JP4991981B2 - Manufacturing method of nano granular soft magnetic film - Google Patents

Manufacturing method of nano granular soft magnetic film Download PDF

Info

Publication number
JP4991981B2
JP4991981B2 JP2004271178A JP2004271178A JP4991981B2 JP 4991981 B2 JP4991981 B2 JP 4991981B2 JP 2004271178 A JP2004271178 A JP 2004271178A JP 2004271178 A JP2004271178 A JP 2004271178A JP 4991981 B2 JP4991981 B2 JP 4991981B2
Authority
JP
Japan
Prior art keywords
magnetic field
soft magnetic
nanogranular
film
magnetic film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004271178A
Other languages
Japanese (ja)
Other versions
JP2006086412A (en
Inventor
正人 大沼
繁弘 大沼
秀幸 大塚
啓安 藤森
和博 宝野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2004271178A priority Critical patent/JP4991981B2/en
Publication of JP2006086412A publication Critical patent/JP2006086412A/en
Application granted granted Critical
Publication of JP4991981B2 publication Critical patent/JP4991981B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この出願の発明は、ナノグラニュラー軟磁性膜の製造方法に関するものである。より詳しくは、この出願の発明は、高電気比抵抗で勝つ増幅された異方性磁場を有し、約10GHzの超高周波領域での利用が可能であるナノグラニュラー軟磁性膜の製造方法に関するものである。
The invention of this application relates to a method for producing a nano granular soft magnetic film . More specifically, the invention of this application relates to a method for producing a nanogranular soft magnetic film having an amplified anisotropic magnetic field prevailing with a high electrical resistivity and being usable in an ultrahigh frequency region of about 10 GHz. is there.

磁場に対する応答に優れた軟磁性材料はトランスやチョークコイル、さらには電磁波吸収材料等、種々の電気・電子機器に必要不可欠な材料である。これら軟磁性材料には材料特有の共鳴周波数が必ず存在し、この共鳴周波数以上では軟磁気特性が失われる。通信機器や電算機の高速度化が急速に進んでいる現在、軟磁性材料の共鳴周波数の増大は極めて大きな社会的要請となっている。軟磁性材料の共鳴周波数を高めるためには飽和磁化の増大、高電気抵抗化、一軸異方性の付与による異方性磁場の向上が有効である。   Soft magnetic materials having excellent response to magnetic fields are indispensable materials for various electric and electronic devices such as transformers, choke coils, and electromagnetic wave absorbing materials. These soft magnetic materials always have a resonance frequency peculiar to the material, and the soft magnetic characteristics are lost above this resonance frequency. With the rapid increase in speed of communication equipment and computers, an increase in the resonance frequency of soft magnetic materials has become a very large social demand. In order to increase the resonance frequency of the soft magnetic material, it is effective to increase the saturation magnetization, increase the electrical resistance, and improve the anisotropic magnetic field by imparting uniaxial anisotropy.

ところで、酸化物または窒化物からなる母相(マトリクス)中に平均粒径がナノメートル・オーダーの強磁性粒子(グラニュール)が埋め込まれた組織を有するナノグラニュラー磁性膜が知られている。これらのうち強磁性粒子の体積分率が比較的大きな試料では強磁性粒子間の接触により磁気的な結合が生じ、磁気異方性が平均化され、軟磁気特性を示すことをすでに我々は知見している(特許文献1、特許文献2、非特許文献1〜非特許文献7)。   By the way, a nanogranular magnetic film having a structure in which ferromagnetic particles (granule) having an average particle diameter of nanometer order are embedded in a matrix (matrix) made of oxide or nitride is known. Among these, we have already found that samples with a relatively large volume fraction of ferromagnetic particles have magnetic coupling due to contact between the ferromagnetic particles, averaged magnetic anisotropy, and soft magnetic properties. (Patent Document 1, Patent Document 2, Non-Patent Document 1 to Non-Patent Document 7).

このナノグラニュラー軟磁性膜は、電気比抵抗が103μΩcm以上と非常に大きく、
かつ軟磁性合金材料に付与可能な異方性磁場の最大値より5倍程度大きい異方性磁場Hkを付与することが可能である。この結果、共鳴周波数がGHz領域に到達し、高周波領域で利用可能な軟磁性膜として極めて有用な材料である。
特開平10−189322号公報 特開2002−158486号公報 S. Ohnuma, H. Fujimori, S. Furukawa, S. Mitani and T. Matsumoto, J. Alloy and Compounds, 222, p.167 (1995) S. Ohnuma, H. Fujimori, S. Mitani and T. Matsumoto, J. Appl. Phys., 79, p.5130 (1996) S. Ohnuma and T. Masumoto, Scripta. Mater., 44, p.1309 (2001) S. Ohnuma, S. Mitani, H. Fujimori, T. Matsumoto, J. Magn. Soc. Jpm., 19, p.425 (1995) S. Ohnuma, N. Kobayashi, T. Matsumoto, S. Mitani and H. Fujimori, J. Magn. Soc. Jpm., 23, p.240 (1999) K. Hono and M. Ohnuma, book chapter of "Magnetic Nanostructure" edited by H. S. Nalwa, ASP, p.327 (2002) 大沼正人,日本学術振興会第147委員会第81回研究会資料, p.11, (2003)
This nanogranular soft magnetic film has a very large electrical resistivity of 10 3 μΩcm or more,
In addition, it is possible to apply an anisotropic magnetic field Hk that is approximately five times larger than the maximum value of the anisotropic magnetic field that can be applied to the soft magnetic alloy material. As a result, the resonance frequency reaches the GHz region, which is an extremely useful material as a soft magnetic film that can be used in the high frequency region.
JP-A-10-189322 JP 2002-158486 A S. Ohnuma, H. Fujimori, S. Furukawa, S. Mitani and T. Matsumoto, J. Alloy and Compounds, 222, p.167 (1995) S. Ohnuma, H. Fujimori, S. Mitani and T. Matsumoto, J. Appl. Phys., 79, p.5130 (1996) S. Ohnuma and T. Masumoto, Scripta. Mater., 44, p.1309 (2001) S. Ohnuma, S. Mitani, H. Fujimori, T. Matsumoto, J. Magn. Soc. Jpm., 19, p.425 (1995) S. Ohnuma, N. Kobayashi, T. Matsumoto, S. Mitani and H. Fujimori, J. Magn. Soc. Jpm., 23, p.240 (1999) K. Hono and M. Ohnuma, book chapter of "Magnetic Nanostructure" edited by HS Nalwa, ASP, p.327 (2002) Masato Onuma, The Japan Society for the Promotion of Science, 147th Committee Material, 81st Workshop, p.11, (2003)

ところが最近の高度情報社会における電気・電子機器の動作周波数は日進月歩で高まってきており、既存の高周波用軟磁性材料の中でも電気比抵抗が高く共鳴周波数の高いナノグラニュー軟磁性材料に対しても、さらなる情報の高密度化、高速処理化の社会的要請に
対応可能なものの開発が強く望まれている。
However, the operating frequency of electrical and electronic equipment in the recent advanced information society has been increasing steadily, and among the existing high-frequency soft magnetic materials, even for nanogranular soft magnetic materials with high electrical resistivity and high resonance frequency, There is a strong demand for the development of information that can meet social demands for higher information density and faster processing.

この出願の発明は、このような従来技術の実情に鑑みてなされたもので、高電気比抵抗でかつ増幅された異方性磁場を有し、約10GHzの超高周波数領域での利用が可能であるナノグラニュラー軟磁性膜およびその製造方法を提供することを課題とする。   The invention of this application has been made in view of such a state of the art, has a high electrical resistivity and an amplified anisotropic magnetic field, and can be used in an ultrahigh frequency region of about 10 GHz. It is an object of the present invention to provide a nanogranular soft magnetic film and a method for producing the same.

この出願の発明は、上記課題を解決するため、第1には、FeまたはCoの少なくとも1 種を主構成成分とする(Co,Fe)−(Ni,Pd,Pt)−Si−O系のナノグ
ラニュラー軟磁性膜の製造方法であって、平均粒径が10nm以下の強磁性粒子が、酸化物のセラミックスからなる母相中に埋め込まれた形態をなし、製膜後、真空中にて、0.1T以上の強磁場を面内方向に印加した状態で、熱処理を施すことにより異方性磁場を増幅させることを特徴とするナノグラニュラー軟磁性膜の製造方法を提供する。


In order to solve the above problems, the invention of this application is firstly based on a (Co, Fe)-(Ni, Pd, Pt) -Si-O system containing at least one of Fe and Co as a main constituent. A method for producing a nanogranular soft magnetic film, in which ferromagnetic particles having an average particle size of 10 nm or less are embedded in a parent phase made of an oxide ceramic, and after film formation , 0 Provided is a method for producing a nanogranular soft magnetic film characterized in that an anisotropic magnetic field is amplified by heat treatment in a state where a strong magnetic field of 1 T or more is applied in the in-plane direction.


また、第は、上記第の発明において、熱処理を、20℃/min以下の加熱速度で1 00℃から500℃の間の温度まで昇温させた後、その温度で0.1時間から5時間保持し、その後20℃/min以下の冷却速度で冷却することにより行うことを特徴とするナノグラニュラー軟磁性膜の製造方法を提供する。
The second aspect of the present invention is that in the first invention, after the heat treatment is performed at a heating rate of 20 ° C./min or less to a temperature between 100 ° C. and 500 ° C., the temperature is increased from 0.1 hour. Provided is a method for producing a nanogranular soft magnetic film, which is performed by holding for 5 hours and then cooling at a cooling rate of 20 ° C./min or less.

また、第には、上記第または第の発明において、電磁石または超伝導磁石による磁場の印加を0.1Tから10Tの範囲で行うことを特徴とするナノグラニュラー軟磁性膜の製造方法を提供する。
According to a third aspect of the present invention, there is provided a method for producing a nanogranular soft magnetic film according to the first or second invention, wherein the magnetic field is applied in the range of 0.1T to 10T by an electromagnet or a superconducting magnet. To do.

さらに、第には、上記第から第の発明のいずれかにおいて、強磁性粒子中にNi族元素が5原子%から30原子%添加されていることを特徴とするナノグラニュラー軟磁性膜の製造方法を提供する。

According to a fourth aspect of the nanogranular soft magnetic film according to any one of the first to third inventions, the Ni group element is added to the ferromagnetic particles in an amount of 5 atomic% to 30 atomic%. A manufacturing method is provided.

この出願の発明のナノグラニュラー軟磁性膜は、高電気比抵抗でかつ増幅された異方性磁場を有し、約10GHzの超高周波数領域での利用が可能となる。   The nanogranular soft magnetic film of the invention of this application has a high electrical resistivity and an amplified anisotropic magnetic field, and can be used in an ultrahigh frequency region of about 10 GHz.

また、この出願の発明のナノグラニュラー軟磁性膜の製造方法は、ナノグラニュラー軟磁性膜に電磁石または超伝導磁石による0.1T以上の強磁場中熱処理を施すことにより、高電気比抵抗で増幅された異方性磁場を有するナノグラニュラー軟磁性膜を提供することが可能となり、極高電気抵抗でかつ巨大異方性磁場を有する超高周波数高透磁率軟磁性材料を得ることができる。   In addition, the method for producing a nano granular soft magnetic film of the invention of this application is that the nano granular soft magnetic film is subjected to a heat treatment in a strong magnetic field of 0.1 T or more by an electromagnet or a superconducting magnet, thereby differentiating with a high electrical resistivity. A nano granular soft magnetic film having a isotropic magnetic field can be provided, and an ultrahigh frequency high magnetic permeability soft magnetic material having a very high electric resistance and a giant anisotropic magnetic field can be obtained.

以下、この出願の発明について詳細に説明する。   Hereinafter, the invention of this application will be described in detail.

磁場中熱処理による一軸磁気異方性の付与は既に確立した技術として軟磁性材料の製造過程で用いられている。通常この効果は対象とする軟磁性材料の磁化を飽和させるだけ(言い換えると磁区を揃えるだけ)の比較的低い磁場で十分であり、それ以上の磁場を印加しても付与できる異方性磁場は増大しないとされている。これは、これまでに知られている軟磁性材料では、磁場中熱処理による一軸磁気異方性の誘導は、磁区内に自発的に存在
する数100Tにも及ぶ巨大な内部磁場(別名、分子磁場)が駆動力になっているからである。すなわち、熱処理中に磁性原子対の磁気相互作用(擬双極子相互作用)が強い内部磁場の影響を受けて、磁性原子対が内部磁場の方向に再配列することが誘導磁気異方性の起源だからである。
Giving uniaxial magnetic anisotropy by heat treatment in a magnetic field is used as an established technique in the production process of soft magnetic materials. Usually, a relatively low magnetic field that saturates the magnetization of the target soft magnetic material (in other words, just aligns the magnetic domains) is sufficient for this effect, and an anisotropic magnetic field that can be applied even if a higher magnetic field is applied is It is said that it will not increase. This is because, in soft magnetic materials known so far, induction of uniaxial magnetic anisotropy by heat treatment in a magnetic field is caused by a huge internal magnetic field (also known as molecular magnetic field) of several hundred T that is spontaneously present in a magnetic domain. ) Is the driving force. That is, the magnetic interaction of magnetic atom pairs (pseudo-dipole interaction) is affected by a strong internal magnetic field during heat treatment, and the magnetic atom pairs rearrange in the direction of the internal magnetic field. That's why.

ところが、この出願の発明者らは、ナノグラニュー軟磁性材料に関する磁気異方性について鋭意研究を重ねた結果、ナノグラニュラー軟磁性材料に対し、飽和磁場を超えた強磁場(0.1T以上)中で熱処理を施すと、大きな一軸磁気異方性が誘導され、それによって異方性磁場が増大し、ひいては軟磁気特性の超高周波化に極めて有効であることを見出した。   However, the inventors of this application have conducted extensive research on the magnetic anisotropy of nanogranular soft magnetic materials, and as a result, compared with nanogranular soft magnetic materials, in a strong magnetic field (over 0.1 T) exceeding the saturation magnetic field. It has been found that when heat treatment is performed, a large uniaxial magnetic anisotropy is induced, thereby increasing the anisotropy magnetic field, and thus extremely effective in increasing the frequency of soft magnetic properties.

このような知見は、既存の合金軟磁性材料の磁場中熱処理やグラニュラー軟磁性材料の弱磁場熱処理では予想できなかったものであり、グラニュラー軟磁性材料の異方性磁場の起源に関して新しい概念を提示するものであるとともに、極高電気抵抗/巨大異方性磁場材料という新しい材料の作製に成功したものである。また、このことは、強磁場中熱処理を利用することで初めて明らかになったものである。このような現象は、軟磁性材料としてナノグラニュラー構造のものを用いたことと関係しているものと考えられる。現在のところその機構は未解明であるが、ナノグラニュラー軟磁性材料には従来とは異なる新しい誘導磁気異方性の発生機構が存在することは十分予想される。すなわち、ナノグラニュラー構造では、通常の弱磁場で磁化はほぼ飽和に近づくが十分ではなく、ナノ磁性粒子間の境界に存在する磁性原子の磁気モーメントは弱磁場では不飽和で、それらは強磁場が加わってはじめて飽和に近づくと考えられる。そのような磁性原子が強磁場下の熱処理によって再配列を起こし、結局、大きな磁気異方性が誘導されたものと推測される。   Such knowledge could not be anticipated by heat treatment in the magnetic field of existing alloy soft magnetic materials and weak magnetic field heat treatment of granular soft magnetic materials, and presented a new concept regarding the origin of anisotropic magnetic fields in granular soft magnetic materials. And succeeded in producing a new material called an extremely high electric resistance / giant anisotropic magnetic field material. This was also revealed for the first time by using heat treatment in a strong magnetic field. Such a phenomenon is considered to be related to the use of a nano granular structure as a soft magnetic material. At present, the mechanism is not yet elucidated, but it is fully expected that nanogranular soft magnetic materials have a new mechanism of induced magnetic anisotropy. In other words, in the nano-granular structure, the magnetization almost approaches saturation in a normal weak magnetic field, but it is not sufficient, and the magnetic moment of the magnetic atoms present at the boundary between nanomagnetic particles is unsaturated in the weak magnetic field, and they are subjected to a strong magnetic field. It is thought that it will approach saturation for the first time. It is presumed that such magnetic atoms undergo rearrangement by heat treatment under a strong magnetic field, and eventually a large magnetic anisotropy was induced.

この出願の発明のナノグラニュラー軟磁性膜は、FeまたはCoの少なくとも1種を主構成成分とする平均粒径が10nm以下の強磁性粒子が、酸化物セラミックスからなる母相中に埋め込まれた形態をなし、異方性磁場が0.1T以上の面内方向の強磁場を印加した状態での熱処理により、製膜直後の軟磁性膜の異方性磁場に対して1.2倍から4倍に増幅されていることを特徴とする。このようなナノグラニュラー軟磁性膜は上記した方法により製造することができる。
The nanogranular soft magnetic film of the invention of this application has a form in which ferromagnetic particles having an average particle size of 10 nm or less and containing at least one of Fe or Co as a main constituent are embedded in a matrix made of oxide ceramics. None, heat treatment while applying a strong magnetic field in the in-plane direction with an anisotropic magnetic field of 0.1 T or more is 1.2 to 4 times the anisotropic magnetic field of the soft magnetic film immediately after film formation It is amplified. Such a nanogranular soft magnetic film can be manufactured by the method described above.

上記ナノグラニュラー軟磁性膜において、FeまたはCoの少なくとも1種を主構成成分とする強磁性粒子の組成は60原子%から90原子%であることがすぐれた軟磁気特性の発現のために好ましい。   In the nanogranular soft magnetic film, the composition of the ferromagnetic particles containing at least one of Fe or Co as a main constituent is preferably 60 atom% to 90 atom% in order to exhibit excellent soft magnetic properties.

強磁性粒子の平均粒径は10nm以下である。平均粒径が10nmより大きいと保磁力が大きくなり軟磁性体でなくなる。また、平均粒径の下限は超常磁性となる2nm程度である。   The average particle size of the ferromagnetic particles is 10 nm or less. When the average particle size is larger than 10 nm, the coercive force is increased and the soft magnetic material is lost. Further, the lower limit of the average particle diameter is about 2 nm which becomes superparamagnetic.

上記ナノグラニュラー軟磁性膜の異方性磁場Hkは、弱磁場中製膜直後のナノグラニュラー軟磁性膜の異方性磁場の値に対して1.2倍から4倍、より好ましくは2倍から4倍に増幅したものとすることができる。異方性磁場Hkの増幅率は、弱磁場中製膜直後のナノグラニュラー軟磁性膜の異方性磁場の値にもよるが、上記の範囲の増幅率であると、軟磁気特性の超高周波化に極めて有効となる。   The anisotropic magnetic field Hk of the nanogranular soft magnetic film is 1.2 to 4 times, more preferably 2 to 4 times the value of the anisotropic magnetic field of the nanogranular soft magnetic film immediately after film formation in a weak magnetic field. Can be amplified. The amplification factor of the anisotropic magnetic field Hk depends on the value of the anisotropic magnetic field of the nano-granular soft magnetic film immediately after film formation in a weak magnetic field. It will be extremely effective.

上記ナノグラニュラー軟磁性膜の電気比抵抗は200μΩcm以上、より好ましくは500μΩcm以上である。電気比抵抗の上限は、金属伝導からトンネル伝導へと変わるしいき値より104μΩcm程度である。電気比抵抗が上記のような値であると上記の増幅
された異方性磁場Hkと同様、超高周波領域への利用に大きく寄与することができる。
The electrical resistivity of the nanogranular soft magnetic film is 200 μΩcm or more, more preferably 500 μΩcm or more. The upper limit of the electrical resistivity is about 10 4 μΩcm from the threshold value that changes from metal conduction to tunnel conduction. If the electrical specific resistance is as described above, it can greatly contribute to the use in the ultra-high frequency region, similar to the amplified anisotropic magnetic field Hk.

上記ナノグラニュラー軟磁性膜の膜厚は、用途等に応じて適宜設定されるが、通常、0.1μmから5μmである。   The film thickness of the nanogranular soft magnetic film is appropriately set according to the application and the like, but is usually 0.1 μm to 5 μm.

また、上記ナノグラニュラー軟磁性膜において代表的な例を下記に示す。   A typical example of the nanogranular soft magnetic film is shown below.

・Co−Pd−Si−O系、Co−Ni−So−O系、Co−Al−O系、Co−Pt−Al−O系、Co−Zr−O系、Co−Al−N系、Co−Mg−F系
・Fe−Al−O系、Fe−B−N系、Fe−Zr−O系
・Co−Fe−Mg−F系、Co−Fe−Al−O系、Co−Fe−RE−H系、Co−Fe−RE−O系;ただし、REは希土類元素である。
Co-Pd-Si-O, Co-Ni-So-O, Co-Al-O, Co-Pt-Al-O, Co-Zr-O, Co-Al-N, Co -Mg-F system -Fe-Al-O system, Fe-BN system, Fe-Zr-O system -Co-Fe-Mg-F system, Co-Fe-Al-O system, Co-Fe-RE -H system, Co-Fe-RE-O system; provided that RE is a rare earth element.

次にこの出願の発明によるナノグラニュラー軟磁性膜の製造方法について述べる。   Next, a method for producing a nano granular soft magnetic film according to the invention of this application will be described.

この出願の発明によるナノグラニュラー軟磁性膜の製造方法は、FeまたはCoの少なくとも1種を主構成成分とする平均粒径が10nm以下の強磁性粒子が、酸化物セラミックスからなる母相に埋め込まれた形態をなすナノグラニュラー軟磁性膜を作製し、その後、真空中にて、0.1T以上の面内方向の磁場を印加した状態で、熱処理を施すことを特徴とする。 In the method for producing a nanogranular soft magnetic film according to the invention of this application, ferromagnetic particles having an average particle size of 10 nm or less, the main component of which is at least one of Fe or Co, are embedded in a parent phase made of oxide ceramics. A nano-granular soft magnetic film having a form is prepared, and then heat treatment is performed in a state of applying a magnetic field in an in-plane direction of 0.1 T or more in a vacuum.

また、上記ナノグラニュラー軟磁性膜における強磁性粒子中には、5原子%から30原子%のNi族元素、すなわちNi、Pd、Ptを添加させてもよい。このようにすると、より広範な組成範囲において請求項1の条件を満たすナノグラニュラー軟磁性膜の製造方法が提供される。   Further, 5 atomic% to 30 atomic% of Ni group elements, that is, Ni, Pd, and Pt may be added to the ferromagnetic particles in the nano granular soft magnetic film. This provides a method for producing a nanogranular soft magnetic film that satisfies the conditions of claim 1 in a wider composition range.

先ず、この出願の発明における強磁場中熱処理をする前のナノグラニュラー軟磁性膜を作製する方法について述べる。   First, a method for producing a nanogranular soft magnetic film before heat treatment in a strong magnetic field in the invention of this application will be described.

この場合の成膜法としては、たとえばスパッタ法を用いることができる。スパッタ製膜する際に、作製されるナノグラニュラー軟磁性膜に一軸磁気異方性を付与するために永久磁石で50Oeから500Oe程度の弱磁場を磁性膜面内方向に印加することが望ましい。また、スパッタ製膜は0.1Paから1×10-4Pa程度の真空中で行うことが好ましい。 As a film forming method in this case, for example, a sputtering method can be used. It is desirable to apply a weak magnetic field of about 50 Oe to 500 Oe with a permanent magnet in the in-plane direction of the magnetic film in order to impart uniaxial magnetic anisotropy to the produced nano granular soft magnetic film during sputtering film formation. Sputter film formation is preferably performed in a vacuum of about 0.1 Pa to 1 × 10 −4 Pa.

この出願の発明の製造方法では、以上のようにして弱磁場中製膜されたナノグラニュラー軟磁性膜に対して、強磁場中熱処理を施す。   In the manufacturing method of the invention of this application, a heat treatment in a strong magnetic field is performed on the nanogranular soft magnetic film formed in a weak magnetic field as described above.

この場合、電磁石または超伝導磁石を用い、0.1T以上の磁場を印加する。印加する磁場の強度が弱すぎると異方性磁場Hkの増幅が十分でなくなる。また、印加する磁場の強度の上限は簡便に発生可能な定常磁場の上限より10T程度である。   In this case, an electromagnet or a superconducting magnet is used and a magnetic field of 0.1 T or more is applied. If the strength of the applied magnetic field is too weak, the anisotropic magnetic field Hk will not be sufficiently amplified. The upper limit of the strength of the applied magnetic field is about 10 T from the upper limit of the steady magnetic field that can be easily generated.

また、熱処理は真空中で行うが、その真空度は0.1Paから1×10-4Pa程度であることが好ましい。 The heat treatment is performed in a vacuum, and the degree of vacuum is preferably about 0.1 Pa to 1 × 10 −4 Pa.

また、熱処理において加熱速度は20℃/min以下であることが好ましい。加熱速度が速すぎると熱処理温度の下限における温度制御が困難となる。加熱速度の下限は、一定加熱速度を安定に保持できる下限により1℃/min程度である。熱処理温度は100℃から500℃の間の温度が好ましい。熱処理温度が高すぎるグラニュラー組織が粗大化し、熱処理温度が低すぎると磁壁の移動が困難となる。加熱時間(保持時間)は0.1時間から5時間が好ましい。加熱時間が上記の範囲外であると異方性磁場Hkの増幅が十分でなくなる。冷却速度は20℃/min以下であることが好ましい。冷却速度が速すぎると
磁壁の固着が困難となる。冷却速度の下限は、実効的な熱処理時間への影響より1℃/min程度である。
Further, in the heat treatment, the heating rate is preferably 20 ° C./min or less. If the heating rate is too high, temperature control at the lower limit of the heat treatment temperature becomes difficult. The lower limit of the heating rate is about 1 ° C./min due to the lower limit capable of stably maintaining a constant heating rate. The heat treatment temperature is preferably between 100 ° C. and 500 ° C. If the heat treatment temperature is too high, the granular structure becomes coarse, and if the heat treatment temperature is too low, the domain wall becomes difficult to move. The heating time (holding time) is preferably 0.1 to 5 hours. When the heating time is out of the above range, the anisotropic magnetic field Hk is not sufficiently amplified. The cooling rate is preferably 20 ° C./min or less. If the cooling rate is too fast, it becomes difficult to fix the domain wall. The lower limit of the cooling rate is about 1 ° C./min due to the effect on the effective heat treatment time.

製膜に使用する基板としては、ガラス基板、SiやGe等の半導体基板等を用いることができる。   As a substrate used for film formation, a glass substrate, a semiconductor substrate such as Si or Ge, or the like can be used.

次に、この出願の発明の実施例を述べる。もちろん、この出願の発明は以下の例に限定されるものではなく、細部については様々な態様が可能であることは言うまでもない。   Next, examples of the invention of this application will be described. Of course, the invention of this application is not limited to the following examples, and it goes without saying that various aspects are possible in detail.

<ナノグラニュラー軟磁性薄膜の弱磁場製膜>
試料1
下記の条件でCo−Pd−Si−O系ナノグラニュラー軟磁性薄膜の弱磁場製膜を行った。
<Nano-granular soft magnetic thin film with weak magnetic field>
Sample 1
Under the following conditions, a Co—Pd—Si—O nanogranular soft magnetic thin film was formed into a weak magnetic field.

製法:RFマグネトロンスパッタ法
基板:コーニング7059石英ガラス
真空度:0.67Pa
磁場:100Oe(永久磁石により磁性膜面内方向に印加)
ターゲット:Co−Si合金上にPdチップを載せた複合ターゲット
電力:200W
酸素分圧:2sccm
得られたナノグラニュラー軟磁性膜の組成はCo56Pd13Si823であり、異方性磁
場Hkは300Oe、膜厚は2.5μmであった。
Manufacturing method: RF magnetron sputtering method Substrate: Corning 7059 quartz glass Vacuum degree: 0.67 Pa
Magnetic field: 100 Oe (applied in the in-plane direction of the magnetic film by a permanent magnet)
Target: Composite target with Pd chip on Co-Si alloy Power: 200W
Oxygen partial pressure: 2 sccm
The composition of the obtained nanogranular soft magnetic film was Co 56 Pd 13 Si 8 O 23 , the anisotropic magnetic field Hk was 300 Oe, and the film thickness was 2.5 μm.

試料2
上記試料1の作製において、Co−Si上のターゲット上のPdチップ数と酸素分圧を変えた以外は同様にして、Co−Pd−Si−O系ナノグラニュラー軟磁性薄膜の弱磁場製膜を行った。
Sample 2
In the production of Sample 1, a Co-Pd-Si-O nanogranular soft magnetic thin film was formed in a weak magnetic field in the same manner except that the number of Pd chips on the target on Co-Si and the oxygen partial pressure were changed. It was.

得られたナノグラニュラー軟磁性膜の組成はCo55Pd6Si831であり、異方性磁場Hkは50Oe、膜厚は2.1μmであった。 The composition of the obtained nanogranular soft magnetic film was Co 55 Pd 6 Si 8 O 31 , the anisotropic magnetic field Hk was 50 Oe, and the film thickness was 2.1 μm.

[実施例1]
上記の弱磁場中で製膜した試料1のナノグラニュラー軟磁性膜に対して下記の条件で加熱処理を施し、実施例1とした。
[Example 1]
The nano-granular soft magnetic film of Sample 1 formed in the weak magnetic field was subjected to a heat treatment under the following conditions, and Example 1 was obtained.

磁場強度:1Tから10T(電磁石により軟磁性膜の面内方向に磁場を印加)
真空度:0.4Pa
加熱速度:2℃/min
熱処理温度:200℃
保持時間:1時間
冷却速度:2℃/min
実施例1のナノグラニュラー軟磁性膜の電気比抵抗は1.5×103μΩm、飽和磁束
密度Bsは9.5kG、保磁力Hcは9Oeであった。異方性磁場Hkの磁場依存性を図1(a)に示す。また、磁場が10Tの場合のナノグラニュラー軟磁性膜の磁化曲線を図2(a)に示す。
Magnetic field strength: 1T to 10T (applying a magnetic field in the in-plane direction of the soft magnetic film with an electromagnet)
Degree of vacuum: 0.4 Pa
Heating rate: 2 ° C / min
Heat treatment temperature: 200 ° C
Holding time: 1 hour Cooling rate: 2 ° C / min
The electrical resistivity of the nanogranular soft magnetic film of Example 1 was 1.5 × 10 3 μΩm, the saturation magnetic flux density Bs was 9.5 kG, and the coercive force Hc was 9 Oe. The magnetic field dependence of the anisotropic magnetic field Hk is shown in FIG. Further, FIG. 2A shows the magnetization curve of the nanogranular soft magnetic film when the magnetic field is 10T.

[実施例2]
実施例1において、試料1の代わりに試料2を用いた以外は同様にして加熱処理を施し
、実施例2とした。
[Example 2]
In Example 1, heat treatment was performed in the same manner except that Sample 2 was used instead of Sample 1, and Example 2 was obtained.

実施例2のナノグラニュラー軟磁性膜の電気比抵抗は9.6×104μΩm、飽和磁束
密度Bsは7kG、保磁力Hcは3.5Oeであった。異方性磁場Hkの磁場依存性を図1(b)に示す。また、磁場が10Tの場合のナノグラニュラー軟磁性膜の磁化曲線を図2(b)に示す。
The electrical resistivity of the nanogranular soft magnetic film of Example 2 was 9.6 × 10 4 μΩm, the saturation magnetic flux density Bs was 7 kG, and the coercive force Hc was 3.5 Oe. The magnetic field dependence of the anisotropic magnetic field Hk is shown in FIG. Further, FIG. 2B shows the magnetization curve of the nanogranular soft magnetic film when the magnetic field is 10T.

[比較例1]
実施例1において、磁場を印加しないこと以外は同様にして加熱処理を施し、比較例1とした。
[Comparative Example 1]
In Example 1, heat treatment was performed in the same manner except that no magnetic field was applied, and Comparative Example 1 was obtained.

比較例1のナノグラニュラー軟磁性膜の電気比抵抗は1.5×103μΩm、飽和磁束
密度Bsは9.5kG、保磁力Hcは9Oeであった。異方性磁場Hkは300Oeであった。比較例1のナノグラニュラー軟磁性膜の磁化曲線を図3(a)に示す。
The electrical resistivity of the nanogranular soft magnetic film of Comparative Example 1 was 1.5 × 10 3 μΩm, the saturation magnetic flux density Bs was 9.5 kG, and the coercive force Hc was 9 Oe. The anisotropic magnetic field Hk was 300 Oe. The magnetization curve of the nanogranular soft magnetic film of Comparative Example 1 is shown in FIG.

[比較例2]
実施例2において、磁場を印加しないこと以外は同様にして加熱処理を施し、比較例2とした。
[Comparative Example 2]
In Example 2, heat treatment was performed in the same manner except that no magnetic field was applied, and Comparative Example 2 was obtained.

比較例2のナノグラニュラー軟磁性膜の電気比抵抗は9.6×104μΩm、飽和磁束
密度Bsは7kG、保磁力Hcは3.5Oeであった。異方性磁場Hkは50Oeであった。比較例2のナノグラニュラー軟磁性膜の磁化曲線を図3(b)に示す。
The electrical resistivity of the nanogranular soft magnetic film of Comparative Example 2 was 9.6 × 10 4 μΩm, the saturation magnetic flux density Bs was 7 kG, and the coercive force Hc was 3.5 Oe. The anisotropic magnetic field Hk was 50 Oe. The magnetization curve of the nanogranular soft magnetic film of Comparative Example 2 is shown in FIG.

図1より、また図2と図3との比較により、強磁場印加による異方性磁場Hkの増大が明瞭に観察される。このように弱磁場中製膜の状態で200Oe以上(300Oe程度)の大きな異方性磁場Hkを示すナノグラニュラー軟磁性膜および弱磁場中製膜の状態で100Oe以下(50Oe程度)の異方性磁場Hkを示すナノグラニュラー軟磁性膜のどちらにおいても強磁場印加による異方性磁場Hkの増大が認められた。特に弱磁場中製膜の状態で100Oe以下(50Oe)の異方性磁場Hkを示す試料では初期値(弱磁場中製膜後の値)と比較して異方性磁場Hkの大きさが3倍にも達し、増大量でも100Oe以上であった。   From FIG. 1 and a comparison between FIG. 2 and FIG. 3, an increase in the anisotropic magnetic field Hk due to the application of a strong magnetic field is clearly observed. As described above, the nano-granular soft magnetic film showing a large anisotropic magnetic field Hk of 200 Oe or more (about 300 Oe) in the state of film formation in a weak magnetic field and the anisotropic magnetic field of 100 Oe or less (about 50 Oe) in the state of film formation in a weak magnetic field. In any of the nanogranular soft magnetic films showing Hk, an increase in the anisotropic magnetic field Hk was observed due to the application of a strong magnetic field. In particular, in a sample showing an anisotropic magnetic field Hk of 100 Oe or less (50 Oe) in the state of film formation in a weak magnetic field, the magnitude of the anisotropic magnetic field Hk is 3 as compared with the initial value (value after film formation in the weak magnetic field). Doubled and the increase amount was over 100 Oe.

従って、この出願の発明の手法を利用することで大きな電気比抵抗を示すナノグラニュラー軟磁性膜の中でも特に電気比抵抗の大きなものにおいて異方性磁場Hkの増大が達成できることがわかる。大きな電気比抵抗、大きな異方性磁場Hkのどちらも共鳴周波数を高くする効果があるために、この出願の発明の手法は数10GHzの超高周波領域まで適用可能な軟磁性材料の開発手法として利用可能である。   Therefore, it can be seen that by using the method of the invention of this application, an increase in the anisotropic magnetic field Hk can be achieved in a nanogranular soft magnetic film exhibiting a large electrical resistivity, particularly in a film having a large electrical resistivity. Since both the large electrical resistivity and the large anisotropic magnetic field Hk have the effect of increasing the resonance frequency, the method of the invention of this application is used as a method for developing a soft magnetic material that can be applied up to several tens of GHz. Is possible.

(a)は実施例1の異方性磁場Hkの磁場強度依存性を示す図、(b)は実施例2の異方性磁場Hkの磁場強度依存性を示す図である。(A) is a figure which shows the magnetic field strength dependence of the anisotropic magnetic field Hk of Example 1, (b) is a figure which shows the magnetic field strength dependence of the anisotropic magnetic field Hk of Example 2. FIG. (a)は実施例1の磁化曲線を示す図、(b)は実施例2の磁化曲線を示す図である。(A) is a figure which shows the magnetization curve of Example 1, (b) is a figure which shows the magnetization curve of Example 2. FIG. (a)は比較例1の磁化曲線を示す図、(b)は比較例2の磁化曲線を示す図である。(A) is a figure which shows the magnetization curve of the comparative example 1, (b) is a figure which shows the magnetization curve of the comparative example 2.

Claims (4)

FeまたはCoの少なくとも1種を主構成成分とする(Co,Fe)−(Ni,Pd,Pt)−Si−O系のナノグラニュラー軟磁性膜の製造方法であって、平均粒径が10nm以下の強磁性粒子が、酸化物のセラミックスからなる母相中に埋め込まれた形態をなし、製膜後、真空中にて、1T以上の強磁場を面内方向に印加した状態で、熱処理を施すことにより異方性磁場を1.2倍から4倍に増幅させることを特徴とするナノグラニュラー軟磁性膜の製造方法 A method for producing a (Co, Fe)-(Ni, Pd, Pt) -Si-O-based nanogranular soft magnetic film having at least one of Fe and Co as a main component, wherein the average particle size is 10 nm or less The ferromagnetic particles are embedded in a matrix of oxide ceramics, and after film formation , heat treatment is performed in a vacuum with a strong magnetic field of 1 T or more applied in the in-plane direction. Method for amplifying an anisotropic magnetic field from 1.2 times to 4 times by the method 熱処理を、20℃/min以下の加熱速度で100℃ から500℃ の間の温度まで昇温させた後、その温度で0.1時間から5時間保持し、その後20℃/min以下の冷却速度で冷却することにより行うことを特徴とする請求項1記載のナノグラニュラー軟磁性膜の製造方法。   The temperature of the heat treatment is raised to a temperature between 100 ° C. and 500 ° C. at a heating rate of 20 ° C./min or less, then held at that temperature for 0.1 to 5 hours, and then a cooling rate of 20 ° C./min or less. The method for producing a nanogranular soft magnetic film according to claim 1, wherein the method is performed by cooling at a temperature. 電磁石または超伝導磁石による磁場の印加を1Tから10Tの範囲で行うことを特徴とする請求項1または2に記載のナノグラニュラー軟磁性膜の製造方法。   3. The method for producing a nanogranular soft magnetic film according to claim 1, wherein the magnetic field is applied by an electromagnet or a superconducting magnet in the range of 1T to 10T. 強磁性粒子中にNi族元素が5原子% から30原子%添加されていることを特徴とす
る請求項1から3のいずれかに記載のナノグラニュラー軟磁性膜の製造方法。
The method for producing a nanogranular soft magnetic film according to any one of claims 1 to 3, wherein a Ni group element is added to the ferromagnetic particles in an amount of 5 atomic percent to 30 atomic percent.
JP2004271178A 2004-09-17 2004-09-17 Manufacturing method of nano granular soft magnetic film Expired - Fee Related JP4991981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004271178A JP4991981B2 (en) 2004-09-17 2004-09-17 Manufacturing method of nano granular soft magnetic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004271178A JP4991981B2 (en) 2004-09-17 2004-09-17 Manufacturing method of nano granular soft magnetic film

Publications (2)

Publication Number Publication Date
JP2006086412A JP2006086412A (en) 2006-03-30
JP4991981B2 true JP4991981B2 (en) 2012-08-08

Family

ID=36164650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004271178A Expired - Fee Related JP4991981B2 (en) 2004-09-17 2004-09-17 Manufacturing method of nano granular soft magnetic film

Country Status (1)

Country Link
JP (1) JP4991981B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4102411B2 (en) * 2006-04-13 2008-06-18 株式会社東芝 Mobile communication terminal
DE602008001256D1 (en) 2007-01-15 2010-07-01 Kanzaki Kokyukoki Mfg Co Ltd mowing machine
JP6618298B2 (en) * 2015-08-21 2019-12-18 公益財団法人電磁材料研究所 Ultra-high frequency ferromagnetic thin film and manufacturing method thereof
JP6941959B2 (en) * 2017-03-31 2021-09-29 関東化学株式会社 Etching liquid composition and etching method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665662A (en) * 1992-08-25 1994-03-08 Alps Electric Co Ltd Soft magnetic alloy
JPH07268610A (en) * 1994-03-28 1995-10-17 Alps Electric Co Ltd Soft magnetic alloy thin film
JP3956061B2 (en) * 1995-09-08 2007-08-08 財団法人電気磁気材料研究所 Uniaxial magnetic anisotropic film
JP2002158486A (en) * 2000-11-17 2002-05-31 Res Inst Electric Magnetic Alloys Electromagnetic wave absorbing film

Also Published As

Publication number Publication date
JP2006086412A (en) 2006-03-30

Similar Documents

Publication Publication Date Title
JP3677137B2 (en) Magnetic device
JP2011187624A (en) Rare-earth system permanent magnet and method of manufacturing the same
JP6210401B2 (en) High electrical resistance ferromagnetic thin film
JP4991981B2 (en) Manufacturing method of nano granular soft magnetic film
Liu et al. Crystal structure and magnetic properties of Fe x Pd 1− x thin films annealed at 550° C
Lee et al. Fabrication of thin film inductors using FeTaN soft magnetic films
Wang et al. Preparation and characterization of Al doped longitudinal barium ferrite thin film media
CN113192720B (en) Nanoparticle composite magnetic core film and preparation method thereof
Sato et al. Enhanced saturation magnetization in perpendicular L1–MnAl films upon low substitution of Mn by 3d transition metals
Lakshmanan et al. Robust perpendicular magnetic anisotropy in MgO/Co2FeAl/MgO stacks induced by MgO over layer and annealing temperature
Hasegawa et al. Magnetization process of hcp-CoIr nanoparticles with negative uniaxial magnetocrystalline anisotropy
Kumar et al. Evidence of coexistence of ferromagnetic and antiferromagnetic phases in nearly equiatomic FeRh
JP3956061B2 (en) Uniaxial magnetic anisotropic film
JP2696989B2 (en) Multilayer magnetic film
JPH0786035A (en) Uniaxial magnetic anisotropy thin film
JP4519118B2 (en) Alloys for rare earth-iron-boron composite magnets used in bonded magnets
Li et al. Quasi magnetic isotropy and microwave performance of FeCoB multilayer laminated by uniaxial anisotropic layers
Saito Magnetic properties of Co–Al–Ni melt-spun ribbon
Kaewrawang et al. Self-assembled strontium ferrite dot array on Au underlayer
JP2003100515A (en) Soft magnetic thin film for magnetic core with high saturation magnetization
Chen et al. Effect of Ag Segregation on Reversal Behavior of (FePt) $ _ {77} $ Ag $ _ {23} $ Alloy Thin Films
Kim et al. Magnetic properties of high coercivity Nd 23 Dy 10 Fe 64 TM 2 B 1 sintered magnets by a convergent heat treatment
Shin et al. Enhancement of magnetic anisotropy of nanocrystalline FeTaN films by Ti underlayers and magnetic field annealing
JP4630882B2 (en) Uniaxial magnetic anisotropic film
Liu et al. Effect of Pt doping Ni on the structural and magnetic properties of hexagonal MnNiGa alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100415

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100615

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100825

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees