JP5002098B2 - Electrode active material for non-aqueous electrolyte secondary battery, electrode and battery including the same - Google Patents

Electrode active material for non-aqueous electrolyte secondary battery, electrode and battery including the same Download PDF

Info

Publication number
JP5002098B2
JP5002098B2 JP2001260667A JP2001260667A JP5002098B2 JP 5002098 B2 JP5002098 B2 JP 5002098B2 JP 2001260667 A JP2001260667 A JP 2001260667A JP 2001260667 A JP2001260667 A JP 2001260667A JP 5002098 B2 JP5002098 B2 JP 5002098B2
Authority
JP
Japan
Prior art keywords
active material
electrode active
electrode
electrolyte secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001260667A
Other languages
Japanese (ja)
Other versions
JP2003068304A (en
Inventor
達己 石原
モハマド アズミ ブスタム
祐作 滝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2001260667A priority Critical patent/JP5002098B2/en
Publication of JP2003068304A publication Critical patent/JP2003068304A/en
Application granted granted Critical
Publication of JP5002098B2 publication Critical patent/JP5002098B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解質電池、さらに詳細には充放電可能な非水電解質二次電池に関し、特に電極活物質の改良に関わり、サイクル特性の改善を目指すものである。
【0002】
【従来の技術】
リチウム等のアルカリ金属、マグネシウム等のアルカリ土類金属、あるいはこれらの合金、化合物等を負極活物質とする非水電解質二次電池は、負極金属イオンの正極活物質へのインサーションもしくはインターカレーション反応によって、その大放電容量と充電可逆性とを確保している。
【0003】
最近、二次電池として、リチウムに対してインターカレーションホストとなりうるVOPO4を正極材料として用いた電池が提案されている(N.Dupre et al.,Solid State Ionics,140,pp.209-221(2001), N.Dupre et al.,J. Power Sources,97-98,pp.532-534(2001))。
【0004】
【発明が解決しようとする課題】
VOPO4の結晶構造にはいくつかの多形が存在することが知られており、上記文献においては、α、αII、δ、γ型のVOPO4を正極活物質、金属リチウムを負極活物質とした二次電池が提案されている。上記文献によれば、負極を金属リチウムとした場合、αII−VOPO4は電流値C/50、4V付近の電圧において140mAh/gの初期容量を有することが示されている。しかしながら、上記文献に記載の各種結晶構造のVOPO4からなる正極活物質はいずれもサイクル特性に問題があり、例えば、最もサイクル特性に優れた上記αII−VOPO4においても、C/50の電流値で9サイクル後の容量は118mAh/g(84%)まで低下してしまう。従って、サイクル特性を改善した電極活物質の開発が望まれるところである。
【0005】
本発明は、上記実情に鑑みてなされたものであり、その目的は、サイクル特性を改善した電極活物質、及び該電極活物質を用いた電極並びに非水電解質二次電池を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、上記の目的を達成するために、種々の検討を重ねた結果、特定の結晶構造を有するVOPO4を電極活物質として使用することによって、サイクル特性に関する上記課題が改善できることを見出した。即ち、本発明は、ω−VOPO4型の結晶構造を有するバナジウム−リン複合化合物からなる非水電解質二次電池用極活物質を提供するものである。
【0007】
次に、本発明は、上記の極活物質を含む非水電解質二次電池用電極も提供する。
また、本発明は、上記記載の電極を用いる非水電解質二次電池も提供するものである。より具体的には、上記記載の電極を正極として用いる非水電解質二次電池、更に、負極として、アルカリ金属材料及びアルカリ土類金属材料からなる群から選ばれる少なくとも1種の負極活物質を含む電極を用いる上記非水電解質二次電池を提供するものである。
【0008】
【発明の実施の形態】
以下、本発明をさらに詳しく説明する。
(1)非水電解質二次電池用電極活物質:
本発明における電極活物質は、上記のごとく、ω−VOPO4型の結晶構造を有することを特徴とするバナジウム−リン複合化合物である。VOPO4の結晶構造は、VO6八面体とPO4四面体が2次元または3次元の開いたフレームワークを形成し、アルカリ金属及びアルカリ土類の挿入に適した構造を有する。VO6八面体とPO4四面体の結合形態の違いにより、α、αII、δ、γ等の結晶構造が存在するが、本発明におけるω−VOPO4型の結晶構造を有する化合物とはこの一種であり、具体的には、JCPDSカード37−0809に記載されているX線回折パターンを与える結晶構造を有する化合物である。
【0009】
本発明におけるω−VOPO4型の結晶構造を有する化合物においては、通常バナジウムの5価及び4価間の酸化還元により、金属リチウム対極に対し、約4Vの電位で充放電が行われる。このため、結晶構造中のバナジウム、リンを他の元素で置換し、バナジウムの平均価数を制御することにより充放電容量を制御することが可能である。また、置換により結晶構造を安定化することも可能である。さらに、リチウムが挿入されるサイトの一部に予めアルカリ金属元素、アルカリ土類金属元素を挿入することにより、結晶構造を安定化することも可能である。
【0010】
本発明のω−VOPO4型の結晶構造を有するバナジウム−リン複合化合物は、VOPO4なる組成を基本として、通常下記一般式(I)で表される。
【0011】
【化1】
x1-yy1+ δ 11-zz4+ δ 2 (I)
上記一般式(I)中、Aは、アルカリ金属元素及びアルカリ土類金属元素から選ばれる少なくとも一つの元素である。Aの具体例としては、Li、Na、K、Mg、及びCa等の元素を挙げることができる。好ましくはリチウムである。xの値はリチウムサイトに挿入される元素Aの量に相当する。負極をリチウム含有材料とする場合、Aをリチウム以外とすると、xの値があまりに大きいと電池容量が低下しすぎる傾向にあるので、通常0.4以下、好ましくは0.2以下さらに好ましくは0.1以下である。無論、xの値を0とすることも可能である。
【0012】
Mは、Al、Fe、Ga、Bi、Sn、Cr、Cu、Zn、Mg、Ti、Ge、Ta、Mo、W、Nb、Ni、Mn、及びCoからなる群から選ばれる少なくとも一つの元素である。yの値は元素Mによるバナジウムの置換量に相当する。yの値はあまりに大きいと電池容量が低下しすぎる傾向にあるので、通常0.4以下、好ましくは0.2以下さらに好ましくは0.1以下である。無論、yの値を0とすることも可能である。
【0013】
QはS、As、Si、及びGeからなる群から選ばれる少なくとも一つの元素である。zの値は元素Qによるリンの置換量に相当する。zの値はあまりに大きいとかえって結晶構造の安定性が低下することがあるので、通常0.4以下、好ましくは0.2以下さらに好ましくは0.1以下である。無論、zの値を0とすることも可能である。
【0014】
また、δ1、及びδ2は、それぞれVOPO4の不定比性に由来する酸素欠損量又は酸素過剰量に相当する。δ1は−0.2≦δ1≦0.2、δ2は−0.2≦δ2≦0.2を満たす数である。
本発明の活物質である化合物は、公知の方法によって製造することができ、その方法も、種々の方法がある。
【0015】
例えば、具体例の一つとして、所定のモル比の原料水溶液を加熱しながら撹拌後、乾燥、焼成する製造方法を挙げることができる。
(2)本発明電極:
本発明電極では、上記電極活物質を用いる。この場合、上記活物質は通常粉末状で用いればよく、その平均粒径は1−100μm程度とすればよい。平均粒径は例えばレーザー回折式粒度分布測定装置で測定される値である。また、電極中における上記活物質の含有量は、用いる活物質の種類、必要に応じて用いられる結着材(バインダー)や導電材の使用量等に応じて適宜設定すればよい。また、本発明電極においては、上記電極活物質単独又は他の従来から知られている電極活物質との混合物であってもよい。
【0016】
本発明電極の作製に際しては、上記電極活物質を用いるほかは公知の電極の作成方法に従って行えばよい。例えば、上記活物質の粉末を必要に応じて公知の結着材(ポリテトラフルオロエチレン、ポリビニリデンフルオライド、ポリビニルクロライド、エチレンプロピレンジエンポリマー、スチレン−ブタジエンゴム、アクリロニトリル−ブタジエンゴム、フッ素ゴム、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン、ニトロセルロース等)、さらに必要に応じて公知の導電材(アセチレンブラック、カーボン、グラファイト、天然黒鉛、人造黒鉛、ニードルコークス等)と混合した後、得られた混合粉末をステンレス鋼製等の支持体上に圧着成形したり、金属製容器に充填すればよい。
【0017】
あるいは、例えば、上記混合粉末を有機溶剤(N-メチルピロリドン、トルエン、シクロヘキサン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン等)と混合して得られたスラリーをアルミニウム、ニッケル、ステンレス、銅等の金属基板上に塗布する等の方法によっても本発明電極を作製することができる。
【0018】
電極の厚さは、通常1−1000μm、好ましくは10−200μm程度である。厚すぎると導電性が低下する傾向にあり、薄すぎると容量が低下する傾向にある。なお、塗布・乾燥によって得られた電極は、活物質の充填密度を上げるためローラープレス等により圧密してもよい。
(3)本発明の非水電解質二次電池:
本発明の非水電解質二次電池は、本発明電極(2)を電極として用いる以外は、公知のリチウム二次電池等の非水電解質二次電池における構成要素を採用することができる。
【0019】
本発明の電極は、通常正極として使用することが可能である。この場合負極としては、電極活物質として公知の負極活物質を使用することが可能であるが、アルカリ金属材料及びアルカリ土類金属材料からなる群から選ばれる少なくとも1種を用いることが好ましい。
本発明にいうアルカリ金属材料とは、リチウム、ナトリウム、カリウム等のアルカリ金属、アルカリ金属の化合物、合金等のほか、アルカリ金属イオンを吸蔵・放出することが可能な材料(例えば、Li2.5Co0.5N、Li4Ti512、炭素材料等)も含まれる。
【0020】
また、アルカリ土類金属材料とは、マグネシウム、カルシウム等のアルカリ土類金属、アルカリ土類金属の化合物、合金等のほか、アルカリ土類金属イオンを吸蔵・放出することが可能な材料(例えば、MgzTi2(PO43(0<z<4)等)等も含まれる。
負極の作製は公知の方法に従えばよく、例えば、前記(2)で説明した方法と同様にして作製することができる。すなわち、例えば、負極活物質の粉末を必要に応じて(2)で説明した公知の結着材、さらに必要に応じて(2)で説明した公知の導電材と混合した後、この混合粉末をシート状に成形し、これをステンレス、銅等の導電体網(集電体)に圧着すればよい。また、例えば、上記混合粉末を(2)で説明した公知の有機溶剤と混合して得られたスラリーを銅等の金属基板上に塗布することにより作製することもできる。
【0021】
その他の構成要素としては、公知の非水電解質二次電池に使用されるものを構成要素として使用できる。例えば、以下のものが例示できる。
電解液は通常、電解質及び溶媒を含む。電解液の溶媒としては、非水系であれば特に制限されず、例えばカーボネート類、エーテル類、ケトン類、スルホラン系化合物、ラクトン類、ニトリル類、塩素化炭化水素類、エーテル類、アミン類、エステル類、アミド類、リン酸エステル化合物等を使用することができる。
【0022】
これらの代表的なものを列挙すると、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、エチレンカーボネート、ビニレンカーボネート、メチルホルメート、ジメチルスルホキシド、プロピレンカーボネート、アセトニトリル、γ−ブチロラクトン、ジメチルホルムアミド、ジメチルカーボネート、ジエチルカーボネート、スルホラン、エチルメチルカーボネート、1,4−ジオキサン、4−メチル−2−ペンタノン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、プロピオニトリル、ベンゾニトリル、ブチロニトリル、バレロニトリル、1,2−ジクロロエタン、リン酸トリメチル、リン酸トリエチル等が使用できる。これらは1種または2種以上で用いることができる。
【0023】
電解液としては、これらの溶媒に、負極活物質中のアルカリ金属イオンもしくはアルカリ土類金属イオンが、上記正極活物質又は正極活物質及び負極活物質と電気化学反応するための移動を行うことができる電解質物質、例えば、LiClO4、LiPF6、LiBF4、LiCF3SO3、LiAsF6、LiB(C654、LiCl、LiBr、CH3SO3Li、CF3SO3Li、LiN(SO2CF32、LiN(SO2252、LiC(SO2CF33、LiN(SO3CF32等を使用することができる。また、本発明では公知の固体電解質、例えば、ナシコン構造を有するLiTi2(PO43等も使用できる。
【0024】
本発明電池では、セパレータ、電池ケース他、構造材料等の要素についても従来公知の各種材料が使用でき、特に制限はない。
例えば、正極と負極との間にセパレータを使用する場合は、微多孔性の高分子フィルムが用いられ、ナイロン、セルロースアセテート、ニトロセルロース、ポリスルホン、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリプロピレン、ポリエチレン、ポリブテン等のポリオレフィン高分子よりなるものが用いられる。セパレータの化学的及び電気化学的安定性の点からポリオレフィン系高分子が好ましく、電池セパレータの目的の一つである自己閉塞温度の点からポリエチレン製であることが望ましい。
【0025】
ポリエチレンセパレータの場合、高温形状維持性の点から超高分子量ポリエチレンであることが好ましく、その分子量の下限は好ましくは50万、さらに好ましくは100万、最も好ましくは150万である。他方分子量の上限は、好ましくは500万、更に好ましくは400万、最も好ましくは300万である。分子量が大きすぎると、流動性が低すぎて加熱された時セパレーターの孔が閉塞しない場合があるからである。
【0026】
本発明の電池は、これらの電池要素を用いて公知の方法に従って組み立てればよい。この場合、電池形状についても特に制限されることはなく、例えば円筒状、角型、コイン型等種々の形状、サイズを適宜採用することができる。
【0027】
【実施例】
以下、実施例によって本発明をさらに具体的に説明するが、本発明はこれらによりなんら制限されるものではない。
実施例1
ω−VOPO4を以下のようにして得た。
【0028】
25とNH2OH・HClをモル比で1:1となるように秤量し、85%H3PO4水溶液をP/Vのモル比が1.1/1となるように加え、さらに水を加え、80℃にて撹拌した。この溶液を蒸発乾固し、得られた固体を110℃にて一晩乾燥し、沸騰水中で2回水洗後、濾過し、60℃にて一晩乾燥後粉砕し、前駆体となるVO(HPO4)・0.5H2Oを得た。
【0029】
得られたVO(HPO4)・0.5H2Oを窒素中にて500℃、3時間焼成した後、さらに酸素中にて600℃焼成することにより、目的とするω−VOPO4を得た。
得られたω−VOPO4のX線回折結果を図1に示す。図1に示す粉末X線回折パターンから、JCPDSカード37−0809に記載のω−VOPO4であることを確認した。また、Fe、Znの酸化還元滴定により求めたバナジウムの価数は4.95であった。
【0030】
次に、得られたω−VOPO4を正極活物質(25mg)として、アセチレンブラック95重量%、ポリテトラフルオレエチレン5%からなる導電材(12.5mg)をエタノールを加えて混合の上、ステンレスメッシュに圧着し正極とした。電池の作成の前に、200℃で4時間乾燥した。
負極として金属リチウム、電解液としてEC(エチレンカーボネート):DMC(ジメチルカーボネート)=1:2を用い、ポリプロピレンをセパレータとして、半開放型セルを用いて0.08mA(C/50)の定電流で4.3〜3.2Vの範囲で充放電した。その結果、1サイクル目の可逆容量(充電容量)は85mAh/gであり、図2に示すように良好なサイクル特性を示した。即ち、前記公知文献(N.Dupre et al.,Solid State Ionics,140,pp.209-221(2001), N.Dupre et al.,J. Power Sources,97-98,pp.532-534(2001))においては、最もサイクル特性に優れたαII−VOPO4においても、C/50の電流値で9サイクル後の容量は84%にまで低下してしているが、図2によれば、ω−VOPO4の場合、同じ条件下での9サイクル目の容量は99%を維持している。
【0031】
【発明の効果】
本発明によれば、特定の電極活物質を利用するので、従来から公知のVOPO4電極活物質と比較して、サイクル特性が良好な非水電解質二次電池を提供することができる。
【図面の簡単な説明】
【図1】 本発明の一実施例であるω−VOPO4のX線回折図形を示す。
【図2】 本発明の一実施例であるω−VOPO4のサイクル特性を示す特性図を示す。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte battery, and more particularly to a chargeable / dischargeable non-aqueous electrolyte secondary battery. In particular, the present invention relates to improvement of an electrode active material and aims to improve cycle characteristics.
[0002]
[Prior art]
Non-aqueous electrolyte secondary batteries using an alkali metal such as lithium, an alkaline earth metal such as magnesium, or an alloy or compound thereof, as a negative electrode active material, insert or intercalate negative electrode metal ions into the positive electrode active material. The reaction ensures its large discharge capacity and charge reversibility.
