期接続信頼性を損なう場合があるという問題があった。
【0004】
一般的にこのような接続部材に用いられる導電性粒子としては、例えば、ファーネスブラック、チャンネルブラック、アセチレンブラックなどのカーボンブラックやグラファイトなどのカーボン系粒子、金、銀、銅、ニッケル、アルミニウム、半田などの金属粒子またはこれらの金属の表面を金などの金属でメッキした金属粒子、あるいは樹脂、無機化合物などの非導電性性粒子にニッケル、金などの金属でメッキを施したものなどが挙げられる。これらの中で、金属粒子は導電性には優れた性質を有するが、異方導電性の接着剤組成物などに用いられる場合、その比重差が大きいことから、組成物中で沈降することで局在化しやすく、異方導電材として用いた場合に一様な導電性を発揮できなくなることがあった。
【0005】
一方、樹脂粒子などの非導電性粒子の表面に金属被膜を形成させる場合、一般的には金属メッキ法が適用される。この方法は導電材料としては優れた性質を有するものが得られるが、通常は、メッキ層との密着を改善するため非導電性粒子の表面に小さな凹凸を形成させるエッチング工程、エッチング後の粒子表面に触媒層を形成させこれを活性化させるアクチベーション工程を経たのち、化学メッキ工程において金属メッキを行うのが一般的である。金属メッキ法はこのように処理工程が多く、各工程で使用する薬液も異なることから、コスト面において問題があった。さらに、被メッキ粒子が小径になるほど比表面積が増大するため、メッキ反応速度が速くなり制御が難しくなりやすいことに加え、粒子が凝集を起こした状態でメッキ被覆が形成されると、凝集が解離した際にメッキ被覆の欠陥が現れ、使用時に支障をきたすことがあった。
【0006】
【発明が解決しようとする課題】
本発明は、簡単な工程により導電性、分散性、および耐熱性に優れた導電性粒子を製造する方法を提供するものである。
【0007】
本発明は、
(1)樹脂粒子を金属粒子で被覆して得られる導電性粒子の製造方法であって、樹脂粒子と金属粒子とを媒体中で周速15m/秒以上で回転する撹拌装置で処理し、前記樹脂粒子がポリイミド樹脂粒子であり、前記媒体がキシレンであることを特徴とする導電性粒子の製造方法
である。
【0008】
【発明の実施の形態】
本発明は、樹脂粒子と金属粒子とを媒体中で分散させ、これを高速で撹拌する装置で処理することで、金属粒子が樹脂粒子の表面を被覆し、導電性と分散性に優れた導電性材料を簡単な工程により効率よく製造する方法を提供するものである。
【0009】
本発明で用いる樹脂粒子については特に限定しないが、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリメチルメタクリレート樹脂、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリエーテルサルフォン樹脂などの熱可塑性樹脂、あるいはフェノール樹脂、エポキシ樹脂、メラミン樹脂、ジアリルフタレート樹脂、ポリエステル樹脂、シリコン樹脂などの熱硬化性樹脂、あるいはポリイミド樹脂を用いることができる。これらの中でも、本発明の製造方法を適用した場合には金属粒子の衝突に対して容易に変形や破壊を起こさないものが好ましく、また、本発明の製造方法によって得られた導電性粒子を異方性導電接着剤や異方性導電膜の材料として用いる場合には加熱加圧して圧接を行うことを考慮する必要がある。これらのことから、耐熱性に優れたフェノール樹脂、エポキシ樹脂、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリイミド樹脂などを用いることが好ましく、さらには、耐熱性に優れること、微粒子の製造が比較的容易であることから、ポリイミド樹脂を用いることが特に好ましい。
【0010】
樹脂粒子の形状は特に限定しないが、大きさの揃ったものが得られやすく、処理時に金属粒子が樹脂粒子表面に均一に付着しやすいという点から、球状のものを用いることが好ましい。樹脂粒子の大きさは特に限定しないが、高速撹拌処理時に凝集しにくく、かつ、導電性粒子としてより小径のものが求められている背景を考慮すると、粒径が0.01〜10μmであることが好ましく、さらに好ましくは0.1〜5μmである。樹脂粒子径が前記上限より大きいと市場の要求に合致しにくい場合がある。また、樹脂粒子径が前記下限より小さいと、処理時に樹脂粒子どうしの凝集が起こりやすくなり、凝集粒子が解離した場合に被覆欠陥を生じる場合がある。
【0011】
前記樹脂粒子は、市販のものを用いてもよいし、必要に応じて合成してもよい。ポリイミド粒子を用いる場合では、例えば以下のような方法で樹脂粒子を得ることができる。
まず第一工程として、無水テトラカルボン酸を含む第一溶液と、ジアミン化合物を含む第二溶液とをそれぞれ調製する。第一溶液で用いる溶媒は、実質的に無水テトラカルボン酸が溶解し、かつ、生成するポリアミド酸が溶解しないものを用い、第二溶液で用いる溶媒は、実質的にジアミン化合物が溶解し、かつ、生成するポリアミド酸が溶解しないものを用いる。
第二工程では、第一溶液と第二溶液とを混合し、例えば20〜40℃で通常の撹拌または超音波による撹拌などを行って、混合溶液からポリアミド酸微粒子を析出させる。沈殿生成したポリアミド酸粒子は、遠心分離法等により固液分離して回収する。
第三工程として、第二工程で得たポリアミド酸粒子をイミド化することによってポリイミド微粒子を得る。イミド化する方法は、ポリアミド酸微粒子を有機溶媒中に分散させ、130〜250℃程度の温度で加熱してイミド化する方法(熱閉環)、又はポリアミド酸粒子をピリジン及び無水酢酸からなる有機溶媒中に分散させ、撹拌しながら15〜115℃程度の温度で24時間程度加熱してイミド化する方法(化学閉環)などを用いることができる。得られたポリイミド粒子は、公知の方法により回収し、必要に応じて石油エーテル、メタノール、アセトン等の有機溶剤で洗浄すればよい。
【0012】
本発明で用いる金属は、導電性を有する各種の金属、金属酸化物、合金等が用いられるが、特に限定されるものではない。このうち金属の例としては、亜鉛、アルミニウム、スズ、金、銀、鉄、銅、亜鉛、ニッケル、パラジウム、白金などが挙げられ、これらを単独もしくは複合して用いることもできる。これらの中でも、展性、延性、導電性などに優れることから、金、銀、アルミニウム、スズ、銅を用いるのが好ましい。金属粒子の形状は、例えば金属を溶融させて製造するアトマイズ法によれば球形のものが得られ、電気分解による析出ではリーフ状または針状のものが得られる。また、粒子形状は不均一であるが金属塊を微粉砕させる方法でも得ることができる。これらの中でも、樹脂粒子への衝突を効率よく行えること、また、樹脂粒子を均一に被覆しやすいなどの理由から、粒径の揃った球状粒子を用いることが好ましい。
