JP4992026B2 - Near-field light evaluation method - Google Patents

Near-field light evaluation method Download PDF

Info

Publication number
JP4992026B2
JP4992026B2 JP2000396667A JP2000396667A JP4992026B2 JP 4992026 B2 JP4992026 B2 JP 4992026B2 JP 2000396667 A JP2000396667 A JP 2000396667A JP 2000396667 A JP2000396667 A JP 2000396667A JP 4992026 B2 JP4992026 B2 JP 4992026B2
Authority
JP
Japan
Prior art keywords
light
field
probe
recording medium
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000396667A
Other languages
Japanese (ja)
Other versions
JP2002197663A (en
Inventor
隆史 福田
公雄 須丸
宏雄 松田
龍実 木村
貴人 成田
勉 井上
文則 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000396667A priority Critical patent/JP4992026B2/en
Publication of JP2002197663A publication Critical patent/JP2002197663A/en
Application granted granted Critical
Publication of JP4992026B2 publication Critical patent/JP4992026B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は光情報記録方法及び記録媒体、特に記録面への光情報記録方式の改良に関する。
【0002】
【従来の技術】
記録媒体に光を照射し、その記録媒体の表面状態の変化から情報記録を行う各種光情報記録方法が開発されている。これらはピット形成、磁場形成などにより情報が記録されるものであるが、いずれも情報記録あるいは情報読出に光を使う以上、光の回折限界を超えた記録密度とすることは極めて困難である。
【0003】
一方、光の波長より小さい開口を有する光照射系を光記録媒体などに近接させて光を照射すると、光の波長を大きく下回る大きさの居所空間に、近接場と呼ばれる光の場が発生することが知られている。この原理に基づいて、回折限界を超えた記録密度での光情報記録への応用に関し、盛んに研究が行われている。また、走査型近接場光顕微鏡(SNOM)など、この原理に基づく顕微鏡がすでに開発され、さまざまな分野で広く活用されはじめている。
【0004】
近接場光は、微小な開口を有するプローブにより発生させるが、その光強度分布や偏光状態等の光学的特性は、光源の種類、導波路の特性、プローブの形状、媒体との距離や媒体の特性などにより大きく変化する。このため、近接場光の光学的特性の解析は、近接場光を用いた情報記録を実現するために極めて重要であるとともに、それらの光学的特性自体が情報の表現形態ともなり得るため、光強度分布、偏光状態などを高い精度で固定し、観察可能とすることが強く要望されている。
【0005】
【発明が解決しようとする課題】
しかしながら、前述したように、近接場の光学的状態、例えば光強度分布や偏光状態は、その適切な評価方法が確立されておらず、近接場光を各種分野で利用することを妨げる要因の一つともなっている。
この点に関しては、近接場光をフォトレジスト等に露光した後、現像液に浸して現像する方法もあるが、この方法は工程が多い上、固定した光学的情報をすぐに確認することはできなかった。
【0006】
また、単に近接場の光学的状態を評価するのみであれば、2本のプローブを対向させ、一方のプローブ先端の近接場光を他方のプローブで測定を行う方法が知られている。
しかし、近接場は測定用のプローブを挿入することにより、分布が変化している可能性があり、正確に強度分布を測定している確証はなかった。また、他の光学特性、特に偏光状態を簡便に計測する方法は知られていなかった。
本発明は前記従来技術の課題に鑑みなされたものであり、その目的は近接場プローブなどの極微小照射光が発生する光の光学的特性を簡便に記録媒体上に記録する方法を提供することにある。
【0007】
【課題を解決するための手段】
