JP5002852B2 - Thin film solid secondary battery - Google Patents

Thin film solid secondary battery Download PDF

Info

Publication number
JP5002852B2
JP5002852B2 JP2005027017A JP2005027017A JP5002852B2 JP 5002852 B2 JP5002852 B2 JP 5002852B2 JP 2005027017 A JP2005027017 A JP 2005027017A JP 2005027017 A JP2005027017 A JP 2005027017A JP 5002852 B2 JP5002852 B2 JP 5002852B2
Authority
JP
Japan
Prior art keywords
thin film
secondary battery
added
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005027017A
Other languages
Japanese (ja)
Other versions
JP2006216336A (en
Inventor
弘実 中澤
公宏 佐野
貴志 阿部
守 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwate University
Geomatec Co Ltd
Original Assignee
Iwate University
Geomatec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwate University, Geomatec Co Ltd filed Critical Iwate University
Priority to JP2005027017A priority Critical patent/JP5002852B2/en
Publication of JP2006216336A publication Critical patent/JP2006216336A/en
Application granted granted Critical
Publication of JP5002852B2 publication Critical patent/JP5002852B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、薄膜固体二次電池に係り、特に良好な透過性を有する薄膜固体二次電池に関する。 The present invention relates to a thin film solid secondary battery, and more particularly to a thin film solid secondary battery having good permeability .

現在、携帯機器等の電子機器を中心にリチウムイオン二次電池が広く用いられている。これはリチウムイオン二次電池が、ニッカド電池等と比較して、高い電圧を有し、充放電容量が大きく、メモリ効果等の弊害がないことによる。
そして、電子機器等はさらなる小型化・軽量化が進められており、この電子機器等に搭載されるバッテリーとしてリチウムイオン二次電池も小型化・軽量化の開発が進められている。例えばICカードや医療用小型機器等に搭載可能な薄型・小型のリチウムイオン二次電池の開発が進められている。そして、今後もより一層薄型化・小型化が求められることが予想される。
Currently, lithium ion secondary batteries are widely used mainly in electronic devices such as portable devices. This is because a lithium ion secondary battery has a higher voltage, a larger charge / discharge capacity, and no adverse effects such as a memory effect, compared to a nickel cadmium battery or the like.
Further, electronic devices and the like are being further reduced in size and weight, and lithium ion secondary batteries are also being developed to be reduced in size and weight as batteries mounted on the electronic devices and the like. For example, development of thin and small lithium ion secondary batteries that can be mounted on IC cards, small medical devices, and the like is underway. It is expected that further reduction in thickness and size will be required in the future.

従来のリチウムイオン二次電池は、正電極および負電極に金属片または金属箔を用い、これらを電解液に浸積させて容器で覆って使用していた。このため、薄型化や小型化には限界があった。現実的には、薄さ1mm、体積1cm程度が限界と考えられる。
しかし、最近ではさらに薄型化、小型化を可能とするために、電解液ではなく、ゲル状の電解質を用いるポリマー電池(例えば、特許文献1参照)や固体電解質を用いる薄膜固体二次電池(例えば、特許文献2,3参照)が開発されている。
A conventional lithium ion secondary battery uses metal pieces or metal foils for the positive electrode and the negative electrode, which are immersed in an electrolytic solution and covered with a container. For this reason, there was a limit to thinning and miniaturization. Actually, it is considered that the limit is about 1 mm in thickness and about 1 cm 3 in volume.
However, recently, in order to enable further reduction in thickness and size, a polymer battery using a gel electrolyte instead of an electrolytic solution (for example, see Patent Document 1) or a thin film solid secondary battery using a solid electrolyte (for example, Patent Documents 2 and 3) have been developed.

特許文献1に記載のポリマー電池は、外装体内部に、正極集電体、内部に高分子固体電解質を含有する複合正極、イオン電導性高分子化合物からなる電解質層、内部に高分子固体電解質を含有する複合負極、負極集電体を順に配置して構成されている。
このようなポリマー電池は、電解液を使う通常のリチウムイオン二次電池よりは薄型化、小型化が可能であるものの、ゲル状の電解質や接合剤、封口部材等を必要とするため、厚さとしては0.1mm程度が限界であり、より一層の薄型化、小型化を進めるには適当ではなかった。
The polymer battery described in Patent Document 1 has a positive electrode current collector inside an exterior body, a composite positive electrode containing a polymer solid electrolyte inside, an electrolyte layer made of an ion conductive polymer compound, and a polymer solid electrolyte inside. A composite negative electrode and a negative electrode current collector are sequentially arranged.
Although such a polymer battery can be made thinner and smaller than a normal lithium ion secondary battery using an electrolytic solution, it requires a gel electrolyte, a bonding agent, a sealing member, etc. Is about 0.1 mm, and is not suitable for further thinning and downsizing.

一方、薄膜固体二次電池の構成は、特許文献2,3に記載のように、基板上に集電体薄膜、負極活物質薄膜、固体電解質薄膜、正極活物質薄膜、集電体薄膜を順に積層した構成、または、基板上に上記層を逆の順で積層した構成である。
このような構成により、薄膜固体二次電池は、基板を除けば1μm程度の薄さにすることが可能である。また、基板の厚さを薄くしたり、薄膜化した固体電解質フィルムを基板の代わりに使用したりすれば、全体としてより薄型化、小型化を図ることが可能である。
On the other hand, as described in Patent Documents 2 and 3, the configuration of the thin-film solid secondary battery is as follows: current collector thin film, negative electrode active material thin film, solid electrolyte thin film, positive electrode active material thin film, current collector thin film on the substrate. It is the structure which laminated | stacked, or the structure which laminated | stacked the said layer on the reverse order on the board | substrate.
With such a configuration, the thin-film solid secondary battery can be made as thin as about 1 μm except for the substrate. Further, if the thickness of the substrate is reduced or a thin solid electrolyte film is used instead of the substrate, the overall thickness can be reduced and the size can be reduced.

特開平10−74496号公報(第3−6頁、図1−2)Japanese Patent Laid-Open No. 10-74496 (page 3-6, FIG. 1-2) 特開平10−284130号公報(第3−4頁、図1−4)JP-A-10-284130 (page 3-4, FIG. 1-4) 特開2002−42863号公報(第9−16頁、図1−16)Japanese Patent Laid-Open No. 2002-42863 (page 9-16, FIG. 1-16)

以上のように、薄膜固体二次電池は薄型化、小型化が期待されるが、特許文献2,3やこれまでに実施された例では、正極活物質層として光の吸収が大きいリチウムを含む金属酸化物(LiMnやLiCoO等)を用いたり、負極活物質層として光の反射が大きいリチウム金属用いたり、集電体層として光の反射が大きいアルミニウム等の金属を用いたりしていた。このように従来の薄膜固体二次電池では、すべての層が透明な物質から作成されていなかった。このため、従来の薄膜固体二次電池は光を遮ってしまうため、太陽電池等の光を利用するデバイスと組み合わせて多機能化を図ることが困難であった。 As described above, thin-film solid-state secondary batteries are expected to be thin and small. However, in Patent Documents 2 and 3 and the examples implemented so far, the positive electrode active material layer contains lithium with high light absorption. Metal oxide (LiMn 2 O 4 or LiCoO 2 etc.) is used, lithium metal with high light reflection is used as the negative electrode active material layer, or metal such as aluminum with high light reflection is used as the current collector layer. It was. Thus, in the conventional thin film solid secondary battery, not all layers are made of a transparent material. For this reason, since the conventional thin film solid secondary battery blocks light, it has been difficult to achieve multi-function in combination with a device using light such as a solar battery.

本発明の目的は、電池性能を確保しつつ、全体として透明度が良好な薄膜固体二次電池を提供することにある The objective of this invention is providing the thin film solid secondary battery with favorable transparency as a whole, ensuring battery performance .