【0013】
本発明で用いる金属粒子の大きさは特に限定しないが、樹脂粒子に対する被覆を効率よく行うためには0.01〜5.0μmであることが好ましく、さらに好ましくは0.1〜1.0μmである。前記範囲の粒径の金属粒子と、前記範囲の粒径の樹脂粒子とを用いることにより、本発明の処理において金属粒子が樹脂粒子に衝突し、その際の衝撃により、展性、延性を有した金属粒子が変形し、樹脂粒子の表面を被覆することができる。また、用いる樹脂粒子の大きさや性状によっては、樹脂粒子どうしの凝集が起こりやすいこともあるが、そのような場合でも金属粒子の衝突により凝集が解離しやすくなり、さらに金属による樹脂粒子の被覆によって樹脂粒子の再凝集を起こりにくくする効果も併せ持つ。
【0014】
本発明で用いられる媒体の種類は特に限定しないが、以下の点に留意して適宜選択して用いればよい。即ち、樹脂粒子や金属粒子が媒体中で溶解あるいは変質しないこと、処理時の発熱で容易に蒸発しないこと、処理温度範囲(通常20〜50℃)における粘度が低く樹脂粒子や金属粒子の運動を阻害しないこと、使用後の処理が容易にできること、などである。一例を挙げると、トルエン、キシレンなどの芳香族類、メチルエチルケトン、メチルイソブチルケトンなどのケトン類、エタノール、プロパノールなどのアルコール類、あるいは水などを使用できる。これらの中でも、樹脂粒子にポリイミド樹脂を用い、金属粒子として銀を用いてこれを被覆する場合は、前記の理由からキシレンを用いることが特に好ましい。
【0015】
樹脂粒子と金属粒子を媒体中で高速撹拌処理を行う際の粒子濃度についても特に限定しないが、処理液全体に対して、樹脂粒子が0.1〜5重量%であることが好ましく、さらに好ましくは0.5〜3重量%である。粒子濃度が前記下限より低いと、樹脂粒子と金属粒子との接触回数が少なくなるため、十分に被覆処理することが難しくなったり、処理に長時間を費やしエネルギーコスト面で不利になることがある。また、前記上限より高いと、用いる粒子や媒体の種類によっては樹脂粒子どうしの凝集が増加したり、処理系の粘度が上がることで撹拌のエネルギーが粒子に伝わりにくくなることなどにより、被覆処理が十分に行えない場合がある。
また、処理時の樹脂粒子と金属粒子との配合比は、用いる樹脂粒子あるいは金属粒子の性質・性状、媒体の種類、および高速撹拌処理条件によって異なるため特に限定しないが、樹脂粒子を金属粒子で均一かつ効率的に被覆するためには、一般的には両方の体積比率が略等量であることが好ましい。
【0016】
本発明で用いられる高速攪拌装置としては、周速15m/秒以上の能力を有する設備であれば特に限定しないが、例えば最大周速40m/秒のクレアミックス(エム・テクニック(株)製)、最大周速100m/秒のT.K.フィルミックス(特殊機化工業(株)製)などが好ましい。撹拌処理時の周速は、15m/秒以上であることが好ましく、より好ましくは30〜100m/秒である。周速が15m/秒未満では、樹脂粒子と金属微粒子に作用するエネルギーが不足し、本発明の効果である樹脂粒子どうしの凝集防止や、樹脂粒子に対する金属粒子の付着を十分に行えないことがある。
【0017】
なお、高速撹拌処理を行う場合の処理時間については、樹脂粒子や金属粒子の種類や処理条件などによって変わるため特に限定しないが、一般的には一定時間を経過すればそれ以上処理しても効果は変わらない傾向がみられるので、それぞれの処理系において最小所要時間を見い出せばよい。
【0018】
本発明の高速撹拌処理を行うことにより、樹脂粒子、金属粒子に対して、撹拌による剪断力、衝突力、局部的な圧力変化、キャビテーションによる効果などが複合的に作用すると考えられる。この処理により、金属粒子は樹脂粒子の表面に衝突し、衝撃で変形するとともに樹脂粒子の表面に付着し樹脂粒子を被覆するものと考えられる。通常、媒体などの液中においても、樹脂粒子はその粒径が小さいとゼータ電位の絶対値が小さく、凝集を起こして粗大化しやすい傾向があるが、本発明においては高速で撹拌を行うことにより、樹脂粒子の凝集や樹脂粒子どうしのくっつきを低減することができ、さらに樹脂粒子は金属粒子で被覆されるに従って粒子としてのゼータ電位の絶対値が増大し、被覆された後の導電性樹脂粒子の再凝集を防止する効果もあると考えられる。
【0019】
本発明の方法による樹脂粒子の金属粒子による被覆は、従来のメッキ法に比べると、工程が単純で、化学薬品の高精度な制御を行う必要がなく、操作が容易な設備を用いて短時間で処理できる。また、粒子濃度、撹拌速度、処理時間など設備の運転条件設定を簡単に行えるため、樹脂粒子、金属粒子の性状に適合した最適な被覆条件を容易に選択することができる。
【0020】
本発明の導電性樹脂粒子を異方導電性接着剤に用いる場合は、通常の方法を適用することができる。例えば、エポキシ樹脂、フェノキシ樹脂、ポリエステル樹脂、ABS樹脂などの樹脂を単独又は組み合わせたものを主成分とし、これに硬化剤、カップリング剤、粘着性付与剤などを適宜含有した接着剤を配合する。これを適量の溶剤に溶解させ液状としたものに導電性樹脂粒子を添加し、ボールミルや通常の撹拌装置により分散混合させて導電性接着剤組成物とすることができる。導電性接着剤の使用方法としては、例えば回路または電極上にこれを塗布したのち、必要に応じて溶剤を除去した状態とし、これと接続されるべき対峙する回路または電極を位置合わせした後、加熱加圧あるいは熱ロールにより成形を行う。このとき、導電性樹脂粒子は成形時の温度、圧力に対してその形状を維持することができ、対峙する回路または電極間で保持されることにより、厚み方向での高い導電性を確保することができる。
【0021】
【実施例】
以下、実施例により本発明を詳細に説明する。ここで記載されている「部」および「%」は、全て「重量部」「重量%」を示す。
【0022】
(1)ポリイミド粒子Aの製造
第一溶液としてBTDA(3,3',4,4'−ベンゾフェノンテトラカルボン酸二無水物)0.002molをアセトンに溶解させた50ml溶液(BTDA/アセトン=0.002mol/50ml溶液という。以下同じ。)、第二溶液としてDPE(4,4'−ジアミノジフェニルエーテル)/アセトン=0.002mol/50ml溶液をそれぞれ調製した。次いで、25℃で両溶液を混合して周波数38kHzの超音波で10分間撹拌し、反応させることにより、ポリアミド酸を析出した。得られたポリアミド酸を走査型電子顕微鏡(SEM)で観察し、ポリアミド酸が単分散状の均一な球状粒子から構成されていることを確認した。このポリアミド酸粒子は平均粒径0.499μm、標準偏差0.0295、変動係数5.912%であった。
次に、回収したポリアミド酸粒子1gを200mlキシレン中に分散させた後、140℃で約4時間環流してイミド化を行い、ポリイミド粒子Aを得た。このポリイミド粒子をSEMで観察し、ポリイミド粒子も単分散状の均一な球状粒子から構成されていることを確認した。このポリイミド粒子は平均粒径0.506μm、比重1.420、標準偏差0.0268、変動係数5.285%であった。ガラス転移温度(Tg)は329℃であった。
【0023】
(2)ポリイミド粒子Bの製造
第一溶液としてBTDA/アセトン=0.002mol/100ml溶液、第二溶液として2,4,6−トリアミノピリミジン/(メタノール+アセトン)=0.0004mol/(2ml+18ml)溶液、さらに第二溶液としてDPE/アセトン=0.0016mol/80ml溶液をそれぞれ調製した。次いで、25℃で両溶液を混合して周波数38kHzの超音波で10分間攪拌し、反応させることにより、ポリアミド酸を析出した。得られたポリアミド酸を走査型電子顕微鏡(SEM)で観察し、ポリアミド酸が単分散状の均一な球状粒子から構成されていることを確認した。このポリアミド酸粒子は平均粒径1.135μm、標準偏差0.0500、変動係数4.474%であった。
次に、回収したポリアミド酸粒子0.3gを200mlキシレン中に分散させた後、135℃で約4時間環流してイミド化を行い、ポリイミド粒子Bを得た。このポリイミド粒子をSEMで観察し、ポリイミド粒子も単分散状の均一な球状粒子から構成されていることを確認した。このポリイミド粒子は平均粒径1.112μm、比重1.410、標準偏差0.0460、変動係数4.151%であった。ガラス転移温度(Tg)は310℃であった。
【0024】
(3)実施例1:導電性粒子Cの製造
前記方法で得られたポリイミド粒子A3g/キシレン500ml、金属粒子として銀粒子(福田金属箔粉工業製「シルコートAgC−AO」、平均粒径0.5μmの球状粒子品)23g/キシレン500mlをそれぞれ調製し、これらを簡易混合したのち、T.K.フィルミックス(特殊機化工業(株)製)を使用して50m/秒で2分間処理し、導電性粒子Cを得た。
この導電性粒子をSEMで観察したところ、ほぼ球形状で粒径の揃った粒子から構成されていることがわかった。また、粒子表面についてXMA分析装置を行い、銀粒子による面分析を行ったところ、粒子表面の全面から銀が検出され、非検出部はほとんど存在しないことを確認した。この導電粒子の平均粒径0.688μm、比重6.102であった。
これらのことから、ポリイミド粒子はそのほとんど全面を銀粒子によって被覆された状態であると考えられた。
【0025】
(4)実施例2:導電性粒子Dの製造
前記方法で得られたポリイミド粒子B3g/キシレン500ml、金属粒子として銀粒子(福田金属箔粉工業製「シルコートAgC−AO」、平均粒径0.5μmの球状粒子品)23g/キシレン500mlをそれぞれ調製し、これらを簡易混合したのち、クレアミックス(エム・テクニック(株)製)を使用して30m/秒で3分間処理し、導電性粒子Dを得た。
この導電性粒子をSEMで観察したところ、ほぼ球形状で粒径の揃った粒子から構成されていることがわかった。また、粒子表面についてXMA分析装置を行い、銀粒子による面分析を行ったところ、粒子表面の全面から銀が検出され、非検出部はほとんど存在しないことを確認した。この導電粒子の平均粒径1.402μm、比重6.085であった。
これらのことから、ポリイミド粒子はそのほとんど全面を銀粒子によって被覆された状態であると考えられた。
【0026】
(5)導電性材料としての評価▲1▼
実施例1で得られた導電性樹脂粒子Cを、エポキシ接着剤(吉川化工社製・SE−4500)に、10重量%となるように配合し、均一に混合して導電性接着剤とした。この導電性接着剤を、150μmピッチ幅でITO電極(インジウム−スズ酸化物電極)が形成されたガラス板上にスクリーン印刷により塗布した。これとは別に、150μmのピッチ幅で35μmのポリイミドフィルム上に、表面がアルミからなる電極を形成したフレキシブルプリント電極を、前記ITO電極に重ね合わせ、150℃、30kg/cm2で1時間加熱加圧して圧着した。
この接合部における接触抵抗を測定したところ、1.0Ωであった。さらに、冷熱サイクル試験(70℃1時間保持/マイナス40℃1時間保持)を50回及び100回繰り返した後の接触抵抗値を測定したところ、それぞれ、1.1Ω、1.1Ωであり、安定した導電性能が得られていることが確認された。
【0027】
(6)導電性材料としての評価▲2▼
導電性樹脂粒子として、実施例2で得られたDを用いた以外は、「(5)導電性材料としての評価▲1▼」と同様の方法で行った。接合後の接触抵抗を測定したところ、0.6Ωであった。さらに、冷熱サイクル試験(70℃1時間保持/マイナス40℃1時間保持)を50回及び100回繰り返した後の接触抵抗値を測定したところ、それぞれ、0.7Ω、0.7Ωであり、安定した導電性能が得られていることが確認された。
【0028】
実施例で得られた導電性粒子は、樹脂粒子に対する金属粒子の被覆度合いが高いものであり、被覆後の再凝集が発生せず、分散性に優れたものであった。また、得られた導電性粒子を接着剤と混合して異方導電性接着剤として用いたところ、冷熱サイクル試験後も良好な導電性能を得ることができた。
【0029】
【発明の効果】
本発明は、樹脂粒子と金属粒子とを媒体中で周速15m/秒以上で回転する撹拌装置で処理することを特徴とする導電性粒子の製造方法であり、従来の金属メッキ法と比較すると、複数の処理工程や高精度な制御を必要とせず、操作が容易な設備を用いて短時間で処理できる。また、粒子濃度、撹拌速度、処理時間など設備の運転条件設定を簡単に行えるため、樹脂粒子、金属粒子の性状に適合した最適な被覆条件を容易に選択することができ、工業的に導電性粒子を得るのに好適である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing conductive resin particles. The manufacturing method of this invention is used suitably for manufacture of the conductive resin particle used for an anisotropic conductive adhesive and an anisotropic conductive film, for example.
[0002]
[Prior art]
With recent downsizing and thinning of electronic components and higher functionality, connection circuits of printed wiring boards and semiconductor chips mounted thereon have been miniaturized and increased in density. In addition to the conventional wire bond method and solder ball melting method, these fine circuits are connected with an anisotropic conductive material that is a connecting member such as an adhesive or a film-like material that has excellent resolution and has anisotropic conductivity recently. Has come to be used frequently. Anisotropic conductive material is a material that connects a large number of high-density electrodes at once, making electrical connection between electrodes facing each other with conductive particles, and fixing both electrodes with an adhesive between adjacent electrodes Insulation is obtained. In these, the adhesive melts by heating and pressing at the time of connection, and the dispersed conductive particles are held between the electrodes, so that high conductivity in the thickness direction is obtained, and the conductive particles do not contact each other in the plane direction High insulation can be obtained by being dispersed to the extent.
[0003]
In order to improve the resolution of such an anisotropic conductive material, the particle size of the conductive particles, which are the conductive material in the anisotropic conductive material, is reduced to be smaller than the insulating portion between adjacent circuits and insulated. It is necessary to adjust the addition amount of the conductive particles so as to prevent contact between the conductive particles in the portion, and to ensure the conductivity in the circuit connection portion. However, if the particle size of the conductive particles is reduced, the surface area and the number of particles increase, so that the particles are likely to agglomerate secondary, so that insulation from adjacent circuits may not be maintained. As the number of conductive particles on the circuit to be connected is reduced, the number of connection points is insufficient and sufficient conduction between the connection circuits cannot be obtained, which may impair long-term connection reliability. there were.
[0004]
Generally, the conductive particles used for such connection members include, for example, carbon black such as furnace black, channel black, acetylene black, carbon-based particles such as graphite, gold, silver, copper, nickel, aluminum, solder Metal particles such as such as metal particles plated with a metal such as gold, or non-conductive particles such as resin and inorganic compounds plated with a metal such as nickel and gold . Among these, the metal particles have excellent conductivity, but when used in an anisotropic conductive adhesive composition, etc., since the specific gravity difference is large, the metal particles settle in the composition. Localization tends to occur, and when used as an anisotropic conductive material, uniform conductivity may not be exhibited.
[0005]
On the other hand, when a metal film is formed on the surface of non-conductive particles such as resin particles, a metal plating method is generally applied. In this method, a conductive material having excellent properties can be obtained. Usually, in order to improve the adhesion with the plating layer, an etching process for forming small irregularities on the surface of the non-conductive particles, and the particle surface after etching. In general, after an activation process for forming a catalyst layer and activating the catalyst layer, metal plating is performed in a chemical plating process. In this way, the metal plating method has many processing steps, and the chemical solution used in each step is different. Furthermore, since the specific surface area increases as the particle to be plated becomes smaller, the plating reaction rate becomes faster and control is difficult, and in addition, when the plating coating is formed in a state where the particles are aggregated, the aggregation is dissociated. In this case, defects in the plating coating appeared, which sometimes hindered use.
[0006]
[Problems to be solved by the invention]
The present invention provides a method for producing conductive particles excellent in conductivity, dispersibility, and heat resistance by a simple process.
[0007]
The present invention
(1) A method for producing conductive particles obtained by coating resin particles with metal particles, wherein the resin particles and metal particles are treated with a stirring device rotating in a medium at a peripheral speed of 15 m / sec or more, In the method for producing conductive particles, the resin particles are polyimide resin particles, and the medium is xylene .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, resin particles and metal particles are dispersed in a medium, and this is processed with a device that stirs at a high speed, so that the metal particles cover the surface of the resin particles, and the conductivity is excellent in conductivity and dispersibility. The present invention provides a method for efficiently producing a functional material by a simple process.
[0009]
Although it does not specifically limit about the resin particle used by this invention, Thermoplastic resins, such as polyethylene resin, polypropylene resin, polystyrene resin, polymethylmethacrylate resin, polyethylene terephthalate resin, polycarbonate resin, polyamide resin, polyether sulfone resin, or phenol A thermosetting resin such as a resin, an epoxy resin, a melamine resin, a diallyl phthalate resin, a polyester resin, or a silicon resin, or a polyimide resin can be used. Among these, when the production method of the present invention is applied, those that do not easily deform or break against collision of metal particles are preferable, and the conductive particles obtained by the production method of the present invention are different. When using it as a material for an isotropic conductive adhesive or anisotropic conductive film, it is necessary to consider performing pressure contact by heating and pressing. Therefore, it is preferable to use a phenol resin, an epoxy resin, a polyethylene terephthalate resin, a polycarbonate resin, a polyamide resin, a polyimide resin, etc. that are excellent in heat resistance. Since it is easy, it is particularly preferable to use a polyimide resin.
[0010]
The shape of the resin particles is not particularly limited, but it is preferable to use a spherical one because it is easy to obtain a uniform size and the metal particles easily adhere to the resin particle surface during the treatment. The size of the resin particles is not particularly limited, but considering the background that it is difficult to agglomerate during high-speed agitation processing and a smaller particle size is required as the conductive particles, the particle size is 0.01 to 10 μm. Is more preferable, and 0.1 to 5 μm is more preferable. If the resin particle diameter is larger than the upper limit, it may be difficult to meet market demands. Further, if the resin particle diameter is smaller than the lower limit, the resin particles are likely to aggregate during the treatment, and a coating defect may occur when the aggregated particles are dissociated.
[0011]
Commercially available resin particles may be used, or may be synthesized as necessary. In the case of using polyimide particles, for example, resin particles can be obtained by the following method.
First, as a first step, a first solution containing tetracarboxylic anhydride and a second solution containing a diamine compound are prepared. The solvent used in the first solution is a solvent in which tetracarboxylic anhydride is substantially dissolved and the resulting polyamic acid is not dissolved, and the solvent used in the second solution is substantially dissolved in a diamine compound, and The one that does not dissolve the resulting polyamic acid is used.
In the second step, the first solution and the second solution are mixed and, for example, normal stirring or ultrasonic stirring is performed at 20 to 40 ° C. to precipitate the polyamic acid fine particles from the mixed solution. The polyamic acid particles produced by precipitation are collected by solid-liquid separation by a centrifugal separation method or the like.
As a third step, polyimide fine particles are obtained by imidizing the polyamic acid particles obtained in the second step. The imidization method is a method in which polyamic acid fine particles are dispersed in an organic solvent and imidized by heating at a temperature of about 130 to 250 ° C. (thermal ring closure), or the polyamic acid particles are an organic solvent composed of pyridine and acetic anhydride. For example, a method (chemical ring closure) in which the mixture is dispersed therein and heated at a temperature of about 15 to 115 ° C. with stirring for about 24 hours to imidize can be used. The obtained polyimide particles may be collected by a known method and washed with an organic solvent such as petroleum ether, methanol, acetone or the like as necessary.
[0012]
As the metal used in the present invention, various conductive metals, metal oxides, alloys and the like are used, but are not particularly limited. Among these, examples of metals include zinc, aluminum, tin, gold, silver, iron, copper, zinc, nickel, palladium, platinum and the like, and these can be used alone or in combination. Among these, gold, silver, aluminum, tin, and copper are preferably used because they are excellent in malleability, ductility, conductivity, and the like. As for the shape of the metal particles, for example, a spherical shape is obtained by an atomizing method in which a metal is melted, and a leaf shape or a needle shape is obtained by precipitation by electrolysis. Moreover, although the particle shape is non-uniform, it can also be obtained by a method of pulverizing a metal lump. Among these, it is preferable to use spherical particles having a uniform particle size because they can efficiently collide with the resin particles and easily coat the resin particles uniformly.