前記目的を達成するために本発明にかかる光情報記録方法は、光異性化部位を有し光照射により形状変化を生じる情報記録媒体に対し、特定の光学的特性を有する光を照射し、該光学的特性を前記物質の形状変化に変換し、記録することを特徴とする。
また、前記方法において、前記照射光の波長以下の形状変化を近接場光により生じさせることが好適である。
【0008】
また、前記方法において、光学的特性はエネルギー密度分布、または、偏光特性であることが好適である。
また、前記方法において、特定の光学的特性を有する光を近接場プローブへ導光し、該プローブ先端に、前記光学的特性を有する近接場光を生じさせ、近接場に前記情報記録媒体を位置させることにより、光学的特性を情報記録媒体に形状変化として記録することが好適である。
【0009】
また、本発明にかかる光情報記録媒体は、基板上に光異性化部位を有する高分子膜を形成したことを特徴とする。
また、前記媒体において、高分子膜はプッシュプル構造を有することが好適である。
【0010】
【発明の実施の形態】
以下、図面に基づき本発明の好適な実施形態を説明する。
アゾベンゼン構造を含む高分子化合物の薄膜表面に特定波長域の光を照射すると、強度分布に応じて表面に凹凸が形成されることが知られているが、その強度分布や偏光状態と凹凸パターンの関係は明確にされていない。そこで、本発明者らはそれらの関係を明確にするため、流体力学モデルを提案し、いくつかの照射パターンに対する実験結果を解析した結果、モデルに基づく計算が実験データを良好に再現することを見出した(アプライド・フィジックス・レターズ第75巻(1999年)、第1878〜1880頁)。
【0011】
そして、本発明は近接場光などの状態を薄膜材料表面の凹凸に変換し、それを近接場顕微鏡、AFMやSTMなど、広く普及している走査型プローブ顕微鏡を用いて高い空間解像度の測定を行うことにより、その光強度分布や偏光状態などの光学的特性をnm程度の正確さで簡便に評価することを可能とするものである。
図1は本発明の一実施形態にかかる光情報記録方法に使用される近接場情報記録・再生装置が示されている。
【0012】
同図に示す装置10は、近接場プローブ12と、該プローブ12の先端に対向配置された情報記録媒体14と、を含む。
前記近接場プローブ12は、光ファイバーより形成され、該プローブ12には光源16、偏光板などよりなる特性付加手段18を介して、特定波長、特定偏光状態の光学的特性を有した光が導入される。
【0013】
また、プローブ12は、プローブ制御手段22により三次元方向に走査することができる。
一方、前記情報記録媒体14は、図2に示されるように、基板50と、該基板50上に薄膜状に形成された、光異性化部位を有し光照射により形状変化を生じる光感応層52を備えている。該光感応層52は、アゾベンゼン構造等を有する高分子化合物からなり、特定波長の光を照射するとそのエネルギー密度分布、または、偏光状態に応じて表面に凹凸が形成される。図2において、凹凸部は光照射により生じたものである。例えば、ガウス型エネルギー密度分布を有する光を照射して、図3(A)に示すような2つの凸部と、その中央部に凹部が得られた場合、偏光状態は図3(B)に示すように、図中矢印の方向に完全に片寄ったものであることが確認できる。また、図3(C)に示すようにドーナツ状に***が形成され、その中央部が凹部となる場合、図3(D)に示すように円偏光(もしくは完全無偏光)であることが確認できる。
【0014】
したがって、図1に示す装置10において、光感応層52が応答する波長を選択的に出力する光源16よりの光に対し、偏光板18により所望の偏光状態を付加し、さらに1/4波長板20a、1/2波長板20bを介してプローブ12に導光する。
図4に示すように、本実施形態において、プローブ12はその先端が先鋭化されており、且つ光を透過しない金属遮蔽膜60により外周が覆われている。そして、遮蔽膜60先端部に光の波長以下の開口62が設けられ、該開口62より近接場光64が漏れ出す。周知のように近接場光64は、その起源となる光の波長情報等はそのまま維持しているが、該光の波長よりもはるかに小さな領域のみに「場」として存在し得る。
【0015】
このため、図4(B)に示すように、近接場64領域に情報記録媒体14の光感応層52を進入させると、図4(C)に示すように、該近接場64の強度分布に応じて凸部54a,凹部54bが形成される。この凹部54bは、その部分のエネルギー密度が低いことで凹部となったのではなく、凸部54aを形成するための物質移動により凹状となったものと考えられ、むしろ該凹部54bはエネルギー密度が高い部分に対応して形成される場合がある。いずれにしろ、これらの凸部54a,凹部54bは、照射された近接場64のエネルギー密度を反映する。