前記課題は、本発明によれば、基板上に、正極集電体層、正極活物質層、固体電解質層、負極活物質層、負極集電体層が積層されてなる薄膜固体二次電池において、いずれの層も透明な薄膜からなることによって解決される。   According to the present invention, there is provided a thin film solid secondary battery in which a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer are laminated on a substrate. Both layers are solved by being made of a transparent thin film.

このように、薄膜固体二次電池を構成する正極集電体層、正極活物質層、固体電解質層、負極活物質層、負極集電体層がすべて透明な薄膜から構成されることによって、全体として透明度が良好な電池を形成し、最外層から各層を透過させて基板にまで光を照射させることが可能となるので、他の光を利用するデバイスと組み合わせて多機能化を図ることができる。例えば、本発明の薄膜固体二次電池を太陽電池と一体に構成した場合には、薄膜固体二次電池を通して光を太陽電池等に照射させることができ、光の照射方向によらずに太陽電池等を作動させることが可能となる。   Thus, the positive electrode current collector layer, the positive electrode active material layer, the solid electrolyte layer, the negative electrode active material layer, and the negative electrode current collector layer constituting the thin film solid secondary battery are all composed of a transparent thin film, As a battery with good transparency can be formed and light can be irradiated to the substrate through each layer from the outermost layer, so that it can be multifunctional in combination with other light-using devices . For example, when the thin film solid secondary battery of the present invention is configured integrally with a solar battery, the solar battery can be irradiated with light through the thin film solid secondary battery, and the solar battery can be used regardless of the light irradiation direction. Etc. can be operated.

具体的には、前記正極集電体層および前記負極集電体層は、スズが添加された酸化インジウム(ITO)、アルミニウムが添加された酸化亜鉛(AZO)、ガリウムが添加された酸化亜鉛(GZO)、アンチモンが添加された酸化スズ(ATO)、フッ素が添加された酸化スズ(FTO)のいずれかからなる透明導電膜とすることができる。   Specifically, the positive electrode current collector layer and the negative electrode current collector layer include indium oxide (ITO) to which tin is added, zinc oxide (AZO) to which aluminum is added, and zinc oxide to which gallium is added ( GZO), tin oxide (ATO) to which antimony is added, and tin oxide (FTO) to which fluorine is added can be used.

また、前記正極活物質層および前記負極活物質層は、リチウム−チタン酸化物、五酸化ニオブ、酸化チタン、酸化インジウム、酸化亜鉛、酸化スズ、酸化ニッケル、スズが添加された酸化インジウム(ITO)、アルミニウムが添加された酸化亜鉛(AZO)、ガリウムが添加された酸化亜鉛(GZO)、アンチモンが添加された酸化スズ(ATO)、フッ素が添加された酸化スズ(FTO)、リチウムが添加された酸化ニッケル(NiO−Li)のいずれかからなる透明な薄膜とすることができる。   In addition, the positive electrode active material layer and the negative electrode active material layer include lithium-titanium oxide, niobium pentoxide, titanium oxide, indium oxide, zinc oxide, tin oxide, nickel oxide, and indium oxide (ITO) to which tin is added. , Zinc oxide with aluminum added (AZO), zinc oxide with gallium added (GZO), tin oxide with antimony added (ATO), tin oxide with fluorine added (FTO), lithium added It can be set as the transparent thin film which consists of either of nickel oxide (NiO-Li).

また、前記固体電解質層は、リン酸リチウム(LiPO)、窒素が添加されたリン酸リチウム(LiPON)のいずれかからなる透明な固体電解質薄膜とすることができる。 The solid electrolyte layer may be a transparent solid electrolyte thin film made of either lithium phosphate (Li 3 PO 4 ) or nitrogen phosphate (LiPON) to which nitrogen is added.

本発明の薄膜固体二次電池によれば、基板上に、光透過性が良好な薄膜(正極集電体層、正極活物質層、固体電解質層、負極活物質層、負極集電体層)を積層させることによって二次電池を構成するので、電池性能を確保しつつ、全体として透明度を良好とすることができる。これにより、光を透過させることができる。このため、光を透過させる部材(例えば、窓ガラス等)や光を利用するデバイス(例えば、太陽電池,EL等)に本発明の薄膜固体二次電池を付加することができる。
また、本発明の薄膜固体二次電池は、負極活物質層に毒性があり、水分に弱い酸化バナジウム以外の物質を用いて作成することができるので、取り扱いが容易となる
According to the thin film solid secondary battery of the present invention, a thin film having good light transmittance (positive electrode current collector layer, positive electrode active material layer, solid electrolyte layer, negative electrode active material layer, negative electrode current collector layer) on the substrate. Since the secondary battery is configured by laminating the layers, the overall transparency can be improved while ensuring the battery performance. Thereby, light can be transmitted. For this reason, the thin film solid secondary battery of this invention can be added to the member (for example, window glass etc.) which permeate | transmits light, and the device (for example, solar cell, EL, etc.) using light.
In addition, the thin film solid secondary battery of the present invention is easy to handle because the negative electrode active material layer is toxic and can be made using a material other than water-resistant vanadium oxide .

以下、本発明の実施形態を図面に基づいて説明する。なお、以下に説明する部材、配置、構成等は、本発明を限定するものでなく、本発明の趣旨の範囲内で種々改変することができるものである。
図1は本発明の一実施形態に係る薄膜固体二次電池の断面図、図2は実施例1の薄膜固体二次電池の分光特性のグラフ、図3は実施例1の薄膜固体二次電池の充放電特性のグラフ、図4は実施例2の薄膜固体二次電池の充放電特性のグラフ、図5は参考例の薄膜固体二次電池の充放電特性のグラフである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The members, arrangements, configurations, and the like described below do not limit the present invention and can be variously modified within the scope of the gist of the present invention.
1 is a cross-sectional view of a thin film solid secondary battery according to an embodiment of the present invention, FIG. 2 is a graph of spectral characteristics of the thin film solid secondary battery of Example 1, and FIG. 3 is a thin film solid secondary battery of Example 1. FIG. 4 is a graph of the charge / discharge characteristics of the thin film solid secondary battery of Example 2, and FIG. 5 is a graph of the charge / discharge characteristics of the thin film solid secondary battery of the reference example .

図1に示すように本例のリチウムイオン薄膜固体二次電池1は、基板10上に、正極側の集電体層20、正極活物質層30、固体電解質層40、負極活物質層50、負極側の集電体層20、水分防止膜60が順に積層されて形成されている。なお、基板10上への積層順序は、負極側の集電体層20、負極活物質層50、固体電解質層40、正極活物質層30、正極側の集電体層20、水分防止膜60の順であってもよい。   As shown in FIG. 1, a lithium ion thin film solid secondary battery 1 of this example includes a positive electrode side current collector layer 20, a positive electrode active material layer 30, a solid electrolyte layer 40, a negative electrode active material layer 50, on a substrate 10. The current collector layer 20 on the negative electrode side and the moisture prevention film 60 are sequentially laminated. The order of lamination on the substrate 10 is as follows: the negative electrode side current collector layer 20, the negative electrode active material layer 50, the solid electrolyte layer 40, the positive electrode active material layer 30, the positive electrode side current collector layer 20, and the moisture prevention film 60. The order may be as follows.

基板10は、透明なガラス、樹脂基板等の光透過性を有する物質で形成されている。樹脂基板としては、ポリイミドやPET等を用いることができる。また、形が崩れずに取り扱いができるものであれば、基板10に折り曲げが可能な薄い透明なフィルムを用いることができる。   The substrate 10 is formed of a light transmissive material such as transparent glass or a resin substrate. As the resin substrate, polyimide, PET, or the like can be used. In addition, a thin transparent film that can be bent on the substrate 10 can be used as long as it can be handled without losing its shape.

集電体層20は、正極(正極活物質層30)および負極(負極活物質層50)との密着性がよく、電気抵抗が低い透明度が良好な透明導電膜を用いることができる。集電体層20が取り出し電極として良好に機能するためには、そのシート抵抗が1kΩ/□以下であることが望ましい。集電体層20の膜厚を0.1μm程度以上に設定すると、集電体層20は抵抗率が1×10−2Ω・cm程度以下の物質によって形成する必要がある。このような物質として、スズが添加された酸化インジウム(ITO)、アルミニウムが添加された酸化亜鉛(AZO)、ガリウムが添加された酸化亜鉛(GZO)、アンチモンが添加された酸化スズ(ATO)、フッ素が添加された酸化スズ(FTO)等を使用することができる。これらの物質によって集電体層20は、できるだけ薄くて電気抵抗も低くなる0.1〜1μm程度の膜厚に形成することができる。 As the current collector layer 20, a transparent conductive film having good adhesion with the positive electrode (positive electrode active material layer 30) and the negative electrode (negative electrode active material layer 50) and having low electrical resistance and good transparency can be used. In order for the current collector layer 20 to function satisfactorily as an extraction electrode, the sheet resistance is desirably 1 kΩ / □ or less. When the film thickness of the current collector layer 20 is set to about 0.1 μm or more, the current collector layer 20 needs to be formed of a material having a resistivity of about 1 × 10 −2 Ω · cm or less. Examples of such materials include indium oxide (ITO) to which tin is added, zinc oxide (AZO) to which aluminum is added, zinc oxide (GZO) to which gallium is added, tin oxide (ATO) to which antimony is added, Tin oxide (FTO) to which fluorine is added can be used. With these materials, the current collector layer 20 can be formed to a thickness of about 0.1 to 1 μm that is as thin as possible and has a low electrical resistance.

正極活物質層30は、リチウムイオンの離脱、吸着が可能なリチウム−チタン酸化物(
LiTi,LiTi12等)、五酸化ニオブ(Nb)、酸化チタン(TiO)、酸化インジウム(In)、酸化亜鉛(ZnO)、酸化スズ(SnO)、酸化ニッケル(NiO)、スズが添加された酸化インジウム(ITO)、アルミニウムが添加された酸化亜鉛(AZO)、ガリウムが添加された酸化亜鉛(GZO)、アンチモンが添加された酸化スズ(ATO)、フッ素が添加された酸化スズ(FTO)、リチウムが添加された酸化ニッケル(NiO−Li)等の透明度が良好な薄膜を用いることができる。正極活物質層30の膜厚は、できるだけ薄いことが望ましいが、充放電容量を確保できる0.1〜1μm程度とするとよい。
The positive electrode active material layer 30 is made of a lithium-titanium oxide that can desorb and adsorb lithium ions (
LiTi 2 O 4 , Li 4 Ti 5 O 12, etc.), niobium pentoxide (Nb 2 O 5 ), titanium oxide (TiO 2 ), indium oxide (In 2 O 3 ), zinc oxide (ZnO), tin oxide (SnO) 2 ), nickel oxide (NiO), indium oxide added with tin (ITO), zinc oxide added with aluminum (AZO), zinc oxide added with gallium (GZO), tin oxide added with antimony ( Thin films with good transparency, such as ATO), tin oxide to which fluorine is added (FTO), and nickel oxide to which lithium is added (NiO-Li) can be used. The film thickness of the positive electrode active material layer 30 is desirably as thin as possible, but is preferably about 0.1 to 1 μm that can ensure charge / discharge capacity.

固体電解質層40は、リチウムウオンの伝導性が良いリン酸リチウム(LiPO)やこれに窒素を添加した物質(LiPON)等の透明度が良好な薄膜を用いることができる。固体電解質層40の膜厚は、ピンホ−ルの発生が低減され且つできるだけ薄い0.1〜1μm程度が好ましい。 The solid electrolyte layer 40 can be a thin film with good transparency, such as lithium phosphate (Li 3 PO 4 ) having good lithium ionic conductivity, or a substance obtained by adding nitrogen to the lithium electrolyte (LiPON). The film thickness of the solid electrolyte layer 40 is preferably about 0.1 to 1 [mu] m, which is as thin as possible and reduces the occurrence of pinholes.

負極活物質層50は、リチウムイオンの離脱、吸着が可能なリチウム−チタン酸化物(
LiTi,LiTi12等)、五酸化ニオブ(Nb)、酸化チタン(TiO)、酸化インジウム(In)、酸化亜鉛(ZnO)、酸化スズ(SnO)、酸化ニッケル(NiO)、スズが添加された酸化インジウム(ITO)、アルミニウムが添加された酸化亜鉛(AZO)、ガリウムが添加された酸化亜鉛(GZO)、アンチモンが添加された酸化スズ(ATO)、フッ素が添加された酸化スズ(FTO)、リチウムが添加された酸化ニッケル(NiO−Li)等の透明度が良好な薄膜を用いることができる。負極活物質層50の膜厚は、できるだけ薄いことが望ましいが、充放電容量を確保できる0.1〜1μm程度とするとよい。
The negative electrode active material layer 50 is made of a lithium-titanium oxide capable of detaching and adsorbing lithium ions (
LiTi 2 O 4 , Li 4 Ti 5 O 12, etc.), niobium pentoxide (Nb 2 O 5 ), titanium oxide (TiO 2 ), indium oxide (In 2 O 3 ), zinc oxide (ZnO), tin oxide (SnO) 2 ), nickel oxide (NiO), indium oxide added with tin (ITO), zinc oxide added with aluminum (AZO), zinc oxide added with gallium (GZO), tin oxide added with antimony ( Thin films with good transparency, such as ATO), tin oxide to which fluorine is added (FTO), and nickel oxide to which lithium is added (NiO-Li) can be used. The film thickness of the negative electrode active material layer 50 is desirably as thin as possible, but is preferably about 0.1 to 1 μm that can ensure charge / discharge capacity.

本実施形態では、負極活物質層50および正極活物質層30は、同じ物質群の中から異なる物質が選択される。すなわち、薄膜固体二次電池1を電池として機能させるためには、正極と負極の間に電圧差を生じさせる必要があり、このため負極活物質層50に用いる物質は、正極活物質層30に用いる物質より電極電位が低い物質を選択することが望ましい。   In the present embodiment, different materials are selected from the same material group for the negative electrode active material layer 50 and the positive electrode active material layer 30. That is, in order for the thin film solid secondary battery 1 to function as a battery, it is necessary to generate a voltage difference between the positive electrode and the negative electrode. Therefore, the material used for the negative electrode active material layer 50 is the positive electrode active material layer 30. It is desirable to select a material having a lower electrode potential than the material used.

また、本例の薄膜固体二次電池1では、正極活物質層30に用いる物質および負極活物質層50に用いる物質がともにリチウムを含まない場合には、負極側にリチウムが注入される。例えば、負極層が形成された後、一旦大気中に取り出してリチウム注入装置を用いてリチウムを注入したり、充放電作用によってリチウムを挿入したりすることができる。   Moreover, in the thin film solid secondary battery 1 of this example, when neither the material used for the positive electrode active material layer 30 nor the material used for the negative electrode active material layer 50 contains lithium, lithium is injected into the negative electrode side. For example, after the negative electrode layer is formed, it can be once taken out into the atmosphere and lithium can be injected using a lithium injection device, or lithium can be inserted by a charge / discharge action.

また、薄膜固体二次電池1の大気に露出する表面は、水分防止効果のある水分防止膜60で被覆すると良い。このようにすると電池性能をより長く保つことができる。水分防止膜としては、酸化珪素(SiO)や窒化珪素(SiN)等を使用することができる。水分防止膜の膜厚は、できるだけ薄くて水分防止効果も高い0.4μm程度が好ましい。 Further, the surface of the thin-film solid secondary battery 1 exposed to the atmosphere may be covered with a moisture prevention film 60 having a moisture prevention effect. In this way, the battery performance can be kept longer. As the moisture prevention film, silicon oxide (SiO 2 ), silicon nitride (SiN x ), or the like can be used. The thickness of the moisture prevention film is preferably about 0.4 μm which is as thin as possible and has a high moisture prevention effect.

上記の各薄膜の形成方法としては、スパッタリング法、電子ビーム蒸着法、加熱蒸着法等の真空成膜法や、塗布法等を用いることができる。好ましくは、より薄く均一に薄膜を形成できる真空成膜法を用いるのが良い。さらに好ましくは、蒸着物質との原子組成のずれが少なく、均一に成膜ができるスパッタリング法を用いるのが良い。   As a method for forming each thin film, a vacuum film forming method such as a sputtering method, an electron beam vapor deposition method, a heat vapor deposition method, or a coating method can be used. It is preferable to use a vacuum film-forming method that can form a thin film more thinly and uniformly. More preferably, it is preferable to use a sputtering method in which there is little deviation in the atomic composition from the vapor deposition material and uniform film formation is possible.

上記の薄膜固体二次電池1は、充電を行うと、正極活物質層30からリチウムがイオンとなって離脱し、固体電解質層40を介して負極活物質層50に吸蔵される。このとき、正極活物質層30から外部へ電子が放出される。
また、放電時には、負極活物質層50からリチウムがイオンとなって離脱し、固体電解質層40を介して正極活物質層30に吸蔵される。このとき、負極活物質層50から外部へ電子が放出される。
When the thin-film solid secondary battery 1 is charged, lithium is separated from the positive electrode active material layer 30 as ions, and is inserted in the negative electrode active material layer 50 through the solid electrolyte layer 40. At this time, electrons are emitted from the positive electrode active material layer 30 to the outside.
Further, at the time of discharging, lithium is separated from the negative electrode active material layer 50 as ions, and is inserted into the positive electrode active material layer 30 through the solid electrolyte layer 40. At this time, electrons are emitted from the negative electrode active material layer 50 to the outside.

以上のように本例の薄膜固体二次電池1は、各薄膜(正極側の集電体層20、正極活物質層30、固体電解質層40、負極活物質層50、負極側の集電体層20、水分防止膜60)が光透過性の良好な透明な薄膜であるので、最外層から各層を介して光を基板10まで透過させることができるという付加特性を有する。   As described above, the thin film solid secondary battery 1 of the present example includes each thin film (positive electrode side current collector layer 20, positive electrode active material layer 30, solid electrolyte layer 40, negative electrode active material layer 50, negative electrode side current collector. Since the layer 20 and the moisture prevention film 60) are transparent thin films having good light transmittance, they have an additional characteristic that light can be transmitted from the outermost layer to the substrate 10 through each layer.

また、本例の薄膜固体二次電池1では、基板10を例えば窓ガラスとしてもよく、このような透明性が必要な部材に二次電池の機能を付加できる。
また、本例の薄膜固体二次電池1を太陽電池やEL等の光を透過させる必要があるデバイスの基板として用いることにより、それらのデバイスに二次電池の機能を付加できることができる。すなわち、基板10側に太陽電池やEL等の光デバイスを一体に形成した場合にでも、光の照射方向によらずに太陽電池等に光を届かせることが可能となるので、光デバイスの多機能化に寄与することができる。
In the thin-film solid secondary battery 1 of this example, the substrate 10 may be a window glass, for example, and the function of the secondary battery can be added to such a member that requires transparency.
Moreover, the function of a secondary battery can be added to those devices by using the thin film solid secondary battery 1 of this example as a substrate of a device that needs to transmit light such as a solar battery or an EL. That is, even when an optical device such as a solar cell or an EL is integrally formed on the substrate 10 side, light can reach the solar cell regardless of the direction of light irradiation. It can contribute to functionalization.

また、本例の薄膜固体二次電池1では、負極活物質層50として毒性があり、水分に弱い酸化バナジウム等の取り扱いの面倒な物質を用いなくてすむ。これにより、安全性の高い二次電池を供給することができる。   Further, in the thin film solid secondary battery 1 of this example, the negative electrode active material layer 50 is toxic, and it is not necessary to use a troublesome substance such as vanadium oxide which is weak against moisture. Thereby, a highly safe secondary battery can be supplied.

次に、本発明の実施例、比較例について説明する。
(実施例1)
実施例1では、図1の構成をなすよう基板10上に、集電体層20、正極活物質層30、固体電解質層40、負極活物質層50、集電体層20をこの順にスパッタリング法により形成し、薄膜固体二次電池1を作成した。
基板10は、縦100mm、横100mm、厚さ1mmのソーダライムガラスを用いた。
集電体層20は、ITO焼結体ターゲットを用い、DCマグネトロンスパッタリング法にて形成した。DCパワーは1KW、無加熱で成膜した。これにより、集電体層20として0.2μmのITO薄膜を形成した。
Next, examples of the present invention and comparative examples will be described.
Example 1
In Example 1, the current collector layer 20, the positive electrode active material layer 30, the solid electrolyte layer 40, the negative electrode active material layer 50, and the current collector layer 20 are sputtered in this order on the substrate 10 having the configuration shown in FIG. The thin film solid secondary battery 1 was formed.
As the substrate 10, soda lime glass having a length of 100 mm, a width of 100 mm, and a thickness of 1 mm was used.
The current collector layer 20 was formed by a DC magnetron sputtering method using an ITO sintered body target. The film was formed with a DC power of 1 KW and no heating. As a result, an ITO thin film having a thickness of 0.2 μm was formed as the current collector layer 20.

正極活物質層30は、リチウム−チタン酸化物LiTi12の焼結体ターゲットを用い、酸素を導入してRFマグネトロンスパッタリング法にて形成した。RFパワーは1KW、無加熱で成膜した。これにより、0.4μmのLiTi12薄膜を形成した。
固体電解質層40は、リン酸リチウム(LiPO)の焼結体ターゲットを用い、窒素ガスを導入してRFマグネトロンスパッタリング法にて形成した。RFパワーは1KW、無加熱で成膜した。これにより、0.4μmの窒素が添加されたリン酸リチウム(LIPON)薄膜を形成した。
The positive electrode active material layer 30 was formed by RF magnetron sputtering using a sintered compact target of lithium-titanium oxide Li 4 Ti 5 O 12 and introducing oxygen. The film was formed with an RF power of 1 KW and no heating. Thereby, a 0.4 μm thick Li 4 Ti 5 O 12 thin film was formed.
The solid electrolyte layer 40 was formed by RF magnetron sputtering using a sintered phosphor target of lithium phosphate (Li 3 PO 4 ) and introducing nitrogen gas. The film was formed with an RF power of 1 KW and no heating. Thereby, a lithium phosphate (LIPON) thin film to which 0.4 μm of nitrogen was added was formed.

負極活物質層50は、酸化インジウムの焼結体ターゲットを用い、酸素を導入してRFマグネトロンスパッタリング法にて形成した。RFパワーは1KW、無加熱で成膜した。これにより、0.2μmの酸化インジウム(In)薄膜を形成した。 The negative electrode active material layer 50 was formed by an RF magnetron sputtering method using an indium oxide sintered compact target and introducing oxygen. The film was formed with an RF power of 1 KW and no heating. Thereby, a 0.2 μm indium oxide (In 2 O 3 ) thin film was formed.