[0003]
Recently, a battery using VOPO 4 which can be an intercalation host for lithium as a positive electrode material has been proposed as a secondary battery (N. Dupre et al., Solid State Ionics, 140, pp.209-221). (2001), N. Dupre et al., J. Power Sources, 97-98, pp. 532-534 (2001)).
[0004]
[Problems to be solved by the invention]
It is known that there are several polymorphs in the crystal structure of VOPO 4. In the above document, α, α II , δ, and γ type VOPO 4 is used as a positive electrode active material, and metallic lithium is used as a negative electrode active material. Secondary batteries have been proposed. According to the above document, when the negative electrode is made of metallic lithium, α II -VOPO 4 has an initial capacity of 140 mAh / g at a current value of C / 50 and a voltage in the vicinity of 4V. However, any of the positive electrode active materials composed of VOPO 4 having various crystal structures described in the above documents has a problem in cycle characteristics. For example, even in the α II -VOPO 4 having the most excellent cycle characteristics, a current of C / 50 As a result, the capacity after 9 cycles drops to 118 mAh / g (84%). Therefore, development of an electrode active material with improved cycle characteristics is desired.
[0005]
The present invention has been made in view of the above circumstances, and an object thereof is to provide an electrode active material having improved cycle characteristics, an electrode using the electrode active material, and a nonaqueous electrolyte secondary battery. .
[0006]
[Means for Solving the Problems]
The present inventors have made various studies in order to achieve the above object, and as a result, by using VOPO 4 having a specific crystal structure as an electrode active material, it is possible to improve the above problems related to cycle characteristics. I found it. That is, the present invention provides a positive electrode active material for a non-aqueous electrolyte secondary battery comprising a vanadium-phosphorus composite compound having a ω-VOPO 4 type crystal structure.
[0007]
Next, this invention also provides the electrode for nonaqueous electrolyte secondary batteries containing said positive electrode active material.
The present invention also provides a non-aqueous electrolyte secondary battery using the electrode described above. More specifically, a non-aqueous electrolyte secondary battery using the electrode described above as a positive electrode, and further including, as a negative electrode, at least one negative electrode active material selected from the group consisting of alkali metal materials and alkaline earth metal materials The non-aqueous electrolyte secondary battery using an electrode is provided.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
(1) Non-aqueous electrolyte secondary battery electrode active material:
As described above, the electrode active material in the present invention is a vanadium-phosphorus composite compound having a ω-VOPO 4 type crystal structure. As for the crystal structure of VOPO 4 , the VO 6 octahedron and the PO 4 tetrahedron form a two-dimensional or three-dimensional open framework, and have a structure suitable for insertion of alkali metals and alkaline earths. There are crystal structures such as α, α II , δ, and γ due to the difference in bonding form between the VO 6 octahedron and the PO 4 tetrahedron. The compound having the ω-VOPO 4 type crystal structure in the present invention is It is a kind, specifically, a compound having a crystal structure that gives an X-ray diffraction pattern described in JCPDS card 37-0809.
[0009]
In the compound having a ω-VOPO 4 type crystal structure in the present invention, charging and discharging are usually performed at a potential of about 4 V with respect to the metal lithium counter electrode by oxidation and reduction between pentavalent and tetravalent vanadium. For this reason, it is possible to control charge / discharge capacity by substituting vanadium and phosphorus in the crystal structure with other elements and controlling the average valence of vanadium. In addition, the crystal structure can be stabilized by substitution. Furthermore, it is possible to stabilize the crystal structure by previously inserting an alkali metal element or an alkaline earth metal element into a part of the site where lithium is inserted.
[0010]
The vanadium-phosphorus composite compound having the ω-VOPO 4 type crystal structure of the present invention is usually represented by the following general formula (I) based on the composition of VOPO 4 .
[0011]
[Chemical 1]
A x V 1-y M y O 1+ δ 1 P 1-z Q z O 4+ δ 2 (I)
In the general formula (I), A is at least one element selected from an alkali metal element and an alkaline earth metal element. Specific examples of A include elements such as Li, Na, K, Mg, and Ca. Lithium is preferable. The value of x corresponds to the amount of element A inserted into the lithium site. When the negative electrode is made of a lithium-containing material, if A is other than lithium, if the value of x is too large, the battery capacity tends to decrease too much, so usually 0.4 or less, preferably 0.2 or less, more preferably 0. .1 or less. Of course, the value of x can be 0.
[0012]
M is at least one element selected from the group consisting of Al, Fe, Ga, Bi, Sn, Cr, Cu, Zn, Mg, Ti, Ge, Ta, Mo, W, Nb, Ni, Mn, and Co. is there. The value of y corresponds to the amount of vanadium replaced by the element M. If the value of y is too large, the battery capacity tends to decrease too much. Therefore, it is usually at most 0.4, preferably at most 0.2, more preferably at most 0.1. Of course, the value of y can be set to 0.
[0013]
Q is at least one element selected from the group consisting of S, As, Si, and Ge. The value of z corresponds to the amount of phosphorus substituted by the element Q. On the other hand, if the value of z is too large, the stability of the crystal structure may be lowered. Of course, the value of z can be 0.
[0014]
Further, δ 1 and δ 2 correspond to an oxygen deficiency amount or an oxygen excess amount derived from the non-stoichiometry of VOPO 4 , respectively. δ 1 is a number that satisfies −0.2 ≦ δ 1 ≦ 0.2, and δ 2 is a number that satisfies −0.2 ≦ δ 2 ≦ 0.2.
The compound which is the active material of the present invention can be produced by a known method, and there are various methods.
[0015]
For example, as one specific example, there can be mentioned a production method in which a raw material aqueous solution having a predetermined molar ratio is stirred while being heated, then dried and fired.
(2) Invention electrode:
In the electrode of the present invention, the above electrode active material is used. In this case, the active material is usually used in powder form, and the average particle size may be about 1-100 μm. The average particle diameter is a value measured by, for example, a laser diffraction particle size distribution measuring apparatus. Moreover, what is necessary is just to set suitably content of the said active material in an electrode according to the usage-amount etc. of the kind of active material to be used, the binder (binder) used as needed, and a electrically conductive material. The electrode of the present invention may be the above electrode active material alone or a mixture with other conventionally known electrode active materials.
[0016]
The production of the electrode of the present invention may be carried out in accordance with a known electrode production method except that the above electrode active material is used. For example, the above active material powder may be added to a known binder (polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, ethylene propylene diene polymer, styrene-butadiene rubber, acrylonitrile-butadiene rubber, fluororubber, poly Vinyl acetate, polymethylmethacrylate, polyethylene, nitrocellulose, etc.) and, if necessary, mixing with known conductive materials (acetylene black, carbon, graphite, natural graphite, artificial graphite, needle coke, etc.) and then mixing obtained The powder may be pressure-molded on a support made of stainless steel or filled in a metal container.
[0017]
Alternatively, for example, the mixed powder is mixed with an organic solvent (N-methylpyrrolidone, toluene, cyclohexane, dimethylformamide, dimethylacetamide, methyl ethyl ketone, methyl acetate, methyl acrylate, diethyltriamine, N, N-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran. The electrode of the present invention can also be produced by a method such as applying a slurry obtained by mixing with a metal substrate such as aluminum, nickel, stainless steel or copper.
[0018]
The thickness of the electrode is usually about 1-1000 μm, preferably about 10-200 μm. If it is too thick, the conductivity tends to decrease, and if it is too thin, the capacity tends to decrease. The electrode obtained by coating and drying may be consolidated by a roller press or the like in order to increase the packing density of the active material.
(3) Nonaqueous electrolyte secondary battery of the present invention:
The nonaqueous electrolyte secondary battery of the present invention can employ components in a nonaqueous electrolyte secondary battery such as a known lithium secondary battery, except that the electrode (2) of the present invention is used as an electrode.
[0019]
The electrode of the present invention can usually be used as a positive electrode. In this case, as the negative electrode, a known negative electrode active material can be used as the electrode active material, but it is preferable to use at least one selected from the group consisting of alkali metal materials and alkaline earth metal materials.
The alkali metal material referred to in the present invention is an alkali metal such as lithium, sodium or potassium, a compound of an alkali metal, an alloy, etc., or a material capable of occluding and releasing alkali metal ions (for example, Li 2.5 Co 0.5 N, Li 4 Ti 5 O 12 , carbon materials, etc.).
[0020]
Alkaline earth metal materials include materials that can occlude and release alkaline earth metal ions in addition to alkaline earth metals such as magnesium and calcium, compounds and alloys of alkaline earth metals, and the like (for example, Mg z Ti 2 (PO 4 ) 3 (0 <z <4) and the like are also included.
The negative electrode may be manufactured by a known method, for example, by the same method as described in (2) above. That is, for example, the negative electrode active material powder is mixed with the known binder described in (2) as necessary, and the known conductive material described in (2) as necessary. What is necessary is just to shape | mold in a sheet | seat shape and to crimp | bond this to conductor networks (collector), such as stainless steel and copper. Moreover, for example, it can also be produced by applying a slurry obtained by mixing the mixed powder with the known organic solvent described in (2) on a metal substrate such as copper.
[0021]
As another component, what is used for a well-known nonaqueous electrolyte secondary battery can be used as a component. For example, the following can be illustrated.
The electrolytic solution usually includes an electrolyte and a solvent. The solvent of the electrolytic solution is not particularly limited as long as it is non-aqueous, for example, carbonates, ethers, ketones, sulfolane compounds, lactones, nitriles, chlorinated hydrocarbons, ethers, amines, esters. Amides, phosphate ester compounds, and the like can be used.
[0022]
These representatives are listed as follows: 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, ethylene carbonate, vinylene carbonate, methyl formate, dimethyl sulfoxide, propylene carbonate, acetonitrile, γ-butyrolactone, dimethylformamide, dimethyl carbonate, diethyl carbonate, sulfolane, ethyl methyl carbonate, 1,4-dioxane, 4-methyl-2-pentanone, 1,3-dioxolane, 4-methyl-1,3-dioxolane, diethyl Use ether, sulfolane, methyl sulfolane, propionitrile, benzonitrile, butyronitrile, valeronitrile, 1,2-dichloroethane, trimethyl phosphate, triethyl phosphate, etc. It can be. These can be used alone or in combination of two or more.
[0023]
As an electrolytic solution, the alkali metal ions or the alkaline earth metal ions in the negative electrode active material can be transferred to these solvents so as to electrochemically react with the positive electrode active material or the positive electrode active material and the negative electrode active material. Possible electrolyte materials, for example, LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiAsF 6 , LiB (C 6 H 5 ) 4 , LiCl, LiBr, CH 3 SO 3 Li, CF 3 SO 3 Li, LiN ( SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiC (SO 2 CF 3) 3, LiN (SO 3 CF 3) can be used 2 or the like. In the present invention, a known solid electrolyte such as LiTi 2 (PO 4 ) 3 having a NASICON structure can also be used.
[0024]
In the battery of the present invention, conventionally known various materials can be used for elements such as a separator, a battery case, and other structural materials, and there is no particular limitation.
For example, when using a separator between the positive and negative electrodes, a microporous polymer film is used, such as nylon, cellulose acetate, nitrocellulose, polysulfone, polyacrylonitrile, polyvinylidene fluoride, polypropylene, polyethylene, polybutene, etc. Those made of a polyolefin polymer are used. Polyolefin polymers are preferable from the viewpoint of the chemical and electrochemical stability of the separator, and are preferably made of polyethylene from the viewpoint of the self-closing temperature, which is one of the purposes of the battery separator.
[0025]
In the case of a polyethylene separator, ultrahigh molecular weight polyethylene is preferable from the viewpoint of maintaining high-temperature shape, and the lower limit of the molecular weight is preferably 500,000, more preferably 1,000,000, and most preferably 1.5 million. On the other hand, the upper limit of the molecular weight is preferably 5 million, more preferably 4 million, and most preferably 3 million. This is because if the molecular weight is too large, the pores of the separator may not close when heated because the fluidity is too low.
[0026]
What is necessary is just to assemble the battery of this invention according to a well-known method using these battery elements. In this case, the shape of the battery is not particularly limited, and various shapes and sizes such as a cylindrical shape, a square shape, and a coin shape can be appropriately employed.
[0027]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
Example 1
ω-VOPO 4 was obtained as follows.
[0028]
V 2 O 5 and NH 2 OH · HCl were weighed so as to have a molar ratio of 1: 1, and an 85% H 3 PO 4 aqueous solution was added so that the molar ratio of P / V was 1.1 / 1. Water was further added and stirred at 80 ° C. The solution was evaporated to dryness, and the resulting solid was dried at 110 ° C. overnight, washed twice in boiling water, filtered, dried at 60 ° C. overnight, pulverized, and VO (precursor) HPO 4 ) · 0.5H 2 O was obtained.
[0029]
The obtained VO (HPO 4 ) · 0.5H 2 O was calcined in nitrogen at 500 ° C. for 3 hours, and further calcined in oxygen at 600 ° C. to obtain the intended ω-VOPO 4 . .
The X-ray diffraction result of the obtained ω-VOPO 4 is shown in FIG. From the powder X-ray diffraction pattern shown in FIG. 1, it was confirmed to be ω-VOPO 4 described in JCPDS card 37-0809. The valence of vanadium determined by oxidation-reduction titration of Fe and Zn was 4.95.
[0030]
Next, the obtained ω-VOPO 4 was used as a positive electrode active material (25 mg), and a conductive material (12.5 mg) composed of 95% by weight of acetylene black and 5% of polytetrafluorethylene was added with ethanol and mixed. A positive electrode was bonded to a stainless steel mesh. Prior to battery preparation, it was dried at 200 ° C. for 4 hours.
Metal lithium as the negative electrode, EC (ethylene carbonate): DMC (dimethyl carbonate) = 1: 2 as the electrolyte, polypropylene as a separator, and a constant current of 0.08 mA (C / 50) using a semi-open cell The battery was charged / discharged in the range of 4.3 to 3.2V. As a result, the reversible capacity (charge capacity) at the first cycle was 85 mAh / g, and good cycle characteristics were exhibited as shown in FIG. That is, the known literature (N. Dupre et al., Solid State Ionics, 140, pp. 209-221 (2001), N. Dupre et al., J. Power Sources, 97-98, pp. 532-534 ( 2001)), even in α II -VOPO 4 having the most excellent cycle characteristics, the capacity after 9 cycles decreased to 84% at a current value of C / 50, but according to FIG. In the case of ω-VOPO 4 , the capacity of the ninth cycle under the same conditions is maintained at 99%.
[0031]
【Effect of the invention】
According to the present invention, since a specific electrode active material is used, it is possible to provide a non-aqueous electrolyte secondary battery having better cycle characteristics as compared with a conventionally known VOPO 4 electrode active material.
[Brief description of the drawings]
FIG. 1 shows an X-ray diffraction pattern of ω-VOPO 4 which is an embodiment of the present invention.
FIG. 2 is a characteristic diagram showing cycle characteristics of ω-VOPO 4 which is an embodiment of the present invention.