【0016】
一方、以上のようにして記録された光学的特性情報は、同じく近接場情報記録・再生装置10により読み出すことができる。
すなわち、装置10は、AFM24等のプローブ12の三次元位置検出手段を備え、プローブ12先端部分に光を照射し、その反射光よりプローブ12先端と媒体14との距離に依存するシアフォースを検出し、照射光の波長よりもはるかに小さい近接場領域以下の分解能で媒体14表面の凹凸を検出することができる。
【0017】
これらのプローブ制御手段22による位置情報、AFM24による検出情報などはコンピュータ26により処理され、前記凸部54の形状、大きさなどを高い精度で測定することができる。
なお、本発明において、光異性化部位を有し光照射により形状変化を生じる情報記録媒体54は、以下の特性を有するものが好適である。
【0018】
a.媒体54の光感応層52の構成高分子は、アゾベンゼン構造やスチルベン構造など、光異性化部位を有することが好適である。そして、該光異性化部位は、プッシュプル構造を有するなど、光照射の際、効率的に光異性化と熱暖和を繰り返すことのできるものが好ましい。
b.また、光感応層52は、室温における熱安定性を有するものが好ましい。したがって、その構成高分子のガラス転移点は30〜300℃以上、特に、70〜200℃以上であることが特に好ましい。
c.また、光感応層52は、走査型プローブ顕微鏡による測定に耐える機械的耐久性を有することが好ましい。したがって、その構成高分子の分子量は1000以上であることが特に好ましい。
d.また、光感応層52は、光照射による円滑な物質移動特性を有することが好ましい。したがって、その構成高分子の分子量は100万以下であることが特に好ましい。
e.また、光感応層52は、円偏光照射や熱処理などにより、その構成高分子の分子配向が薄膜面内において等方的になされていることが好ましい。
【0019】
また、媒体14の光感応層52を薄膜化する場合、光感応層52の形態は以下のものが好ましい。
a.光感応層52は、平滑な基板50上にスピンコート法などの方法で均質な厚さで塗布されていることが好ましい。
b.また、光感応層52の表面はnmスケールのオーダーで平滑であることが好ましい。
d.光感応層52の膜厚が小さすぎると、基板による拘束の影響によって凹凸形成が阻害されるため、膜厚は100nm以上が好ましい。
e.光感応層52の膜厚が大きすぎると、表面に歪みやひび割れが発生しやすくなるため、膜厚は100um以下が好ましい。
f.反射光などの影響を避けるため、基板50は透明であることが好ましい。
g.偏光方向や光強度分布のひずみ方向の特定を容易にするため、記録媒体14は光学系に設置する向きが判別できることが好ましい。
h.記録媒体14の形状は、矩形(1mm角〜10cm角)や回転ディスク状など、照射光学系の装置条件に対応したものであることが好ましい。
【0020】
また、実際の使用にあたっては、以下の構成を有することが好ましい。
a.照射光の波長に適合した光異性化部位を有する光感応層構成高分子を用いる。
b.走査型プローブ顕微鏡による測定を行うのに十分な凹凸を形成するため、照射光強度の最大値は1mW/cm以上が好ましい。
c.また、光感応層を構成する高分子化合物が光分解しない程度の照射光強度で用いることが好適である。したがって、照射光強度の最大値は5000mW/cm以下が特に好ましい。
d.また、微小光照射系に本光記録媒体14をセットし、プローブ12から記録媒体14に光を一定時間照射する。十分な凹凸の形成を実現するため、単位面積当たりの照射光の総量は1J/cm以上が好ましい。
【0021】
以上説明したように、本発明によれば、光照射された光記録媒体表面に形成された凹凸パターンは、走査型プローブ顕微鏡によって測定でき、それを解析することによってプローブが発生する光強度分布や偏光状態を従来より高い精度で評価することができる。
凹凸パターンの解析は、モデルに基づく厳密計算のほか、少数の形状パラメータに基づく評価や複数の基本パターンとの比較などによって簡便に行うことも可能である。
【0022】
また、プローブと薄膜材料との距離を変えながら測定を行うことにより、照射光の膜厚方向における分布を評価することもできる。これにより、透明な保護層を介して光を照射した場合における記録媒体上の光強度分布を予測することが可能となる。
このように、本発明によれば光異性化部位を有する高分子化合物からなる平滑な薄膜表面に光を照射して凹凸パターンを形成させ、それを近接場顕微鏡、AFMやSTMなど、現在広く普及している走査型プローブ顕微鏡を用いて測定することにより、近接場プローブなどの微小光照射系が与える光強度分布や偏光状態をnm程度の正確さで簡便に評価することができる。
【0023】
【実施例】
実施例1
【化1】

Figure 0004992026
であらわされる循環単位からなり、共重合分率n:mが36:64、平均分子量5900、ガラス転移温度128℃を有する高分子化合物をクロロホルムに溶解し、濃度5質量%の塗布液を調製した。この塗布液を厚さ1mmのスライドガラス上にスピンコート(回転数700回転/分、回転時間50秒)で塗布し、乾燥して厚さ1μmの薄膜を形成させた。
【0024】
次に、YAGレーザーの2倍波(波長532nm、直線偏光及び円偏光)を光源とする走査型近接場顕微鏡(SNOM)を用いて、入射光量0.1mw、プローブ=薄膜間距離10nmで1分間、近接場プローブから上記薄膜に近接場光を照射した。こうして照射した薄膜表面に形成された凹凸パターンをAFMで測定した。この結果は前記図3(A),(C)に示した通りである。同図より明らかなように、光照射により形成される凹凸パターンは、近接場光の強度分布及び偏光状態を良好に示している。また、この凹凸パターンは解像度5nmの条件で測定されており、近接場光の強度分布を高い精度で評価することができる。
【0025】
【発明の効果】
以上説明したように本発明にかかる光情報記録方法及び記録媒体は、光の有する強度分布、偏光などの光学的特性を、媒体の表面形状に変換するので、光の回折限界以下の密度で情報記録を行うことができる。
【図面の簡単な説明】
【図1】本発明にかかる方法を実施する近接場情報記録・再生装置の概略構造の説明図である。
【図2】本発明にかかる記録媒体の説明図である。
【図3】光の特性の記録媒体上での記録状態の説明図である。
【図4】近接場プローブによる記録媒体への記録状態の説明図である。
【符号の説明】
10 近接場情報記録・再生装置
12 近接場プローブ
14 情報記録媒体
50 基板
52 光感応層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical information recording method and a recording medium, and more particularly to an improvement of an optical information recording method on a recording surface.
[0002]
[Prior art]
Various optical information recording methods for irradiating a recording medium with light and recording information from changes in the surface state of the recording medium have been developed. In these cases, information is recorded by pit formation, magnetic field formation, and the like. However, as long as light is used for information recording or information reading, it is extremely difficult to achieve a recording density exceeding the diffraction limit of light.
[0003]
On the other hand, when a light irradiation system having an aperture smaller than the wavelength of light is placed close to an optical recording medium and irradiated with light, a light field called a near field is generated in a residence space whose size is significantly lower than the wavelength of the light. It is known. Based on this principle, active research has been conducted on application to optical information recording at a recording density exceeding the diffraction limit. In addition, microscopes based on this principle, such as a scanning near-field light microscope (SNOM), have already been developed and are beginning to be widely used in various fields.
[0004]
Near-field light is generated by a probe having a minute aperture, and its optical characteristics such as light intensity distribution and polarization state are determined depending on the type of light source, waveguide characteristics, probe shape, distance from the medium, It varies greatly depending on characteristics. For this reason, the analysis of optical characteristics of near-field light is extremely important for realizing information recording using near-field light, and the optical characteristics themselves can be a form of information representation. There is a strong demand for making observation possible by fixing the intensity distribution, polarization state, etc. with high accuracy.
[0005]
[Problems to be solved by the invention]
However, as described above, an appropriate evaluation method has not been established for the optical state of the near field, such as the light intensity distribution and the polarization state, and one of the factors that hinder the use of near field light in various fields. It has become tying.
In this regard, there is a method in which near-field light is exposed to a photoresist or the like and then immersed in a developing solution to develop, but this method has many steps, and fixed optical information can be confirmed immediately. There wasn't.
[0006]
If the optical state of the near field is merely evaluated, a method is known in which two probes are opposed to each other and near field light at the tip of one probe is measured with the other probe.
However, there is a possibility that the distribution of the near field is changed by inserting a probe for measurement, and there is no confirmation that the intensity distribution is accurately measured. In addition, a method for easily measuring other optical characteristics, particularly a polarization state, has not been known.
The present invention has been made in view of the above-described problems of the prior art, and an object thereof is to provide a method for easily recording on a recording medium the optical characteristics of light generated by extremely minute irradiation light such as a near-field probe. It is in.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, an optical information recording method according to the present invention irradiates an information recording medium having a photoisomerization site and undergoes a shape change upon irradiation with light having specific optical characteristics, The optical characteristic is converted into a shape change of the substance and recorded.
Moreover, in the said method, it is suitable to produce the shape change below the wavelength of the said irradiation light with a near field light.
[0008]
In the method, the optical characteristic is preferably an energy density distribution or a polarization characteristic.
In the method, light having a specific optical characteristic is guided to a near-field probe, and near-field light having the optical characteristic is generated at a probe tip, and the information recording medium is positioned in the near-field. Therefore, it is preferable to record the optical characteristic as a shape change on the information recording medium.
[0009]
The optical information recording medium according to the present invention is characterized in that a polymer film having a photoisomerization site is formed on a substrate.
In the medium, the polymer film preferably has a push-pull structure.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Preferred embodiments of the present invention will be described below with reference to the drawings.
It is known that when light of a specific wavelength region is irradiated on the surface of a thin film of a polymer compound containing an azobenzene structure, irregularities are formed on the surface according to the intensity distribution. The relationship is not clear. Therefore, the present inventors proposed a hydrodynamic model to clarify the relationship between them, and analyzed the experimental results for several irradiation patterns. As a result, the calculation based on the model reproduced the experimental data well. (Applied Physics Letters Vol. 75 (1999), pages 1878 to 1880).
[0011]
The present invention converts the state of near-field light into irregularities on the surface of the thin film material, and measures the high spatial resolution using a widely used scanning probe microscope such as a near-field microscope, AFM, or STM. By doing so, it is possible to easily evaluate the optical characteristics such as the light intensity distribution and the polarization state with an accuracy of about nm.
FIG. 1 shows a near-field information recording / reproducing apparatus used in an optical information recording method according to an embodiment of the present invention.
[0012]
The apparatus 10 shown in FIG. 1 includes a near-field probe 12 and an information recording medium 14 disposed to face the tip of the probe 12.
The near-field probe 12 is formed of an optical fiber, and light having optical characteristics of a specific wavelength and a specific polarization state is introduced into the probe 12 through a characteristic adding unit 18 including a light source 16 and a polarizing plate. The
[0013]
The probe 12 can be scanned in a three-dimensional direction by the probe control means 22.
On the other hand, as shown in FIG. 2, the information recording medium 14 includes a substrate 50 and a light-sensitive layer formed in a thin film on the substrate 50 and having a photoisomerization site and causing a shape change by light irradiation. 52. The photosensitive layer 52 is made of a polymer compound having an azobenzene structure or the like, and when irradiated with light of a specific wavelength, irregularities are formed on the surface according to the energy density distribution or the polarization state. In FIG. 2, the concavo-convex portion is generated by light irradiation. For example, when light having a Gaussian energy density distribution is irradiated and two convex portions as shown in FIG. 3A and a concave portion at the center thereof are obtained, the polarization state is as shown in FIG. As shown, it can be confirmed that it is completely offset in the direction of the arrow in the figure. In addition, when a donut-shaped ridge is formed as shown in FIG. 3C and the central portion becomes a concave portion, it is confirmed that the light is circularly polarized (or completely non-polarized) as shown in FIG. it can.
[0014]
Accordingly, in the apparatus 10 shown in FIG. 1, a desired polarization state is added by the polarizing plate 18 to the light from the light source 16 that selectively outputs the wavelength to which the photosensitive layer 52 responds, and the quarter wavelength plate is further added. The light is guided to the probe 12 through 20a and the half-wave plate 20b.
As shown in FIG. 4, in this embodiment, the probe 12 has a sharpened tip and is covered with a metal shielding film 60 that does not transmit light. An opening 62 having a wavelength equal to or less than the wavelength of light is provided at the tip of the shielding film 60, and the near-field light 64 leaks from the opening 62. As is well known, the near-field light 64 maintains the wavelength information and the like of the light that is the origin thereof, but can exist as a “field” only in a region much smaller than the wavelength of the light.
[0015]
For this reason, as shown in FIG. 4B, when the photosensitive layer 52 of the information recording medium 14 enters the near-field 64 region, the intensity distribution of the near-field 64 is changed as shown in FIG. Accordingly, a convex portion 54a and a concave portion 54b are formed. The concave portion 54b is not formed into a concave portion due to the low energy density of the portion, but is considered to have been formed into a concave shape due to mass transfer for forming the convex portion 54a. Rather, the concave portion 54b has an energy density. It may be formed corresponding to a high part. In any case, the convex portion 54a and the concave portion 54b reflect the energy density of the irradiated near field 64.
[0016]
On the other hand, the optical characteristic information recorded as described above can be read out by the near-field information recording / reproducing apparatus 10.
That is, the apparatus 10 includes a three-dimensional position detection means for the probe 12 such as an AFM 24, irradiates the tip of the probe 12 with light, and detects the shear force depending on the distance between the tip of the probe 12 and the medium 14 from the reflected light. In addition, it is possible to detect irregularities on the surface of the medium 14 with a resolution that is much smaller than the near-field region that is much smaller than the wavelength of the irradiation light.
[0017]
The position information by the probe control means 22 and the detection information by the AFM 24 are processed by the computer 26, so that the shape and size of the convex portion 54 can be measured with high accuracy.
In the present invention, the information recording medium 54 having a photoisomerization site and causing a shape change by light irradiation preferably has the following characteristics.
[0018]
a. The constituent polymer of the photosensitive layer 52 of the medium 54 preferably has a photoisomerization site such as an azobenzene structure or a stilbene structure. The photoisomerization site preferably has a push-pull structure, and can efficiently repeat photoisomerization and thermal warming when irradiated with light.
b. The photosensitive layer 52 is preferably one having thermal stability at room temperature. Therefore, the glass transition point of the constituent polymer is preferably 30 to 300 ° C. or higher, particularly 70 to 200 ° C. or higher.
c. Moreover, it is preferable that the photosensitive layer 52 has mechanical durability that can withstand measurement by a scanning probe microscope. Therefore, the molecular weight of the constituent polymer is particularly preferably 1000 or more.
d. The photosensitive layer 52 preferably has a smooth mass transfer characteristic by light irradiation. Therefore, the molecular weight of the constituent polymer is particularly preferably 1,000,000 or less.
e. The photosensitive layer 52 is preferably such that the molecular orientation of the constituent polymers is isotropic within the plane of the thin film by irradiation with circularly polarized light or heat treatment.
[0019]
In addition, when the photosensitive layer 52 of the medium 14 is thinned, the form of the photosensitive layer 52 is preferably as follows.
a. The photosensitive layer 52 is preferably coated on the smooth substrate 50 with a uniform thickness by a method such as spin coating.
b. The surface of the photosensitive layer 52 is preferably smooth on the order of nm scale.
d. If the thickness of the photosensitive layer 52 is too small, the formation of unevenness is hindered by the influence of restraint by the substrate, so the thickness is preferably 100 nm or more.
e. When the film thickness of the photosensitive layer 52 is too large, distortion and cracks are likely to occur on the surface, and therefore the film thickness is preferably 100 μm or less.
f. In order to avoid the influence of reflected light or the like, the substrate 50 is preferably transparent.
g. In order to easily specify the polarization direction and the distortion direction of the light intensity distribution, it is preferable that the recording medium 14 can be discriminated in the direction in which it is installed in the optical system.
h. It is preferable that the shape of the recording medium 14 corresponds to the apparatus conditions of the irradiation optical system, such as a rectangle (1 mm square to 10 cm square) or a rotating disk shape.
[0020]
In actual use, it is preferable to have the following configuration.
a. A photosensitive layer-constituting polymer having a photoisomerization site suitable for the wavelength of irradiation light is used.
b. In order to form sufficient unevenness for measurement by a scanning probe microscope, the maximum value of the irradiation light intensity is preferably 1 mW / cm 2 or more.
c. Moreover, it is suitable to use with irradiation light intensity | strength of the grade which the high molecular compound which comprises a photosensitive layer does not photodecompose. Therefore, the maximum value of the irradiation light intensity is particularly preferably 5000 mW / cm 2 or less.
d. Further, the present optical recording medium 14 is set in the minute light irradiation system, and the recording medium 14 is irradiated with light from the probe 12 for a certain period of time. In order to realize sufficient unevenness, the total amount of irradiation light per unit area is preferably 1 J / cm 2 or more.
[0021]
As described above, according to the present invention, the concavo-convex pattern formed on the surface of the optical recording medium irradiated with light can be measured with a scanning probe microscope, and by analyzing it, the light intensity distribution generated by the probe or The polarization state can be evaluated with higher accuracy than before.
The analysis of the concavo-convex pattern can be easily performed by strict calculation based on the model, evaluation based on a small number of shape parameters, comparison with a plurality of basic patterns, and the like.
[0022]
Further, the distribution in the film thickness direction of the irradiated light can be evaluated by performing measurement while changing the distance between the probe and the thin film material. Thereby, it becomes possible to predict the light intensity distribution on the recording medium when light is irradiated through the transparent protective layer.
Thus, according to the present invention, light is irradiated onto a smooth thin film surface made of a polymer compound having a photoisomerization site to form a concavo-convex pattern, which is now widely used in near-field microscopes, AFM, STM, and the like. By measuring using a scanning probe microscope, it is possible to easily evaluate the light intensity distribution and polarization state given by a minute light irradiation system such as a near-field probe with an accuracy of about nm.
[0023]
【Example】
Example 1
[Chemical 1]
Figure 0004992026
A high molecular compound having a copolymerization fraction n: m of 36:64, an average molecular weight of 5900, and a glass transition temperature of 128 ° C. was dissolved in chloroform to prepare a coating solution having a concentration of 5% by mass. . This coating solution was applied onto a slide glass having a thickness of 1 mm by spin coating (rotation speed: 700 rotations / minute, rotation time: 50 seconds), and dried to form a thin film having a thickness of 1 μm.
[0024]
Next, using a scanning near-field microscope (SNOM) using a YAG laser double wave (wavelength of 532 nm, linearly polarized light and circularly polarized light) as a light source, the incident light amount is 0.1 mw, and the probe is 10 nm between the thin films for 1 minute. The thin film was irradiated with near-field light from a near-field probe. The uneven pattern formed on the surface of the thin film thus irradiated was measured by AFM. The results are as shown in FIGS. 3 (A) and 3 (C). As can be seen from the figure, the concavo-convex pattern formed by light irradiation shows a good intensity distribution and polarization state of near-field light. Moreover, this uneven | corrugated pattern is measured on the conditions of resolution 5nm, and can evaluate the intensity distribution of near-field light with high precision.
[0025]
【Effect of the invention】
As described above, the optical information recording method and the recording medium according to the present invention convert optical characteristics such as intensity distribution and polarization of light into the surface shape of the medium. Recording can be performed.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a schematic structure of a near-field information recording / reproducing apparatus that implements a method according to the present invention.
FIG. 2 is an explanatory diagram of a recording medium according to the present invention.
FIG. 3 is an explanatory diagram of a recording state of a light characteristic on a recording medium.
FIG. 4 is an explanatory diagram of a recording state on a recording medium by a near-field probe.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Near field information recording / reproducing apparatus 12 Near field probe 14 Information recording medium 50 Substrate 52 Photosensitive layer

