JP5002954B2 - Lead acid battery - Google Patents

Lead acid battery Download PDF

Info

Publication number
JP5002954B2
JP5002954B2 JP2005354413A JP2005354413A JP5002954B2 JP 5002954 B2 JP5002954 B2 JP 5002954B2 JP 2005354413 A JP2005354413 A JP 2005354413A JP 2005354413 A JP2005354413 A JP 2005354413A JP 5002954 B2 JP5002954 B2 JP 5002954B2
Authority
JP
Japan
Prior art keywords
terminal
alloy
pole column
terminal bushing
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005354413A
Other languages
Japanese (ja)
Other versions
JP2007157611A (en
Inventor
一彦 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005354413A priority Critical patent/JP5002954B2/en
Publication of JP2007157611A publication Critical patent/JP2007157611A/en
Application granted granted Critical
Publication of JP5002954B2 publication Critical patent/JP5002954B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

本発明は、鉛蓄電池の端子構造に関するものである。   The present invention relates to a terminal structure of a lead storage battery.

鉛蓄電池の端子構造としては、その用途に応じて様々な形態のものが実用化されている。その中でも、始動用鉛蓄電池では、JIS D5301(始動用鉛蓄電池)においてその寸法形状が規格化されている。   As a terminal structure of a lead storage battery, various types of terminals have been put into practical use depending on the application. Among these, in the lead acid battery for starting, the dimensional shape is standardized in JIS D5301 (lead acid battery for starting).

始動用鉛蓄電池の大部分の機種では、テーパ端子が用いられている。テーパ端子は、鉛蓄電池の蓋に一体成型された端子ブッシングに極板群から導出された、電流入出力用の極柱を挿通し、両者を溶接することによって形成される。   Tapered terminals are used in most types of lead-acid batteries for starting. The taper terminal is formed by inserting a current input / output pole column derived from the electrode plate group into a terminal bushing formed integrally with the lid of the lead-acid battery and welding the two.

特に、始動用鉛蓄電池の端子は、エンジン始動時の大電流(百〜数百A)が流れるため、車両側ハーネス−端子間の固定は緊密に行われること、また、車両走行に伴う振動が常に加わった状態で使用されることから、ハーネス固定時の端子締締付強度や端子強度が重視され、前述のJIS規格においても規格化がされている。   In particular, since a large current (a hundred to several hundreds A) at the time of starting the engine flows through the terminals of the lead-acid battery for start-up, the vehicle side harness and the terminals are fixed closely, and vibrations associated with vehicle travel are also generated. Since it is used in a state in which it is always applied, importance is attached to the terminal tightening strength and the terminal strength when the harness is fixed, and the above-mentioned JIS standard is also standardized.

これらのことから、端子強度を考慮し、端子ブッシングや極柱を構成する素材として、2〜5質量%程度のSbを含む、Pb−Sb合金が用いられてきた。   For these reasons, in consideration of terminal strength, Pb—Sb alloys containing about 2 to 5 mass% of Sb have been used as a material constituting the terminal bushing and the pole column.

Pb−Sb合金は、一般に0.1〜0.5質量%程度のAsが核化剤として添加されたものが用いられ、強度および耐食性に優れたPb合金である。また、その結晶形態は、方向性を有しない、いわゆる等軸晶を呈しているため、機械的強度に方向性がなく、端子に捩じりの応力が加わった場合に、ある特定面で破断、いわゆる割れが発生することは極めて稀である。   The Pb—Sb alloy is generally a Pb alloy having about 0.1 to 0.5% by mass of As added as a nucleating agent and having excellent strength and corrosion resistance. In addition, since the crystal form exhibits a so-called equiaxed crystal having no directionality, there is no directionality in the mechanical strength, and when a torsional stress is applied to the terminal, it breaks at a specific plane. So-called cracks are very rare.

また、Pb−Sb合金は溶接性も良好であり、さらに、溶接後の外観も滑らかであることから、端子ブッシング−極柱間の溶接強度を確保し、かつ良好な端子外観が得られる上で、最も好ましい合金素材として常用されてきた。   In addition, the Pb-Sb alloy has good weldability and also has a smooth appearance after welding, so that the welding strength between the terminal bushing and the pole column is ensured and a good terminal appearance is obtained. Has been routinely used as the most preferred alloy material.

一方、始動用鉛蓄電池に望まれる特性の一つにメンテナンスフリー性がある。従来から用いられている開放液式の鉛蓄電池では、電解液中の水分が電気分解や蒸発により電池外に散逸し、電池性能が低下するため、定期的な補水が必要である。この補水頻度を低減する様々な試みがなされてきた。   On the other hand, one of the characteristics desired for a starting lead-acid battery is maintenance-free. In the conventional open liquid lead acid battery, water in the electrolyte is dissipated out of the battery due to electrolysis and evaporation, and the battery performance deteriorates. Therefore, regular rehydration is necessary. Various attempts have been made to reduce the frequency of water replenishment.

特に、電池系内に存在するSbは負極に移行し、電解液中の水分減量を増大させる作用を有しており、極柱に含まれるSbもその例外ではなかった。   In particular, Sb present in the battery system migrates to the negative electrode and has an effect of increasing the water loss in the electrolyte, and Sb contained in the pole column was no exception.

さらに、根本的に補水を不要とした、制御弁式の始動用鉛蓄電池も上市されているが、制御弁式の場合は、電池系内のSbは自己放電特性の悪化や、接続部の腐食をもたらすため、特にSbの添加は避ける、もしくは極微量に制限すべきであるとされている(例えば特許文献1参照)。   Furthermore, control valve type lead storage batteries for start-up that basically do not require water replenishment are also on the market, but in the case of control valve type, Sb in the battery system deteriorates the self-discharge characteristics and corrodes the connection part. In particular, it is said that addition of Sb should be avoided or limited to a very small amount (see, for example, Patent Document 1).

そこで、特に水分減少を抑制した開放液式鉛蓄電池や制御弁式鉛蓄電池においては、極柱にSbを含まない、Pb−Sn合金を用いることが行われている。ここでSnは十分な機械的強度を確保する観点で、1.0〜3.0質量%程度を添加する。   Therefore, in an open liquid type lead acid battery and a control valve type lead acid battery in which moisture reduction is particularly suppressed, a Pb—Sn alloy not containing Sb is used in the pole column. Here, Sn is added in an amount of about 1.0 to 3.0% by mass from the viewpoint of securing sufficient mechanical strength.

一方、端子ブッシングについては、従来通り、溶接性や溶接後の外観、さらには端子ブッシング自体の捩れ応力に対する強度を考慮し、前述したようなPb−Sb合金を用いる、すなわち、端子ブッシングと極柱に異種合金を用いることが知られている(例えば、特許文献2参照)。
特開平2−262252号公報 特開平4−206459号公報
On the other hand, for the terminal bushing, the Pb—Sb alloy as described above is used in consideration of the weldability, the appearance after welding, and the strength against the torsional stress of the terminal bushing itself. It is known to use a dissimilar alloy for (for example, refer patent document 2).
JP-A-2-262252 Japanese Patent Laid-Open No. 4-206459

前記したように、Pb−Sb合金の端子ブッシングと、Sbを含まないPb−Sn合金の極柱とを溶接する場合、溶接部の強度が低下したり、クラックが発生することがわかってきた。   As described above, it has been found that when a terminal bushing of a Pb—Sb alloy and a pole column of a Pb—Sn alloy not containing Sb are welded, the strength of the welded portion is reduced or cracks are generated.

前述したように、Pb−Sb合金の結晶は等軸晶であり、端子ブッシング内は比較的均質な結晶組織を有する。   As described above, the crystal of the Pb—Sb alloy is equiaxed, and the terminal bushing has a relatively homogeneous crystal structure.

一方、特に、合金強度の向上が得られる程度の量、すなわち1.0〜3.0質量%程度のSnを添加したPb−Sn合金は、溶融したPb−Sn合金が冷却凝固する際の冷却方向に結晶長軸が配向した、いわゆるチル晶を呈する。   On the other hand, in particular, the Pb—Sn alloy to which Sn is added in an amount that can improve the strength of the alloy, that is, about 1.0 to 3.0% by mass of Sn is cooled when the molten Pb—Sn alloy is cooled and solidified. It exhibits a so-called chill crystal in which the crystal major axis is oriented in the direction.

等軸晶とチル晶の界面では、クラックが発生しやすくなる。また、初期状態でクラックが発生しないまでも、端子の捩じり応力により、界面が剥離して新たにクラックが発生し、このようなクラックが成長して端子が割れたり、電池内部の電解液がクラックを通して外部に滲出するという課題があった。また、電解液が滲出しないまでも、電池を大電流放電した際に、腐食部で異常発熱したり、この異常発熱により端子が溶融するといった現象があり、端子内部のクラックや腐食により端子部の信頼性が著しく低下するという課題があった。   Cracks are likely to occur at the interface between the equiaxed crystal and the chill crystal. In addition, even if cracks do not occur in the initial state, due to the torsional stress of the terminals, the interface peels off and new cracks are generated, and such cracks grow and the terminals break, or the electrolyte inside the battery However, there was a problem of exuding outside through cracks. In addition, even when the electrolyte does not bleed, there is a phenomenon that when the battery is discharged with a large current, abnormal heat is generated at the corroded part or the terminal melts due to this abnormal heat generation. There was a problem that reliability was significantly lowered.

また一方では、極柱をPb−Sn合金に代えてPb−Ca合金を用いることも考えられるが、Pb−Ca合金中のCaと、端子ブッシングに含まれるSbとが化合して極めて腐食されやすい金属間化合物を生成することが知られており、端子ブッシングにPb−Sb合金を用いる限りにおいて、極柱にPb−Ca合金を用いることはできなかった。   On the other hand, it is conceivable to use a Pb—Ca alloy instead of the Pb—Sn alloy for the pole column. However, Ca in the Pb—Ca alloy and Sb contained in the terminal bushing are combined to be extremely corroded. It is known to produce an intermetallic compound, and as long as a Pb—Sb alloy is used for the terminal bushing, a Pb—Ca alloy cannot be used for the pole column.

本発明は、Pb−Sb合金からなる端子ブッシングとSbを含まないPb−Sn合金からなる極柱とを溶接した鉛蓄電池において、これら溶接部で発生するクラックや強度低下を抑制し、端子溶接部の信頼性に優れた鉛蓄電池を提供するものである。   The present invention provides a lead-acid storage battery in which a terminal bushing made of a Pb-Sb alloy and a pole column made of a Pb-Sn alloy not containing Sb are welded. The lead acid battery excellent in the reliability is provided.

前記した課題を解決するために、本発明の請求項1に係る発明は、正極板、負極板およびセパレータで構成した極板群から導出した極柱を電池外装に設けた端子ブッシングに挿通し、この端子ブッシングと前記極柱とを溶接してなる端子を備えた鉛蓄電池であって、極柱はSbを実質上含まないPb−Sn合金からなり、端子ブッシングはPb−Sb合金からなり、極柱の端子ブッシングに対向する部分のうち溶接深さ部分における直径の平均値をRとし、端子ブッシングの前記極柱に対向する部分のうち溶接深さ部分における厚みの平均値をTとしたときに、比率(R/T)を1.25〜4.20としたことを特徴とする鉛蓄電池を示すものである。 In order to solve the above-mentioned problem, the invention according to claim 1 of the present invention is such that a pole column derived from a group of electrode plates composed of a positive electrode plate, a negative electrode plate and a separator is inserted into a terminal bushing provided on the battery exterior, A lead storage battery having a terminal formed by welding the terminal bushing and the pole column, wherein the pole column is made of a Pb-Sn alloy substantially free of Sb, the terminal bushing is made of a Pb-Sb alloy, When the average value of the diameter at the weld depth portion of the portion facing the terminal bushing of the column is R, and the average value of the thickness at the weld depth portion of the portion of the terminal bushing facing the pole column is T The lead storage battery characterized by having a ratio (R / T) of 1.25 to 4.20.

前記した本発明の構成によれば、電池製造時の異種合金間での溶接においても、初期状態でのクラックの発生を抑制することができ、さらに車両側ハーネスとの接続時の極大な捩り応力や、車両走行に伴う振動による連続的な捩り応力に対しても、クラックの発生および腐食の進行を抑制し、十分な機械的強度を有するという顕著な効果を得ることができる。   According to the configuration of the present invention described above, the occurrence of cracks in the initial state can be suppressed even in welding between dissimilar alloys at the time of battery production, and the maximum torsional stress at the time of connection with the vehicle-side harness In addition, even with continuous torsional stress due to vibrations caused by running of the vehicle, it is possible to obtain a remarkable effect of suppressing the generation of cracks and the progress of corrosion and having sufficient mechanical strength.

本発明の実施の形態による鉛蓄電池の構成を説明する。   A configuration of the lead storage battery according to the embodiment of the present invention will be described.

図1は端子溶接前の本発明の鉛蓄電池の端子部を示す図である。テーパ形状を有する端子ブッシング102がインサート成型されたテーパ端子ブッシング一体型の蓋101を準備しておく。   FIG. 1 is a view showing a terminal portion of the lead storage battery of the present invention before terminal welding. A taper terminal bushing integrated lid 101 in which a terminal bushing 102 having a taper shape is insert-molded is prepared.

一方、正極板103、負極板104およびセパレータ105とで構成された極板群106を準備しておく。極板群106からは極柱107が導出されている。このようにして準備した極板群106を電槽108に収納した後に、蓋と接合し同時に端子ブッシング102に極柱107が挿通される。   On the other hand, an electrode plate group 106 including a positive electrode plate 103, a negative electrode plate 104, and a separator 105 is prepared. A pole column 107 is led out from the electrode plate group 106. After the electrode plate group 106 thus prepared is stored in the battery case 108, it is joined to the lid, and at the same time, the electrode pole 107 is inserted into the terminal bushing 102.

このような状態で端子ブッシング102の先端部および極柱107の先端部をバーナーなどにより加熱し溶融した後に再凝固させ溶接して図2に示したような端子201を形成する。その際、端子ブッシング102の先端部分および極柱107の先端部より溶融した鉛合金が、端子ブッシング102と極柱107との間に形成された隙間を埋め、再凝固することにより、極板群106と端子ブッシング102が極柱107で接続され、安定した電流の入出力の可能な端子201を形成する。   In this state, the tip of the terminal bushing 102 and the tip of the pole column 107 are heated and melted by a burner or the like, and then re-solidified and welded to form the terminal 201 as shown in FIG. At that time, the lead alloy melted from the distal end portion of the terminal bushing 102 and the distal end portion of the pole column 107 fills the gap formed between the terminal bushing 102 and the pole column 107 and re-solidifies, thereby reversibly solidifying the electrode plate group. 106 and the terminal bushing 102 are connected by a pole 107 to form a terminal 201 capable of stable current input / output.

本発明では、端子ブッシング102にSbを含むPb−Sb合金を用いる。Pb−Sb合金は溶接後の酸化皮膜の生成が抑制され、その結果、溶接バリの発生が抑制され、外観形状に優れた端子を形成することが可能である。Pb−Sb合金としては、従来から知られている、Sbを2〜5質量%、必要に応じて核化剤としてのAsを0.1〜0.5質量%程度含む合金を用いることができる。   In the present invention, the terminal bushing 102 is made of a Pb—Sb alloy containing Sb. In the Pb—Sb alloy, generation of an oxide film after welding is suppressed, and as a result, generation of weld burrs is suppressed, and a terminal having an excellent appearance shape can be formed. As the Pb-Sb alloy, a conventionally known alloy containing 2 to 5% by mass of Sb and, if necessary, about 0.1 to 0.5% by mass of As as a nucleating agent can be used. .

また、本発明では、極柱107として実質上Sbを含まない、Pb−Sn合金を用いる。なお、Pb合金中のSbは不可避的不純物として微量含まれる場合があり、その場合には50ppm程度以下に制限すべきである。このようなSbの制限は電池の自己放電反応の抑制や、負極接合部における腐食抑制に効果的である。   In the present invention, a Pb—Sn alloy substantially free of Sb is used as the pole column 107. In addition, Sb in the Pb alloy may be included in a trace amount as an inevitable impurity, and in that case, it should be limited to about 50 ppm or less. Such restriction of Sb is effective in suppressing the self-discharge reaction of the battery and suppressing corrosion in the negative electrode junction.

なお、Pb−Sn合金中のSn濃度はSn添加による効果、すなわち耐食性向上および機械的強度の向上効果が見込まれる程度に添加すべきであり、通常、0.2〜3.5質量%の範囲から選択される。   Note that the Sn concentration in the Pb-Sn alloy should be added to such an extent that the effects of Sn addition, that is, the corrosion resistance improvement and the mechanical strength improvement effect are expected, and are usually in the range of 0.2 to 3.5 mass% Selected from.

そして、本発明では、極柱107の端子ブッシング102に対向する部分の直径をRとし、端子ブッシング102の極柱107に対向する部分の厚みをTとしたときに比率(R/T)を1.25〜4.20とする。なお、RおよびTの測定位置は、図2に示した溶接深さdにおける平均値である。 In the present invention, the ratio (R / T) is 1 when the diameter of the portion of the pole column 107 facing the terminal bushing 102 is R and the thickness of the portion of the terminal bushing 102 facing the pole column 107 is T. .25 to 4.20. The measurement position of the R and T, Ru average der in welding depth d shown in FIG.

以降の工程は、常法に従い、鉛蓄電池を組み立てることにより、本発明の鉛蓄電池を得ることができる。   In the subsequent steps, the lead storage battery of the present invention can be obtained by assembling the lead storage battery according to a conventional method.

この比率(R/T)を1.25〜4.20とすることにより、それぞれ異種合金で構成された端子ブッシング102と極柱107との溶接においても、溶接直後の異種合金の溶接界面におけるクラックの発生を抑制でき、さらには、端子ブッシング102に車両側ハーネスとの接続した際の強大な捩り応力や、車両走行に伴う振動による連続的な捩り応力に対しても、クラックの発生とこれを基点とする腐食の進行を抑制することにより、高信頼性の端子部を有した鉛蓄電池を得ることができるという、顕著な効果を得ることができる。   By setting this ratio (R / T) to 1.25 to 4.20, cracks at the welding interface of the dissimilar alloy immediately after welding can be obtained even when welding the terminal bushing 102 and the pole column 107 each made of dissimilar alloy. Furthermore, the generation of cracks and the occurrence of cracks can be prevented against the strong torsional stress when the terminal bushing 102 is connected to the harness on the vehicle side and the continuous torsional stress caused by the vibration caused by running the vehicle. By suppressing the progress of corrosion as a base point, a remarkable effect that a lead-acid battery having a highly reliable terminal portion can be obtained can be obtained.

なお、比率(R/T)を1.25未満とした場合、あるいは4.20を超えて大きくした場合、互いに異種合金で構成された極柱107と端子ブッシング102との溶接界面でクラックが発生しやすく、このクラックを基点として端子内部で腐食が進行したり、端子と車両側ハーネスとの締結時および車両走行時の連続的な捩り応力に対して端子ブッシングが強度不足となるため好ましくない。また、端子内部の端子ブッシング102と極柱107との溶接界面に初期的なクラックが発生していない場合においても、このような捩れ応力によってクラックが新たに発生し、このクラックを基点とした腐食が進行するため、好ましくない。   When the ratio (R / T) is less than 1.25 or greater than 4.20, cracks are generated at the weld interface between the pole column 107 and the terminal bushing 102 that are made of different alloys. This is not preferable because corrosion progresses inside the terminal with this crack as a starting point, and the terminal bushing becomes insufficient in strength against continuous torsional stress when the terminal and the vehicle-side harness are fastened and when the vehicle is running. Further, even when an initial crack is not generated at the weld interface between the terminal bushing 102 and the pole column 107 inside the terminal, a crack is newly generated by such a torsional stress, and corrosion based on the crack is generated. Is not preferable because of progress.

特に、比率(R/T)を4.20を超えて大きくした場合、端子寸法がJIS規格などにより規定されている中では、端子ブッシングの厚みが薄くなり、車両側ハーネスとの締結時に前記した溶接界面にクラックが頻発するため避けるべきである。   In particular, when the ratio (R / T) is increased to exceed 4.20, the terminal bushing is thin when the terminal dimensions are defined by JIS standards, etc. Since cracks frequently occur at the weld interface, it should be avoided.

また、このようなクラックの発生は溶融された異種合金が冷却凝固する際の凝固速度のバランスとその結晶形態の差が影響していると考えられる。   In addition, it is considered that the occurrence of such cracks is influenced by the balance between the solidification rates when the molten dissimilar alloy is cooled and solidified and the difference in crystal form.

図1に示した端子溶接前の本発明の鉛蓄電池の正極および負極端子部において、端子ブッシング合金と極柱合金および比率(R/T)を表1に示すように種々変化させることにより、本発明例および比較例による12V25Ahの始動用鉛蓄電池電池(以下、電池)を作成した。なお、RおよびTは溶接が行われる高さ範囲で同一とした。 In the positive electrode and negative electrode terminal portions of the lead storage battery of the present invention before terminal welding shown in FIG. 1, the terminal bushing alloy, the pole column alloy, and the ratio (R / T) are variously changed as shown in Table 1, so that A 12V25Ah starting lead-acid battery (hereinafter referred to as a battery) according to the invention and the comparative example was prepared. In addition, R and T were made the same in the height range where welding is performed.

Figure 0005002954
Figure 0005002954

表1で示した各試験電池について、実車再現評価試験を行った。試験条件は、(1)車両ハーネスを試験電池の端子に接続した状態で、加15.0Vの定電圧により168時間充電した状態で振動(上下方向の単振動、振幅2.3mm、加速度29.4m/s2)を加え、その後、(2)電池を開放状態で60℃雰囲気下で4週間静置する。そして(3)残存容量(5時間率)を計測した。 Each test battery shown in Table 1 was subjected to an actual vehicle reproduction evaluation test. The test conditions were as follows: (1) The vehicle harness was connected to the test battery terminal and charged for 168 hours at a constant voltage of 15.0 V (vibration (vertical vibration), amplitude 2.3 mm, acceleration 29. 4 m / s 2 ) and then (2) leave the battery open for 4 weeks in an atmosphere at 60 ° C. (3) The remaining capacity (5-hour rate) was measured.

以上の操作を行った後に、正極端子部における端子ブッシングと極柱溶接部の断面観察を行う。断面観察方法としては、端子部をサンプリングし、埋め込み観察用のポリエステル樹脂に埋め込み、図2に示すような断面を切り出す。サンプルをエメリーペーパで粗研磨した後、研磨用アルミナ粉で仕上げ研磨後、エッチング液でエッチングし、実体顕微鏡で観察した。   After performing the above operation, the terminal bushing in the positive electrode terminal portion and the cross-sectional observation of the pole column welded portion are performed. As a cross-sectional observation method, the terminal portion is sampled, embedded in a polyester resin for embedded observation, and a cross section as shown in FIG. 2 is cut out. The sample was roughly polished with emery paper, then finished with polishing alumina powder, etched with an etchant, and observed with a stereomicroscope.

腐食の程度は、進行度にあわせて1(軽微:腐食の痕跡が認められる程度のもの。腐食層の厚みは0.2mm未満)、2(中程度:腐食層の厚みが0.2以上mm〜1.0mm未満のもの)および3(極度に進行:腐食層の厚みが1.0mm以上)とした。   The degree of corrosion is 1 according to the degree of progress (light: corrosion trace is observed. The thickness of the corrosion layer is less than 0.2 mm), 2 (medium: the thickness of the corrosion layer is 0.2 mm or more) To less than 1.0 mm) and 3 (extremely advanced: the thickness of the corrosion layer is 1.0 mm or more).

なお、ブッシング合金としてPb−0.10質量%Ca合金を用いた電池については、試作したものの、端子ブッシングの頂面と側面の境界部に、溶接バリが多発し、さらには、端子表面の平滑性、光沢性に劣り、所望とする端子外観が得られなかったため、実車再現評価試験による断面評価は行わなかった。   A battery using a Pb-0.10 mass% Ca alloy as a bushing alloy was prototyped, but welding burrs frequently occurred at the boundary between the top surface and the side surface of the terminal bushing, and the terminal surface was smooth. Since the desired terminal appearance could not be obtained due to inferior properties and glossiness, the cross-sectional evaluation by the actual vehicle reproduction evaluation test was not performed.

表1に示した電池について実車再現評価試験における端子断面観察結果を表2に示す。   Table 2 shows the results of terminal cross-section observation in the actual vehicle reproduction evaluation test for the batteries shown in Table 1.

Figure 0005002954
Figure 0005002954

表2に示した結果から、本発明の構成によれば、電池製造時の異種合金間での溶接においても、初期状態でのクラックの発生を抑制することができ、さらに車両側ハーネスとの接続時の極大な捩り応力や、車両走行に伴う振動による連続的な捩り応力に対しても、クラックの発生および腐食の進行を抑制し、十分な機械的強度を有するという顕著な効果が得られることがわかる。ちなみに、端子ブッシング側は方向性のない微細な結晶粒が成長し、極柱側では、冷却方向に結晶が成長した端子ブッシングに比較して粗大な結晶粒が成長している。   From the results shown in Table 2, according to the configuration of the present invention, it is possible to suppress the occurrence of cracks in the initial state even in welding between dissimilar alloys at the time of battery production, and to connect to the vehicle-side harness. The remarkable effect of suppressing the occurrence of cracks and the progress of corrosion and having sufficient mechanical strength is also obtained against the maximum torsional stress at the time and the continuous torsional stress due to the vibration caused by running the vehicle. I understand. Incidentally, fine crystal grains having no directivity grow on the terminal bushing side, and coarse crystal grains grow on the pole column side as compared with the terminal bushing in which crystals grow in the cooling direction.

なお、端子ブッシング合金にPb−Sb合金、極柱合金にPb−Ca合金を用いた組み合わせ(電池B1〜B8)は、端子ブッシングと極柱との溶融部で腐食が進行していた。これは溶融部で生成した金属間化合物が腐食を受けたと考えられる。   In addition, in the combination (batteries B1 to B8) using the Pb—Sb alloy as the terminal bushing alloy and the Pb—Ca alloy as the polar column alloy, corrosion progressed at the melted portion between the terminal bushing and the polar column. This is considered that the intermetallic compound produced | generated in the fusion | melting part received corrosion.

また、端子ブッシング合金にPb−Sb合金、極柱合金にPb−Sb合金を用いた組み合わせ(電池C1〜C8)は電池C8を除き、端子ブッシングと極柱との溶融部にクラックは発生せず、良好であった。結晶形態に関しても、端子ブッシングと極柱間に差は殆ど認められず、いずれも明瞭な方向性を有さない、微細な結晶粒が成長していた。このように、溶接性に関しては極めて良好であるものの、電解液に接する極柱合金にSbを含むため、残存容量は初期の52%まで低下していた。   In addition, the combination using the Pb—Sb alloy for the terminal bushing alloy and the Pb—Sb alloy for the pole column alloy (batteries C1 to C8) does not generate cracks in the melted portion between the terminal bushing and the pole column, except for the battery C8. ,It was good. As for the crystal form, there was almost no difference between the terminal bushing and the pole column, and fine crystal grains having no clear directionality grew. As described above, although the weldability is extremely good, the residual capacity was reduced to 52% of the initial value because Sb is contained in the polar column alloy in contact with the electrolytic solution.

なお、電池A1〜A8の残存容量はいずれも80〜85%であった。したがって、電池C1〜C7は、端子ブッシング−極柱との溶融部に関しては、同種合金の組み合わせてであり、優れた溶接性をもつが、極柱からのSbの影響により、自己放電特性に劣るため、高メンテナンスフリー電池や制御弁式鉛蓄電池への適用は好ましいものではなかった。   The remaining capacities of the batteries A1 to A8 were 80 to 85%. Therefore, the batteries C1 to C7 are a combination of the same kind of alloys with respect to the melted portion between the terminal bushing and the pole column, and have excellent weldability, but are inferior in self-discharge characteristics due to the influence of Sb from the pole column. Therefore, application to a high maintenance-free battery or a control valve type lead storage battery is not preferable.

本発明によれば、端子ブッシングと極柱の溶接界面でのクラックの発生や腐食の進行、また端子ブッシングの捩り応力に対する割れを防止することができ、電池製造時の異種合金間での溶接においても、初期状態でのクラックの発生を抑制することができ、さらに車両側ハーネスとの接続時の極大な捩り応力や、車両走行に伴う振動による連続的な捩り応力に対しても、クラックの発生および腐食の進行を抑制し、十分な機械的強度を有するというという顕著な効果が得られることがわかった。   According to the present invention, it is possible to prevent the occurrence of cracks at the welding interface between the terminal bushing and the pole column, the progress of corrosion, and the cracking against the torsional stress of the terminal bushing. However, it is possible to suppress the occurrence of cracks in the initial state and to generate cracks against the maximum torsional stress when connected to the vehicle-side harness and the continuous torsional stress caused by vibrations caused by running of the vehicle. It was also found that the remarkable effect of suppressing the progress of corrosion and having sufficient mechanical strength can be obtained.

なお、上記では、正極端子の断面観察結果についてのべたが、負極端子においても溶接部でのクラックの発生状況は正極と全く同様である。したがって、本発明の構成を正極単独あるいは負極単独で用いても本発明の効果を得ることができるが、電池端子としての信頼性を高める上で正・負極両方に本発明の構成を適用することが好ましいことは言うまでもない。   In the above description, the results of observation of the cross section of the positive electrode terminal have been described, but the occurrence of cracks at the welded portion in the negative electrode terminal is exactly the same as that of the positive electrode. Therefore, even if the configuration of the present invention is used alone for the positive electrode or the negative electrode alone, the effect of the present invention can be obtained, but the configuration of the present invention is applied to both positive and negative electrodes in order to improve the reliability as the battery terminal. It goes without saying that is preferable.

本発明は、端子ブッシングと極柱とを溶接して端子形成する鉛蓄電池において、端子部の信頼性を顕著に向上するものであり、始動用鉛蓄電池をはじめ、特にこのような端子を採用した、各種鉛蓄電池に好適である。   The present invention remarkably improves the reliability of a terminal part in a lead storage battery in which a terminal bushing and a pole column are welded to form a terminal. In particular, such a terminal is adopted in a lead storage battery for starting. Suitable for various lead storage batteries.

本発明の鉛蓄電池の端子溶接前の要部断面を示す図The figure which shows the principal part cross section before the terminal welding of the lead acid battery of this invention. 本発明の鉛蓄電池の端子溶接後の要部断面を示す図The figure which shows the principal part cross section after the terminal welding of the lead acid battery of this invention.

符号の説明Explanation of symbols

101 蓋
102 端子ブッシング
103 正極板
104 負極板
105 セパレータ
106 極板群
107 極柱
108 電槽
201 端子
DESCRIPTION OF SYMBOLS 101 Lid 102 Terminal bushing 103 Positive electrode plate 104 Negative electrode plate 105 Separator 106 Electrode plate group 107 Electrode column 108 Battery case 201 Terminal

Claims (1)

正極板、負極板およびセパレータで構成した極板群から導出した極柱を電池外装に設けた端子ブッシングに挿通し、この端子ブッシングと前記極柱とを溶接してなる端子を備えた鉛蓄電池であって、
前記極柱はSbを実質上含まないPb−Sn合金からなり、
前記端子ブッシングはPb−Sb合金からなり、
前記極柱の前記端子ブッシングに対向する部分のうち溶接深さ部分における直径の平均値をRとし、前記端子ブッシングの前記極柱に対向する部分のうち溶接深さ部分における厚みの平均値をTとしたときに、
比率(R/T)を1.25〜4.20としたことを特徴とする鉛蓄電池。
A lead-acid battery having a terminal formed by inserting a pole column derived from a group of electrode plates composed of a positive electrode plate, a negative electrode plate and a separator into a terminal bushing provided on a battery exterior and welding the terminal bushing and the pole column. There,
The pole column is made of a Pb—Sn alloy substantially free of Sb,
The terminal bushing is made of a Pb—Sb alloy,
The average value of the diameter in the weld depth portion of the portion facing the terminal bushing of the pole column is R, and the average value of the thickness in the weld depth portion of the portion of the terminal bushing facing the pole column is T. And when
The lead acid battery characterized by having a ratio (R / T) of 1.25 to 4.20.
JP2005354413A 2005-12-08 2005-12-08 Lead acid battery Active JP5002954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005354413A JP5002954B2 (en) 2005-12-08 2005-12-08 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005354413A JP5002954B2 (en) 2005-12-08 2005-12-08 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2007157611A JP2007157611A (en) 2007-06-21
JP5002954B2 true JP5002954B2 (en) 2012-08-15

Family

ID=38241696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005354413A Active JP5002954B2 (en) 2005-12-08 2005-12-08 Lead acid battery

Country Status (1)

Country Link
JP (1) JP5002954B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6701998B2 (en) 2002-03-29 2004-03-09 Water Gremlin Company Multiple casting apparatus and method
US7338539B2 (en) 2004-01-02 2008-03-04 Water Gremlin Company Die cast battery terminal and a method of making
US8701743B2 (en) 2004-01-02 2014-04-22 Water Gremlin Company Battery parts and associated systems and methods
ES2746292T3 (en) 2009-04-30 2020-03-05 Water Gremlin Co Battery parts that have sealing and retaining elements
JP5556240B2 (en) * 2010-03-01 2014-07-23 パナソニック株式会社 Lead acid battery
WO2012120768A1 (en) * 2011-03-09 2012-09-13 パナソニック株式会社 Lead acid battery
US9748551B2 (en) 2011-06-29 2017-08-29 Water Gremlin Company Battery parts having retaining and sealing features and associated methods of manufacture and use
US9954214B2 (en) 2013-03-15 2018-04-24 Water Gremlin Company Systems and methods for manufacturing battery parts
BR112020021221A2 (en) 2018-12-07 2021-07-27 Water Gremlin Company battery part, method for making a battery part, and system for making a battery part

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0945309A (en) * 1995-07-31 1997-02-14 Matsushita Electric Ind Co Ltd Lead-acid battery and its manufacture
JPH1145699A (en) * 1997-07-29 1999-02-16 Shin Kobe Electric Mach Co Ltd Terminal forming method for lead acid battery
JP2004228046A (en) * 2003-01-27 2004-08-12 Japan Storage Battery Co Ltd Lead-acid storage battery
JP4622586B2 (en) * 2005-03-04 2011-02-02 パナソニック株式会社 Lead-acid battery manufacturing method and lead-acid battery terminal welding apparatus

Also Published As

Publication number Publication date
JP2007157611A (en) 2007-06-21

Similar Documents

Publication Publication Date Title
JP5002954B2 (en) Lead acid battery
KR101737028B1 (en) Method for producing electrolytic copper foil
WO2003088385A1 (en) Lead-based alloy for lead storage battery, plate for lead storage battery and lead storage battery
JP5542472B2 (en) Battery component, battery pack, and battery pack manufacturing method
JP4160856B2 (en) Lead-based alloy for lead-acid battery and lead-acid battery using the same
WO2002015296A2 (en) Lead-acid batteries and positive plate and alloys therefor
JP5909815B1 (en) Clad lead acid battery, clad positive plate, and current collector for clad positive plate
JP2006210210A (en) Lead-acid battery
JP2005228685A (en) Lead-acid storage battery
JP2008218258A (en) Lead acid battery
JPH09302424A (en) Manufacture of zinc-titanium base alloy, and manganese dry battery
JP5182464B2 (en) Negative electrode current collector for lead acid battery and method for producing lead acid battery using the current collector
JP3413930B2 (en) Manufacturing method of lead storage battery electrode group
JP4599914B2 (en) Method for producing lead-acid battery
JP2002093457A (en) Lead-acid battery
JP2006114416A (en) Lead-acid battery
JP2007157610A (en) Lead-acid battery
JP2000158186A (en) Flux for welding lead storage battery
JP2005310463A (en) Manufacturing method of lead-acid battery
JP2005353499A (en) Method for manufacturing lead-acid storage battery
WO2005045956A1 (en) Lead acid battery and method of manufacturing the same
JP2002008624A (en) Strap for lead-acid battery
JP2010177151A (en) Lead storage battery
Jankowska et al. Assessment of cast-on-strap joints of lead acid batteries
JP5556240B2 (en) Lead acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5002954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350