JP5002864B2 - Oxide photocatalyst materials using organometallic compounds and their applications - Google Patents

Oxide photocatalyst materials using organometallic compounds and their applications Download PDF

Info

Publication number
JP5002864B2
JP5002864B2 JP2001058917A JP2001058917A JP5002864B2 JP 5002864 B2 JP5002864 B2 JP 5002864B2 JP 2001058917 A JP2001058917 A JP 2001058917A JP 2001058917 A JP2001058917 A JP 2001058917A JP 5002864 B2 JP5002864 B2 JP 5002864B2
Authority
JP
Japan
Prior art keywords
crystal
oxide
oxide photocatalyst
titanium oxide
photocatalyst material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001058917A
Other languages
Japanese (ja)
Other versions
JP2002253975A (en
Inventor
章 長谷川
敏樹 赤澤
友宇子 中村
武志 工藤
東 類家
知成 富沢
正司 佐々木
毅 天間
昌彦 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Original Assignee
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2001058917A priority Critical patent/JP5002864B2/en
Publication of JP2002253975A publication Critical patent/JP2002253975A/en
Application granted granted Critical
Publication of JP5002864B2 publication Critical patent/JP5002864B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は酸化物光触媒体において、特に高活性な光触媒機能が得られる酸化物光触媒材料とその応用品に関するものである。
【0002】
【従来の技術】
酸化チタンに代表される酸化物光触媒はそのバンドギャップ以上のエネルギーを持つ波長の光を照射すると、光励起により光触媒機能を発現することが従来から知られている。その発現機構は、光励起により伝導帯に電子を生じ、価電子帯に正孔を生じることに起因し、電子の強い還元作用、正孔の強い酸化作用により、光触媒に接触してくる有機物や窒素酸化物を水や炭酸ガスなどに分解するものであり、防汚、防臭、抗菌機能等を有している。
【0003】
このような酸化物光触媒の防汚、防臭、抗菌機能等を利用した環境浄化方法,装置が現在注目されている。つまり昨今の水質汚染、大気汚染等の環境汚染問題に起因するものである。このような実情において、環境浄化方法の高性能化かつ高効率化を図るためには、酸化物光触媒自体の光触媒機能の高活性化が求められている。
【0004】
従来においては酸化物光触媒材料は通常粉末状で用いられており、取り扱いが非常に難しく、環境浄化装置に組み込むのは困難であった。粉末状の酸化物光触媒を固定化するために、粉末状の酸化物光触媒を有機バインダーと混合して基材上に塗布し、それを常温下または加熱して固定させることも考えられるが、この方法では有機物が酸化物光触媒表面の一部または大部分を覆ってしまうため、光触媒機能は粉末そのものに比べ、著しく不活性化するという欠点があった。さらに光触媒機能によって有機物が分解されてしまうため、被膜強度が劣化し、粉末が次第に脱落してしまうという耐久性に係るもう一つの大きな問題もあった。
光触媒機能は、光触媒体が表面に露出して初めて機能を発揮するものであり、無機バインダーで粉末状の酸化物光触媒を固定化した場合、粉末の脱落という欠点は克服されるが、酸化物光触媒の一部をバインダーが覆うため、光触媒機能に有効な表面の面積が減少し、光触媒機能が著しく低下してしまうという問題は改善されることはない。
【0005】
上記した粉末状酸化物光触媒の問題点を解決するものとして、特開平8−266910号公報,特開平9−192498号公報等に開示される真空蒸着法、特開平8−309204号公報,特開平11−12720号公報等に開示されるスパッタリング法、特開平7−100378号公報,特開平10−180118号公報等に開示されるゾル−ゲル法などが提案されている。
これらの先行技術により、上記した粉末状酸化物の問題点は解決され、良好な光触媒機能が得られているが、高活性化という点からは満足のいくものではない。
【0006】
また上記したように、光触媒機能は光が照射される光触媒体表面で起こるものである。このため、光触媒機能の高活性化を目的に光触媒体の表面状態を制御する技術、あるいは光触媒体表層部の結晶を制御する技術が従来から知られている。光触媒体の表面状態を制御する技術として特開平9―57912号公報、特開平10−36144号公報、特開平10―57817号公報および特開平10―231146号公報等が開示されている。これら先行技術に開示される基本構成は、ガラス基板の表面に直接あるいはアルカリ遮断用の下地膜を介して光触媒としての酸化チタン層が形成され、この酸化チタン層の表面に酸化ケイ素を形成したものである。
【0007】
これら先行技術は酸化ケイ素膜を多孔質に形成したり、酸化チタン膜やガラス基板に微細加工を施すことにより表面上に凹凸を設けることで、光触媒機能を高める工夫をしている。
すなわち、表面に微細な凹凸を形成することで光触媒体が露出する表面の面積が増大し光触媒機能が向上するというものであるが、必ずしも顕著な向上は見られない。また基板の加工、膜の加工、下地層の挿入などコスト面でも問題がある。
【0008】
光触媒体表層部を構成する結晶を制御する技術として特開平2000―288403号公報が開示されている。この先行技術に開示される基本構成は、酸化チタンがアナターゼ型の結晶であり、その表層部に存在する酸化チタンの結晶粒のうち、30%以上の結晶粒の形状が、楕円形又は半楕円形であることを特徴としたものである。そして楕円形又は半楕円形の酸化チタンの結晶を形成することで高活性な光触媒機能が得られるというものである。これは、結晶粒を楕円形又は半楕円形にすることで、光触媒体の露出する表面の面積が増加し、光触媒機能が向上するというものであるが、必ずしも顕著な向上は見られない。
【0009】
【発明が解決しようとする課題】
上述した従来技術においては、各種作製方法により形成された酸化物光触媒、また光触媒体表面状態の制御および光触媒体の表面層部を構成する結晶を制御することで形成した酸化物光触媒はそれぞれ良好な光触媒機能を示しているが、更に高活性な光触媒機能を有する酸化物光触媒が求められている。
【0010】
本願発明者等はこのような従来事情に鑑み、結晶形状の制御による酸化物光触媒の高活性化に主眼を置き、CVD法、PVD法等の各種製法ならびに有機金属化合物を用いたゾル−ゲル法により酸化物光触媒の作製について鋭意検討した。
その結果、CVD法またはPVD法などの各種製法より作製した結晶核を有機金属化合物から成るゾル溶液中にいれ、または前記結晶核にゾル溶液を塗布し、固化、熱処理して酸化チタン結晶を前記結晶核より成長させることにより、その結晶核より成長させた酸化チタン結晶の結晶形状が柱状結晶を成すことで高活性な光触媒機能が得られることを知見し、本発明を完成するに至った。
【0011】
【課題を解決するための手段】
すなわち本発明は請求項1記載のように、タンジオールを含む混合液に有機金属化合物を滴下して調整したゾル溶液に結晶核を入れ基板上に塗布し、これを固化、熱処理して、又は基板上に形成した結晶核上に上記ゾル溶液を塗布し、これを固化、熱処理して、前記結晶核より柱状形状の酸化チタン結晶を3次元的に露出して成長させたことを特徴とする酸化物光触媒材料である。
【0012】
以下、本発明について具体的に説明する。
本発明の酸化物光触媒材料は、CVD法、PVD法等の各種製法ならびに有機金属化合物を用いたゾル−ゲル法により酸化物光触媒を作製したものであり、タンジオールを含む混合液に有機金属化合物を滴下して調整したゾル溶液に結晶核を入れ基板上に塗布し、これを固化、熱処理して、又は基板上に形成した結晶核上に上記ゾル溶液を塗布し、これを固化、熱処理して、前記結晶核より柱状形状の酸化チタン結晶を3次元的に露出して成長させたことを特徴とする。ここで、固化とは単に熱乾燥させても、他の熱成分を加えても、水を加えてゲル化しても良い。
