JP2007157610A - Lead-acid battery - Google Patents

Lead-acid battery Download PDF

Info

Publication number
JP2007157610A
JP2007157610A JP2005354412A JP2005354412A JP2007157610A JP 2007157610 A JP2007157610 A JP 2007157610A JP 2005354412 A JP2005354412 A JP 2005354412A JP 2005354412 A JP2005354412 A JP 2005354412A JP 2007157610 A JP2007157610 A JP 2007157610A
Authority
JP
Japan
Prior art keywords
strap
lead
electrode plate
alloy
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005354412A
Other languages
Japanese (ja)
Inventor
Tomoki Fujimori
智貴 藤森
Toshibumi Yoshimine
俊文 吉嶺
Takehiro Sasaki
健浩 佐々木
Takashi Nakajima
孝 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005354412A priority Critical patent/JP2007157610A/en
Publication of JP2007157610A publication Critical patent/JP2007157610A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To solve such problems that, when pure lead is used in a strap, since the addition of other metals is made unnecessary, cost is advantageous, but a melting point is made higher compared with a Pb-Sn alloy, and when the strap is formed, a plate lug is excessively melted, and a welding failure easily occurs. <P>SOLUTION: A lead-acid battery is equipped with a pure lead strap formed by gathering and welding plate lugs of a positive plate, and the thickness of the plate lug is made 1.5 mm or more. Especially, even if the plate lug which easily causes the welding failure is made of a the Pb-Ca alloy containing 0.02-0.12 mass% Ca or a Pb-Ba alloy containing 0.01-0.05 mass% Ba, the welding failure can be reduced. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、鉛蓄電池に関するものである。   The present invention relates to a lead-acid battery.

一般的な鉛蓄電池は、複数枚の正極板と負極板とセパレータで構成され、同極性の極板耳がストラップにより接続された極板群を有している。ストラップは所定間隔で配列された極板耳間に溶融鉛合金を供給し、凝固させることにより形成する。   A typical lead storage battery includes a plurality of positive electrode plates, a negative electrode plate, and a separator, and has an electrode plate group in which electrode plate ears of the same polarity are connected by a strap. The strap is formed by supplying a molten lead alloy between electrode tabs arranged at predetermined intervals and solidifying it.

正極板および負極板は集電機能を有した格子体と格子体内部に充填された活物質からなり、外部との電気的接続のための極板耳が格子体と一体に設けられている。格子体は機械的強度や耐食性を確保する目的で、CaやSnを添加した、Pb−Sn合金、Pb−Ca合金あるいはPb−Ca−Sn合金が用いられる。また、Sbを添加した、Pb−Sb合金、Pb−Sb−As合金も用いられている。さらには、これらの合金の機械的強度や耐食性をさらに高めるために、0.05〜0.005質量%程度のレベルでAg、Bi、Ba等を添加することが行われている。   The positive electrode plate and the negative electrode plate are made of a grid body having a current collecting function and an active material filled in the grid body, and electrode plate ears for electrical connection with the outside are provided integrally with the grid body. For the lattice body, a Pb—Sn alloy, a Pb—Ca alloy or a Pb—Ca—Sn alloy to which Ca or Sn is added is used for the purpose of ensuring mechanical strength and corrosion resistance. In addition, Pb—Sb alloy and Pb—Sb—As alloy to which Sb is added are also used. Furthermore, in order to further increase the mechanical strength and corrosion resistance of these alloys, Ag, Bi, Ba, etc. are added at a level of about 0.05 to 0.005 mass%.

これらの合金は格子体材料として用いられる他、前述のストラップや極板群間の接続する接続体あるいは極柱や端子部用としても用いられる。   These alloys are used not only as a lattice material, but also as a connecting body for connecting between the above-described straps and electrode plate groups, or for pole columns and terminals.

始動用鉛蓄電池に代表される、液式電池ではストラップに用いる鉛合金として、前述のPb−Sb−As合金が広く用いられている。しかしながら、Pb合金中のSbは減液特性や自己放電特性が低下するため、特に、メンテナンスフリー性を高めた液式電池や制御弁式電池では、Sbを含まない、Pb−Sb合金やPb−Sn−Ca合金が用いられている。   In the liquid battery represented by the start lead-acid battery, the aforementioned Pb—Sb—As alloy is widely used as the lead alloy used for the strap. However, since Sb in the Pb alloy has reduced liquid reduction characteristics and self-discharge characteristics, liquid batteries and control valve batteries with improved maintenance-free characteristics do not contain Sb, Pb—Sb alloys and Pb— Sn-Ca alloy is used.

例えば特許文献1には、格子合金中のCa濃度が0.030〜0.06質量%に低減し、ストラップ形成用足し鉛に1.0〜5.0質量%のSnを含むPb−Sn合金を使用することが提案されている。また、特許文献2には、負極格子にCaを0.025〜0.065質量%、Snを0.25〜1.0質量%含むPb−Ca−Sn合金を用い、ストラップとPbもしくはSnを1.3質量%以下含むPb−Sn合金を用いることにより、ストラップの耐食性に優れた密閉型鉛蓄電池が提案されている。
特開平6−196145号公報 特開2002−175798号公報
For example, Patent Document 1 discloses a Pb—Sn alloy in which the Ca concentration in the lattice alloy is reduced to 0.030 to 0.06 mass%, and the strap forming additional lead contains 1.0 to 5.0 mass% of Sn. It is proposed to use. Patent Document 2 uses a Pb—Ca—Sn alloy containing 0.025 to 0.065% by mass of Ca and 0.25 to 1.0% by mass of Sn in a negative electrode lattice, and a strap and Pb or Sn. By using a Pb—Sn alloy containing 1.3% by mass or less, a sealed lead-acid battery having excellent strap corrosion resistance has been proposed.
JP-A-6-196145 JP 2002-175798 A

特許文献2に示されたように、ストラップに純鉛を用いる場合、他の添加元素が不要となるため、コスト的には極めて有利である。しかしながら、純鉛の融点は格子体に用いられるPb−Ca合金やPb−Sn合金に比較して高く、ストラップを形成する際、極板耳が溶けすぎて溶接不良が発生しやすいという課題があった。   As shown in Patent Document 2, when pure lead is used for the strap, other additive elements are unnecessary, which is extremely advantageous in terms of cost. However, the melting point of pure lead is higher than that of Pb-Ca alloy and Pb-Sn alloy used for the lattice, and there is a problem that when forming the strap, the electrode plate ear is melted too much and poor welding is likely to occur. It was.

上記の課題を解決するために、本発明の請求項1に係る発明は、同極性極板の極板耳を集合溶接して形成したストラップを備えた鉛蓄電池であり、極板耳の厚みが1.5mm以上、かつストラップを純鉛で構成した鉛蓄電池を示すものである。   In order to solve the above problems, the invention according to claim 1 of the present invention is a lead-acid battery including a strap formed by collective welding of electrode plates of the same polarity plate, and the thickness of the electrode plate is 1 shows a lead storage battery having a length of 1.5 mm or more and a strap made of pure lead.

また、本発明の請求項2に係る発明は、請求項1の鉛蓄電池において、極板耳が0.0
2〜0.12質量%のCaを含むPb−Ca合金であることを特徴とする。
The invention according to claim 2 of the present invention is the lead storage battery of claim 1, wherein the electrode plate ear is 0.0.
It is a Pb—Ca alloy containing 2 to 0.12% by mass of Ca.

さらに、本発明の請求項3に係る発明は、請求項1もしくは2の鉛蓄電池において、極板耳が0.01〜0.05質量%のBaを含むPb−Ba合金であることを特徴とする。   Furthermore, the invention according to claim 3 of the present invention is the lead storage battery according to claim 1 or 2, characterized in that the electrode plate ear is a Pb-Ba alloy containing 0.01 to 0.05% by mass of Ba. To do.

本発明の鉛蓄電池は、前記の構成を有し、極板耳の厚みを1.5mm以上とすることにより、純鉛でストラップを形成した場合に発生する、極板耳の溶接過多による溶接不良を顕著に削減でき、さらには純鉛を使用することにより、コスト削減が可能となり、工程不良削減とコスト削減の両面において顕著な効果を得ることができる。   The lead storage battery of the present invention has the above-described configuration, and the welding failure due to excessive welding of the electrode plate ears that occurs when the strap is formed of pure lead by setting the electrode plate ear thickness to 1.5 mm or more. Can be significantly reduced, and by using pure lead, cost can be reduced, and remarkable effects can be obtained in both the reduction of process defects and cost reduction.

本発明の鉛蓄電池は、正極板の極板耳を集合溶接するストラップを純鉛とする。そして、正極板の極板耳の厚みを1.5mm以上とする。なお、ストラップに用いる純鉛は、不可避的な不純物として、100ppm程度を下回るような、電池の自己放電特性や減液特性に悪影響を及ぼさない濃度のSb、Ni、Ag、Bi、S、Cu、Feを含むことは差し支えない。   In the lead storage battery of the present invention, a pure lead is used as a strap for collectively welding the electrode tabs of the positive electrode plate. And the thickness of the electrode plate ear | edge of a positive electrode plate shall be 1.5 mm or more. The pure lead used for the strap is an unavoidable impurity having a concentration of Sb, Ni, Ag, Bi, S, Cu, which is less than about 100 ppm and does not adversely affect the self-discharge characteristics and liquid reduction characteristics of the battery. It may contain Fe.

本発明では、極板耳厚みを1.5mm以上とすれば、ストラップにSn等を合金成分に含む鉛合金に比較して融点の高い純鉛を用いた場合においても、極板耳の溶接過多とこれによる溶接不良を顕著に削減することができる。また、純鉛はPb−Sn等の鉛合金とは異なり、添加元素を含まないため、鉛蓄電池の材料価格をより安価とすることができる。   In the present invention, if the thickness of the electrode plate ear is 1.5 mm or more, even when pure lead having a higher melting point than that of a lead alloy containing Sn or the like as an alloy component is used for the strap, the electrode plate ear is excessively welded. And the welding defect by this can be reduced notably. In addition, unlike lead alloys such as Pb—Sn, pure lead does not contain an additive element, so that the material price of the lead storage battery can be further reduced.

なお、純鉛は、正極に用いた場合の耐食性が負極に用いた場合に比較して高いため、本発明では、純鉛のストラップを正極側に適用する。   Since pure lead has higher corrosion resistance when used for the positive electrode than when used for the negative electrode, a pure lead strap is applied to the positive electrode side in the present invention.

特に、正極格子に強度確保のために添加されたCaやBaのいわゆるアルカリ土類金属の添加は、Sbの添加とは全く異なり、極板耳表面の酸化を促進する傾向にあり、特に溶接性に劣る純鉛を用いる場合、ストラップとの溶接性のばらつきが拡大する。すなわち、同一溶接条件であっても、酸化皮膜が形成された極板耳では未溶接不良となる一方で、酸化皮膜が形成していない極板耳では溶接過多となる場合がある。   In particular, the addition of a so-called alkaline earth metal such as Ca or Ba added to the positive electrode lattice to ensure the strength is completely different from the addition of Sb, and tends to promote oxidation of the electrode plate ear surface, particularly weldability. When pure lead which is inferior to is used, the variation in weldability with the strap increases. That is, even if the welding conditions are the same, the electrode plate ear on which the oxide film is formed is unwelded, whereas the electrode plate ear on which the oxide film is not formed may be excessively welded.

本発明では、正極の極板耳にCaやBaが含まれる場合であっても、その厚みを1.6mm以上とすることにより、溶接過多を抑制できるため、溶接熱量を高めて未溶接不良を抑制することができる。   In the present invention, even if Ca and Ba are contained in the electrode plate ear of the positive electrode, by setting the thickness to 1.6 mm or more, excessive welding can be suppressed. Can be suppressed.