以上のようにして得られた薄膜固体二次電池1の透明性を評価するために、分光光度計により、測定波長範囲400〜700nmの可視域で、基板10も含めた透過率を測定した。その測定結果を図2に示す。図2に示すように、基板10を含めた透過率は70〜85%の範囲にあり、平均では約78%と透明性は比較的良いことが確認された。   In order to evaluate the transparency of the thin film solid secondary battery 1 obtained as described above, the transmittance including the substrate 10 was measured with a spectrophotometer in the visible wavelength range of 400 to 700 nm. The measurement results are shown in FIG. As shown in FIG. 2, the transmittance including the substrate 10 was in the range of 70 to 85%, and it was confirmed that the transparency was relatively good at about 78% on average.

次に、本例の薄膜固体二次電池1の電池性能を評価するために、充放電測定器を用いて充放電特性を測定した。測定条件は、充電および放電時の電流はいずれも0.2mA、充電および放電の打ち切りの電圧はそれぞれ3.5V、0.3Vとした。その結果、繰り返し充放電動作を示すことが確認できた。図3に、安定して充放電動作を示した10サイクル目の充放電特性のグラフを示す。図3から放電開始電圧は3.0V、充電容量,放電容量はそれぞれ1.03mAh、1.01mAhであることがわかる。また、本例では、100サイクルまで充放電測定を行ったが、安定してほぼ一定の充放電曲線を示すことが確認された。   Next, in order to evaluate the battery performance of the thin film solid secondary battery 1 of this example, the charge / discharge characteristics were measured using a charge / discharge measuring instrument. Measurement conditions were such that the current during charging and discharging was 0.2 mA, and the voltage at the end of charging and discharging was 3.5 V and 0.3 V, respectively. As a result, it was confirmed that repeated charge / discharge operations were exhibited. FIG. 3 shows a graph of charge / discharge characteristics at the 10th cycle in which the charge / discharge operation is stably performed. FIG. 3 shows that the discharge start voltage is 3.0 V, and the charge capacity and the discharge capacity are 1.03 mAh and 1.01 mAh, respectively. Moreover, in this example, although charging / discharging measurement was performed to 100 cycles, it was confirmed that it shows a stable and substantially constant charging / discharging curve.

(実施例2)
実施例2では、図1の構成をなすよう基板10上に、集電体層20、正極活物質層30、固体電解質層40、負極活物質層50、集電体層20をこの順にスパッタリング法により形成し、薄膜固体二次電池1を作成した。ここで、正極活物質層30および負極活物質50以外の層は、実施例1と同じ物質、膜厚、成膜条件で形成した。
正極活物質層30は、リチウム−チタン酸化物LiTiの焼結体ターゲットを用い、酸素を導入してRFマグネトロンスパッタリング法にて形成した。RFパワーは1KW、無加熱で成膜した。これにより、0.4μmのLiTi薄膜を形成した。
(Example 2)
In Example 2, the current collector layer 20, the positive electrode active material layer 30, the solid electrolyte layer 40, the negative electrode active material layer 50, and the current collector layer 20 are sputtered in this order on the substrate 10 having the configuration shown in FIG. The thin film solid secondary battery 1 was formed. Here, the layers other than the positive electrode active material layer 30 and the negative electrode active material 50 were formed using the same material, film thickness, and film formation conditions as in Example 1.
The positive electrode active material layer 30 was formed by RF magnetron sputtering using a sintered compact target of lithium-titanium oxide LiTi 2 O 4 and introducing oxygen. The film was formed with an RF power of 1 KW and no heating. Thereby, a 0.4 μm thick LiTi 2 O 4 thin film was formed.

負極活物質層50は、リチウム−チタン酸化物LiTi12の焼結体ターゲットを用い、酸素を導入してRFマグネトロンスパッタリング法にて形成した。RFパワーは1KW、無加熱で成膜した。これにより、0.2μmのLiTi12薄膜を形成した。 The negative electrode active material layer 50 was formed by RF magnetron sputtering using a lithium-titanium oxide Li 4 Ti 5 O 12 sintered target and introducing oxygen. The film was formed with an RF power of 1 KW and no heating. As a result, a 0.2 μm thick Li 4 Ti 5 O 12 thin film was formed.

以上のようにして得られた薄膜固体二次電池1の透明性を評価するために、実施例1と同様に、分光光度計により、基板10も含めた透過率を測定した。そして、実施例2においては、基板10を含めた透過率が70〜85%の範囲(平均76%)にあり、透明性は比較的良いことが確認された。
次に、その薄膜固体二次電池1の電池性能を充放電測定により評価した。測定条件は、実施例1と同様に、充電および放電時の電流を0.2mA、充電および放電の打ち切りの電圧をそれぞれ3.5V、0.3Vとした。
その充放電測定の結果、繰り返し充放電動作を示すことが確認できた。また、100サイクルまで充放電測定を行ったが、安定してほぼ一定の充放電曲線を示すことが確認された。図4に、安定して充放電動作をした10サイクル目の充放電特性のグラフを示す。放電開始電圧は3.1V、充電容量、放電容量はそれぞれ1.01mAh、0.99mAhであった。
In order to evaluate the transparency of the thin film solid secondary battery 1 obtained as described above, the transmittance including the substrate 10 was measured with a spectrophotometer in the same manner as in Example 1. In Example 2, the transmittance including the substrate 10 was in the range of 70 to 85% (average 76%), and it was confirmed that the transparency was relatively good.
Next, the battery performance of the thin film solid secondary battery 1 was evaluated by charge / discharge measurement. The measurement conditions were the same as in Example 1, with the current during charging and discharging being 0.2 mA, and the voltage at which charging and discharging were terminated being 3.5 V and 0.3 V, respectively.
As a result of the charge / discharge measurement, it was confirmed that repeated charge / discharge operations were exhibited. Moreover, although charging / discharging measurement was performed to 100 cycles, it was confirmed that it shows a stable and substantially constant charging / discharging curve. FIG. 4 shows a graph of the charge / discharge characteristics at the 10th cycle in which the charge / discharge operation was stably performed. The discharge start voltage was 3.1 V, the charge capacity and the discharge capacity were 1.01 mAh and 0.99 mAh, respectively.

(実施例3)
実施例3では、負極活物質層50の物質を換えたこと以外は実施例1と同じ物質、膜厚、成膜条件で薄膜固体二次電池1を作成した。正極活物質層30は、リチウム−チタン酸化物LiTi12薄膜である。負極活物質層50に用いた物質は、五酸化ニオブ(Nb)、酸化チタン(TiO)、酸化亜鉛(ZnO)、酸化スズ(SnO)、酸化ニッケル(NiO)、スズが添加された酸化インジウム(ITO)、アルミニウムが添加された酸化亜鉛(AZO)、ガリウムが添加された酸化亜鉛(GZO)、アンチモンが添加された酸化スズ(ATO)、フッ素が添加された酸化スズ(FTO)、リチウムが添加された酸化ニッケル(NiO−Li)の11種類である。
(Example 3)
In Example 3, a thin-film solid secondary battery 1 was created using the same material, film thickness, and film forming conditions as those in Example 1 except that the material of the negative electrode active material layer 50 was changed. The positive electrode active material layer 30 is a lithium-titanium oxide Li 4 Ti 5 O 12 thin film. Materials used for the negative electrode active material layer 50 include niobium pentoxide (Nb 2 O 5 ), titanium oxide (TiO 2 ), zinc oxide (ZnO), tin oxide (SnO 2 ), nickel oxide (NiO), and tin. Indium oxide (ITO), zinc oxide with aluminum added (AZO), zinc oxide with gallium added (GZO), tin oxide with antimony added (ATO), tin oxide with fluorine added (FTO) ), And 11 types of nickel oxide (NiO-Li) to which lithium is added.

以上のようにして得られた11種類の薄膜固体二次電池1について、実施例1と同様に、分光光度計により基板10も含めた透過率を測定した。基板10を含めた透過率はいずれも70〜85%の範囲にあり、平均では75〜80%の範囲で、いずれの薄膜固体二次電池1も透明性は比較的良いことが確認された。
次に、これらの薄膜固体二次電池1の電池性能を充放電測定により評価した。測定条件は、実施例1と同様に、充電および放電時の電流はいずれも0.2mA、充電および放電の打ち切りの電圧はそれぞれ3.5V、0.3Vとした。その結果、いずれの薄膜固体二次電池1も繰り返し充放電動作を示し、100サイクルまで安定してほぼ一定の充放電曲線を示すことが確認された。また、放電開始電圧は、いずれの薄膜二次電池も約3.0V、充電容量、放電容量はそれぞれ約1.1mAh、1.0mAhであった。
For the 11 types of thin-film solid secondary batteries 1 obtained as described above, the transmittance including the substrate 10 was measured using a spectrophotometer in the same manner as in Example 1. The transmittance including the substrate 10 was in the range of 70 to 85%, and the average was in the range of 75 to 80%. It was confirmed that all the thin-film solid secondary batteries 1 had relatively good transparency.
Next, the battery performance of these thin film solid secondary batteries 1 was evaluated by charge / discharge measurement. The measurement conditions were the same as in Example 1, with the current during charging and discharging being 0.2 mA, and the voltage at which charging and discharging were terminated being 3.5 V and 0.3 V, respectively. As a result, it was confirmed that any of the thin film solid secondary batteries 1 repeatedly showed a charge / discharge operation, and showed a substantially constant charge / discharge curve stably up to 100 cycles. In addition, the discharge start voltage was about 3.0 V for any thin film secondary battery, and the charge capacity and the discharge capacity were about 1.1 mAh and 1.0 mAh, respectively.

(比較例1)
次に、比較例1として、図1に示すように基板10上に、集電体層20、正極活物質層30、固体電解質層40、負極活物質層50、集電体層20をこの順にスパッタリング法により形成し、薄膜固体二次電池1aを作成した。ここで、正極活物質層30以外の層は、実施例1と同じ物質、膜厚、成膜条件で形成した。正極活物質層30は、LiMnの焼結ターゲットを用い、RFマグネトロンスパッタリング法にて形成した。RFパワーは1KW、無加熱で成膜した。これにより、正極活物質層30として0.4μmのLiMn薄膜を形成した。
(Comparative Example 1)
Next, as Comparative Example 1, a current collector layer 20, a positive electrode active material layer 30, a solid electrolyte layer 40, a negative electrode active material layer 50, and a current collector layer 20 are arranged in this order on a substrate 10 as shown in FIG. A thin film solid secondary battery 1a was formed by sputtering. Here, the layers other than the positive electrode active material layer 30 were formed using the same material, film thickness, and film formation conditions as in Example 1. The positive electrode active material layer 30 was formed by an RF magnetron sputtering method using a LiMn 2 O 4 sintered target. The film was formed with an RF power of 1 KW and no heating. Thereby, a 0.4 μm thick LiMn 2 O 4 thin film was formed as the positive electrode active material layer 30.

以上のようにして得られた薄膜固体二次電池1aについて、実施例1と同様に、分光光度計により基板10も含めた透過率を測定した。また、充放電測定により薄膜固体二次電池1aの電池性能を測定評価した。その結果、電池特性については実施例1とほぼ同等な充放電特性を示すことが確認できた。しかしながら、分光特性については、基板を含めた透過率は5〜20%の範囲にあり、平均では9%であった。このように、薄膜固体二次電池1aの透明性は良好ではないことが確認された。また、LiMn薄膜は、見た目でも光の吸収の多い黒い膜であった。 About the thin film solid secondary battery 1a obtained as described above, the transmittance including the substrate 10 was measured with a spectrophotometer in the same manner as in Example 1. Moreover, the battery performance of the thin film solid secondary battery 1a was measured and evaluated by charge / discharge measurement. As a result, it was confirmed that the battery characteristics were substantially the same as those of Example 1. However, with respect to the spectral characteristics, the transmittance including the substrate was in the range of 5 to 20%, and the average was 9%. Thus, it was confirmed that the transparency of the thin film solid secondary battery 1a is not good. Further, the LiMn 2 O 4 thin film was a black film with much light absorption even in appearance.

すなわち、比較例1では正極活物質層30として、従来から正極活物質として使用されることが多い透明性の低いLiMnが使用されている。これに対し、実施例1〜3では正極活物質層30および負極活物質層50として、透明度が高い金属酸化物が使用されている。このように比較例1のような従来の物質構成の薄膜固体二次電池1aでは、全体として透明度が良好ではないが、実施例1〜3の薄膜固体二次電池1では、透明度が高い物質を用いることによって全体として透明度を良好にすることができた。また、実施例1〜3の薄膜固体二次電池1では、電池特性は従来と比して同等の性能を確保することができた。 That is, in Comparative Example 1, LiMn 2 O 4 having low transparency, which has been conventionally used as a positive electrode active material, is used as the positive electrode active material layer 30. In contrast, in Examples 1 to 3, metal oxides having high transparency are used as the positive electrode active material layer 30 and the negative electrode active material layer 50. Thus, in the thin film solid secondary battery 1a of the conventional material structure like the comparative example 1, the transparency is not good as a whole, but in the thin film solid secondary battery 1 of Examples 1 to 3, a highly transparent substance is used. By using it, the transparency can be improved as a whole. Moreover, in the thin film solid secondary battery 1 of Examples 1-3, the battery characteristic was able to ensure the equivalent performance compared with the past.

以上のように、本例の薄膜固体二次電池1は、比較例の薄膜固体二次電池1aで正極活物質として使用されている透明度の低いマンガン酸リチウムLiMn等と異なり、リチウム−チタン酸化物や透明金属酸化物等を使用することにより、電池特性を落とすことなく透明度が良好な全固体型の薄膜二次電池1を作成することができた。 As described above, the thin film solid secondary battery 1 of this example is different from lithium manganate LiMn 2 O 4 and the like having low transparency used as the positive electrode active material in the thin film solid secondary battery 1a of the comparative example. By using titanium oxide, transparent metal oxide, or the like, it was possible to produce an all solid-state thin film secondary battery 1 having good transparency without deteriorating battery characteristics.

参考例
参考例では、図1の構成をなすよう基板10上に、集電体層20、正極活物質層30、固体電解質層40、負極活物質層50、集電体層20をこの順にスパッタリング法により形成し、薄膜固体二次電池1を作成した。ここで、正極活物質層30および負極活物質50以外の層は、実施例1と同じ物質、膜厚、成膜条件で形成した。
正極活物質層30は、リチウム−チタン酸化物LiTi12の焼結体ターゲットを用い、酸素を導入してRFマグネトロンスパッタリング法にて形成した。RFパワーは1KW、無加熱で成膜した。これにより、0.3μmのLiTi12薄膜を形成した。
( Reference example )
In the reference example , the current collector layer 20, the positive electrode active material layer 30, the solid electrolyte layer 40, the negative electrode active material layer 50, and the current collector layer 20 are formed in this order on the substrate 10 to form the configuration of FIG. The thin film solid secondary battery 1 was formed. Here, the layers other than the positive electrode active material layer 30 and the negative electrode active material 50 were formed using the same material, film thickness, and film formation conditions as in Example 1.
The positive electrode active material layer 30 was formed by RF magnetron sputtering using a lithium-titanium oxide Li 2 Ti 7 O 12 sintered target and introducing oxygen. The film was formed with an RF power of 1 KW and no heating. As a result, a 0.3 μm thick Li 2 Ti 7 O 12 thin film was formed.

負極活物質層50は、リチウム−チタン酸化物LiTi12の焼結体ターゲットを用い、酸素を導入してRFマグネトロンスパッタリング法にて形成した。RFパワーは1KW、無加熱で成膜した。これにより、0.3μmのLiTi12薄膜を形成した。 The negative electrode active material layer 50 was formed by RF magnetron sputtering using a lithium-titanium oxide Li 4 Ti 5 O 12 sintered target and introducing oxygen. The film was formed with an RF power of 1 KW and no heating. Thereby, a 0.3 μm thick Li 4 Ti 5 O 12 thin film was formed.

以上のようにして得られた薄膜固体二次電池1の電池性能を評価するために、充放電測定器を用いて充放電特性を測定した。測定条件は、充電および放電時の電流はいずれも0.01mA、充電および放電の打ち切りの電圧はそれぞれ2.5V、−2.5Vとした。その結果、繰り返し充放電動作を示すことが確認できた。図5に、安定して充放電動作を示した10サイクル目の充放電特性のグラフを示す。   In order to evaluate the battery performance of the thin film solid secondary battery 1 obtained as described above, charge / discharge characteristics were measured using a charge / discharge measuring instrument. Measurement conditions were such that the current during charging and discharging was 0.01 mA, and the voltage at which charging and discharging were terminated was 2.5 V and −2.5 V, respectively. As a result, it was confirmed that repeated charge / discharge operations were exhibited. FIG. 5 shows a graph of charge / discharge characteristics at the 10th cycle in which the charge / discharge operation is stably performed.

図5に示すように参考例の薄膜固体二次電池1は、充放電に伴って正負極間の電位差が−2.5V〜+2.5Vの間で連続的に0Vを横切って変化していることが分かる。すなわち、参考例の薄膜固体二次電池1は、LiTi12薄膜,LiTi12薄膜をそれぞれ正極活物質層30,負極活物質層50として形成したが、充放電の状況によってどちらを正極側または負極側とすることも可能となる。また、本例では、100サイクルまで充放電測定を行ったが、安定して図5と略同じ充放電曲線を示すことが確認された。 As shown in FIG. 5, in the thin-film solid secondary battery 1 of the reference example, the potential difference between the positive and negative electrodes continuously changes across 0 V between −2.5 V to +2.5 V with charging and discharging. I understand that. That is, in the thin film solid secondary battery 1 of the reference example, the Li 2 Ti 7 O 12 thin film and the Li 4 Ti 5 O 12 thin film were formed as the positive electrode active material layer 30 and the negative electrode active material layer 50, respectively. Thus, it is possible to make either the positive electrode side or the negative electrode side. Moreover, in this example, although charging / discharging measurement was performed to 100 cycles, it was confirmed that the charging / discharging curve which was substantially the same as FIG. 5 was shown stably.

以上のように、参考例の薄膜固体二次電池1では、正極活物質層30をLiTi12薄膜、負極活物質層50をLiTi12薄膜とした。すなわち、正極活物質層30,負極活物質層50ともにLiTi12スピネル系の物質であり、且つ、リチウム濃度が異なる物質である。このように、正極活物質層30,負極活物質層50を形成する物質を選択することにより、0Vを横切って−2.5V〜+2.5Vの間で繰り返し充放電を行うことが可能な全固体型の薄膜二次電池を作成することができた。また、参考例の薄膜固体二次電池1は、実施例1〜3の薄膜固体二次電池1と同様に、いずれの層も透明であり、全体として透明度が良好であった。 As described above, in the thin film solid secondary battery 1 of the reference example, the positive electrode active material layer 30 was a Li 2 Ti 7 O 12 thin film, and the negative electrode active material layer 50 was a Li 4 Ti 5 O 12 thin film. That is, both of the positive electrode active material layer 30 and the negative electrode active material layer 50 are Li 4 Ti 5 O 12 spinel materials and have different lithium concentrations. In this way, by selecting the material that forms the positive electrode active material layer 30 and the negative electrode active material layer 50, it is possible to charge and discharge repeatedly between -2.5V and + 2.5V across 0V. A solid-state thin-film secondary battery could be produced. Moreover, as for the thin film solid secondary battery 1 of the reference example, all the layers were transparent similarly to the thin film solid secondary battery 1 of Examples 1-3, and the transparency was favorable as a whole.

本発明の一実施形態に係る薄膜固体二次電池の断面図である。It is sectional drawing of the thin film solid secondary battery which concerns on one Embodiment of this invention. 実施例1の薄膜固体二次電池の分光特性のグラフである。2 is a graph of spectral characteristics of the thin film solid secondary battery of Example 1. FIG. 実施例1の薄膜固体二次電池の充放電特性のグラフである。2 is a graph of charge / discharge characteristics of the thin-film solid secondary battery of Example 1. 実施例2の薄膜固体二次電池の充放電特性のグラフである。4 is a graph of charge / discharge characteristics of the thin-film solid secondary battery of Example 2. 参考例の薄膜固体二次電池の充放電特性のグラフである。It is a graph of the charging / discharging characteristic of the thin film solid secondary battery of a reference example .

符号の説明Explanation of symbols

1 薄膜固体二次電池
10 基板
20 集電体層
30 正極活物質層
40 固体電解質層
50 負極活物質層
60 水分防止膜
DESCRIPTION OF SYMBOLS 1 Thin film solid secondary battery 10 Substrate 20 Current collector layer 30 Positive electrode active material layer 40 Solid electrolyte layer 50 Negative electrode active material layer 60 Moisture prevention film

Claims (4)

基板上に、正極集電体層、正極活物質層、固体電解質層、負極活物質層、負極集電体層を積層してなる薄膜固体二次電池において、いずれの層も透明な薄膜からなることを特徴とする薄膜固体二次電池。   In a thin film solid secondary battery in which a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer are laminated on a substrate, all the layers are made of a transparent thin film. A thin-film solid secondary battery characterized by the above. 前記正極集電体層および前記負極集電体層は、スズが添加された酸化インジウム(ITO)、アルミニウムが添加された酸化亜鉛(AZO)、ガリウムが添加された酸化亜鉛(GZO)、アンチモンが添加された酸化スズ(ATO)、フッ素が添加された酸化スズ(FTO)のいずれかからなる透明導電膜であることを特徴とする請求項1に記載の薄膜固体二次電池。   The positive electrode current collector layer and the negative electrode current collector layer are made of indium oxide (ITO) to which tin is added, zinc oxide (AZO) to which aluminum is added, zinc oxide (GZO) to which gallium is added, and antimony. 2. The thin film solid secondary battery according to claim 1, wherein the thin film solid secondary battery is a transparent conductive film made of either tin oxide (ATO) added or tin oxide (FTO) added with fluorine. 前記正極活物質層および前記負極活物質層は、リチウム−チタン酸化物、五酸化ニオブ、酸化チタン、酸化インジウム、酸化亜鉛、酸化スズ、酸化ニッケル、スズが添加された酸化インジウム(ITO)、アルミニウムが添加された酸化亜鉛(AZO)、ガリウムが添加された酸化亜鉛(GZO)、アンチモンが添加された酸化スズ(ATO)、フッ素が添加された酸化スズ(FTO)、リチウムが添加された酸化ニッケル(NiO−Li)のいずれかからなる透明な薄膜であることを特徴とする請求項1に記載の薄膜固体二次電池。   The positive electrode active material layer and the negative electrode active material layer include lithium-titanium oxide, niobium pentoxide, titanium oxide, indium oxide, zinc oxide, tin oxide, nickel oxide, indium oxide (ITO) to which tin is added, aluminum Zinc oxide (AZO) to which gallium is added, zinc oxide (GZO) to which gallium is added, tin oxide (ATO) to which antimony is added, tin oxide (FTO) to which fluorine is added, nickel oxide to which lithium is added The thin film solid secondary battery according to claim 1, wherein the thin film solid secondary battery is a transparent thin film made of any one of (NiO—Li). 前記固体電解質層は、リン酸リチウム(LiPO)、窒素が添加されたリン酸リチウム(LiPON)のいずれかからなる透明な固体電解質薄膜であることを特徴とする請求項1に記載の薄膜固体二次電池。 The solid electrolyte layer, lithium phosphate (Li 3 PO 4), according to claim 1, wherein the nitrogen is a transparent solid electrolyte thin film made of any of the added lithium phosphate (LiPON) Thin film solid secondary battery.
JP2005027017A 2005-02-02 2005-02-02 Thin film solid secondary battery Expired - Fee Related JP5002852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005027017A JP5002852B2 (en) 2005-02-02 2005-02-02 Thin film solid secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005027017A JP5002852B2 (en) 2005-02-02 2005-02-02 Thin film solid secondary battery

Publications (2)

Publication Number Publication Date
JP2006216336A JP2006216336A (en) 2006-08-17
JP5002852B2 true JP5002852B2 (en) 2012-08-15

Family

ID=36979380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005027017A Expired - Fee Related JP5002852B2 (en) 2005-02-02 2005-02-02 Thin film solid secondary battery

Country Status (1)

Country Link
JP (1) JP5002852B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021057317A (en) * 2019-10-02 2021-04-08 三菱マテリアル株式会社 Thin film lithium secondary battery and manufacturing method thereof

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5164369B2 (en) * 2006-12-08 2013-03-21 日本合成化学工業株式会社 Secondary battery
JP5217195B2 (en) * 2007-03-14 2013-06-19 ジオマテック株式会社 Thin-film solid lithium ion secondary battery and composite device including the same
JP2009163989A (en) * 2008-01-07 2009-07-23 Sumitomo Electric Ind Ltd Lithium battery, positive electrode for lithium battery, and its manufacturing method
JP5417757B2 (en) 2008-07-16 2014-02-19 ソニー株式会社 Method for producing positive electrode of thin film battery and method for producing thin film battery
US9799914B2 (en) * 2009-01-29 2017-10-24 Corning Incorporated Barrier layer for thin film battery
JP5515307B2 (en) * 2009-02-03 2014-06-11 ソニー株式会社 Thin-film solid lithium ion secondary battery
JP5540643B2 (en) * 2009-02-03 2014-07-02 ソニー株式会社 Thin-film solid lithium ion secondary battery and manufacturing method thereof
US9786444B2 (en) * 2009-06-25 2017-10-10 Nokia Technologies Oy Nano-structured flexible electrodes, and energy storage devices using the same
KR101084207B1 (en) 2009-10-01 2011-11-17 삼성에스디아이 주식회사 Negative electrode for lithium battery, method for manufacturing the same and lithium battery comprising the same
JP5549192B2 (en) * 2009-11-18 2014-07-16 ソニー株式会社 Solid electrolyte battery and positive electrode active material
JP5540930B2 (en) * 2010-06-23 2014-07-02 ソニー株式会社 Transparent conductive film, method for producing transparent conductive film, dye-sensitized solar cell, and solid electrolyte battery
JP5573408B2 (en) * 2010-06-23 2014-08-20 ソニー株式会社 Manufacturing method of conductive material, conductive material, and battery
WO2012060349A1 (en) * 2010-11-02 2012-05-10 株式会社 村田製作所 All-solid-state battery
JP2012169165A (en) * 2011-02-15 2012-09-06 Sony Corp Solid electrolyte battery
WO2013061921A1 (en) * 2011-10-26 2013-05-02 三洋電機株式会社 Non-aqueous electrolyte secondary battery and method for manufacturing same
JP6524711B2 (en) * 2015-03-02 2019-06-05 富士通株式会社 Secondary battery and stored electricity quantity display method
CN105118963B (en) * 2015-07-21 2018-03-02 广东省新材料研究所 A kind of transparent positive electrode of lithium ion battery and preparation method thereof
JP2019102399A (en) * 2017-12-08 2019-06-24 日本電信電話株式会社 Light transmission type battery, device using the battery, and determination method of remaining battery charge
CN109166982A (en) 2018-08-31 2019-01-08 京东方科技集团股份有限公司 A kind of organic electroluminescence device, display panel and display device
JP2020087584A (en) * 2018-11-20 2020-06-04 日本電信電話株式会社 Lithium secondary battery and method for manufacturing the same
WO2021245790A1 (en) * 2020-06-02 2021-12-09 日本電信電話株式会社 Lithium secondary cell
CN114639830A (en) * 2020-12-16 2022-06-17 荣盛盟固利新能源科技有限公司 Visual lithium ion electrode, application and visual lithium ion battery
US20240097130A1 (en) * 2021-01-12 2024-03-21 Nippon Telegraph And Telephone Corporation Lithium Secondary Battery and Manufacturing Method for the Same
CN114843515A (en) * 2022-05-06 2022-08-02 广东凯金新能源科技股份有限公司 N-doped ZnO-based artificial electrolyte interface film modified hard carbon negative electrode and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002089236A1 (en) * 2001-04-24 2002-11-07 Matsushita Electric Industrial Co., Ltd. Secondary cell and production method thereof
JP4381273B2 (en) * 2004-10-01 2009-12-09 株式会社東芝 Secondary battery and method for manufacturing secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021057317A (en) * 2019-10-02 2021-04-08 三菱マテリアル株式会社 Thin film lithium secondary battery and manufacturing method thereof

Also Published As

Publication number Publication date
JP2006216336A (en) 2006-08-17

Similar Documents

Publication Publication Date Title
JP5002852B2 (en) Thin film solid secondary battery
JP5157005B2 (en) Negative electrode active material for thin film solid lithium ion secondary battery, thin film solid lithium ion secondary battery using the same, and method for producing the same
JP5515308B2 (en) Thin-film solid lithium ion secondary battery and manufacturing method thereof
JP5540643B2 (en) Thin-film solid lithium ion secondary battery and manufacturing method thereof
JP5515307B2 (en) Thin-film solid lithium ion secondary battery
EP1852933B1 (en) Thin-film solid secondary cell
JP5549192B2 (en) Solid electrolyte battery and positive electrode active material
JP5217195B2 (en) Thin-film solid lithium ion secondary battery and composite device including the same
CN102668190B (en) Solid electrolyte cell and positive active material
KR101810391B1 (en) Energy storage device and manufacturing method thereof
US20120183834A1 (en) Solid-electrolyte battery
EP1630893A1 (en) Solid electrolyte and all-solid cell containing same
JP2007103130A (en) Thin film solid secondary battery and method of manufacturing thin film solid secondary battery
CN103229343A (en) Solid electrolyte cell and positive electrode active material
US20150311562A1 (en) Solid electrolyte for a microbattery
JPWO2006080126A1 (en) Lithium battery and manufacturing method thereof
WO2011162028A1 (en) Transparent conductive film, method for manufacturing a transparent conductive film, dye-sensitized solar cell, and solid-electrolyte cell
JP2008112635A (en) All solid lithium ion battery and its manufacturing method
JP5217074B2 (en) Thin-film solid lithium ion secondary battery
JP4381176B2 (en) Thin film solid secondary battery
CN111213271B (en) Solid-state thin-film hybrid electrochemical cell
WO2012111783A1 (en) Solid electrolyte battery
JP2014154505A (en) Thin film solid secondary battery element
WO2020105424A1 (en) Light transmissive battery and power generating glass
JP5209527B2 (en) Thin-film solid secondary battery and method for producing thin-film solid secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120502

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5002852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees