JP4999468B2 - Spiral tube manufacturing method and spiral tube manufacturing apparatus - Google Patents

Spiral tube manufacturing method and spiral tube manufacturing apparatus Download PDF

Info

Publication number
JP4999468B2
JP4999468B2 JP2007000979A JP2007000979A JP4999468B2 JP 4999468 B2 JP4999468 B2 JP 4999468B2 JP 2007000979 A JP2007000979 A JP 2007000979A JP 2007000979 A JP2007000979 A JP 2007000979A JP 4999468 B2 JP4999468 B2 JP 4999468B2
Authority
JP
Japan
Prior art keywords
spiral
chuck
tube
spiral tube
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007000979A
Other languages
Japanese (ja)
Other versions
JP2008168300A (en
Inventor
浩幸 對馬
孝彦 河合
隆行 花木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007000979A priority Critical patent/JP4999468B2/en
Publication of JP2008168300A publication Critical patent/JP2008168300A/en
Application granted granted Critical
Publication of JP4999468B2 publication Critical patent/JP4999468B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、例えば空調機器の熱交換器などに好ましく用いることができる螺旋状の凹凸を有するスパイラル管の製造方法及びスパイラル管の製造装置に関するものである。   The present invention relates to a method of manufacturing a spiral tube having spiral irregularities and an apparatus for manufacturing a spiral tube that can be preferably used for, for example, a heat exchanger of an air conditioner.

従来の平滑な管材を捻り加工によりスパイラル管(スパイラル状コルゲート管)に形成したものとして、「外管は、外管端部を有し、可撓性を持たせるため、それぞれ同一の所定のピッチpを有する第1のスパイラルと第2のスパイラルとを互いに組み合わせた2条のスパイラル状コルゲート管から構成される。このことにより、平滑管と比べ、曲げ加工性が良くなるので、熱交換器をコイル状にする場合など平滑管では曲げることが困難な小さい曲げが要求される配管などに使用できる。」としたものがある(例えば特許文献1参照。)。   A conventional smooth tube material is formed into a spiral tube (spiral corrugated tube) by twisting. “The outer tube has an outer tube end and has the same predetermined pitch for flexibility. It is composed of two spiral corrugated pipes in which the first spiral having p and the second spiral are combined with each other, so that the bending workability is improved as compared with the smooth pipe. It can be used for piping that requires a small bend that is difficult to bend with a smooth tube, such as in the case of a coil. "(For example, see Patent Document 1).

特開2005−9832号公報(第1頁、図1)Japanese Patent Laying-Open No. 2005-9832 (first page, FIG. 1)

上記のような従来の技術の場合、特許文献1にはスパイラル管(スパイラル状コルゲート管)の製造方法は特に記載されてはいないが、一般に平滑管を単に捻り加工することで管体の外形に同一の所定のピッチpを有する第1のスパイラルと第2のスパイラルとを互いに組み合わせた形状に加工する方法であったため、平滑管に存在する偏肉によってスパイラル部に形成される山と谷の形状寸法にばらつきを生じ、高精度に制御することは困難であるという課題があった。   In the case of the conventional technology as described above, Patent Document 1 does not particularly describe a method of manufacturing a spiral tube (spiral corrugated tube). However, generally, a smooth tube is simply twisted to obtain an outer shape of a tubular body. Since the first spiral and the second spiral having the same predetermined pitch p were processed into a shape combined with each other, the shapes of peaks and valleys formed in the spiral portion due to uneven thickness existing in the smooth tube There was a problem that the size was varied and it was difficult to control with high accuracy.

この発明は、上記のような従来技術の課題を解決するためになされたもので、スパイラルの山と谷の形状または寸法を高精度に形成し得る品質の高いスパイラル管の製造方法及びスパイラル管の製造装置を提供することを目的としている。   The present invention has been made in order to solve the above-described problems of the prior art, and a high-quality spiral tube manufacturing method and spiral tube manufacturing method capable of forming the shape or size of spiral peaks and valleys with high accuracy. The object is to provide a manufacturing apparatus.

この発明に係るスパイラル管の製造方法は、平滑な管材の周面に起点となる複数の凹部を形成した後、該凹部から所定距離離れた部分を捻るように回転させることにより該管材の周囲をスパイラル状の凹凸に形成するスパイラル管の製造方法において、上記起点となる凹部に、得られる凹凸に応じて予め成形された成形部材を押し付けた後、上記回転に連動させて上記成形部材を上記スパイラル状の凹部に添って移動させることを特徴とするものである。   In the spiral tube manufacturing method according to the present invention, after forming a plurality of recesses as starting points on the peripheral surface of a smooth tube material, the periphery of the tube material is rotated by rotating a portion away from the recess by a predetermined distance. In the method of manufacturing a spiral tube formed into spiral irregularities, after pressing a molding member previously molded in accordance with the obtained irregularities into the concave portion serving as the starting point, the molding member is connected to the spiral in conjunction with the rotation. It moves along a concave part of a shape.

また、この発明に係るスパイラル管の製造装置は、管材の一端部を保持する第1のチャック手段及びこの第1のチャック手段を回転させる駆動機構を有する第1チャック保持台と、上記管材の他端部を保持する第2のチャック手段を有し上記第1チャック保持台の方向に相対移動可能に設けられた第2チャック保持台と、上記第1チャック保持台及び第2チャック保持台の間に上記第1チャック保持台の方向に相対移動可能に設けられた第3のチャック手段及びこの第3のチャック手段を回転させる駆動機構を有する第3チャック保持台と、上記第3のチャック手段に固定され上記管材の周面に形成された複数の凹部に押し付けられて所定のスパイラルに成形するための成形部材とを備えたことを特徴とするものである。   The spiral tube manufacturing apparatus according to the present invention includes a first chuck means for holding one end of a pipe material, a first chuck holding base having a drive mechanism for rotating the first chuck means, and the pipe material. A second chuck holding table having a second chuck means for holding the end portion and provided so as to be relatively movable in the direction of the first chuck holding table; and between the first chuck holding table and the second chuck holding table. And a third chuck holding base having a third chuck means provided so as to be relatively movable in the direction of the first chuck holding base, a driving mechanism for rotating the third chuck means, and a third chuck means. And a molding member that is pressed against a plurality of concave portions formed on the peripheral surface of the pipe material and molded into a predetermined spiral.

この発明においては、平滑な管材の周面に形成した起点となる凹部に、得られる凹凸に応じて予め成形された成形部材を押し付けた後、上記回転に連動させて上記成形部材を上記スパイラル状の凹部に添って移動させるようにしたことにより、管材の凹凸を言わば強制的に整えることができるので、管材の偏肉に左右されず高精度なスパイラル管を製造できる。また、素材の偏肉を要因とする製造不良を改善できる。そのため、スパイラルのピッチのばらつき幅を小さくできることで、製品の品質を向上させることができる。   In this invention, after pressing a molding member that has been molded in advance according to the obtained irregularities into a concave portion that is a starting point formed on the peripheral surface of a smooth tube material, the molding member is moved in the spiral shape in conjunction with the rotation. Since it is possible to forcibly adjust the unevenness of the pipe material by moving it along the concave portion, it is possible to manufacture a highly accurate spiral tube regardless of the uneven thickness of the pipe material. Moreover, it is possible to improve manufacturing defects caused by uneven thickness of the material. Therefore, the quality of the product can be improved by reducing the variation width of the spiral pitch.

実施の形態1.
図1〜図5は本発明の実施の形態1によるスパイラル管の製造方法及びスパイラル管の製造装置を説明するもので、図1はスパイラル管の製造装置の概要構成を模式的に示す斜視図、図2(a)は図1の円Aで囲まれた第3のチャック手段と成形部材を拡大して模式的に示す斜視図、図2(b)は成形部材としてのローラーを模式的に示す正面図、図3は図2(b)のIII−III線における矢視断面図、図4は図1の製造装置によって得られたスパイラル管を示す部分断面図、図5は図1の製造装置によって得られたスパイラル管について測定されたスパイラルのピッチのばらつきを従来方法によるスパイラル管と比較して示すヒストグラム図である。なお、各図を通じて同一符号は同一部分を示すものとする。
Embodiment 1 FIG.
1 to 5 illustrate a spiral tube manufacturing method and a spiral tube manufacturing apparatus according to Embodiment 1 of the present invention. FIG. 1 is a perspective view schematically showing a schematic configuration of the spiral tube manufacturing apparatus. 2A is an enlarged perspective view schematically showing the third chuck means and the molding member surrounded by a circle A in FIG. 1, and FIG. 2B schematically shows a roller as the molding member. 3 is a sectional view taken along the line III-III in FIG. 2B, FIG. 4 is a partial sectional view showing a spiral tube obtained by the manufacturing apparatus of FIG. 1, and FIG. 5 is the manufacturing apparatus of FIG. FIG. 6 is a histogram diagram showing a variation in spiral pitch measured for a spiral tube obtained by the method according to the conventional method. In the drawings, the same reference numerals denote the same parts.

図において、スパイラル管の製造装置は、基準面10aを有する基体10の上面に、第1のチャック手段1を備えた第1チャック保持台11と、第2のチャック手段2を有し第1チャック保持台11の方向に矢印Bのように移動可能に設けられた第2チャック保持台21と、第1チャック保持台11及び第2チャック保持台21の間に上記第1チャック保持台11の方向に矢印Cのように移動可能に設けられた第3のチャック手段3を有する第3チャック保持台31と、第3のチャック手段3に固定された成形部材4を構成する例えば超硬合金、鉄鋼等の硬い金属を用いてなる3つのローラー41(41A、41B、41C)を備えている。なお、第1、第2、及び第3のチャック手段1、2、及び3の中心軸は矢印B、Cの方向と平行な同一の中心軸O上に設けられている。   In the figure, the spiral tube manufacturing apparatus includes a first chuck holding base 11 having a first chuck means 1 and a second chuck means 2 on the upper surface of a base 10 having a reference surface 10a. The direction of the first chuck holding base 11 between the second chuck holding base 21 movably provided in the direction of the holding base 11 as indicated by an arrow B, and the first chuck holding base 11 and the second chuck holding base 21. The third chuck holding base 31 having the third chuck means 3 movably provided as shown by the arrow C and the forming member 4 fixed to the third chuck means 3 are made of, for example, cemented carbide or steel. And three rollers 41 (41A, 41B, 41C) made of a hard metal such as the like. The central axes of the first, second, and third chuck means 1, 2, and 3 are provided on the same central axis O parallel to the directions of arrows B and C.

また、第1チャック保持台11は第1のチャック手段1を矢印Dの方向に回転させる駆動機構を内蔵し、第3チャック保持台31は第3のチャック手段3を矢印Eの方向に回転させる駆動機構を内蔵している(何れも図示省略)。第3のチャック手段3の一端面(図2の右側)には、中心軸Oと直交する面内でそれぞれ矢印Fのように何れも中心方向(及び放射方向)に移動可能に3つのローラー保持台32が中心軸Oのまわりに120°の等角度で設けられている。そして、3つのローラー41A、41B、41Cは、これら3つのローラー保持台32にそれぞれ固定された支持軸42(42A、42B、42C)に回動自在に取り付けられている。   The first chuck holding base 11 has a built-in driving mechanism for rotating the first chuck means 1 in the direction of arrow D, and the third chuck holding base 31 rotates the third chuck means 3 in the direction of arrow E. A drive mechanism is incorporated (both not shown). On one end face of the third chuck means 3 (right side in FIG. 2), three rollers are held so as to be movable in the center direction (and radial direction) as indicated by arrows F within a plane orthogonal to the center axis O. A base 32 is provided around the central axis O at an equal angle of 120 °. The three rollers 41A, 41B, and 41C are rotatably attached to support shafts 42 (42A, 42B, and 42C) fixed to the three roller holding bases 32, respectively.

上記支持軸42A、42B、42Cは、例えば上記中心軸Oが水平に、ローラー41Aのローラー保持台32が鉛直方向に保持されているときに、水平面内に同一方向に所定角度、例えば30°傾斜され、かつ、各ローラー41A、41B、41Cとワークである管材5の外周面との当接部は中心軸Oの延在方向に略同一位置となるように配設されている。また、ローラー41(41A、41B、41C)は図3に示すように中心部に軸穴41aが設けられ、平滑な管材5の周面をスパイラル状に形成するための外周部41bは、捻り形状の山形状および谷形状を決定するもので、この例では断面半円状のR形状(曲面状)に形成されている。   The support shafts 42A, 42B, and 42C are inclined at a predetermined angle, for example, 30 °, in the same direction in the horizontal plane when the central axis O is held horizontally and the roller holding base 32 of the roller 41A is held vertically. In addition, the abutting portions of the rollers 41A, 41B, 41C and the outer peripheral surface of the pipe material 5 that is the workpiece are disposed so as to be substantially at the same position in the extending direction of the central axis O. Further, as shown in FIG. 3, the roller 41 (41A, 41B, 41C) is provided with a shaft hole 41a at the center, and the outer peripheral portion 41b for forming the peripheral surface of the smooth tube material 5 in a spiral shape is a twisted shape. In this example, it is formed in an R shape (curved surface) having a semicircular cross section.

次に、上記のように構成された実施の形態1の動作について、製造方法を含めて説明する。先ず、所望の長さ、例えば1m〜5mの任意長の表面(内外周面)が平滑な管材(典型的な例としては一般的な熱交換器用の銅パイプなど)の端部(他端部)近傍に、スパイラルの起点となる凹部を図示省略している押付治具により周面3箇所に従来方法と同様に形成する。次に図1に示す第1のチャック手段1に一端部側、第2のチャック手段2に他端部が位置するように、管材5を挿通し、第1のチャック手段1及び第2のチャック手段2共に締め付けて管材5を把持する。次に、全長が管材5の全長よりも長く、外径が管材5の内径よりも所定寸法小さい丸棒状の例えばステンレス棒などからなる芯金6を管材5の内部に挿入する。   Next, the operation of the first embodiment configured as described above will be described including the manufacturing method. First, an end portion (the other end portion) of a pipe material (typically, a copper pipe for a general heat exchanger, etc.) having a smooth surface (inner and outer peripheral surfaces) having a desired length, for example, an arbitrary length of 1 m to 5 m. ) In the vicinity, a recess serving as a starting point of the spiral is formed at three locations on the peripheral surface in the same manner as in the conventional method by a pressing jig not shown. Next, the tube material 5 is inserted so that the one end side is located on the first chuck means 1 and the other end part is located on the second chuck means 2 shown in FIG. 1, and the first chuck means 1 and the second chuck are inserted. The tube 5 is gripped by tightening the means 2 together. Next, a metal core 6 made of, for example, a stainless steel rod having a round bar shape, for example, a stainless bar, whose outer length is longer than the entire length of the tube material 5 and whose outer diameter is smaller than the inner diameter of the tube material 5 is inserted into the tube material 5.

次に、ローラー41(41A、41B、41C)の各外周部41bが上記管材5に設けたスパイラルの起点となる凹部(図示省略)の位置と合致するように第3チャック保持台31を矢印C方向に移動させ、合致した位置で第3のチャック手段3に設けられた3つのローラー保持台32を矢印Fで示す中心軸Oの方向に、ローラー41の外周部41bの先端が中心軸Oから芯金6の半径に管材5の肉厚を加えた位置になるまでそれぞれ移動させ、3つのローラー41A、41B、41Cの各外周部41bが管材5に設けたスパイラルの起点となる凹部を押し付けた状態で該ローラー保持台32を図示省略している固定手段により第3のチャック手段3本体に固定する。このとき、ローラー41の外周部41bの先端形状が管材5の外形部に転写される。   Next, the third chuck holding base 31 is moved to the position indicated by the arrow C so that each outer peripheral portion 41b of the roller 41 (41A, 41B, 41C) coincides with the position of a recess (not shown) serving as a starting point of the spiral provided in the tube material 5. The tip of the outer peripheral portion 41b of the roller 41 is moved from the central axis O in the direction of the central axis O indicated by the arrow F with the three roller holding bases 32 provided on the third chuck means 3 at the matched positions. Each of the three rollers 41A, 41B, and 41C is moved to the position where the thickness of the pipe 5 is added to the radius of the core 6 and the outer peripheral portion 41b of the three rollers 41A, 41B, 41C presses the concave portion that is the starting point of the spiral provided in the pipe 5 In this state, the roller holding base 32 is fixed to the third chuck means 3 main body by fixing means (not shown). At this time, the tip shape of the outer peripheral portion 41 b of the roller 41 is transferred to the outer shape portion of the tube material 5.

具体例として、管材5として外径φ16mm、肉厚0.8mmの平滑な熱交換器用銅パイプ、芯金6として半径4.75mmのステンレス棒を用い、スパイラル管(スパイラル状コルゲート管)に捻り加工する際、ローラー41として、外周部41bのR形状の半径を約2〜3mmの範囲の所定値に形成したものを用い、外周部41bの先端と中心軸Oの距離を5.55mmに設定した。なお、これら形状や寸法に特別な制限はなく、所望により適宜変更できることは言うまでもない。
次に、第1のチャック手段1を矢印Dの方向に回転させると、管材5も同方向に捻られローラー41の外周部41bが当接している図示省略している凹部を起点にして図1の左方向にスパイラル状の捻り形状が形成されていく。
As a specific example, a smooth heat exchanger copper pipe with an outer diameter of φ16 mm and a wall thickness of 0.8 mm is used as the pipe material 5, and a stainless steel rod with a radius of 4.75 mm is used as the core metal 6, and twisted into a spiral pipe (spiral corrugated pipe). In this case, a roller 41 having an R-shaped radius of the outer peripheral portion 41b formed to a predetermined value in a range of about 2 to 3 mm was used, and the distance between the tip of the outer peripheral portion 41b and the central axis O was set to 5.55 mm. . In addition, there is no special restriction | limiting in these shapes and dimensions, and it cannot be overemphasized that it can change suitably as desired.
Next, when the first chuck means 1 is rotated in the direction of the arrow D, the tube material 5 is also twisted in the same direction, and the concave portion (not shown) in contact with the outer peripheral portion 41b of the roller 41 is used as a starting point. A spiral twisted shape is formed in the left direction.

上記スパイラルの形成と同時に管材5の長さが縮小し、その縮小によって第2のチャック手段2と第2チャック保持台21及び第3のチャック手段3と第3チャック保持台31は図1の左方向に相対的に移動する。このとき第3のチャック手段3を上記捻り加工で管材5の長さが短縮する速度と同期させて矢印Eの方向に回転させると、ローラー41(41A、41B、41C)が新たに形成されたスパイラルの凹部50aとの摩擦によって矢印G方向にそれぞれ従動回転し、ローラー41の外周部41bが管材5の第1のチャック手段1による把持位置までの略全長にわたり凹部50a内を移動することで、該凹部50aの形状、寸法、及び凸部50bの形状、ピッチP寸法が強制的に整えられ、精度に優れた周方向に3つの凹凸を有する所望の捻り形状のスパイラル管50が得られる。   Simultaneously with the formation of the spiral, the length of the tube material 5 is reduced, and the second chuck means 2, the second chuck holding base 21, the third chuck means 3, and the third chuck holding base 31 are left in FIG. Move relative to the direction. At this time, when the third chuck means 3 is rotated in the direction of the arrow E in synchronization with the speed at which the length of the tube material 5 is shortened by the twisting process, a roller 41 (41A, 41B, 41C) is newly formed. By rotating in the direction of the arrow G by friction with the spiral concave portion 50a, the outer peripheral portion 41b of the roller 41 moves in the concave portion 50a over substantially the entire length up to the gripping position of the tube material 5 by the first chuck means 1, The shape and size of the concave portion 50a, the shape of the convex portion 50b, and the pitch P size are forcibly adjusted, and the spiral tube 50 having a desired twist shape having three irregularities in the circumferential direction with excellent accuracy is obtained.

上記のような実施の形態1の製造装置及び製造方法によって得られたスパイラル管50と、成形部材4を用いない従来技術による同様形状のスパイラル管(図示省略)についてスパイラルのピッチPのばらつきをそれぞれ測定した結果が図5のヒストグラム図である。従来技術のスパイラル管は、図の左側のヒストグラムの通り、製品仕様の8.4mmに対して、ピッチPの範囲Hが7.0mm〜9.8mmのばらつきを示した。これに対し、実施の形態1によるスパイラル管50は、図の右側のヒストグラムの通り、製品仕様の8.4mmに対して、ピッチPの範囲Iは、8.0〜8.8mmとなり、ばらつき幅が小さいものであった。   Variations in the pitch P of the spiral are obtained for the spiral tube 50 obtained by the manufacturing apparatus and the manufacturing method of the first embodiment as described above and a spiral tube (not shown) of the same shape according to the prior art that does not use the molding member 4. The measurement result is the histogram of FIG. As shown in the histogram on the left side of the drawing, the spiral tube of the prior art showed variation in the pitch P range H of 7.0 mm to 9.8 mm with respect to the product specification of 8.4 mm. On the other hand, in the spiral tube 50 according to the first embodiment, as shown in the histogram on the right side of the drawing, the range I of the pitch P is 8.0 to 8.8 mm with respect to the product specification of 8.4 mm, and the variation width is Was small.

従来方法ではワークとしての管材5の偏肉が大きい場合、捻り加工すると管材5の円周断面上の捻りトルクの変動が大きくなるが、上記実施の形態1の製造方法では管材5の外形部を成形部材4としてのローラー41によって強制的に整えられるので、管材5の外形部の変形が緩和されるため、高精度なスパイラル管50を製造できる。
なお、上記実施の形態1で得られたスパイラル管50の凹凸の形状及び寸法が高精度に加工されたものは、例えばスパイラル管50の凹部50a内に収容し得る外径のキャピラリー管(図示省略)を巻付機で凹部50aに添って巻き付け、スパイラル管50の内部に例えば水などの第1の冷媒、キャピラリー管に第2の冷媒、例えば液化COなどの自然冷媒を通流する熱交換器を構成する場合に、巻付機が途中でストップしたり巻付け不良を生じることなくスムーズに加工することができると言う顕著な利点がある。
In the conventional method, when the uneven thickness of the pipe material 5 as a workpiece is large, fluctuations in torsional torque on the circumferential cross section of the pipe material 5 increase when twisted, but in the manufacturing method of the first embodiment, the outer portion of the pipe material 5 is Since it is compulsorily arranged by the roller 41 as the forming member 4, the deformation of the outer portion of the tube material 5 is alleviated, and therefore a highly accurate spiral tube 50 can be manufactured.
The spiral tube 50 obtained in the first embodiment is processed with high accuracy in the shape and dimensions of the concave and convex portions, for example, an outer diameter capillary tube (not shown) that can be accommodated in the concave portion 50a of the spiral tube 50. ) Is wound around the recess 50a with a wrapping machine, and a first refrigerant such as water is passed through the spiral pipe 50, and a second refrigerant such as natural refrigerant such as liquefied CO 2 is passed through the capillary pipe. In the case of configuring the device, there is a remarkable advantage that the winding machine can be processed smoothly without stopping or causing a winding failure.

なお、スパイラル管50の用途、熱交換器の構成の仕方、熱交換器を構成した場合に用いる冷媒の種類など、何れも上記例示したものに限定されないことは当然である。また、好ましく用いられるローラー41の材質として超硬合金あるいは鉄鋼を例示したが、材質は特に限定されるものではなく、ヤング率が約200GPa以上の金属であれば特別な制限無く一般的な材料から適宜選択して用いることができるので、ローラー部分の製造コストを低減することも可能である。また、ローラー41をワークのまわりに3つ配設し、円周方向に3つのスパイラル状の凹凸を形成したが、ローラー41の数を2つ、または4つ以上にして、凹凸の数を変更することもできる。   Of course, the use of the spiral tube 50, the configuration of the heat exchanger, the type of refrigerant used when the heat exchanger is configured, and the like are not limited to those exemplified above. Moreover, although the cemented carbide or steel was illustrated as a material of the roller 41 used preferably, a material is not specifically limited, If a Young's modulus is a metal of about 200 GPa or more, it will be from a general material without a special restriction | limiting. Since it can select and use suitably, it is also possible to reduce the manufacturing cost of a roller part. In addition, three rollers 41 are arranged around the work and three spiral irregularities are formed in the circumferential direction. However, the number of rollers 41 is changed to two, four or more, and the number of irregularities is changed. You can also

上記のように実施の形態1によれば、平滑な管材5の周面に起点となる複数の凹部を形成した後、第3のチャック手段3に設けられ、所望のスパイラルの凹凸を成形する成形部材としてのローラー41を該凹部に押し付け、第1のチャック手段1の回転に連動させて第3のチャック手段3を回転させ、ローラー41を凹部に押し付けて回転させながらチャック手段1の方向に移動させるようにしたことにより、スパイラルの凹凸の形状、寸法が高精度なスパイラル管を製造することができる。また、管材5の偏肉を要因とする製造不良を改善できるため、品質および信頼性を向上させることができる。さらに従来、製品仕様を満足させるため、偏肉が小さい特別仕様の管材を選別して用いていたが、偏肉を無視して一般仕様の管材を使用できるので、材料コストの低減もできる。   As described above, according to the first embodiment, after forming a plurality of recesses as starting points on the peripheral surface of the smooth tube material 5, molding is provided on the third chuck means 3 to mold desired spiral irregularities. A roller 41 as a member is pressed against the recess, the third chuck unit 3 is rotated in conjunction with the rotation of the first chuck unit 1, and the roller 41 is pressed against the recess and rotated toward the chuck unit 1. By doing so, it is possible to manufacture a spiral tube with a highly accurate shape and dimensions of spiral irregularities. Moreover, since the manufacturing defect resulting from the uneven thickness of the pipe material 5 can be improved, the quality and reliability can be improved. Furthermore, in order to satisfy the product specifications, special specification pipe materials with small uneven thickness have been selected and used. However, since the general specification tube material can be used ignoring uneven thickness, the material cost can be reduced.

実施の形態2.
図6はこの発明の実施の形態2によるスパイラル管の製造装置に用いる成形部材を構成するローラーを示す断面図であり、図2(b)のVI−VI線における矢視断面図に相当する。図において、ローラー42は、回転中心部に実施の形態1と同様の軸穴42aが設けられ、外周部42bは頂部が平らな断面山形状に形成され、突出部分の傾斜角度θは約120〜130°程度に形成されている。その他の構成は上記実施の形態1と同様であるので、図示及び構成の説明を省略する。
成形部材4として上記のような断面山形状の外周部42bを有するローラー42を用いた場合には、得られるスパイラル管の凹部も断面山形状に形状され(図示省略)、実施の形態1と同様、スパイラルの凹凸の形状、寸法が高精度なスパイラル管を得ることができる。要するに、成形部材として用いるローラーの形状は特に限定されるものではなく、要求されるスパイラル管の凹凸形状に応じて適宜変更することができる。
Embodiment 2. FIG.
6 is a cross-sectional view showing a roller constituting a forming member used in a spiral tube manufacturing apparatus according to Embodiment 2 of the present invention, and corresponds to a cross-sectional view taken along line VI-VI in FIG. In the figure, the roller 42 is provided with a shaft hole 42a similar to that of the first embodiment at the center of rotation, the outer peripheral portion 42b is formed in a mountain shape with a flat top, and the inclination angle θ of the protruding portion is about 120 to It is formed at about 130 °. Since other configurations are the same as those of the first embodiment, illustration and description of the configurations are omitted.
When the roller 42 having the outer peripheral portion 42b having the cross-sectional mountain shape as described above is used as the forming member 4, the concave portion of the obtained spiral tube is also formed in the cross-sectional mountain shape (not shown), and is the same as in the first embodiment. Thus, a spiral tube having a highly accurate shape and size of the spiral irregularities can be obtained. In short, the shape of the roller used as the forming member is not particularly limited, and can be appropriately changed according to the required uneven shape of the spiral tube.

実施の形態3.
図7はこの発明の実施の形態3によるスパイラル管の製造装置に用いる成形部材としての成形駒を装着した第3のチャック手段を模式的に示す斜視図である。図において、第3のチャック手段3の一端面には、中心軸Oに直交する面内でそれぞれ矢印Fのように何れも中心方向(及び放射方向)に移動可能な3つの保持台33が中心軸Oのまわりに120°の等角度で設けられている。保持台33の中心側端面部にはスパイラル状の凹部の形状、寸法を規制するための成形駒43がそれぞれ1個ずつ所定角度で固着されている。その他の構成は上記実施の形態1と同様であるので、図示及び構成の説明を省略し、以下、動作について図1も参照して説明する。
Embodiment 3 FIG.
FIG. 7 is a perspective view schematically showing a third chuck means equipped with a forming piece as a forming member used in a spiral tube manufacturing apparatus according to Embodiment 3 of the present invention. In the figure, at one end surface of the third chuck means 3, there are three holding bases 33 that are movable in the central direction (and radial direction) as indicated by arrows F within a plane orthogonal to the central axis O. Around the axis O is provided at an equal angle of 120 °. A molding piece 43 for restricting the shape and size of the spiral recess is fixed to the end surface portion on the center side of the holding table 33 at a predetermined angle. Since the other configuration is the same as that of the first embodiment, the illustration and description of the configuration are omitted, and the operation will be described below with reference to FIG.

上記のように構成された実施の形態3においては、実施の形態1または2と同様に管材をセットした後、第3のチャック手段3に設けた保持台33を中心軸Oの方向に移動させ、成形駒43の先端部が管材5の中心から5.55mmの位置に達するまで移動させ、該管材5の起点となる凹部(図示省略)に押し付けることで、成形駒43の先端形状を管材5の外形部に転写させる。その後、第1のチャック手段1を矢印D方向に回転させると共に、連動して第3のチャック手段3を同方向に回転させることでスパイラル状の凹部内を成形駒43が移動し、管材5の外形部のスパイラル形状を高精度に形成することができる。また、管材5の偏肉を無視できるので、材料コストを低減でき、管材5の偏肉を要因とする製造不良を改善できるため、品質および信頼性を向上させることができるなど、実施の形態1と同様の効果を得ることができる。   In the third embodiment configured as described above, after setting the tube material in the same manner as in the first or second embodiment, the holding base 33 provided in the third chuck means 3 is moved in the direction of the central axis O. The tip of the forming piece 43 is moved until it reaches a position 5.55 mm from the center of the tube material 5 and is pressed against a recess (not shown) as a starting point of the tube material 5, so that the tip shape of the forming piece 43 is changed to the tube material 5. Transfer to the outer shape of the. Thereafter, the first chuck means 1 is rotated in the direction of the arrow D, and the third chuck means 3 is rotated in the same direction in conjunction with the rotation, so that the molding piece 43 moves in the spiral recess, and the tube 5 The spiral shape of the outer shape can be formed with high accuracy. Further, since the uneven thickness of the pipe material 5 can be ignored, the material cost can be reduced, and the manufacturing defects caused by the uneven thickness of the tube material 5 can be improved, so that the quality and reliability can be improved. The same effect can be obtained.

実施の形態4.
図8〜図11は本発明の実施の形態4によるスパイラル管の製造方法及び製造装置を説明するもので、図8はスパイラル管の製造装置の概要構成を模式的に示す斜視図、図9は図8の円Jで囲まれた第3のチャック手段及び成形部材としての成形ダイスを拡大して示す図で、図9(a)は成形ダイスを固定した状態を模式的に示す斜視図、図9(b)は成形ダイスを示す正面図である。図10は図9に示された第3のチャック手段に組込まれた成形部材としての成形ダイスを示す断面図であり、図9(b)のX−X線における矢視断面図に相当する。図11は図8の製造装置で加工されたスパイラル管を示す部分側面図である。
Embodiment 4 FIG.
8 to 11 illustrate a spiral tube manufacturing method and manufacturing apparatus according to Embodiment 4 of the present invention. FIG. 8 is a perspective view schematically showing a schematic configuration of the spiral tube manufacturing apparatus, and FIG. FIG. 9 is an enlarged view of the third chuck means surrounded by a circle J in FIG. 8 and a forming die as a forming member, and FIG. 9A is a perspective view schematically showing a state in which the forming die is fixed. 9 (b) is a front view showing a forming die. FIG. 10 is a cross-sectional view showing a forming die as a forming member incorporated in the third chuck means shown in FIG. 9, and corresponds to a cross-sectional view taken along the line XX in FIG. FIG. 11 is a partial side view showing a spiral tube processed by the manufacturing apparatus of FIG.

図において、第3のチャック手段30は実施の形態1と同様に配設された第3チャック保持台31に対し矢印K方向に回転可能に設けられ、図9の矢印Lのように図の上下方向に分割可能な機構(図示省略)を備えている。該第3のチャック手段30の内部には、成形部材としての同様に上下方向に2分割可能な成形ダイス44が固定されている。成形ダイス44は、得られるスパイラル管の谷形状を形成する谷形状形成部44aと、山形状を形成する山形状形成部44bとが先細りの螺旋状に複数条備えられており、平滑な管材5に対して捻り形状を段階的に形成する構造である。そして、中心部から図9の矢印L方向に2分割で開閉できる機構(図示省略)を備えており、上記第3のチャック手段30と一体化されている。その他の構成は実施の形態1と同様であるので説明を省略する。   In the figure, the third chuck means 30 is provided so as to be rotatable in the direction of the arrow K with respect to the third chuck holding base 31 arranged in the same manner as in the first embodiment, and as shown by the arrow L in FIG. A mechanism (not shown) that can be divided in directions is provided. Inside the third chuck means 30, a molding die 44 is fixed as a molding member, which can be divided into two in the vertical direction. The forming die 44 is provided with a plurality of valley-shaped forming portions 44a forming a valley shape of the obtained spiral tube and a mountain-shaped forming portion 44b forming a mountain shape in a tapered spiral shape, and the smooth pipe 5 In contrast, a twisted shape is formed stepwise. A mechanism (not shown) that can be opened and closed in two directions from the center in the direction of arrow L in FIG. 9 is provided, and is integrated with the third chuck means 30. Since other configurations are the same as those of the first embodiment, description thereof is omitted.

次に、上記のように構成された実施の形態4の製造装置によるスパイラル管の製造方法について説明する。先ず、実施の形態1と同様の銅パイプからなる管材5の他端部近傍(図8の右端部中央寄り)を公知の加工手段によって成形ダイス44の内径と同程度又は若干太い程度に細径化する。次に、第3のチャック手段30及び成形ダイス44を矢印L方向に開き、管材5の細径化部分が開いた成形ダイス44上に位置するように配置した後、第3のチャック手段30及び成形ダイス44を閉じ、さらに管材5の一端部(図8の左側)を第1のチャック手段1に、他端部を第2のチャック手段2にそれぞれ把持する。   Next, the manufacturing method of the spiral pipe | tube by the manufacturing apparatus of Embodiment 4 comprised as mentioned above is demonstrated. First, the vicinity of the other end portion of the pipe material 5 made of the same copper pipe as in the first embodiment (near the center of the right end portion in FIG. 8) is narrowed to the same or slightly larger diameter than the inner diameter of the forming die 44 by a known processing means. Turn into. Next, after the third chuck means 30 and the forming die 44 are opened in the direction of the arrow L and the diameter-reduced portion of the tube material 5 is positioned on the opened forming die 44, the third chuck means 30 and The forming die 44 is closed, and one end (the left side in FIG. 8) of the tube material 5 is gripped by the first chuck means 1 and the other end is gripped by the second chuck means 2.

次に管材5の内部に実施の形態1と同様の丸棒状の芯金6を挿入し、次いで第1のチャック手段1及び第2のチャック手段2を固定した状態で第3のチャック手段30を矢印K方向に回転させると、成形ダイス44の谷形状形成部44aと山形状形成部44bが管体5の内外周面をスパイラル状に成形しながら管材5の第1のチャック手段1による把持位置までの略全長にわたり移動することで、図11に示す周方向に複数条(この場合2条)の凹凸を有するスパイラルの凹凸形状、及びピッチ寸法が規制され、精度に優れた所望の捻り形状のスパイラル管51が得られる。なお、第2のチャック手段2は管材5の長さが短縮する速度と同期して第1のチャック手段1の方向に移動する。   Next, the same round bar-shaped cored bar 6 as in the first embodiment is inserted into the tube material 5, and then the third chuck means 30 is fixed with the first chuck means 1 and the second chuck means 2 fixed. When rotated in the direction of the arrow K, the valley shape forming portion 44a and the mountain shape forming portion 44b of the forming die 44 shape the inner and outer peripheral surfaces of the tube body 5 in a spiral shape while the tube member 5 is gripped by the first chuck means 1. By moving over substantially the entire length, the spiral unevenness shape having a plurality of protrusions (in this case, two protrusions) in the circumferential direction shown in FIG. 11 and the pitch dimension are regulated, and the desired twisted shape with excellent accuracy is obtained. A spiral tube 51 is obtained. The second chuck means 2 moves in the direction of the first chuck means 1 in synchronization with the speed at which the length of the tube material 5 is shortened.

上記のように実施の形態4によれば、スパイラル管の凹凸形状の加工に成形ダイス44を用いたことにより、得られるスパイラル管51の外形部の形状を高精度化できる。また、実施の形態1と同様に素材である管材5の偏肉を無視できるので、材料コストを低減できる。また、管材の偏肉を要因とする製造不良を改善できるため、品質および信頼性を向上させることができる。   As described above, according to the fourth embodiment, by using the forming die 44 for processing the uneven shape of the spiral tube, the shape of the outer portion of the obtained spiral tube 51 can be increased in accuracy. Moreover, since the uneven thickness of the pipe material 5 which is a raw material can be ignored as in the first embodiment, the material cost can be reduced. In addition, since manufacturing defects caused by uneven thickness of the pipe material can be improved, quality and reliability can be improved.