なお、正極の極板耳に含まれるCaもしくはBaは、正極格子体の機械的強度を確保する目的で添加されることから、0.02〜0.12質量%のCaと、0.01〜0.05質量%のBaのいずれか一方、もしくは両方が併用して正極格子合金中に添加される。   In addition, since Ca or Ba contained in the electrode plate ear | edge of a positive electrode is added in order to ensure the mechanical strength of a positive electrode grid body, 0.02-0.12 mass% Ca and 0.01- Either one or both of 0.05% by mass of Ba is added to the positive electrode lattice alloy in combination.

また、本発明の効果は、極板耳厚みに依存するものの、極板耳を含む格子体の製造方法に依存しない。すなわち、鋳造格子体やエキスパンド格子体といった製造方法が変化しても殆ど同様の効果がえられる。   The effect of the present invention depends on the thickness of the electrode plate ear, but does not depend on the method of manufacturing the lattice including the electrode plate ear. That is, almost the same effect can be obtained even if the manufacturing method such as a cast lattice body and an expanded lattice body is changed.

また、ストラップの形成方法として、極板耳に近傍に配置した足し鉛をバーナーで溶融する、いわゆるバーニング方式でも、ストラップの形状を彫りこんだ鋳型に溶融した足し鉛を注ぎ込み、そこに格子の耳をいれた後、足し鉛を冷却・凝固させることによってストラップを形成するキャスト・オン・ストラップと呼ばれる溶接方式でも、本発明の効果を得ることができる。   Also, as a method of forming the strap, the so-called burning method, in which the lead added in the vicinity of the electrode plate ear is melted with a burner, is poured into the mold engraved with the shape of the strap, and the lattice ears are poured there. The effect of the present invention can also be obtained by a welding method called a cast-on-strap in which the strap is formed by cooling and solidifying the added lead after being inserted.

正極ストラップ合金と、極板耳の厚みおよび組成を表1のように組み合わせて正極ストラップを形成した。ストラップ形成はバーニング方式で行い、溶接過多による溶接不良率を計測した。これらの結果を表1に示す。   A positive electrode strap was formed by combining the positive electrode strap alloy and the thickness and composition of the electrode plate ear as shown in Table 1. The strap was formed by the burning method, and the welding failure rate due to excessive welding was measured. These results are shown in Table 1.

Figure 2007157610
Figure 2007157610

表1に示した結果から、特に、ストラップ合金を純鉛とし、極板耳の厚みが0.7mmおよび1.3mmの場合、溶接不良が多く発生しているが、極板耳厚が1.5mm以上の場合には溶接不良率が急激に低下した。また、比較例では、極板耳がCaやBaを含む合金であると溶接不良率が高くなるが、本発明例では、このような合金を極板耳に用いた場合でも溶接不良の発生を顕著に抑制することができる。   From the results shown in Table 1, in particular, when the strap alloy is pure lead and the thickness of the electrode plate ears is 0.7 mm and 1.3 mm, many welding defects occur, but the electrode plate ear thickness is 1. In the case of 5 mm or more, the welding defect rate rapidly decreased. Further, in the comparative example, if the electrode plate ear is an alloy containing Ca or Ba, the welding failure rate increases. However, in the present invention example, even when such an alloy is used for the electrode plate ear, the occurrence of welding failure occurs. It can be remarkably suppressed.

次に、表1のストラップ15とストラップ16から、それぞれ2個を一組として各10
組抽出し、極板耳を切除し、ストラップのみの状態とした。それぞれの組を硫酸濃度40質量%の希硫酸に一部浸漬し、同一のストラップ間(ストラップ15−ストラップ15間、およびストラップ16−ストラップ16間)にそれぞれ1.0Aの電流を72時間通電した。
Next, from the strap 15 and the strap 16 in Table 1, two sets of 10 pieces each are combined.
A pair was extracted and the electrode plate ears were excised, leaving only the strap. Each set was partially immersed in dilute sulfuric acid having a sulfuric acid concentration of 40% by mass, and a current of 1.0 A was applied between the same straps (between the strap 15 and the strap 15 and between the strap 16 and the strap 16) for 72 hours. .

通電前にストラップの質量を計測しておき、通電後、ストラップ表面に形成された2酸化鉛や硫酸鉛の層をマニトール液で除去し、ストラップの質量を計測する。2つのストラップ質量の差分からストラップの質量減を計測した。これらの結果を表2に示す。なお、質量減はストラップ16における質量減に対する百分率の平均値を示した。   Before energization, the strap mass is measured, and after energization, the lead dioxide and lead sulfate layers formed on the strap surface are removed with mannitol liquid, and the strap mass is measured. The weight loss of the strap was measured from the difference between the two strap masses. These results are shown in Table 2. In addition, the mass loss showed the average value of the percentage with respect to the mass loss in the strap 16.

Figure 2007157610
Figure 2007157610

表2に示したように、同一のストラップであっても、正極側と負極側で全く質量減の傾向は異なる。正極側では、純鉛はSnを含むPb合金と比較しても良好な耐食性を示した。なお、正極側でも活物質と接触した状態で通電される格子体では、この傾向は全く反対となり、純鉛の質量減がPb−Sn合金の質量減を上回る。しかしながら、正極側のストラップとして使用するにおいては、純鉛は耐食性に優れている。   As shown in Table 2, even with the same strap, the tendency of weight loss is completely different between the positive electrode side and the negative electrode side. On the positive electrode side, pure lead showed good corrosion resistance even when compared with a Pb alloy containing Sn. Note that this tendency is completely opposite in the grid that is energized while being in contact with the active material on the positive electrode side, and the mass loss of pure lead exceeds the mass loss of the Pb—Sn alloy. However, when used as a strap on the positive electrode side, pure lead is excellent in corrosion resistance.

また、純鉛を負極側とした場合、質量減はPb−2.5質量%Sn合金と比較して増大する傾向にある。本来、負極側では還元反応が進行するため、質量減は発生しないと予測される。ところが、本発明のように、ストラップが対象となる場合、ストラップは制御弁式電池では常に電解液から露出した状態となる。また、液式電池においても減液の進行によりストラップが電解液から露出した状態となる。   Further, when pure lead is used as the negative electrode side, the mass loss tends to increase as compared with the Pb-2.5 mass% Sn alloy. Originally, since the reduction reaction proceeds on the negative electrode side, it is predicted that no mass loss will occur. However, when the strap is an object as in the present invention, the strap is always exposed from the electrolyte in the control valve type battery. Also in the liquid battery, the strap is exposed from the electrolyte due to the progress of liquid reduction.

本試験では、ストラップで起こりうる、ストラップが電解液(希硫酸)から露出した状態での評価試験である。希硫酸から露出したストラップ表面は希硫酸によって濡れた状態であり、かつ大気中の酸素と接触した状態となる。このような雰囲気で、鉛は酸素と化合し、希硫酸と接触することによって、ストラップ表面に硫酸化する。この硫酸鉛は通電によって還元され、鉛化するが、もとのストラップ表面が復元することはなく、硫酸鉛が還元された鉛はストラップから脱落して、質量減が発生すると考えられる。   This test is an evaluation test in the state where the strap is exposed from the electrolyte (dilute sulfuric acid), which can occur in the strap. The strap surface exposed from the dilute sulfuric acid is wet with the dilute sulfuric acid and is in contact with oxygen in the atmosphere. In such an atmosphere, lead combines with oxygen and is sulfated on the strap surface by contact with dilute sulfuric acid. This lead sulfate is reduced to lead by energization, but the original strap surface is not restored, and the lead that has been reduced to lead sulfate is likely to fall off the strap and cause a weight loss.

したがって、表1と表2をあわせて考慮すると、本発明の構成、すなわち、正極ストラップを純鉛とし、かつ正極の極板耳厚を1.5mm以上とすることによって、前に述べた、溶接不良削減効果とコスト削減効果とともに、正極ストラップの腐食抑制効果が得られることがわかる。   Therefore, considering Table 1 and Table 2 together, the construction of the present invention, that is, the positive electrode strap is made of pure lead and the electrode plate thickness of the positive electrode is made 1.5 mm or more, the welding described above. It turns out that the corrosion suppression effect of a positive strap is acquired with the defect reduction effect and the cost reduction effect.

本発明は、制御弁式電池および液式電池を含む様々な鉛蓄電池に有用である。   The present invention is useful for various lead storage batteries including control valve batteries and liquid batteries.

Claims (3)

正極板の極板耳を集合溶接して形成したストラップを備えた鉛蓄電池であり、極板耳の厚みが1.5mm以上、かつストラップを純鉛で構成した鉛蓄電池。 A lead storage battery comprising a strap formed by collectively welding electrode plate ears of a positive electrode plate, wherein the electrode plate ear thickness is 1.5 mm or more and the strap is made of pure lead. 前記極板耳が0.02〜0.12質量%のCaを含むPb−Ca合金であることを特徴とする請求項1に記載の鉛蓄電池。 The lead acid battery according to claim 1, wherein the electrode plate ear is a Pb—Ca alloy containing 0.02 to 0.12 mass% of Ca. 前記極板耳が0.01〜0.05質量%のBaを含むPb−Ba合金であることを特徴とする請求項1もしくは2に記載の鉛蓄電池。 The lead-acid battery according to claim 1 or 2, wherein the electrode plate ear is a Pb-Ba alloy containing 0.01 to 0.05 mass% of Ba.
JP2005354412A 2005-12-08 2005-12-08 Lead-acid battery Withdrawn JP2007157610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005354412A JP2007157610A (en) 2005-12-08 2005-12-08 Lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005354412A JP2007157610A (en) 2005-12-08 2005-12-08 Lead-acid battery

Publications (1)

Publication Number Publication Date
JP2007157610A true JP2007157610A (en) 2007-06-21

Family

ID=38241695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005354412A Withdrawn JP2007157610A (en) 2005-12-08 2005-12-08 Lead-acid battery

Country Status (1)

Country Link
JP (1) JP2007157610A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009064720A (en) * 2007-09-07 2009-03-26 Gs Yuasa Corporation:Kk Lead acid battery
JP2015028901A (en) * 2012-12-18 2015-02-12 パナソニックIpマネジメント株式会社 Lead battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009064720A (en) * 2007-09-07 2009-03-26 Gs Yuasa Corporation:Kk Lead acid battery
JP2015028901A (en) * 2012-12-18 2015-02-12 パナソニックIpマネジメント株式会社 Lead battery

Similar Documents

Publication Publication Date Title
KR20180136547A (en) Lead-based alloys and related processes and products
JP4160856B2 (en) Lead-based alloy for lead-acid battery and lead-acid battery using the same
JP5061451B2 (en) Anode current collector for lead acid battery
JP6572918B2 (en) Lead storage battery and electrode current collector for lead storage battery
WO2006049295A1 (en) Negative electrode current collector for lead storage battery and lead storage battery including the same
JP4646572B2 (en) Positive electrode plate for sealed lead-acid battery and sealed lead-acid battery using the positive electrode plate
JP2002175798A (en) Sealed lead-acid battery
JP5050309B2 (en) Lead acid battery
JP2007157610A (en) Lead-acid battery
JP5428645B2 (en) Lead alloys and lead-acid batteries for lead-acid batteries
JP5772497B2 (en) Lead acid battery
JP6455105B2 (en) Lead acid battery
JP4896392B2 (en) Lead acid battery
JP2005228685A (en) Lead-acid storage battery
JP2008218258A (en) Lead acid battery
JP5673194B2 (en) Positive electrode lattice substrate, electrode plate using the positive electrode lattice substrate, and lead-acid battery using the electrode plate
JP2008146960A (en) Lead-acid battery
JP6825603B2 (en) Ni material for batteries, negative electrode and battery case materials
JP4793518B2 (en) Lead acid battery
JP4423837B2 (en) Rolled lead alloy for storage battery and lead storage battery using the same
JP2006114416A (en) Lead-acid battery
JP2003323881A (en) Control valve lead-acid battery
JP2008159510A (en) Lead alloy grid and lead storage battery using the same
JP2006196283A (en) Lead-acid battery
JP5236228B2 (en) Lead alloy for lead-acid battery and lead-acid battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081201

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091127

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20101126