[0013]
The size of the metal particles used in the present invention is not particularly limited, but is preferably 0.01 to 5.0 μm, more preferably 0.1 to 1.0 μm in order to efficiently coat the resin particles. is there. By using metal particles having a particle size in the above range and resin particles having a particle size in the above range, the metal particles collide with the resin particles in the treatment of the present invention, and the impact at that time has malleability and ductility. The metal particles thus deformed can cover the surface of the resin particles. In addition, depending on the size and properties of the resin particles used, the resin particles may be easily aggregated. Even in such a case, the aggregation is likely to be dissociated by the collision of the metal particles, and further, the resin particles are coated with the metal. It also has the effect of making reaggregation of resin particles difficult to occur.
[0014]
The type of the medium used in the present invention is not particularly limited, but may be appropriately selected and used while paying attention to the following points. That is, the resin particles and metal particles do not dissolve or deteriorate in the medium, do not easily evaporate due to heat generated during processing, and the viscosity of the processing temperature range (usually 20 to 50 ° C.) is low. It is not obstructed, and can be easily treated after use. For example, aromatics such as toluene and xylene, ketones such as methyl ethyl ketone and methyl isobutyl ketone, alcohols such as ethanol and propanol, or water can be used. Among these, when a polyimide resin is used for the resin particles and the metal particles are coated with silver, it is particularly preferable to use xylene for the reasons described above.
[0015]
The particle concentration when the high-speed stirring treatment is performed on the resin particles and the metal particles in the medium is not particularly limited, but the resin particles are preferably 0.1 to 5% by weight, more preferably, based on the entire treatment liquid. Is 0.5 to 3% by weight. If the particle concentration is lower than the lower limit, the number of times of contact between the resin particles and the metal particles decreases, so that it may be difficult to sufficiently perform the coating treatment, or it may take a long time for the treatment and be disadvantageous in terms of energy cost. . Also, if the upper limit is exceeded, depending on the type of particles and medium used, the aggregation of the resin particles increases or the viscosity of the treatment system increases, so that the energy of stirring becomes difficult to be transmitted to the particles, etc. It may not be able to be done sufficiently.
In addition, the compounding ratio of the resin particles and the metal particles at the time of treatment varies depending on the properties and properties of the resin particles or metal particles used, the type of medium, and the high-speed stirring treatment conditions, but the resin particles are metal particles. In order to coat uniformly and efficiently, it is generally preferable that both volume ratios are approximately equal.
[0016]
The high-speed stirring device used in the present invention is not particularly limited as long as it has an ability of a peripheral speed of 15 m / second or more. For example, Claremix (M Technique Co., Ltd.) having a maximum peripheral speed of 40 m / second, T. with a maximum peripheral speed of 100 m / sec. K. Fillmix (made by Special Machine Industry Co., Ltd.) is preferred. The peripheral speed during the stirring treatment is preferably 15 m / second or more, more preferably 30 to 100 m / second. When the peripheral speed is less than 15 m / sec, the energy acting on the resin particles and the metal fine particles is insufficient, and the effect of the present invention is that the aggregation of the resin particles and the adhesion of the metal particles to the resin particles cannot be performed sufficiently. is there.
[0017]
In addition, the processing time in the case of performing high-speed agitation processing is not particularly limited because it varies depending on the type of resin particles and metal particles, processing conditions, etc. Therefore, it is sufficient to find the minimum required time in each processing system.
[0018]
By performing the high-speed stirring treatment of the present invention, it is considered that the shearing force, the collision force, the local pressure change, the effect by cavitation, and the like due to stirring act on the resin particles and metal particles in a complex manner. By this treatment, it is considered that the metal particles collide with the surface of the resin particles and are deformed by impact, and adhere to the surface of the resin particles to cover the resin particles. Usually, even in a liquid such as a medium, if the particle size of the resin particles is small, the absolute value of the zeta potential tends to be small and tends to agglomerate due to agglomeration. It is possible to reduce the aggregation of resin particles and the adhesion between resin particles, and further, the resin particles are coated with metal particles, the absolute value of the zeta potential as the particles increases, and the conductive resin particles after being coated It is considered that there is an effect of preventing re-aggregation of slag.
[0019]
The coating of resin particles with metal particles according to the method of the present invention is simpler than the conventional plating method, does not require high-precision control of chemicals, and uses a facility that is easy to operate for a short time. Can be processed. In addition, since the operating conditions of the equipment such as the particle concentration, the stirring speed, and the processing time can be easily set, it is possible to easily select the optimum coating conditions that match the properties of the resin particles and metal particles.
[0020]
When the conductive resin particles of the present invention are used for an anisotropic conductive adhesive, a normal method can be applied. For example, an epoxy resin, a phenoxy resin, a polyester resin, an ABS resin or the like is used as a main component, and an adhesive containing a curing agent, a coupling agent, a tackifier, or the like is appropriately added thereto. . A conductive adhesive composition can be obtained by adding conductive resin particles to a liquid obtained by dissolving this in an appropriate amount of solvent, and dispersing and mixing them with a ball mill or a normal stirring device. As a method of using the conductive adhesive, for example, after applying it on a circuit or an electrode, the solvent is removed as necessary, and the opposing circuit or electrode to be connected to it is aligned, Molding is performed by heating and pressing or a hot roll. At this time, the conductive resin particles can maintain the shape with respect to the temperature and pressure during molding, and ensure high conductivity in the thickness direction by being held between opposing circuits or electrodes. Can do.
[0021]
【Example】
Hereinafter, the present invention will be described in detail by way of examples. “Parts” and “%” described herein all indicate “parts by weight” and “% by weight”.
[0022]
(1) Production of polyimide particles A As a first solution, a 50 ml solution (BTDA / acetone = 0.0.00) of 0.002 mol of BTDA (3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride) dissolved in acetone. 002 mol / 50 ml solution, the same applies hereinafter), and DPE (4,4′-diaminodiphenyl ether) /acetone=0.002 mol / 50 ml solution was prepared as the second solution. Subsequently, both solutions were mixed at 25 ° C., stirred for 10 minutes with an ultrasonic wave having a frequency of 38 kHz, and reacted to precipitate polyamic acid. The obtained polyamic acid was observed with a scanning electron microscope (SEM), and it was confirmed that the polyamic acid was composed of monodispersed uniform spherical particles. The polyamic acid particles had an average particle size of 0.499 μm, a standard deviation of 0.0295, and a coefficient of variation of 5.912%.
Next, 1 g of the recovered polyamic acid particles were dispersed in 200 ml xylene, and then imidized by refluxing at 140 ° C. for about 4 hours to obtain polyimide particles A. The polyimide particles were observed with an SEM, and it was confirmed that the polyimide particles were also composed of monodispersed uniform spherical particles. The polyimide particles had an average particle size of 0.506 μm, a specific gravity of 1.420, a standard deviation of 0.0268, and a coefficient of variation of 5.285%. The glass transition temperature (Tg) was 329 ° C.
[0023]
(2) Production of polyimide particles B BTDA / acetone = 0.002 mol / 100 ml solution as the first solution, 2,4,6-triaminopyrimidine / (methanol + acetone) = 0.004 mol / (2 ml + 18 ml) as the second solution As a second solution, a DPE / acetone = 0.016 mol / 80 ml solution was prepared. Subsequently, both solutions were mixed at 25 ° C., stirred for 10 minutes with an ultrasonic wave having a frequency of 38 kHz, and reacted to precipitate polyamic acid. The obtained polyamic acid was observed with a scanning electron microscope (SEM), and it was confirmed that the polyamic acid was composed of monodispersed uniform spherical particles. The polyamic acid particles had an average particle size of 1.135 μm, a standard deviation of 0.0500, and a coefficient of variation of 4.474%.
Next, 0.3 g of the recovered polyamic acid particles were dispersed in 200 ml of xylene, and then imidized by refluxing at 135 ° C. for about 4 hours to obtain polyimide particles B. The polyimide particles were observed with an SEM, and it was confirmed that the polyimide particles were also composed of monodispersed uniform spherical particles. The polyimide particles had an average particle size of 1.112 μm, a specific gravity of 1.410, a standard deviation of 0.0460, and a coefficient of variation of 4.151%. The glass transition temperature (Tg) was 310 ° C.
[0024]
(3) Example 1: Production of Conductive Particles C Polyimide particles A3 g / xylene 500 ml obtained by the above method, silver particles as metal particles (“Silcoat AgC-AO” manufactured by Fukuda Metal Foil Co., Ltd., average particle size 0. 5 μm spherical particles) 23 g / xylene 500 ml were prepared, and these were simply mixed. K. Conductive particles C were obtained by treating for 2 minutes at 50 m / sec using a film mix (manufactured by Tokushu Kika Kogyo Co., Ltd.).
When the conductive particles were observed with an SEM, it was found that they were composed of particles having a substantially spherical shape and a uniform particle size. Moreover, when the surface of the particle surface was subjected to an XMA analysis and the surface analysis was performed with silver particles, it was confirmed that silver was detected from the entire surface of the particle surface and there was almost no non-detection part. The conductive particles had an average particle size of 0.688 μm and a specific gravity of 6.102.
From these facts, it was considered that the polyimide particles were almost entirely covered with silver particles.
[0025]
(4) Example 2 Production of Conductive Particles D 3 g of polyimide particles B / 500 ml of xylene obtained by the above method, silver particles as metal particles (“Silcoat AgC-AO” manufactured by Fukuda Metal Foil Co., Ltd., average particle size 0. 5 μm spherical particles) 23 g / 500 ml of xylene were prepared, and these were simply mixed, then treated with Claremix (M Technique Co., Ltd.) for 3 minutes at 30 m / second to obtain conductive particles D Got.
When the conductive particles were observed with an SEM, it was found that they were composed of particles having a substantially spherical shape and a uniform particle size. Moreover, when the surface of the particle surface was subjected to an XMA analysis and the surface analysis was performed with silver particles, it was confirmed that silver was detected from the entire surface of the particle surface and there was almost no non-detection part. These conductive particles had an average particle size of 1.402 μm and a specific gravity of 6.085.
From these facts, it was considered that the polyimide particles were almost entirely covered with silver particles.
[0026]
(5) Evaluation as a conductive material (1)
The conductive resin particles C obtained in Example 1 were blended in an epoxy adhesive (Yoshikawa Chemical Co., Ltd., SE-4500) so as to be 10% by weight, and mixed uniformly to obtain a conductive adhesive. . This conductive adhesive was applied by screen printing on a glass plate on which ITO electrodes (indium-tin oxide electrodes) were formed with a pitch width of 150 μm. Separately, a flexible printed electrode having an electrode made of aluminum on a 35 μm polyimide film with a pitch width of 150 μm is superimposed on the ITO electrode and heated at 150 ° C. and 30 kg / cm 2 for 1 hour. Pressed and crimped.
The contact resistance at the joint was measured and found to be 1.0Ω. Furthermore, when the contact resistance value after repeating the thermal cycle test (70 ° C. 1 hour hold / minus 40 ° C. 1 hour hold) 50 times and 100 times was measured, it was 1.1Ω and 1.1Ω, respectively. It was confirmed that the obtained conductive performance was obtained.
[0027]
(6) Evaluation as a conductive material (2)
Except for using D obtained in Example 2 as the conductive resin particles, the same method as “(5) Evaluation as a conductive material (1)” was performed. When the contact resistance after bonding was measured, it was 0.6Ω. Furthermore, when the contact resistance value after repeating the thermal cycle test (70 ° C. 1 hour hold / minus 40 ° C. 1 hour hold) 50 times and 100 times was measured, it was 0.7Ω and 0.7Ω, respectively. It was confirmed that the obtained conductive performance was obtained.
[0028]
The conductive particles obtained in the examples had a high degree of coating of the metal particles on the resin particles, did not re-aggregate after coating, and were excellent in dispersibility. Moreover, when the obtained electroconductive particle was mixed with the adhesive agent and used as an anisotropic electroconductive adhesive agent, favorable electroconductivity performance was able to be obtained even after the thermal cycle test.
[0029]
【Effect of the invention】
The present invention is a method for producing conductive particles characterized in that resin particles and metal particles are processed in a medium with a stirring device that rotates at a peripheral speed of 15 m / sec or more, and compared with a conventional metal plating method. It does not require a plurality of processing steps and high-precision control, and can be processed in a short time using equipment that is easy to operate. In addition, since the operating conditions of the equipment such as particle concentration, stirring speed, and processing time can be easily set, it is possible to easily select the optimal coating conditions that match the properties of the resin particles and metal particles, and to make them industrially conductive. Suitable for obtaining particles.

Claims (1)

樹脂粒子を金属粒子で被覆して得られる導電性粒子の製造方法であって、樹脂粒子と金属粒子とを媒体中で周速15m/秒以上で回転する撹拌装置で処理し、前記樹脂粒子がポリイミド樹脂粒子であり、前記媒体がキシレンであることを特徴とする導電性粒子の製造方法。A method for producing conductive particles obtained by coating resin particles with metal particles, wherein the resin particles and the metal particles are treated in a medium with a stirring device rotating at a peripheral speed of 15 m / second or more, and the resin particles A method for producing conductive particles, wherein the particles are polyimide resin particles, and the medium is xylene .
JP2001222362A 2001-07-24 2001-07-24 Method for producing conductive resin particles Expired - Fee Related JP5011617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001222362A JP5011617B2 (en) 2001-07-24 2001-07-24 Method for producing conductive resin particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001222362A JP5011617B2 (en) 2001-07-24 2001-07-24 Method for producing conductive resin particles

Publications (2)

Publication Number Publication Date
JP2003034727A JP2003034727A (en) 2003-02-07
JP5011617B2 true JP5011617B2 (en) 2012-08-29

Family

ID=19055846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001222362A Expired - Fee Related JP5011617B2 (en) 2001-07-24 2001-07-24 Method for producing conductive resin particles

Country Status (1)

Country Link
JP (1) JP5011617B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100699428B1 (en) * 2005-09-28 2007-03-26 전자부품연구원 Method Of Forming Conductive Paticle
JP5572913B2 (en) * 2008-01-17 2014-08-20 戸田工業株式会社 Conductive particle powder

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250942A (en) * 1986-04-23 1987-10-31 Nara Kikai Seisakusho:Kk Method for spreading and fixing metal to surface of solid particle
JPH0775665B2 (en) * 1986-10-27 1995-08-16 日本合成ゴム株式会社 Method for producing microencapsulated fine particles
JPH02160038A (en) * 1988-12-15 1990-06-20 Japan Synthetic Rubber Co Ltd Production of microcapsulated fine particle
JPH0525286A (en) * 1991-07-17 1993-02-02 Mita Ind Co Ltd Method for evaluating state of conductive coating layer and preparation of conductive resin material
JPH05305225A (en) * 1992-04-30 1993-11-19 Isuzu Motors Ltd Rotor of capsule powder producing apparatus

Also Published As

Publication number Publication date
JP2003034727A (en) 2003-02-07

Similar Documents

Publication Publication Date Title
KR101505227B1 (en) Coated conductive powder and conductive adhesive using the same
JP5151902B2 (en) Anisotropic conductive film
US20100247892A1 (en) Electroconductive particle and anisotropic conductive film comprising same
US8846142B2 (en) Conductive particle, anisotropic conductive interconnection material that uses the conductive particle, and method for producing the conductive particle
JP2011175951A (en) Conductive fine particles, and anisotropic conductive material
JP5941328B2 (en) Conductive particles and conductive material containing the same
JP4612242B2 (en) Conductive adhesive and IC chip mounting method using the same
JP6089462B2 (en) Conductive particles, manufacturing method thereof, and conductive material including the same
JP2011029179A (en) Conductive particle
JP3516379B2 (en) Anisotropic conductive film
JP5317474B2 (en) Polyamic acid containing ultrafine metal particles
JP5844219B2 (en) Method for producing conductive particles
JP2006525641A (en) Insulating conductive particles for anisotropic conductive connection, method for producing the same, and products using the same
JP4433564B2 (en) Adhesive for circuit connection
JP5011617B2 (en) Method for producing conductive resin particles
JP2004156062A (en) Double layer-coated copper powder, method for production thereof, and conductive paste obtained by using the same
JP5011616B2 (en) Method for producing conductive resin particles
JP5091416B2 (en) Conductive fine particles, method for producing conductive fine particles, and anisotropic conductive material
TW200829675A (en) Adhesive for electric circuit connection
JP2004156061A (en) Tin-coated copper powder, method of producing the tin-coated copper powder, and electrically conductive paste obtained by using the tin-coated copper powder
WO2005041213A1 (en) Conductive paste
JP2013229240A (en) Conductive particle and method for producing the same
JP3004042B2 (en) Metal-containing resin particles and uses thereof
JPH03129607A (en) Anisotropic conductive film
JPH08167328A (en) Anisotropic conductive film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5011617

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees