JP4983038B2 - TiN deposition method - Google Patents

TiN deposition method Download PDF

Info

Publication number
JP4983038B2
JP4983038B2 JP2006039079A JP2006039079A JP4983038B2 JP 4983038 B2 JP4983038 B2 JP 4983038B2 JP 2006039079 A JP2006039079 A JP 2006039079A JP 2006039079 A JP2006039079 A JP 2006039079A JP 4983038 B2 JP4983038 B2 JP 4983038B2
Authority
JP
Japan
Prior art keywords
ticl
film formation
mol
tin
tin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006039079A
Other languages
Japanese (ja)
Other versions
JP2007217745A (en
Inventor
稔 高島
多津彦 平谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006039079A priority Critical patent/JP4983038B2/en
Publication of JP2007217745A publication Critical patent/JP2007217745A/en
Application granted granted Critical
Publication of JP4983038B2 publication Critical patent/JP4983038B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

本発明は、化学的気相成長法いわゆるCVD法により、金属や半導体の基板上にTiNを成膜する方法に関するものである。   The present invention relates to a method for forming a TiN film on a metal or semiconductor substrate by a chemical vapor deposition method or a so-called CVD method.

TiN膜は、非常に硬くまた金色の光沢を有している。そのため、耐磨耗性の向上や意匠性の向上を目的として、化学的気相成長法(CVD法)や物理的気相成長法(PVD法)を用いたTiN成膜が工業的に行われている(たとえば、非特許文献1参照)。
「CVDハンドブック」(1991年)
The TiN film is very hard and has a golden luster. Therefore, TiN film formation using chemical vapor deposition (CVD) or physical vapor deposition (PVD) has been industrially performed for the purpose of improving wear resistance and design. (For example, refer nonpatent literature 1).
“CVD Handbook” (1991)

上掲した非特許文献1に示されるように、従来、CVD法によるTiN成膜においては、その原料ガスとして、TiCl4、H2、N2の混合ガスが使用されてきた。その他、CH4やArがこの混合ガスに添加される場合もある。
CVD法によるTiN成膜においては、成膜速度が小さいために、成膜時間が長く、生産性に劣る。そのため、成膜速度の向上が望まれてきた。
As shown in Non-Patent Document 1 listed above, conventionally, in TiN film formation by CVD, a mixed gas of TiCl 4 , H 2 and N 2 has been used as a raw material gas. In addition, CH 4 and Ar may be added to this mixed gas.
In TiN film formation by the CVD method, since the film formation speed is low, the film formation time is long and the productivity is poor. Therefore, it has been desired to improve the deposition rate.

従来、成膜速度を向上させる手法として、成膜温度の上昇およびTiCl4、H2、N2のガス組成の最適化という二つの方法が行われてきた。
成膜温度アップは、TiN成膜される基板の耐熱温度や強度の面から、上限が存在する。また、TiCl4、H2、N2ガス組成の最適化は、種々試みられてきたが 、得られた成膜速度は十分とはいい難く、更なる成膜速度の向上が望まれている。
Conventionally, as a method for improving the film formation rate, two methods of increasing the film formation temperature and optimizing the gas composition of TiCl 4 , H 2 , and N 2 have been performed.
There is an upper limit to the film formation temperature increase in terms of heat resistance temperature and strength of the substrate on which the TiN film is formed. Various attempts have been made to optimize the TiCl 4 , H 2 , and N 2 gas compositions. However, the obtained film formation rate is not sufficient, and further improvement of the film formation rate is desired.

本発明は、上記の現状に鑑み開発されたもので、CVD法によってTiNを成膜するに際し、成膜速度を効果的に高めて生産性を向上させたTiNの有利な成膜方法を提案することを目的とする。   The present invention has been developed in view of the above-mentioned present situation, and proposes an advantageous TiN film forming method that effectively increases the film forming speed and improves the productivity when forming a TiN film by the CVD method. For the purpose.

さて、発明者らは、CVD法によるTiNの成膜に際し、成膜速度を向上させるべく、成膜機構の解明を行った。その結果、800℃以上の温度では、TiNの成膜は、以下の2段階の反応で進行することが判明した。
TiCl4+1/2N2+H2(原料)
→TiCl3+HCl+1/2N2+3/2H2(気相中)
→TiN+4HCl(基板上)
The inventors have now elucidated the film formation mechanism in order to improve the film formation rate when forming a TiN film by the CVD method. As a result, it was found that at a temperature of 800 ° C. or higher, TiN film formation proceeds in the following two stages.
TiCl 4 + 1 / 2N 2 + H 2 (raw material)
→ TiCl 3 + HCl + 1 / 2N 2 + 3 / 2H 2 (in gas phase)
→ TiN + 4HCl (on substrate)

また、上記反応の際に発生するHClガスが、基板表面に吸着し、TiNの成膜を阻害していることが明らかとなった。   It has also been clarified that HCl gas generated during the above reaction is adsorbed on the substrate surface and hinders TiN film formation.

そこで、800℃以上でのTiNの成膜において、原料として、TiCl4より塩素原子がひとつ少ないTiCl3を使用し、反応により生成するHClガス量を低減することにより、TiNの成膜速度が向上するのではないかと考え、各種実験を行った。
その結果、原料としてTiCl4の代わりにTiCl3を使用し、かつその量をH2、N2との関係で適切な範囲に調整すると共に、成膜温度を制御することにより、TiNの成膜速度が大幅に向上することを見出した。
本発明は上記の知見に立脚するものである。
Therefore, in TiN film formation at 800 ° C or higher, TiCl 3 with one chlorine atom less than TiCl 4 is used as a raw material, and the amount of HCl gas generated by the reaction is reduced, thereby improving the TiN film formation speed. Various experiments were conducted, thinking that they might do it.
As a result, TiCl 3 was used instead of TiCl 4 as a raw material, and the amount thereof was adjusted to an appropriate range in relation to H 2 and N 2, and the film formation temperature was controlled, thereby forming TiN film formation. We found that the speed was greatly improved.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
(1)化学的気相成長法(CVD法)により基板上にTiNを成膜するに際し、原料ガスとして、H2:10〜80mol%、N2:10〜80mol%、TiCl3:0.2〜60mol%およびTiCl4:5mol%以下の組成になる混合ガスを用い、1000℃以上 1300℃以下の温度で成膜することを特徴とするTiNの成膜方法。
That is, the gist configuration of the present invention is as follows.
(1) When TiN is formed on a substrate by chemical vapor deposition (CVD), the source gases are H 2 : 10 to 80 mol%, N 2 : 10 to 80 mol%, TiCl 3 : 0.2 to 60 mol % And TiCl 4 : A TiN film forming method characterized in that film formation is performed at a temperature of 1000 ° C. or higher and 1300 ° C. or lower using a mixed gas having a composition of 5 mol% or less.

(2)前記混合ガスとして、さらにArを50mol%以下で含有するガスを用いることを特徴とする上記(1)記載のTiNの成膜方法。 (2) The TiN film forming method as described in (1) above, wherein a gas containing 50 mol% or less of Ar is further used as the mixed gas.

本発明によれば、CVD法によりTiNを成膜するに際し、従来に比べて、格段にTiNの成膜速度を向上させることができる。   According to the present invention, when a TiN film is formed by a CVD method, the TiN film formation rate can be remarkably improved as compared with the conventional case.

以下、本発明を具体的に説明する。
本発明では、原料としてH2、N2、TiCl3を用いる。これらの原料は全てガスとしてCVD反応炉内に導入される。
なお、TiCl3は、常温で固体であり、約800℃で昇華して気体となる。そのため、TiCl3は、800℃程度に加熱してガスとしたのち、CVD反応炉内に導入する。また、H2やN2、ArなどをキャリアガスとしてTiCl3を炉内に導入してもよい。
Hereinafter, the present invention will be specifically described.
In the present invention, use of H 2, N 2, TiCl 3 as a raw material. All these raw materials are introduced into the CVD reactor as gas.
TiCl 3 is solid at room temperature and sublimates at about 800 ° C. to become a gas. Therefore, TiCl 3 is heated to about 800 ° C. to form a gas and then introduced into the CVD reactor. Further, TiCl 3 may be introduced into the furnace using H 2 , N 2 , Ar, or the like as a carrier gas.

ここに、各原料の好適組成範囲は次のとおりである。
2:10〜80mol%
TiNは、2TiCl3+3H2+N2→2TiN+6HClの反応により成膜される。従って、H2はTiN成膜のために必要な成分であるが、含有量が10mol%に満たないと反応に必要なH2が不足し成膜速度向上の効果が小さくなり、一方80mol%を超えると基板表面へのH2の吸着量が多くなり反応に必要なTiCl3やN2の吸着量が小さくなる結果、成膜速度向上の効果が小さくなるので、H2量は10〜80mol%の範囲に限定した。
Here, the preferable composition range of each raw material is as follows.
H 2: 10~80mol%
TiN is formed by a reaction of 2TiCl 3 + 3H 2 + N 2 → 2TiN + 6HCl. Therefore, H 2 is a component necessary for TiN film formation. However, if the content is less than 10 mol%, H 2 necessary for the reaction is insufficient and the effect of improving the film formation speed is reduced, while 80 mol% is reduced. If it exceeds, the adsorption amount of H 2 on the substrate surface will increase and the adsorption amount of TiCl 3 and N 2 required for the reaction will decrease, and the effect of improving the deposition rate will be reduced, so the H 2 amount will be 10-80 mol% It was limited to the range.

2:10〜80mol%
2は、目的とするTiN膜を形成するための原料として必須の成分であるが、含有量が 10mol%に満たないと反応に必要なN2が不足し成膜速度向上の効果が小さくなり、一方80mol%を超えると基板表面へのN2の吸着量が多くなり、反応に必要なTiCl3やH2の吸着量が小さくなる結果、成膜速度向上の効果が小さくなるので、N2量は10〜80mol%の範囲に限定した。
N 2: 10~80mol%
N 2 is an essential component as a raw material for forming the target TiN film. However, if the content is less than 10 mol%, N 2 necessary for the reaction is insufficient and the effect of improving the film formation rate is reduced. , whereas when it exceeds 80 mol% becomes large adsorption of N 2 to the substrate surface, as a result of adsorption of TiCl 3 or H 2 required for the reaction is reduced, the effect of deposition rate increase is small, N 2 The amount was limited to the range of 10 to 80 mol%.

TiCl3:0.2〜60mol%
TiCl3は、N2と共に目的とするTiN膜を形成するための原料として必須の成分である。そして本発明において、このTiCl3は特に重要な成分であり、従来のTiCl4に代えてTiCl3を使用することにより、反応により生成するHClガス量が低減することができ、その結果、TiNの成膜速度を大幅に向上させることができる。
しかしながら、含有量が0.2mol%に満たないと反応に必要なTiCl3が不足するために、 TiN成膜速度の向上効果が小さく、一方60mol%を超えると基板表面へのTiCl3の吸着量が過多となり、H2やN2の吸着量が減少するために、TiN成膜速度向上の効果が小さくなるので、TiCl3量は0.2〜60mol%の範囲に限定した。
TiCl 3 : 0.2-60mol%
TiCl 3 is an essential component as a raw material for forming a target TiN film together with N 2 . In the present invention, TiCl 3 is a particularly important component. By using TiCl 3 instead of the conventional TiCl 4 , the amount of HCl gas generated by the reaction can be reduced. The deposition rate can be greatly improved.
However, since the content is insufficient TiCl 3 necessary for the reaction with less than 0.2 mol%, less effect of improving the TiN deposition rate, whereas the amount of adsorption of TiCl 3 of exceeding 60 mol% to the substrate surface Since the amount of adsorption of H 2 and N 2 is reduced and the effect of improving the TiN film formation rate is reduced, the amount of TiCl 3 is limited to the range of 0.2 to 60 mol%.

TiCl4:5mol%以下(0mol%を含む)
TiCl3は、TiにHClやCl2を作用させて製造されることが多いが、この際、反応の温度、時間が適切でないとTiCl4が混入することがある。
TiCl4が多量に含有されると、それに伴い反応により生成するHClガス量が増大し、このHClガスが基板表面に吸着する結果、高い成膜速度が得られなくなるので、TiCl4は5mol%以下に抑制するものとした。
TiCl 4 : 5 mol% or less (including 0 mol%)
TiCl 3 is often produced by allowing HCl or Cl 2 to act on Ti. At this time, TiCl 4 may be mixed if the reaction temperature and time are not appropriate.
When a large amount of TiCl 4 is contained, the amount of HCl gas generated by the reaction increases, and this HCl gas is adsorbed on the substrate surface. As a result, a high film formation rate cannot be obtained, so TiCl 4 is 5 mol% or less. To suppress.

上記した成分の他、キャリアーガスとしてArを用いた場合には、反応炉内にArが混入するが、この量が50mol%以下であればTiNの成膜に支障はきたさない。   In addition to the above components, when Ar is used as a carrier gas, Ar is mixed in the reaction furnace. However, if this amount is 50 mol% or less, there is no problem in TiN film formation.

CVD反応炉内には、TiNを成膜させたい物質(基板)を配置し、加熱しておく。その結果、基板上には、TiNが高い成膜速度で成膜される。
かような基板としては、工具、金属板、半導体などいずれもが適用可能である。
In the CVD reactor, a substance (substrate) on which TiN is to be deposited is placed and heated. As a result, TiN is deposited on the substrate at a high deposition rate.
As such a substrate, any of tools, metal plates, semiconductors and the like can be applied.

また、成膜温度は、1000℃以上 1300℃以下とする必要がある。というのは、成膜温度が1000℃に満たないとTiCl3が十分にガス化せず、CVD反応に寄与しなくなるので、十分な成膜速度が得られず、一方1300℃を超えると、反応炉などに耐熱性の素材が必要となり、コストアップを招いて実用的ではなくなるからである。 In addition, the film formation temperature must be 1000 ° C or higher and 1300 ° C or lower. The reason is that if the film formation temperature is less than 1000 ° C, TiCl 3 will not be sufficiently gasified and will not contribute to the CVD reaction, so a sufficient film formation rate will not be obtained, while if it exceeds 1300 ° C, the reaction will This is because a heat-resistant material is required for the furnace and the like, resulting in an increase in cost and impracticality.

表1に示す種々の基板上に、CVD法によりTiNを成膜した。各実験例における原料ガスの成分組成、成膜温度および成膜速度は表1に示したとおりである。
ここで、成膜温度の上昇とともに成膜速度が増加するが、実用的には、基板の耐熱性等により成膜温度の上限が決まってくるため、同一の成膜温度で成膜速度を比較することが重要である。
TiN films were formed on various substrates shown in Table 1 by the CVD method. The component composition, film formation temperature, and film formation rate of the source gas in each experimental example are as shown in Table 1.
Here, the film formation rate increases as the film formation temperature rises. However, practically, since the upper limit of the film formation temperature is determined by the heat resistance of the substrate, the film formation speed is compared at the same film formation temperature. It is important to.

Figure 0004983038
Figure 0004983038

表1中、No.1〜3は、原料としてTiC14を用い、成膜温度を1000℃、800℃、1300℃と変更した例を示したものである。また、No.4〜6は、原料としてTiC13を用い、成膜温度を1000℃、800℃、1300℃と変更した例を示したものである。同一成膜温度である、No.1とNo.4、No.2とNo.5およびNo.3とNo.6を比較すると、TiC13を用いたNo.4〜6の方がTiC14を用いたNo.1〜3より、それぞれ格段に優れた成膜速度が得られている。
さらに、No.7〜20は、同一成膜温度(1000℃)における原料ガスの成分組成の影響を示したものであり、本発明の成分組成になるNo.7〜11、No.18およびNo.20において格段に優れた成膜速度が得られている。
In Table 1, Nos. 1 to 3 show examples in which TiC1 4 was used as a raw material and the film forming temperature was changed to 1000 ° C., 800 ° C., and 1300 ° C. Further, Nanba4~6 uses a TiC1 3 as a raw material, the film forming temperature 1000 ° C., 800 ° C., illustrates an example of changing the 1300 ° C.. Comparing No.1 and No.4, No.2 and No.5, and No.3 and No.6, which have the same film formation temperature, No.4 to 6 using TiC1 3 is more TiC1 4 From No. 1 to No. 3 used, the film forming speeds that are remarkably excellent are obtained.
Further, Nos. 7 to 20 show the influence of the component composition of the source gas at the same film forming temperature (1000 ° C.), and No. 7 to 11, No. 18 and No. which become the component composition of the present invention. The film deposition rate is much better at .20.

Claims (2)

化学的気相成長法(CVD法)により基板上にTiNを成膜するに際し、原料ガスとして、H2:10〜80mol%、N2:10〜80mol%、TiCl3:0.2〜60mol%およびTiCl4:5mol%以下の組成になる混合ガスを用い、1000℃以上 1300℃以下の温度で成膜することを特徴とするTiNの成膜方法。 When forming a TiN film on a substrate by chemical vapor deposition (CVD), H 2 : 10 to 80 mol%, N 2 : 10 to 80 mol%, TiCl 3 : 0.2 to 60 mol%, and TiCl are used as source gases. 4 : A TiN film forming method characterized in that a film is formed at a temperature of 1000 ° C. or higher and 1300 ° C. or lower using a mixed gas having a composition of 5 mol% or less. 前記混合ガスとして、さらにArを50mol%以下で含有するガスを用いることを特徴とする請求項1記載のTiNの成膜方法。   The TiN film forming method according to claim 1, wherein a gas containing Ar at 50 mol% or less is further used as the mixed gas.
JP2006039079A 2006-02-16 2006-02-16 TiN deposition method Active JP4983038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006039079A JP4983038B2 (en) 2006-02-16 2006-02-16 TiN deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006039079A JP4983038B2 (en) 2006-02-16 2006-02-16 TiN deposition method

Publications (2)

Publication Number Publication Date
JP2007217745A JP2007217745A (en) 2007-08-30
JP4983038B2 true JP4983038B2 (en) 2012-07-25

Family

ID=38495344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006039079A Active JP4983038B2 (en) 2006-02-16 2006-02-16 TiN deposition method

Country Status (1)

Country Link
JP (1) JP4983038B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1224091A (en) * 1983-02-25 1987-07-14 Liburdi Engineering Limited Chemical vapor deposition of metal compound coatings utilizing metal sub-halide
JPS61221364A (en) * 1985-03-26 1986-10-01 Nissin Electric Co Ltd Film forming apparatus
JP3449736B2 (en) * 1992-03-19 2003-09-22 ソニー株式会社 Metal plug formation method
JPH11319545A (en) * 1997-12-15 1999-11-24 Canon Inc Plasma treatment method and method treating substrate
JP3767429B2 (en) * 2001-07-09 2006-04-19 東京エレクトロン株式会社 Method for continuously forming titanium film and titanium nitride film and cluster tool apparatus
JP4816185B2 (en) * 2006-03-24 2011-11-16 Jfeスチール株式会社 Method for forming titanium compound

Also Published As

Publication number Publication date
JP2007217745A (en) 2007-08-30

Similar Documents

Publication Publication Date Title
TWI648421B (en) CVD Mo deposition using MoOC1<sub>4</sub>
KR102441169B1 (en) Diazadienyl compound, raw material for forming thin film, method for producing thin film, and diazadiene compound
CN1415115A (en) Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition
JP2011520251A5 (en)
JP2021077860A (en) Method of forming thin film using surface protection material
JP6517375B2 (en) High purity tungsten pentachloride and method for producing the same
TW201831722A (en) Low temperature molybdenum film deposition utilizing boron nucleation layers
KR102541122B1 (en) Novel compound, raw material for thin film formation, and method for producing thin film
JP6796950B2 (en) Raw material for thin film formation and manufacturing method of thin film
Matsuda et al. Synthesis of titanium carbonitride nano-powder by carbothermal reduction of TiO2
JP5826698B2 (en) Method for forming Ni film
JP4983038B2 (en) TiN deposition method
JPWO2005121398A1 (en) Diamond thin film coating method and diamond-coated cemented carbide members
JPH068008A (en) Cutting tool made of surface coating tungsten carbide group supper hard alloy excellent in chipping resistance property
WO2018088078A1 (en) Compound, thin-film-forming raw material, thin-film-forming raw material for atomic-layer deposition method, and process for producing thin film
JP4816185B2 (en) Method for forming titanium compound
JP2011225909A (en) Aluminum nitride film and member coated with the same
JP5409790B2 (en) Multilayer metal thin film manufacturing method and manufacturing apparatus thereof
JPWO2019039103A1 (en) Tungsten compound, raw material for forming thin film, and method for producing thin film
JP2022031988A (en) Manufacturing method of metal ruthenium thin film by atomic layer deposition method
WO2019078195A1 (en) Cyclopentadienyl nickel complex compound
WO2020203636A1 (en) Etching material for atomic layer etching
JP5670175B2 (en) Jig
JP6797068B2 (en) Method for manufacturing titanium carbide-containing thin film by atomic layer deposition method
JP2005262323A (en) Surface-coated cermet cutting tool with hard coating layer having excellent chipping resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20111128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120409

R150 Certificate of patent or registration of utility model

Ref document number: 4983038

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250