Claims (4)

ω−VOPO4型の結晶構造を有するバナジウム−リン複合化合物からなる非水電解質二次電池用極活物質。A positive electrode active material for a non-aqueous electrolyte secondary battery comprising a vanadium-phosphorus composite compound having a ω-VOPO 4 type crystal structure. 請求項1に記載の極活物質を含む非水電解質二次電池用電極。The electrode for nonaqueous electrolyte secondary batteries containing the positive electrode active material of Claim 1. 請求項2に記載の電極を正極として用いた非水電解質二次電池。  A nonaqueous electrolyte secondary battery using the electrode according to claim 2 as a positive electrode. アルカリ金属材料及びアルカリ土類金属材料からなる群から選ばれる少なくとも1種の負極活物質を含む電極を負極として用いた請求項3に記載の非水電解質二次電池。  The nonaqueous electrolyte secondary battery according to claim 3, wherein an electrode including at least one negative electrode active material selected from the group consisting of an alkali metal material and an alkaline earth metal material is used as the negative electrode.
JP2001260667A 2001-08-30 2001-08-30 Electrode active material for non-aqueous electrolyte secondary battery, electrode and battery including the same Expired - Lifetime JP5002098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001260667A JP5002098B2 (en) 2001-08-30 2001-08-30 Electrode active material for non-aqueous electrolyte secondary battery, electrode and battery including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001260667A JP5002098B2 (en) 2001-08-30 2001-08-30 Electrode active material for non-aqueous electrolyte secondary battery, electrode and battery including the same

Publications (2)

Publication Number Publication Date
JP2003068304A JP2003068304A (en) 2003-03-07
JP5002098B2 true JP5002098B2 (en) 2012-08-15

Family

ID=19087834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001260667A Expired - Lifetime JP5002098B2 (en) 2001-08-30 2001-08-30 Electrode active material for non-aqueous electrolyte secondary battery, electrode and battery including the same

Country Status (1)

Country Link
JP (1) JP5002098B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4314859B2 (en) * 2003-03-31 2009-08-19 祐作 滝田 Non-aqueous electrolyte secondary battery electrode active material, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
JP5396798B2 (en) 2008-09-30 2014-01-22 Tdk株式会社 Active material, positive electrode and lithium ion secondary battery using the same
US8821763B2 (en) 2008-09-30 2014-09-02 Tdk Corporation Active material and method of manufacturing active material
JP5347603B2 (en) 2009-03-16 2013-11-20 Tdk株式会社 Active material manufacturing method, active material, electrode, and lithium ion secondary battery
JP2011049126A (en) * 2009-08-28 2011-03-10 Equos Research Co Ltd Anode active material for sodium ion battery, and sodium ion battery in which the same is used
JP5594007B2 (en) * 2009-09-29 2014-09-24 Tdk株式会社 Method for producing active material for lithium ion secondary battery and method for producing lithium ion secondary battery
JP5594006B2 (en) * 2009-09-29 2014-09-24 Tdk株式会社 Method for producing active material for lithium ion secondary battery and method for producing lithium ion secondary battery
US8734539B2 (en) * 2009-09-29 2014-05-27 Tdk Corporation Method of manufacturing active material containing vanadium and method of manufacturing lithium-ion secondary battery containing such active material
US8734987B2 (en) 2010-06-18 2014-05-27 Tdk Corporation Active material, electrode containing same, lithium-ion secondary battery with the electrode, and method of manufacturing active material
JP2012022995A (en) 2010-07-16 2012-02-02 Tdk Corp Active material, electrode containing the same, lithium secondary battery including the electrode, and method for producing active material
JP5741143B2 (en) 2011-03-31 2015-07-01 Tdk株式会社 Active material, method for producing active material, electrode, lithium ion secondary battery, and method for producing lithium ion secondary battery
JP5810587B2 (en) 2011-03-31 2015-11-11 Tdk株式会社 Active material for lithium ion secondary battery, electrode for lithium ion secondary battery, lithium ion secondary battery
JP5699754B2 (en) 2011-03-31 2015-04-15 Tdk株式会社 Active material, electrode, lithium ion secondary battery, and method for producing active material
JP2013206554A (en) * 2012-03-27 2013-10-07 Tdk Corp Active material, electrode, and lithium-ion secondary battery
KR101994260B1 (en) * 2012-10-15 2019-06-28 삼성에스디아이 주식회사 Positive active material, method for preparation thereof and lithium battery comprising the same
JP7116464B2 (en) * 2016-01-06 2022-08-10 国立研究開発法人産業技術総合研究所 Positive electrode active material for secondary battery, manufacturing method thereof, and secondary battery
US10312523B2 (en) 2016-02-25 2019-06-04 Tdk Corporation Lithium ion secondary battery
CN106602005B (en) * 2016-05-11 2019-04-26 北京纳米能源与***研究所 V2(PO4) O/C material preparation method, the cathode and method of lithium ion battery is made

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4376709A (en) * 1980-11-10 1983-03-15 Exxon Research And Engineering Co. Intercalated layered mixed oxides
CA2442257C (en) * 2001-04-06 2013-01-08 Valence Technology, Inc. Sodium ion batteries

Also Published As

Publication number Publication date
JP2003068304A (en) 2003-03-07

Similar Documents

Publication Publication Date Title
US10833322B2 (en) Positive electrode active material containing lithium composite oxide and lithium composite oxyfluoride, and battery including positive electrode containing positive electrode active material
JP5235282B2 (en) Cathode active material and battery for non-aqueous electrolyte secondary battery
JP4314859B2 (en) Non-aqueous electrolyte secondary battery electrode active material, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
JP6236197B2 (en) Positive electrode for lithium battery and lithium battery
JP5002098B2 (en) Electrode active material for non-aqueous electrolyte secondary battery, electrode and battery including the same
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP5682040B2 (en) Pyrophosphate compound and method for producing the same
JP3504195B2 (en) Lithium secondary battery positive electrode active material and lithium secondary battery
US9728783B2 (en) Cathode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery including same
US20020182497A1 (en) Carbon-containing lithium-iron composite phosphorus oxide for lithium secondary battery positive electrode active material and process for producing the same
JP6952251B2 (en) Positive electrode active material for batteries and batteries
JP2004139743A (en) Nonaqueous electrolyte secondary battery
JP2003034534A (en) Carbon-containing lithium iron complex oxide for positive electrode active substance for lithium secondary cell and method for producing the same
JP2002083597A (en) Lithium secondary battery
JP3624205B2 (en) Electrode active material for non-aqueous electrolyte secondary battery, electrode and battery including the same
JP7177277B2 (en) Electrodes for lithium secondary batteries
JP2002246025A (en) Electrode active material for non-aqueous electrolyte secondary battery, and electrode and battery containing the same
JP2002289188A (en) Electrode active material for nonaqueous electrolyte secondary battery, electrode comprising it, and battery
JP4170733B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
WO2018123603A1 (en) Nonaqueous electrolyte secondary battery positive electrode and nonaqueous electrolyte secondary battery
JP5189466B2 (en) Lithium secondary battery
JP6366908B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP5598684B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode and battery
JP2003068303A (en) Electrode active material for secondary nonaqueous electrolyte battery, electrode and battery containing the same and manufacturing method of secondary nonaqueous electrolyte battery
JP6296682B2 (en) Positive electrode active material and lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080826

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

R150 Certificate of patent or registration of utility model

Ref document number: 5002098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term