Claims (1)

光異性化部位を有し光照射により形状変化を生じる光記憶材料に対し、光を照射して、形状変化を近接場光により生じさせ、該形状変化の凹部及び凸部の形状変化を測定することにより、該近接場光の光強度分布及び偏光状態を評価する方法であって
光を近接場プローブへ導光し、該プローブ先端に、近接場光を生じさせ、近接場に前記光記憶材料を位置させることにより、前記形状変化を近接場光により生じさせることを特徴とする近接場光評価方法。
Light is irradiated to an optical storage material that has a photoisomerization site and undergoes shape change by light irradiation, the shape change is caused by near-field light, and the shape change of the concave and convex portions of the shape change is measured. A method for evaluating the light intensity distribution and polarization state of the near-field light,
The shape change is caused by near-field light by guiding light to a near-field probe, generating near-field light at the probe tip, and positioning the optical storage material in the near-field. Near-field light evaluation method.
JP2000396667A 2000-12-27 2000-12-27 Near-field light evaluation method Expired - Lifetime JP4992026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000396667A JP4992026B2 (en) 2000-12-27 2000-12-27 Near-field light evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000396667A JP4992026B2 (en) 2000-12-27 2000-12-27 Near-field light evaluation method

Publications (2)

Publication Number Publication Date
JP2002197663A JP2002197663A (en) 2002-07-12
JP4992026B2 true JP4992026B2 (en) 2012-08-08

Family

ID=18861920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000396667A Expired - Lifetime JP4992026B2 (en) 2000-12-27 2000-12-27 Near-field light evaluation method

Country Status (1)

Country Link
JP (1) JP4992026B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2827967B1 (en) * 2001-07-26 2003-10-24 Essilor Int METHOD FOR PRINTING A STABLE PHOTOINDUCED STRUCTURE IN NEAR FIELD, AND OPTICAL FIBER TIP FOR IMPLEMENTING IT
US20100196661A1 (en) * 2009-01-30 2010-08-05 Duerig Urs T Method for patterning nano-scale patterns of molecules on a surface of a material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3374763B2 (en) * 1998-02-26 2003-02-10 株式会社豊田中央研究所 Optical recording medium

Also Published As

Publication number Publication date
JP2002197663A (en) 2002-07-12

Similar Documents

Publication Publication Date Title
JP3862845B2 (en) Near-field optical probe
US6413680B1 (en) Optical recording method, optical recording medium, and optical recording system
US6909684B2 (en) Optical recording medium, holographic recording and/or retrieval method and holographic recording and/or retrieval apparatus
TW571303B (en) High-density optical recording medium, storage device thereof, and recording/reproducing method
JP4992026B2 (en) Near-field light evaluation method
US8054737B2 (en) Information storage apparatus and information recording method in which recording is carried out by propagating plasmons along a network of metal rods provided in a recording medium
JPS60500689A (en) Improvements in data storage and recording
JP4395942B2 (en) Optical recording method and sample observation method
JP2003217172A (en) Recording medium, optical probe and information recording and reproducing device
JP3449210B2 (en) Optical recording method and optical recording system
JP2001101698A (en) Optical information recording/reproducing system
JP3397121B2 (en) Sample observation method
Kitano et al. Non‐optically probing near‐field microscopy with illumination of total internal reflection
JP4032334B2 (en) Optical recording / reproducing device
JP2000099979A (en) Beam condensing optical device
JP3010517B2 (en) Optical recording medium and optical recording apparatus and reading apparatus using this optical recording medium
Ohtsu et al. Near field optics and its application to optical memory
JP4139892B2 (en) Information recording method based on light-induced surface relief
Fukuda et al. Simple and effective technique for the evaluation of optical field emitted from a SNOM probe tip
Karis et al. Verification of tracking servo signal simulation from scanning tunneling microscope surface profiles
Glijer et al. MFM observations of nanoscale marks written by SIL near field recording
JP2869589B2 (en) Method for measuring condensed beam diameter using magneto-optical signal and method for inspecting optical system of optical disk apparatus using the method
Coombs et al. Scanning optical microscopy: a powerful tool in optical recording
JP2001143320A (en) Information recording medium
Judkins et al. FDTD simulation of push-pull tracking servo signals for rewritable optical disks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071026

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110420

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110428

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4992026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term