【0013】
上記本発明の酸化物光触媒において、ゾル溶液中に投入する結晶核またはゾル溶液を塗布する結晶核は、紛体、単結晶、多結晶体、セラミックス、結晶化ガラス、金属の熱酸化膜、陽極酸化膜のいずれでも良い。
また、結晶核として、CVD法、PVD法で作製した結晶膜を用いてもかまわない。
また、これらの酸化チタン結晶を成長させる結晶核は、その結晶核物質の種類にかかわらず、その大きさは1nm〜350nmであると良い。
【0014】
上述したように本発明は、有機金属化合物から成るゾル溶液を固化、熱処理するにより結晶核から酸化チタン結晶を成長させることを特徴としている。該結晶核より成長させた酸化チタン結晶の形状は柱状であり、少なくとも結晶核上に一つ以上の柱状結晶を成長させること、該結晶核とその上に成長させる柱状結晶が同一方位に成長することを特徴としている。
本発明において、酸化チタン結晶の形状が柱状とは、角柱状、円柱状、棒状等を含み、また該柱状結晶は鉛直方向に真っ直ぐに伸びるもの、傾斜状に伸びるもの、湾曲しながら伸びるもの、枝状に分岐して伸びるもの、柱状結晶が複数本成長する途中で融合したもの等を含む。
【0015】
酸化物光触媒において、上記の結晶形状、すなわち有機金属化合物のゾル溶液中にCVD法、PVD法等の各種製法に作製した結晶核を入れ、又は該結晶核にゾル溶液を塗布し、固化、熱処理して柱状結晶を成す酸化チタン結晶を該結晶核より成長させることにより光触媒機能の高活性化が図れる。
【0016】
また本発明に係る酸化物光触媒材料を使用して清浄機能、抗菌機能、脱臭機能、防汚機能等を発揮する各種応用品を提供することができる。該応用品の具体例としては、例えば空気清浄器,脱臭機,冷暖房機等の各種空調機器あるいは清水器や水質浄化機器などの環境浄化装置といった各種製品をあげることができる。
【0017】
【発明の実施の形態】
以下、図面を参照しながら本発明についてさらに詳細に説明する。
図1(a)、(b)は本発明に係る酸化物光触媒材料の実施形態の一例の模式図を示す。図1(a)は、ガラス,金属または網目状構造を有する繊維等の各種の基板1上に、CVD法またはPVD法により作製した結晶膜を結晶核2として用いた場合の酸化チタン結晶(柱状結晶)3の成長模式図、図1(b)は、結晶核2’として紛体を用いた場合の酸化チタン結晶(柱状結晶)3の成長模式図である。図2は本発明に係る酸化物光触媒の実施形態の一例の電子顕微鏡写真を示す。
本発明に係る酸化物光触媒材料は上述したように、高活性な光触媒機能を示す酸化物光触媒作製という技術課題を解決するべく、結晶形状の制御による酸化物光触媒の高活性化に主眼を置き、そしてCVD法、PVD法等の各種製法ならびに有機金属化合物を用いたゾル−ゲル法により酸化物光触媒の作製に着目し、その結果、有機金属化合物のゾル溶液中に結晶核を入れ、又は結晶核にゾル溶液を塗布し、固化、熱処理して結晶形状が柱状を成す酸化チタン結晶を該結晶核より成長させることで光触媒機能の高活性化を実現したものである。
【0018】
図1(a)、(b)に示すように、本発明の酸化物光触媒は、基板1上の結晶核2から少なくとも一つ以上の柱状の酸化チタン結晶(柱状結晶)3を成長させることを特徴としている。
また、図2の電子顕微鏡写真から、柱状の酸化チタン結晶が形成されているのが明確に確認できる。ここで見られるように、柱状結晶とは角柱、円柱状等の結晶形状、または枝分かれした樹枝状の結晶形状、柱状結晶が複数本成長する途中で融合した形状などを含んでいる。
【0019】
結晶核2から成長させる酸化チタン結晶3は有機金属化合物から成るゾル溶液により作製したものである。
通常、結晶核と成る物質が存在しない状態で、有機金属化合物から成るゾル溶液を基板上に塗布し、固化、熱処理を施した場合、形成される酸化チタン結晶は粒状である。
これに対して本発明の酸化物光触媒は基板1に対して縦方向に成長した特異な結晶形状すなわち柱状結晶を形成する。酸化チタン結晶作製法におけるゾル溶液の固化過程で結晶化させた場合には、その時点で既に柱状結晶が形成されており、後の熱処理過程で残留有機物の蒸発とともに熱処理前の結晶形状と相似形の柱状酸化チタン結晶3が形成されることは確認済みである。
また、ゾル溶液の固化過程でゲル化させ、熱処理を施し、有機物と逃散させた場合についても柱状の酸化チタン結晶は形成されるが、その光触媒機能はあまり良くない。したがって、ゾル溶液の固化過程で結晶化させることが望ましい。
結晶核から成長する結晶形状が柱状を成す理由については明らかではないが、酸化チタン結晶の成長過程において、結晶成長を促す種結晶すなわち核となる結晶の存在の有無が形成される酸化チタンの結晶形状に大きく影響することは明らかである。また、このことから結晶核2上に形成される酸化チタン結晶3が、ほとんど結晶核2の方位と同方向に成長していることも観察されている。ただし、頻度は少ないが極まれに結晶核と異なった方位に成長するものもあることは確認済みである。
【0020】
光触媒機能は光触媒体表面で起こるということは上述のとおりである。本発明で得られた柱状結晶3は酸化物光触媒材料A表面において無数存在し、図1(a)に示すように基板1に対して大部分が縦方向に形成されているため、粒状の結晶と比較して、光触媒機能に寄与する光触媒体表面の露出する面積が増大することは明らかである。このような理由から光触媒機能が高活性化すると考えられる。また、同様の理由により基板1に対し、横方向に成長した柱状結晶が多く存在すると、その割合で光触媒機能が低下することもわかっている。
【0021】
酸化チタン結晶3を成長させる結晶核2は、特異な結晶形状を形成するために大きな影響を及ぼしていることは上述のとおりである。この結晶核2の種類は単結晶、多結晶体、紛体、セラミックス、金属の熱酸化膜、陽極酸化膜のいずれでもかまわない。ここに挙げる結晶核を有機金属化合物のゾル溶液に入れ、またはこの結晶核に有機金属化合物のゾル溶液を塗布し、固化、熱処理した場合についても、結晶核から柱状結晶を成す酸化チタン結晶が得られることは実証済みである。
【0022】
また、CVD法またはPVD法により基板1上に結晶膜すなわち結晶核を作製し、上記と同様の方法で酸化チタン結晶を成長させても、結晶核から柱状結晶を成す酸化チタン結晶が得られることは実証済みである。
【0023】
酸化チタン結晶3を成長させる結晶核2の大きさは以下の理由により、1nm〜350nmに限定すると良い。
すなわち、結晶核が1nmより小さいと結晶核の微細化により、結晶核上に成長する酸化チタン結晶がその影響を受けずに成長することが考えられる。また結晶核が350nmより大きくなっても、結晶核の粗大化によって同様のことが考えられる。すなわち、酸化チタン結晶が柱状結晶を成すために有効な結晶核の大きさは1nm〜350nmであることがいえる。
【0024】
上述のような結晶の形状、すなわち有機金属化合物のゾル溶液を固化、熱処理し、結晶核から柱状結晶を形成することによって、高活性な光触媒機能を発現する酸化物光触媒を得ることができる。そして、本発明の酸化物光触媒材料は紫外線光源と共に筺体に組み込み空気を循環することにより臭い成分、有害成分を分解し、空気の清浄を効率的に行い得ることは確認済みである。また、その他にも水の浄化、脱臭、抗菌、殺菌を目的とする環境浄化装置に応用ができることも実験により確認済みである。
【0025】
【実施例】
以下、実施例について説明する。
中性洗剤、イソプロピルアルコール、純水で洗浄処理を施した無アルカリガラスを基板1として用い、その基板1表面において、有機金属化合物から成るゾル溶液中に結晶核を入れ、または結晶核に有機金属化合物から成るゾル溶液を塗布し、固化、熱処理を施すことにより、結晶核2上に酸化チタン結晶3を形成した。
【0026】
有機金属化合物から成るゾル溶液の調整方法としては、ブタンジオール:45g、H2O:0.6g、硝酸:0.4gを混合し、この溶液にチタニウムテトライソプロポキシド(以下TTIPと記す)5gを攪拌しながら滴下し、その後4時間常温にて攪拌した。
【0027】
このようにして得られたゾル溶液に各種作製法により作製した結晶核を入れ、または各種作製法により作製した結晶核に前記のようにして得られたゾル溶液を塗布し、固化、熱処理を施すことにより、結晶核上に酸化チタン結晶を形成した。固化は乾燥機中で到達温度150℃、保持時間2時間の条件で行った。熱処理は電気炉中で昇温速度10℃/min、到達温度550℃、保持時間2時間の条件で行った。
【0028】
このようにして得られた酸化物光触媒材料を試料とし、光触媒機能の評価として、有害物質であるアセトアルデヒドの分解試験を実施した。
試験方法は、先ず作製した酸化物光触媒材料を20リットルのガラス製容器に入れ、容器内を人工空気で置換したのち、アセトアルデヒドガスを20ppmとなるように容器内に注入する。次に、ブラックライトで酸化物光触媒を照射し、アセトアルデヒド濃度が1ppm以下になるまでの時間をガスモニターにて測定した。
【0029】
また、上記試料における酸化物光触媒の結晶構造解析をX線回折により行った。酸化物光触媒の表面観察を走査型電子顕微鏡(SEM)にて行った。
表1に、実施例と比較例における実験条件を示す。
【0030】
【表1】

Figure 0005002864
【0031】
実施例1は酸化チタン粉末を結晶核として用いた。上記のようにして調整したゾル溶液中にこの結晶核を入れ、または前記ゾル溶液をこの結晶核に塗布し、上記のようにして酸化チタン結晶を成長させた。
酸化チタン粉末の調整方法としては、TTIP:7g(0.025mol)を、1-プロパノール50mlに溶かした溶液を常温で蒸留水にかき混ぜながらゆっくり滴下し、滴下後1時間攪拌し、吸引ろ過を施して110℃で一昼夜乾燥した。乾燥したものを乳鉢で粉砕し600℃で2時間、電気炉により熱処理を施した。
【0032】
実施例2は、結晶核としてスパッタリング法により作製した酸化チタン結晶膜を用い、この結晶膜上にゾル溶液を塗布して酸化チタン結晶を成長させた。
スパッタリング法による結晶膜の作製条件としては、使用ターゲット純度99.995%以上の金属チタン、印加電力1500W、スパッタ圧力10.0Pa、アルゴンと酸素の流量比20sccm対20sccm、基板温度200〜300℃、成膜時間3時間である。このようなスパッタリング法により得られた結晶膜は表面観察により、大きさ10nm〜60nmの結晶から構成されていることが確認された。
【0033】
実施例3は、結晶核として噴霧熱分解法により作製した酸化チタン結晶膜を用い、この結晶膜上にゾル溶液を塗布して酸化チタン結晶を成長させた。
噴霧熱分解法による酸化チタン結晶膜の作製方法として、原料溶液の調整はチタンテトライソプロポキシド(TTIP)にアセチルアセトン(Hacac)をmol比(Hacac/TTIP)1.0で添加し、イソプロピルアルコールで希釈、攪拌した。成膜条件は、噴霧圧力0.3Mpa、噴霧量1.0ml/sec、噴霧時間0.5min/回、基板温度450℃、噴霧回数200回で行った。噴霧熱分解法により作製した酸化チタン結晶膜は表面観察により、大きさ30nm〜100nmの結晶から構成されていることが確認された。
【0034】
比較例1は、結晶核のない状態でゾル溶液をガラス基板上に塗布し、酸化チタン結晶を作製したものである。
【0035】
比較例2は、スパッタリング法により酸化チタン結晶膜を作製したものであり、作製後にゾル溶液を担持しないものである。スパッタリング法による結晶膜の作製条件としては、使用ターゲット純度99.995%以上の金属チタン、印加電力1500W、スパッタ圧力10.0Pa、アルゴンと酸素の流量比20sccm対20sccm、基板温度200〜300℃、成膜時間3時間である。
【0036】
比較例3は、噴霧熱分解法により酸化チタン結晶膜を作製したものであり、作製後にゾル溶液を担持しないものである。噴霧熱分解法による酸化チタン結晶膜の作製方法として、原料溶液の調整はチタンテトライソプロポキシド(TTIP)にアセチルアセトン(Hacac)をmol比(Hacac/TTIP)1.0で添加し、イソプロピルアルコールで希釈、攪拌した。成膜条件は、噴霧圧力0.3Mpa、噴霧量1.0ml/sec、噴霧時間0.5min/回、基板温度450℃、噴霧回数200回で行った。
【0037】
これら実施例、比較例における実験結果を表2に示す。
【0038】
【表2】
Figure 0005002864
【0039】
表2の結果から以下のことが分かる。
結晶核のない状態でゾル溶液をガラス基板上に塗布し、酸化チタン結晶を作製した比較例1では、結晶構造は光触媒機能に有効なアナターゼ型を有しており、アセトアルデヒドの分解時間は60minで比較的良好な光触媒機能を示した。
【0040】
スパッタリング法により酸化チタン結晶膜を作製し、作製後にゾル溶液を担持しない比較例2では、結晶構造は光触媒機能に有効なアナターゼ型を有しており、アセトアルデヒドの分解時間は45minで比較的良好な光触媒機能を示した。
【0041】
噴霧熱分解法により酸化チタン結晶膜を作製し、作製後にゾル溶液を担持しない比較例3では、結晶構造は光触媒機能に有効なアナターゼ型を有しているが、アセトアルデヒドの分解時間は180minであって良好な光触媒機能とはいえない。
【0042】
これに対し、実施例1〜3はそれぞれ酸化チタン粉末、スパッタリング法による結晶膜、噴霧熱分解法による結晶膜を結晶核として、ゾル溶液を担持したものである。これら実施例1〜3では、結晶核から柱状結晶が形成され、光触媒機能も比較例1〜3にくらべ顕著な向上を示している。
以下に、実施例1〜3の実験結果の詳細を記す。
【0043】
実施例1は、ゾル溶液中に酸化チタン粉末から成る結晶核を入れ基板上に塗布し、固化、熱処理を施すことにより該結晶核から酸化チタン結晶を成長させたものである。結晶構造は光触媒機能に有効なアナターゼ型を有しており、表面観察結果より、結晶核から柱状結晶が成長している様子が確認された。そしてアセトアルデヒドの分解時間は16minで非常に高活性な光触媒機能を示した。
【0044】
実施例2は、結晶核としてスパッタリング法により作製した酸化チタン結晶膜を用いたもので、ゾル溶液をこの結晶膜に塗布し、固化、熱処理を施すことにより該結晶核から酸化チタン結晶を成長させたものである。結晶構造は光触媒機能に有効なアナターゼ型を有しており、表面観察結果より結晶核から柱状結晶が成長している様子が確認された。そしてアセトアルデヒドの分解時間は15minで非常に高活性な光触媒機能を示した。
【0045】
実施例3は、結晶核として噴霧熱分解法により作製した酸化チタン結晶膜を用いたもので、ゾル溶液をこの結晶膜に塗布し、固化、熱処理を施すことにより該結晶核から酸化チタン結晶を成長させたものである。結晶構造は光触媒機能に有効なアナターゼ型を有しており、表面観察結果より、結晶核から柱状結晶が成長している様子が確認された。そしてアセトアルデヒドの分解時間は16minで非常に高活性な光触媒機能を示した。
【0046】
以上の実施例1〜3より、高活性な光触媒機能を発現する為には、酸化物光触媒の結晶が柱状結晶から構成されていることが有効であることが確認された。
そしてこの柱状結晶は、結晶核に有機金属化合物のゾル溶液を担持し、固化、熱処理することにより形成されることも確認された。
なお、上記実施例1〜3では、結晶核として酸化チタン粉末、スパッタリング法による結晶膜、噴霧熱分解法による結晶膜を例に挙げたが、これ以外の結晶核として単結晶、多結晶体、セラミックス、金属の熱酸化膜、陽極酸化膜、結晶化ガラスを用いた場合でも、結晶核から柱状結晶が形成され、高活性な光触媒機能を示すことは、実験により確認済みである。
また、上記実施例1〜3では、結晶核の形成およびゾル溶液の担持に用いた基板として無アルカリガラスを例に挙げたが、これ以外の基板として、織布、スポンジ様物体、または化学的腐食、機械加工等により多孔質とした物体を基板として用いた場合でも同様の結果が得られることは、実験により確認済みである。
【0047】
【発明の効果】
以上説明したように本発明の酸化物光触媒は、結晶核より成長させた酸化チタン結晶の結晶形状が柱状を成すことを特徴とし、該柱状結晶により酸化物光触媒薄膜を構成することで、高活性な光触媒機能が得られる。
また、本発明の酸化物光触媒によれば、紫外線光源と共に筺体に組み込み空気を循環することにより臭い成分、有害成分を分解し、空気の清浄を効率的に行い得る。
また、本発明の酸化物光触媒は柱状結晶の集合体であるため、微粒子や細菌の捕獲効果も大である。
さらに、本発明に係る酸化物光触媒材料は、結晶核を形成する基材となる基板に、花粉等の大型アレルギー物質と同程度の大きさの穴やみぞをつけておくことにより、上記大型アレルギー物質の捕獲効果を向上することができる等、多くの効果を奏する。
また本発明に係る酸化物光触媒材料は、上記したように清浄機能、抗菌機能、脱臭機能、防汚機能等において顕著な効果を有し、空気清浄機,脱臭機,冷暖房機等の各種空調機器あるいは清水器や水質浄化機器などの環境浄化装置に応用することが可能である。
【図面の簡単な説明】
【図1】本発明に係る酸化物光触媒材料の模式図で、(a)はCVD法またはPVD法により作製した結晶膜を結晶核として用いた例、(b)は結晶核として粉体を用いた例をそれぞれ示す。
【図2】本発明に係る酸化物光触媒材料の一例の電子顕微鏡写真。
【図3】図2の電子顕微鏡写真の解像度を粗くした電子顕微鏡写真。
【符号の説明】
A:酸化物光触媒材料
1:基板
2:結晶核
3:酸化チタン結晶(柱状結晶)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an oxide photocatalyst material, and particularly to an oxide photocatalyst material capable of obtaining a highly active photocatalytic function and its application.
[0002]
[Prior art]
It has been conventionally known that an oxide photocatalyst typified by titanium oxide exhibits a photocatalytic function by photoexcitation when irradiated with light having a wavelength having energy larger than the band gap. Its manifestation mechanism is due to the generation of electrons in the conduction band by photoexcitation and the generation of holes in the valence band. Due to the strong reduction action of electrons and the strong oxidation action of holes, organic substances and nitrogen that come into contact with the photocatalyst It decomposes oxides into water, carbon dioxide, etc., and has antifouling, deodorizing, antibacterial functions and the like.
[0003]
Attention is now being focused on environmental purification methods and devices utilizing such antifouling, deodorizing, and antibacterial functions of oxide photocatalysts. In other words, it is caused by recent environmental pollution problems such as water pollution and air pollution. Under such circumstances, in order to improve the performance and efficiency of the environmental purification method, it is required to increase the photocatalytic function of the oxide photocatalyst itself.
[0004]
Conventionally, an oxide photocatalyst material is usually used in a powder form, and it is very difficult to handle, and it is difficult to incorporate it into an environmental purification apparatus. In order to immobilize the powdered oxide photocatalyst, it is conceivable to mix the powdered oxide photocatalyst with an organic binder and apply it on a substrate and fix it at room temperature or by heating. In the method, since organic substances cover part or most of the surface of the oxide photocatalyst, the photocatalytic function is significantly inactivated compared to the powder itself. Furthermore, since organic substances are decomposed by the photocatalytic function, there is another serious problem related to durability that the coating strength is deteriorated and the powder gradually falls off.
The photocatalyst function is exhibited only when the photocatalyst is exposed on the surface. When the powdered oxide photocatalyst is immobilized with an inorganic binder, the disadvantage of falling off the powder is overcome, but the oxide photocatalyst Since the binder covers a part of the surface area, the area of the surface effective for the photocatalytic function is reduced, and the problem that the photocatalytic function is remarkably deteriorated is not improved.
[0005]
In order to solve the above problems of the powdered oxide photocatalyst, the vacuum evaporation method disclosed in JP-A-8-266910, JP-A-9-192498, etc., JP-A-8-309204, A sputtering method disclosed in Japanese Patent Application Laid-Open No. 11-12720 and the like, and a sol-gel method disclosed in Japanese Patent Application Laid-Open Nos. 7-100378, 10-180118, and the like have been proposed.
These prior arts have solved the problems of the above-mentioned powdered oxide and have obtained a good photocatalytic function, but are not satisfactory in terms of high activation.
[0006]
As described above, the photocatalytic function occurs on the surface of the photocatalyst body irradiated with light. For this reason, a technique for controlling the surface state of the photocatalyst for the purpose of increasing the photocatalytic function or a technique for controlling the crystal of the surface part of the photocatalyst is known. JP-A-9-57912, JP-A-10-36144, JP-A-10-57817, JP-A-10-231146, and the like are disclosed as techniques for controlling the surface state of the photocatalyst. The basic structure disclosed in these prior arts is that a titanium oxide layer as a photocatalyst is formed directly on the surface of a glass substrate or via an alkali blocking base film, and silicon oxide is formed on the surface of the titanium oxide layer. It is.
[0007]
These prior arts have been devised to enhance the photocatalytic function by forming a silicon oxide film in a porous manner, or by providing irregularities on the surface by finely processing a titanium oxide film or a glass substrate.
That is, by forming fine irregularities on the surface, the surface area on which the photocatalyst body is exposed is increased and the photocatalytic function is improved, but the remarkable improvement is not necessarily observed. There are also problems in terms of cost, such as processing of the substrate, processing of the film, and insertion of the underlayer.
[0008]
Japanese Patent Laid-Open No. 2000-288403 is disclosed as a technique for controlling crystals constituting the surface layer of the photocatalyst. The basic structure disclosed in this prior art is that the titanium oxide is anatase type crystal, and among the titanium oxide crystal grains present in the surface layer portion, 30% or more of the crystal grains are elliptical or semi-elliptical. It is characterized by its shape. A highly active photocatalytic function can be obtained by forming an elliptical or semi-elliptical titanium oxide crystal. This is because the surface area of the exposed photocatalyst is increased and the photocatalytic function is improved by making the crystal grains elliptical or semi-elliptical, but a remarkable improvement is not necessarily observed.
[0009]
[Problems to be solved by the invention]
In the prior art described above, the oxide photocatalyst formed by various production methods, and the oxide photocatalyst formed by controlling the surface state of the photocatalyst body and controlling the crystals constituting the surface layer portion of the photocatalyst body are good. Although it exhibits a photocatalytic function, an oxide photocatalyst having a more highly active photocatalytic function is desired.
[0010]
In view of such conventional circumstances, the inventors of the present application focused on high activation of the oxide photocatalyst by controlling the crystal shape, and various manufacturing methods such as CVD method and PVD method and sol-gel method using organometallic compounds Thus, the production of an oxide photocatalyst was intensively studied.
As a result, crystal nuclei prepared by various manufacturing methods such as CVD or PVD are placed in a sol solution composed of an organometallic compound, or the sol solution is applied to the crystal nuclei, solidified, and heat-treated to form titanium oxide crystals. It has been found that by growing from a crystal nucleus, a highly active photocatalytic function can be obtained when the crystal shape of the titanium oxide crystal grown from the crystal nucleus forms a columnar crystal, and the present invention has been completed.
[0011]
[Means for Solving the Problems]
That as in the present invention according to claim 1, dropping organometallic compound is applied to the crystal nuclei placed on the substrate to adjust the sol solution to the mixture containing the blanking butanediol, solidifying it, and heat-treated, or on SL sol solution was applied onto the crystal nuclei formed on the substrate, and characterized in that this solidification, and heat-treated, were grown by exposing the titanium oxide crystal columnar shape from the crystal nuclei in three dimensions It is an oxide photocatalyst material.
[0012]
Hereinafter, the present invention will be specifically described.
Oxide photocatalyst material of the present invention, CVD method, a sol using various method and an organometallic compound of a PVD method or the like - is obtained by forming the oxide photocatalyst gel method, an organic metal compound mixture containing a blanking butanediol dropped by coating the crystal nuclei placed on the substrate to adjust the sol solution, solidifying it, and heat-treated, or on the Symbol sol solution was applied onto the crystal nuclei formed on the substrate, solidifying it, heat treatment A columnar titanium oxide crystal is three-dimensionally exposed and grown from the crystal nucleus . Here, solidification may be simply heat-dried, other heat components may be added, or water may be added to form a gel.
[0013]
In the above-described oxide photocatalyst of the present invention, the crystal nucleus to be introduced into the sol solution or the crystal nucleus to which the sol solution is applied is powder, single crystal, polycrystal, ceramic, crystallized glass, metal thermal oxide film, anodic oxidation Any of the membranes may be used.
Further, a crystal film produced by a CVD method or a PVD method may be used as the crystal nucleus.
The crystal nucleus for growing these titanium oxide crystals is preferably 1 nm to 350 nm regardless of the type of the crystal nucleus material.
[0014]
As described above, the present invention is characterized in that titanium oxide crystals are grown from crystal nuclei by solidifying and heat-treating a sol solution composed of an organometallic compound. The shape of the titanium oxide crystal grown from the crystal nucleus is columnar, and at least one columnar crystal is grown on at least the crystal nucleus, and the crystal nucleus and the columnar crystal grown on the crystal nucleus grow in the same orientation. It is characterized by that.
In the present invention, the columnar shape of the titanium oxide crystal includes a prismatic shape, a columnar shape, a rod shape, etc., and the columnar crystal extends straightly in the vertical direction, extends in an inclined shape, extends in a curved shape, It includes those that branch and extend, and those that are fused while a plurality of columnar crystals are grown.
[0015]
In the oxide photocatalyst, the crystal shape described above, that is, the crystal nuclei prepared in various production methods such as the CVD method and the PVD method are put in the sol solution of the organometallic compound, or the sol solution is applied to the crystal nuclei, solidified, heat treatment Thus, the photocatalytic function can be highly activated by growing a titanium oxide crystal forming a columnar crystal from the crystal nucleus.
[0016]
In addition, various applied products that exhibit a cleaning function, an antibacterial function, a deodorizing function, an antifouling function, and the like can be provided by using the oxide photocatalyst material according to the present invention. Specific examples of the applied products include various products such as various air conditioners such as air purifiers, deodorizers and air conditioners, and environmental purification devices such as water purifiers and water purification equipment.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to the drawings.
1 (a) and 1 (b) are schematic views showing an example of an embodiment of an oxide photocatalytic material according to the present invention. FIG. 1 (a) shows a titanium oxide crystal (columnar shape) when a crystal film produced by a CVD method or a PVD method is used as a crystal nucleus 2 on various substrates 1 such as glass, metal, or a fiber having a network structure. FIG. 1 (b) is a schematic diagram of growth of a titanium oxide crystal (columnar crystal) 3 when powder is used as the crystal nucleus 2 ′. FIG. 2 shows an electron micrograph of an example of an embodiment of an oxide photocatalyst according to the present invention.
As described above, the oxide photocatalyst material according to the present invention focuses on increasing the activity of an oxide photocatalyst by controlling the crystal shape in order to solve the technical problem of producing an oxide photocatalyst exhibiting a highly active photocatalytic function. Focusing on the production of oxide photocatalysts by various manufacturing methods such as CVD and PVD methods and sol-gel methods using organometallic compounds, as a result, crystal nuclei were placed in sol solutions of organometallic compounds, or crystal nuclei A high-activity photocatalytic function is realized by applying a sol solution to the solid, solidifying and heat-treating to grow a titanium oxide crystal having a columnar crystal shape from the crystal nucleus.
[0018]
As shown in FIGS. 1 (a) and 1 (b), the oxide photocatalyst of the present invention grows at least one columnar titanium oxide crystal (columnar crystal) 3 from the crystal nucleus 2 on the substrate 1. It is a feature.
Further, from the electron micrograph of FIG. 2, it can be clearly confirmed that columnar titanium oxide crystals are formed. As can be seen here, the columnar crystal includes a crystal shape such as a prism or a columnar shape, a branched dendritic crystal shape, or a shape in which a plurality of columnar crystals are fused in the middle of growth.
[0019]
The titanium oxide crystal 3 grown from the crystal nucleus 2 is produced by a sol solution made of an organometallic compound.
Usually, when a sol solution composed of an organometallic compound is applied onto a substrate in the absence of a substance serving as a crystal nucleus, and solidified and heat-treated, the formed titanium oxide crystals are granular.
On the other hand, the oxide photocatalyst of the present invention forms a unique crystal shape, that is, a columnar crystal grown in the vertical direction with respect to the substrate 1. When crystallized in the solidification process of the sol solution in the titanium oxide crystal production method, columnar crystals have already been formed at that point, and the crystal shape before the heat treatment is similar with the evaporation of residual organic matter in the subsequent heat treatment process. It has been confirmed that the columnar titanium oxide crystal 3 is formed.
In addition, columnar titanium oxide crystals are also formed when gelled in the solidification process of the sol solution, subjected to heat treatment, and escaped from organic matter, but the photocatalytic function is not so good. Therefore, it is desirable to crystallize in the solidification process of the sol solution.
The reason why the crystal shape grown from the crystal nucleus forms a column is not clear, but in the growth process of the titanium oxide crystal, a seed crystal that promotes crystal growth, that is, the presence or absence of a crystal serving as a nucleus, is formed. It is clear that the shape is greatly affected. Further, it has been observed that the titanium oxide crystal 3 formed on the crystal nucleus 2 grows almost in the same direction as the orientation of the crystal nucleus 2. However, it has been confirmed that some rarely grow in a different orientation from the crystal nucleus.
[0020]
As described above, the photocatalytic function occurs on the surface of the photocatalyst. The columnar crystals 3 obtained by the present invention are innumerable on the surface of the oxide photocatalyst material A, and most of the columnar crystals 3 are formed vertically with respect to the substrate 1 as shown in FIG. It is clear that the exposed area of the surface of the photocatalyst that contributes to the photocatalytic function is increased as compared with. For this reason, the photocatalytic function is considered to be highly activated. For the same reason, it is also known that if there are many columnar crystals grown in the lateral direction with respect to the substrate 1, the photocatalytic function decreases at that rate.
[0021]
As described above, the crystal nucleus 2 for growing the titanium oxide crystal 3 exerts a great influence on the formation of a unique crystal shape. The type of the crystal nucleus 2 may be a single crystal, a polycrystal, a powder, a ceramic, a metal thermal oxide film, or an anodized film. Even when the crystal nuclei listed here are placed in a sol solution of an organometallic compound, or the sol solution of an organometallic compound is applied to this crystal nucleus and solidified and heat-treated, a titanium oxide crystal that forms a columnar crystal from the crystal nucleus is obtained. Has been proven.
[0022]
Further, even if a crystal film, that is, a crystal nucleus is formed on the substrate 1 by the CVD method or the PVD method and the titanium oxide crystal is grown by the same method as described above, a titanium oxide crystal that forms a columnar crystal from the crystal nucleus can be obtained. Has been proven.
[0023]
The size of the crystal nucleus 2 for growing the titanium oxide crystal 3 is preferably limited to 1 nm to 350 nm for the following reason.
That is, if the crystal nucleus is smaller than 1 nm, it is conceivable that the titanium oxide crystal growing on the crystal nucleus grows without being affected by the refinement of the crystal nucleus. Even if the crystal nuclei are larger than 350 nm, the same can be considered due to the coarsening of the crystal nuclei. That is, it can be said that the size of the crystal nucleus effective for the titanium oxide crystal to form a columnar crystal is 1 nm to 350 nm.
[0024]
An oxide photocatalyst exhibiting a highly active photocatalytic function can be obtained by solidifying and heat-treating a sol solution of an organic metal compound as described above, and forming a columnar crystal from a crystal nucleus. And it has been confirmed that the oxide photocatalyst material of the present invention can be efficiently cleaned by decomposing odorous components and harmful components by incorporating air in an enclosure together with an ultraviolet light source and circulating air. In addition, it has been confirmed by experiments that it can be applied to environmental purification devices for the purpose of water purification, deodorization, antibacterial, and sterilization.
[0025]
【Example】
Examples will be described below.
A non-alkali glass cleaned with a neutral detergent, isopropyl alcohol, and pure water is used as the substrate 1. On the surface of the substrate 1, crystal nuclei are placed in a sol solution composed of an organometallic compound, or an organic metal is added to the crystal nuclei. Titanium oxide crystals 3 were formed on the crystal nuclei 2 by applying a sol solution composed of a compound, solidifying, and heat-treating.
[0026]
To prepare a sol solution composed of an organometallic compound, butanediol: 45 g, H 2 O: 0.6 g, nitric acid: 0.4 g are mixed, and 5 g of titanium tetraisopropoxide (hereinafter referred to as TTIP) is stirred into this solution. The solution was added dropwise while stirring and then stirred at room temperature for 4 hours.
[0027]
Crystal nuclei prepared by various production methods are put into the sol solution thus obtained, or the sol solution obtained as described above is applied to crystal nuclei produced by various production methods, followed by solidification and heat treatment. As a result, a titanium oxide crystal was formed on the crystal nucleus. Solidification was performed in a dryer under conditions of an ultimate temperature of 150 ° C. and a holding time of 2 hours. The heat treatment was carried out in an electric furnace under the conditions of a heating rate of 10 ° C./min, an ultimate temperature of 550 ° C., and a holding time of 2 hours.
[0028]
The oxide photocatalyst material thus obtained was used as a sample, and a decomposition test for acetaldehyde, which is a harmful substance, was performed as an evaluation of the photocatalytic function.
In the test method, the produced oxide photocatalyst material is first put in a 20-liter glass container, and the inside of the container is replaced with artificial air, and then acetaldehyde gas is injected into the container so as to be 20 ppm. Next, the oxide photocatalyst was irradiated with black light, and the time until the acetaldehyde concentration became 1 ppm or less was measured with a gas monitor.
[0029]
In addition, the crystal structure analysis of the oxide photocatalyst in the sample was performed by X-ray diffraction. The surface of the oxide photocatalyst was observed with a scanning electron microscope (SEM).
Table 1 shows experimental conditions in Examples and Comparative Examples.
[0030]
[Table 1]
Figure 0005002864
[0031]
In Example 1, titanium oxide powder was used as a crystal nucleus. The crystal nuclei were placed in the sol solution prepared as described above, or the sol solution was applied to the crystal nuclei, and titanium oxide crystals were grown as described above.
To adjust the titanium oxide powder, TTIP: 7 g (0.025 mol), dissolved in 50 ml of 1-propanol, was slowly added dropwise with stirring in distilled water at room temperature. It dried at 110 degreeC all day and night. The dried product was pulverized in a mortar and heat treated in an electric furnace at 600 ° C. for 2 hours.
[0032]
In Example 2, a titanium oxide crystal film produced by a sputtering method was used as a crystal nucleus, and a sol solution was applied on the crystal film to grow a titanium oxide crystal.
The production conditions of the crystal film by sputtering include: titanium metal with a target purity of 99.995% or higher, applied power of 1500 W, sputtering pressure of 10.0 Pa, argon to oxygen flow ratio of 20 sccm to 20 sccm, substrate temperature of 200 to 300 ° C., film formation time 3 hours. The crystal film obtained by such a sputtering method was confirmed to be composed of crystals having a size of 10 nm to 60 nm by surface observation.
[0033]
In Example 3, a titanium oxide crystal film produced by spray pyrolysis was used as a crystal nucleus, and a sol solution was applied on the crystal film to grow a titanium oxide crystal.
As a method of preparing a titanium oxide crystal film by spray pyrolysis, the raw material solution is prepared by adding acetylacetone (Hacac) to titanium tetraisopropoxide (TTIP) at a molar ratio (Hacac / TTIP) of 1.0 and diluting with isopropyl alcohol. Stir. The film forming conditions were a spray pressure of 0.3 MPa, a spray amount of 1.0 ml / sec, a spray time of 0.5 min / time, a substrate temperature of 450 ° C., and a spray count of 200 times. It was confirmed by surface observation that the titanium oxide crystal film produced by the spray pyrolysis method was composed of crystals having a size of 30 nm to 100 nm.
[0034]
In Comparative Example 1, a sol solution was applied on a glass substrate without a crystal nucleus to produce a titanium oxide crystal.
[0035]
In Comparative Example 2, a titanium oxide crystal film was produced by a sputtering method, and the sol solution was not carried after the production. The production conditions of the crystal film by sputtering include: titanium metal with a target purity of 99.995% or higher, applied power of 1500 W, sputtering pressure of 10.0 Pa, argon to oxygen flow ratio of 20 sccm to 20 sccm, substrate temperature of 200 to 300 ° C., film formation time 3 hours.
[0036]
In Comparative Example 3, a titanium oxide crystal film was produced by a spray pyrolysis method, and the sol solution was not supported after the production. As a method of preparing a titanium oxide crystal film by spray pyrolysis, the raw material solution is prepared by adding acetylacetone (Hacac) to titanium tetraisopropoxide (TTIP) at a molar ratio (Hacac / TTIP) of 1.0 and diluting with isopropyl alcohol. Stir. The film forming conditions were a spray pressure of 0.3 MPa, a spray amount of 1.0 ml / sec, a spray time of 0.5 min / time, a substrate temperature of 450 ° C., and a spray count of 200 times.
[0037]
Table 2 shows the experimental results in these examples and comparative examples.
[0038]
[Table 2]
Figure 0005002864
[0039]
From the results in Table 2, the following can be understood.
In Comparative Example 1 in which a sol solution was coated on a glass substrate without crystal nuclei to produce a titanium oxide crystal, the crystal structure had an anatase type effective for the photocatalytic function, and the decomposition time of acetaldehyde was 60 min. It showed a relatively good photocatalytic function.
[0040]
In Comparative Example 2 in which a titanium oxide crystal film was produced by sputtering and no sol solution was supported after production, the crystal structure has an anatase type effective for the photocatalytic function, and the decomposition time of acetaldehyde is relatively good at 45 min. The photocatalytic function was demonstrated.
[0041]
In Comparative Example 3 in which a titanium oxide crystal film was prepared by spray pyrolysis and no sol solution was supported after the preparation, the crystal structure has an anatase type effective for the photocatalytic function, but the decomposition time of acetaldehyde was 180 min. That is not a good photocatalytic function.
[0042]
In contrast, Examples 1 to 3 each carry a sol solution using titanium oxide powder, a crystal film by sputtering, and a crystal film by spray pyrolysis as crystal nuclei. In these Examples 1 to 3, columnar crystals are formed from the crystal nuclei, and the photocatalytic function is significantly improved as compared with Comparative Examples 1 to 3.
Details of the experimental results of Examples 1 to 3 will be described below.
[0043]
In Example 1, a crystal nucleus made of titanium oxide powder was put in a sol solution, applied onto a substrate, solidified, and subjected to heat treatment to grow a titanium oxide crystal from the crystal nucleus. The crystal structure has an anatase type effective for the photocatalytic function, and from the surface observation results, it was confirmed that columnar crystals grew from the crystal nuclei. And the degradation time of acetaldehyde was 16min, and it showed very high activity photocatalytic function.
[0044]
Example 2 uses a titanium oxide crystal film produced by a sputtering method as a crystal nucleus. A sol solution is applied to this crystal film, solidified, and subjected to heat treatment to grow a titanium oxide crystal from the crystal nucleus. It is a thing. The crystal structure has an anatase type effective for the photocatalytic function, and from the surface observation results, it was confirmed that columnar crystals grew from the crystal nuclei. And the degradation time of acetaldehyde was 15min, and it showed very high activity photocatalytic function.
[0045]
Example 3 uses a titanium oxide crystal film produced by spray pyrolysis as a crystal nucleus. A sol solution is applied to the crystal film, solidified, and subjected to heat treatment to form a titanium oxide crystal from the crystal nucleus. It has been grown. The crystal structure has an anatase type effective for the photocatalytic function, and from the surface observation results, it was confirmed that columnar crystals grew from the crystal nuclei. And the degradation time of acetaldehyde was 16min, and it showed very high activity photocatalytic function.
[0046]
From Examples 1 to 3 above, it was confirmed that it was effective for the oxide photocatalyst crystals to be composed of columnar crystals in order to exhibit a highly active photocatalytic function.
It was also confirmed that this columnar crystal was formed by carrying a sol solution of an organometallic compound in a crystal nucleus, solidifying, and heat-treating.
In Examples 1 to 3 above, titanium oxide powder as a crystal nucleus, a crystal film by a sputtering method, and a crystal film by a spray pyrolysis method were given as examples, but as other crystal nuclei, a single crystal, a polycrystal, Even when ceramics, metal thermal oxide films, anodic oxide films, and crystallized glass are used, it has been confirmed by experiments that columnar crystals are formed from crystal nuclei and show a highly active photocatalytic function.
In Examples 1 to 3, alkali-free glass was used as an example of the substrate used for forming crystal nuclei and supporting the sol solution, but other substrates include woven fabric, sponge-like objects, or chemical substances. It has been confirmed by experiments that the same result can be obtained even when an object made porous by corrosion, machining or the like is used as a substrate.
[0047]
【Effect of the invention】
As described above, the oxide photocatalyst of the present invention is characterized in that the crystal shape of the titanium oxide crystal grown from the crystal nucleus forms a columnar shape, and the oxide photocatalyst thin film is composed of the columnar crystal, thereby achieving high activity. A good photocatalytic function.
Further, according to the oxide photocatalyst of the present invention, it is possible to decompose odor components and harmful components by incorporating air in a housing together with an ultraviolet light source, and efficiently clean the air.
Moreover, since the oxide photocatalyst of the present invention is an aggregate of columnar crystals, it has a great effect of capturing fine particles and bacteria.
Furthermore, the oxide photocatalyst material according to the present invention has the above-mentioned large-scale allergy by attaching holes or grooves of the same size as those of large-scale allergic substances such as pollen on a substrate serving as a base material for forming crystal nuclei. There are many effects, such as an improvement in the effect of capturing substances.
The oxide photocatalyst material according to the present invention has remarkable effects in the cleaning function, the antibacterial function, the deodorizing function, the antifouling function and the like as described above. Alternatively, it can be applied to environmental purification devices such as water purifiers and water purification equipment.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of an oxide photocatalyst material according to the present invention, where (a) shows an example using a crystal film produced by a CVD method or PVD method as a crystal nucleus, and (b) uses powder as a crystal nucleus. Each example is shown below.
FIG. 2 is an electron micrograph of an example of an oxide photocatalytic material according to the present invention.
3 is an electron micrograph obtained by coarsening the resolution of the electron micrograph of FIG.
[Explanation of symbols]
A: Oxide photocatalyst material 1: Substrate 2: Crystal nucleus 3: Titanium oxide crystal (columnar crystal)

Claims (8)

タンジオールを含む混合液に有機金属化合物を滴下して調整したゾル溶液に結晶核を入れ基板上に塗布し、これを固化、熱処理して、又は基板上に形成した結晶核上に上記ゾル溶液を塗布し、これを固化、熱処理して、前記結晶核より柱状形状の酸化チタン結晶を3次元的に露出して成長させたことを特徴とする酸化物光触媒材料。 Dropwise organometallic compound is applied to the crystal nuclei placed on the substrate to adjust the sol solution to the mixture containing the blanking butanediol, solidifying it, and heat-treated, or above SL sol on the crystal nuclei formed on the substrate An oxide photocatalyst material, wherein a solution is applied, solidified and heat-treated, and columnar-shaped titanium oxide crystals are three-dimensionally exposed and grown from the crystal nuclei . 上記柱状形状の酸化チタン結晶が上記結晶核の成長方位と同一方向に成長したものであることを特徴とする請求項1記載の酸化物光触媒材料。  2. The oxide photocatalyst material according to claim 1, wherein the columnar-shaped titanium oxide crystal is grown in the same direction as the growth direction of the crystal nucleus. 上記結晶核が粉体であることを特徴とする請求項1または2記載の酸化物光触媒材料。  The oxide photocatalyst material according to claim 1 or 2, wherein the crystal nucleus is a powder. 上記結晶核が単結晶であることを特徴とする請求項1または2項記載の酸化物光触媒材料。  The oxide photocatalyst material according to claim 1 or 2, wherein the crystal nucleus is a single crystal. 上記結晶核が多結晶体、セラミックス、結晶化ガラス、金属の熱酸化膜、陽極酸化膜のうちの何れか一つであることを特徴とする請求項1または2記載の酸化物光触媒材料。  The oxide photocatalyst material according to claim 1 or 2, wherein the crystal nucleus is any one of a polycrystal, ceramics, crystallized glass, a metal thermal oxide film, and an anodized film. 上記結晶核として、物理的蒸着法により形成した結晶膜を用いることを特徴とする請求項1または2記載の酸化物光触媒材料。  The oxide photocatalyst material according to claim 1 or 2, wherein a crystal film formed by physical vapor deposition is used as the crystal nucleus. 上記結晶核として、化学的蒸着法により形成した結晶膜を用いることを特徴とする請求項1または2記載の酸化物光触媒材料。  The oxide photocatalyst material according to claim 1 or 2, wherein a crystal film formed by a chemical vapor deposition method is used as the crystal nucleus. 請求項1〜7の何れか1項記載の酸化物光触媒材料を使用して清浄機能、抗菌機能、脱臭機能、防汚機能等を発揮することを特徴とする酸化物光触媒材料応用品An oxide photocatalyst material-applied product which exhibits a cleaning function, an antibacterial function, a deodorizing function, an antifouling function and the like using the oxide photocatalyst material according to any one of claims 1 to 7 .
JP2001058917A 2001-03-02 2001-03-02 Oxide photocatalyst materials using organometallic compounds and their applications Expired - Lifetime JP5002864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001058917A JP5002864B2 (en) 2001-03-02 2001-03-02 Oxide photocatalyst materials using organometallic compounds and their applications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001058917A JP5002864B2 (en) 2001-03-02 2001-03-02 Oxide photocatalyst materials using organometallic compounds and their applications

Publications (2)

Publication Number Publication Date
JP2002253975A JP2002253975A (en) 2002-09-10
JP5002864B2 true JP5002864B2 (en) 2012-08-15

Family

ID=18918565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001058917A Expired - Lifetime JP5002864B2 (en) 2001-03-02 2001-03-02 Oxide photocatalyst materials using organometallic compounds and their applications

Country Status (1)

Country Link
JP (1) JP5002864B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6620237B2 (en) * 2001-11-15 2003-09-16 Spectra, Inc. Oriented piezoelectric film
JP5031168B2 (en) * 2002-08-22 2012-09-19 株式会社デンソー Catalyst body
JP2005261988A (en) * 2002-09-20 2005-09-29 Andes Denki Kk Photocatalyst material and its manufacturing method
CN101171357B (en) * 2005-02-24 2010-05-19 财团法人电力中央研究所 Process for producing multifunctional material
KR100948056B1 (en) 2005-02-24 2010-03-19 자이단호징 덴료쿠추오켄큐쇼 Photocatalytic, exfoliation-resistant, wear-resistant, chemical-resistant, heat-resistant and hard material
JP4902125B2 (en) * 2005-02-28 2012-03-21 財団法人電力中央研究所 Multifunctional material with mirror surface
JP4958029B2 (en) * 2005-02-28 2012-06-20 一般財団法人電力中央研究所 Building materials
JP4707051B2 (en) * 2005-02-28 2011-06-22 財団法人電力中央研究所 Ship
JP4888934B2 (en) * 2005-02-28 2012-02-29 財団法人電力中央研究所 Roll device
JP4480014B2 (en) * 2005-02-28 2010-06-16 財団法人電力中央研究所 Rocket parts
JP5041392B2 (en) * 2005-02-28 2012-10-03 一般財団法人電力中央研究所 Oil treatment equipment
JP4541929B2 (en) * 2005-02-28 2010-09-08 財団法人電力中央研究所 Flying object
JP2007152221A (en) * 2005-12-05 2007-06-21 Andes Denki Kk Photocatalytic material and method for preparing the same
JP2008244467A (en) * 2007-02-28 2008-10-09 Sharp Corp Metal compound film, method of forming same, and base for forming metal compound film
JP5240789B2 (en) * 2009-10-05 2013-07-17 一般財団法人電力中央研究所 Purification device
JP5126855B2 (en) * 2009-11-24 2013-01-23 一般財団法人電力中央研究所 Glass product having multifunctional film and method for producing the same
JP5958809B2 (en) * 2012-06-08 2016-08-02 独立行政法人国立高等専門学校機構 Oxide carrier manufacturing method, oxide carrier manufacturing device, and photocatalytic filter manufacturing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293519A (en) * 1992-07-28 1994-10-21 Ishihara Sangyo Kaisha Ltd Production of titanium oxide particles and film
JP2900307B2 (en) * 1995-02-03 1999-06-02 昭 藤嶋 Fixing method of photocatalyst
JPH0924281A (en) * 1995-07-11 1997-01-28 Nhk Spring Co Ltd Photocatalyst and its manufacture
JP4214327B2 (en) * 1997-07-14 2009-01-28 株式会社ブリヂストン Method for producing titanium oxide film and photocatalytic film
JPH11197516A (en) * 1998-01-09 1999-07-27 Takenaka Komuten Co Ltd Photocatalyst material and its production
JP2001149790A (en) * 1999-11-25 2001-06-05 Kobe Steel Ltd Coating material excellent in photocatalytic performance and manufacturing method therefor
JP2002253964A (en) * 2001-03-02 2002-09-10 Andes Denki Kk Oxide photocatalytic material using organometallic compound and application article thereof

Also Published As

Publication number Publication date
JP2002253975A (en) 2002-09-10

Similar Documents

Publication Publication Date Title
JP5002864B2 (en) Oxide photocatalyst materials using organometallic compounds and their applications
JP2002370034A (en) Oxide photocatalyst material using inorganic metallic compound and applied article thereof
KR100518956B1 (en) Photocatalytic coating material having photocatalytic activity and adsorption property and method for preparing the same
Chakraborty et al. Formation of highly crystallized TiO2 (B) and its photocatalytic behavior
JP2007528454A (en) Large surface area ceramic coated fiber
KR20010095089A (en) Process for producing titanium oxide
JP2011518094A (en) Co-doped titanium oxide foam and water sterilizer
JP2005261988A (en) Photocatalyst material and its manufacturing method
WO2018155432A1 (en) Mesoporous catalyst body and gas treatment apparatus using same
JP4145923B2 (en) Titanium oxide particles, manufacturing method thereof, manufacturing apparatus, and processing method using the titanium oxide
JP3530896B2 (en) Mesoporous TiO2 thin film having three-dimensional structure and method for producing the same
JP2002370027A (en) Columnar titanium oxide crystal photocatalyst material and applied article thereof
JP2002253964A (en) Oxide photocatalytic material using organometallic compound and application article thereof
US7763113B2 (en) Photocatalyst material and method for preparation thereof
JP3567693B2 (en) Method for producing immobilized photocatalyst and method for decomposing and removing harmful substances
JP2003299965A (en) Photocatalyst material and production method of the same
JP4246943B2 (en) Method for producing article having photocatalyst-containing porous thin film
US6803023B1 (en) Composite structure for deodorization or wastewater treatment
Merenda et al. Functional nanoporous titanium dioxide for separation applications: Synthesis routes and properties to performance analysis
Kominami et al. Direct solvothermal formation of nanocrystalline TiO 2 on porous SiO 2 adsorbent and photocatalytic removal of nitrogen oxides in air over TiO 2–SiO 2 composites
Truc et al. Evaluation of the Role of Hydroxyapatite in TiO2/Hydroxyapatite Photocatalytic Materials
JP2003190810A (en) Photocatalytic material and method for manufacturing the same
JP2004283691A (en) Photocatalytic component-containing porous body and its manufacturing method
JP2006007119A (en) Photocatalyst material, manufacturing method therefor and synthetic raw material solution
KR20130088334A (en) Preparation method of natao3 photocatalytic particles having enhanced photoactivity

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070618

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080131

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080131

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5002864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term