なお、上記実施の形態の説明では、得られるスパイラル管50の外周部の凹部50a内にキャピラリー管を巻付けた形態の熱交換器について例示したが、これに限定されるものではなく、例えばスパイラル管を他の管材の内部に収容した2重管式の熱交換器などとして構成することも自由である。また、この発明を熱交換器に用いる場合について説明したが、スパイラル管の用途は必ずしも熱交換器に限定されるものではない。その他、上記実施の形態では第1チャック保持台11を固定し、第2及び第3チャック保持台21、31を移動可能に構成したが、例えば任意の1つのチャック保持台を固定し、他のチャック保持台を相対移動可能に構成するなど、この発明の範囲内で種々の変形や変更が可能であることは言うまでもない。   In the description of the above embodiment, the heat exchanger in the form in which the capillary tube is wound in the concave portion 50a of the outer peripheral portion of the spiral tube 50 obtained is exemplified, but the present invention is not limited to this. It is also free to configure as a double-pipe heat exchanger or the like in which the pipe is housed inside another pipe material. Moreover, although the case where this invention was used for a heat exchanger was demonstrated, the use of a spiral pipe | tube is not necessarily limited to a heat exchanger. In the above embodiment, the first chuck holding base 11 is fixed and the second and third chuck holding bases 21 and 31 are movable. For example, any one chuck holding base is fixed, and the other It goes without saying that various modifications and changes can be made within the scope of the present invention, such as a configuration in which the chuck holding base is relatively movable.

本発明の実施の形態1によるスパイラル管の製造装置の概要構成を模式的に示す斜視図。The perspective view which shows typically the schematic structure of the manufacturing apparatus of the spiral tube by Embodiment 1 of this invention. (a)は図1の円Aで囲まれた第3のチャック手段と成形部材を拡大して模式的に示す斜視図、(b)は成形部材としてのローラーを模式的に示す正面図。(A) is the perspective view which expands and shows typically the 3rd chuck | zipper means and shaping | molding member which were enclosed by the circle | round | yen A of FIG. 1, (b) is a front view which shows typically the roller as a shaping | molding member. 図2(b)のIII−III線における矢視断面図。FIG. 3 is a cross-sectional view taken along line III-III in FIG. 図1の製造装置によって得られたスパイラル管を示す部分断面図。The fragmentary sectional view which shows the spiral tube obtained by the manufacturing apparatus of FIG. 図1の製造装置によって得られたスパイラル管について測定されたスパイラルのピッチのばらつきを従来方法によるスパイラル管と比較して示すヒストグラム図。The histogram figure which shows the dispersion | variation in the pitch of the spiral measured about the spiral tube obtained by the manufacturing apparatus of FIG. 1 compared with the spiral tube by a conventional method. この発明の実施の形態2によるスパイラル管の製造装置に用いる成形部材を構成するローラーを示す断面図(図2(b)のVI−VI線における矢視断面図に相当する)。Sectional drawing which shows the roller which comprises the shaping | molding member used for the manufacturing apparatus of the spiral tube by Embodiment 2 of this invention (equivalent to the arrow directional cross-sectional view in the VI-VI line of FIG.2 (b)). この発明の実施の形態3によるスパイラル管の製造装置に用いる成形部材としての成形駒を装着した第3のチャック手段を模式的に示す斜視図。The perspective view which shows typically the 3rd chuck | zipper means with which the shaping | molding piece as a shaping | molding member used for the manufacturing apparatus of the spiral tube by Embodiment 3 of this invention was mounted | worn. 本発明の実施の形態4によるスパイラル管の製造装置の概要構成を模式的に示す斜視図。The perspective view which shows typically the schematic structure of the manufacturing apparatus of the spiral tube by Embodiment 4 of this invention. 図8の円Jで囲まれた第3のチャック手段及び成形部材としての成形ダイスを拡大して示す図で、(a)は成形ダイスを固定した状態を模式的に示す斜視図。It is a figure which expands and shows the shaping | molding die as a 3rd chuck means and a shaping | molding member enclosed with the circle | round | yen J of FIG. 8, (a) is a perspective view which shows typically the state which fixed the shaping | molding die. 図9(b)のX−X線における矢視断面図に相当する。This corresponds to a cross-sectional view taken along line XX in FIG. 図8の製造装置で加工されたスパイラル管を示す部分側面図。The partial side view which shows the spiral pipe | tube processed with the manufacturing apparatus of FIG.

符号の説明Explanation of symbols

10a 基準面、 10 基体、 1 第1のチャック手段、 11 第1チャック保持台、 2 第2のチャック手段、 21 第2チャック保持台、 3、30 第3のチャック手段、 31 第3チャック保持台、 32 ローラー保持台、 33 保持台、 4 成形部材、 41(41A、41B、41C) ローラー、 41a 軸穴、 41b 外周部、 42(42A、42B、42C) 支持軸、 42a 軸穴、 42b 外周部、 43 成形駒、 44 成形ダイス、 44a 谷形状形成部、 44b 山形状形成部、 5 管材、 50、51 スパイラル管、 50a 凹部、 50b 凸部、 6 芯金、 O 中心軸。   10a Reference surface, 10 substrate, 1 first chuck means, 11 first chuck holding table, 2 second chuck means, 21 second chuck holding table, 3, 30 third chuck means, 31 third chuck holding table , 32 roller holder, 33 holder, 4 molding member, 41 (41A, 41B, 41C) roller, 41a shaft hole, 41b outer periphery, 42 (42A, 42B, 42C) support shaft, 42a shaft hole, 42b outer periphery , 43 molding pieces, 44 molding dies, 44a valley shape forming portion, 44b mountain shape forming portion, 5 pipe material, 50, 51 spiral tube, 50a concave portion, 50b convex portion, 6 cored bar, O central axis.

Claims (6)

平滑な管材の周面に起点となる複数の凹部を形成した後、該凹部から所定距離離れた部分を捻るように回転させることにより該管材の周囲をスパイラル状の凹凸に形成するスパイラル管の製造方法において、上記起点となる凹部に、得られる凹凸に応じて予め成形された成形部材を押し付けた後、上記回転に連動させて上記成形部材を上記スパイラル状の凹部に添って移動させることを特徴とするスパイラル管の製造方法。   Manufacturing a spiral tube in which a plurality of recesses starting from the periphery of a smooth tube material are formed, and then the periphery of the tube material is formed into a spiral asperity by rotating a portion away from the recess by a predetermined distance. In the method, after pressing a molding member molded in advance according to the obtained unevenness into the recess serving as the starting point, the molding member is moved along the spiral recess in conjunction with the rotation. A method of manufacturing a spiral tube. 上記成形部材として、複数のローラーを用いるようにしたことを特徴とする請求項1記載のスパイラル管の製造方法。   2. The method of manufacturing a spiral tube according to claim 1, wherein a plurality of rollers are used as the molded member. 上記成形部材として、複数の成形駒を用いるようにしたことを特徴とする請求項1記載のスパイラル管の製造方法。   2. The method of manufacturing a spiral tube according to claim 1, wherein a plurality of molding pieces are used as the molding member. 管材の一端部を保持する第1のチャック手段及びこの第1のチャック手段を回転させる駆動機構を有する第1チャック保持台と、上記管材の他端部を保持する第2のチャック手段を有し上記第1チャック保持台の方向に相対移動可能に設けられた第2チャック保持台と、上記第1チャック保持台及び第2チャック保持台の間に上記第1チャック保持台の方向に相対移動可能に設けられた第3のチャック手段及びこの第3のチャック手段を回転させる駆動機構を有する第3チャック保持台と、上記第3のチャック手段に固定され上記管材の周面に形成された複数の凹部に押し付けられて所定のスパイラルに成形するための成形部材とを備えたことを特徴とするスパイラル管の製造装置。   A first chuck means for holding one end of the pipe material, a first chuck holding base having a drive mechanism for rotating the first chuck means, and a second chuck means for holding the other end of the pipe material. A second chuck holding table provided to be relatively movable in the direction of the first chuck holding table, and a relative movement in the direction of the first chuck holding table between the first chuck holding table and the second chuck holding table. A third chuck holding base having a third chuck means and a drive mechanism for rotating the third chuck means, and a plurality of chucks fixed to the third chuck means and formed on the peripheral surface of the tube material. An apparatus for manufacturing a spiral tube, comprising: a molding member that is pressed against a recess and is molded into a predetermined spiral. 上記成形部材は、上記管材の軸方向に対してそれぞれ所定角度傾斜された軸のまわりに回転する複数のローラーを用いてなることを特徴とする請求項4記載のスパイラル管の製造装置。   5. The spiral tube manufacturing apparatus according to claim 4, wherein the forming member is formed by using a plurality of rollers that rotate about an axis inclined at a predetermined angle with respect to an axial direction of the pipe material. 上記成形部材は、複数の成形駒を用いてなることを特徴とする請求項4記載のスパイラル管の製造装置。   5. The spiral tube manufacturing apparatus according to claim 4, wherein the forming member comprises a plurality of forming pieces.
JP2007000979A 2007-01-09 2007-01-09 Spiral tube manufacturing method and spiral tube manufacturing apparatus Expired - Fee Related JP4999468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007000979A JP4999468B2 (en) 2007-01-09 2007-01-09 Spiral tube manufacturing method and spiral tube manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007000979A JP4999468B2 (en) 2007-01-09 2007-01-09 Spiral tube manufacturing method and spiral tube manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2008168300A JP2008168300A (en) 2008-07-24
JP4999468B2 true JP4999468B2 (en) 2012-08-15

Family

ID=39696885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007000979A Expired - Fee Related JP4999468B2 (en) 2007-01-09 2007-01-09 Spiral tube manufacturing method and spiral tube manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP4999468B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210139A (en) * 2009-03-10 2010-09-24 Orion Mach Co Ltd Water-cooled condenser and refrigerating cycle device
CN101837399B (en) * 2010-04-28 2012-05-23 三花丹佛斯(杭州)微通道换热器有限公司 Bending equipment of heat exchanger and method for manufacturing bending heat exchanger
KR101050180B1 (en) * 2010-11-05 2011-07-19 정미옥 Spiral steel rod manufacturing apparatus
CN102297623A (en) * 2011-06-08 2011-12-28 上海科米钢管有限公司 Spiral and flat heat exchange tube and online tube machining process thereof
KR101519909B1 (en) * 2013-11-07 2015-05-14 신상용 spiral induction plate extraction method of finned pipe shape heat exchanger
CN107127281A (en) * 2017-06-06 2017-09-05 佛山市顺德区莱雄机械设备有限公司 The long pipe threading machine of multi-head numerical control
CN111889549B (en) * 2020-07-15 2022-11-22 长沙中扬钢结构有限公司 Steel bar deformed steel bar manufacturing device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT951471B (en) * 1972-04-17 1973-06-30 Rimar Spa PROCEDURE AND WAXING EQUIPMENT FOR YARNS
CA1112031A (en) * 1978-08-16 1981-11-10 Spiral Tubing Corporation Method of making a helically corrugated tube
JPH08261B2 (en) * 1985-03-14 1996-01-10 株式会社前田鉄工所 Device for forming spiral corrugations on cylindrical metal tubes
JPS63260628A (en) * 1986-08-25 1988-10-27 Goto Tekkosho:Kk Steel pipe working machine

Also Published As

Publication number Publication date
JP2008168300A (en) 2008-07-24

Similar Documents

Publication Publication Date Title
JP4999468B2 (en) Spiral tube manufacturing method and spiral tube manufacturing apparatus
KR101593930B1 (en) Method for bending pipes rods profiled sections and similar blanks and corresponding device
TWI482674B (en) Bending pipe processing machine and vortex pipe bending processing method by using said bending pipe processing machine
JP2013538692A (en) Spin molding process and apparatus for manufacturing articles by spin molding
US9636733B2 (en) Method and apparatus for forming a helical tube bundle
WO2016208033A1 (en) Method for manufacturing coil spring and device for manufacturing coil spring
JP4923597B2 (en) Method for forming cylindrical shaft product and mold
JP2007044761A (en) Method for manufacturing square pipe
EP3508808B1 (en) Method for producing pipe having built-in fin, and method for producing double-walled pipe
JP2011183411A (en) Bender
JP2003126916A (en) Production method and equipment for pipe with helical groove
JP4628858B2 (en) Double tube manufacturing method and apparatus
JP4795322B2 (en) Manufacturing apparatus and manufacturing method for internally grooved tube
JP4598371B2 (en) Hairpin bending copper tube and hairpin bending method for copper tube
JP6537755B1 (en) Method of manufacturing double pipe
JP6502913B2 (en) Fin built-in tube
JP5958967B2 (en) Forming method of tubular material
JP6502912B2 (en) Method and apparatus for manufacturing fin-incorporated tube
JP2002066678A (en) Manufacturing method of spiral corrugated wire
JPH11319934A (en) Manufacture of and device for interior grooved tube
JP2006342900A (en) Ball screw device and rolled dies
JP3743342B2 (en) Spiral inner grooved tube and manufacturing method thereof
US11351587B2 (en) Single bending device for continuous three-dimensional bending
KR20150103187A (en) Forging device and forging method
JP2005308021A (en) Cylindrical bearing member and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120515

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4999468

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees