JP4974712B2 - Method for producing nanoparticle assembly and nanoparticle assembly - Google Patents

Method for producing nanoparticle assembly and nanoparticle assembly Download PDF

Info

Publication number
JP4974712B2
JP4974712B2 JP2007054876A JP2007054876A JP4974712B2 JP 4974712 B2 JP4974712 B2 JP 4974712B2 JP 2007054876 A JP2007054876 A JP 2007054876A JP 2007054876 A JP2007054876 A JP 2007054876A JP 4974712 B2 JP4974712 B2 JP 4974712B2
Authority
JP
Japan
Prior art keywords
substrate
hydrogen
nanoparticles
nanoparticle
hydrogen bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007054876A
Other languages
Japanese (ja)
Other versions
JP2008213096A (en
Inventor
和枝 栗原
聡 遠藤
達朗 新澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2007054876A priority Critical patent/JP4974712B2/en
Publication of JP2008213096A publication Critical patent/JP2008213096A/en
Application granted granted Critical
Publication of JP4974712B2 publication Critical patent/JP4974712B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、基材上にナノ粒子が規則的に集積化されたナノ粒子集積体の製造方法および新規なナノ粒子集積体に関するものである。   The present invention relates to a method for producing a nanoparticle assembly in which nanoparticles are regularly integrated on a substrate, and a novel nanoparticle assembly.

ナノ粒子等の微粒子の集積化技術は、3次元的に集積することによる光学材料(フォトニック結晶)の作製、基板上へ2次元的に集積することによる基板の屈折率や反射率の制御、表面改質などに利用されている。また、異なる粒子上へ集積することによる複合粒子の作製などにも利用されている。   Nanoparticles and other fine particle integration technologies include the production of optical materials (photonic crystals) by three-dimensional integration, control of the refractive index and reflectivity of the substrate by two-dimensional integration on the substrate, It is used for surface modification. It is also used for producing composite particles by accumulating on different particles.

微粒子の集積は主に、1)移流集積法、2)キャスト法、3)静電吸着、4)沈降を利用する方法などにより行われている。   Accumulation of fine particles is mainly performed by 1) advection accumulation method, 2) casting method, 3) electrostatic adsorption, 4) method using sedimentation, or the like.

移流集積法(特許文献1等)は、粒子数濃度と基板の移動速度で粒子の配列方向を制御する方法である。この方法では2次元配列を有する単粒子膜を基板上に作製でき、連続して単粒子膜を作製するため大面積の単粒子膜を作製することが可能となる。しかし、この方法で3次元的な集積を制御するのは難しく、また平滑な基板が必要となる。   The advection accumulation method (Patent Document 1 or the like) is a method of controlling the particle arrangement direction by the particle number concentration and the moving speed of the substrate. In this method, a single particle film having a two-dimensional arrangement can be formed on a substrate, and since a single particle film is continuously formed, a large-area single particle film can be manufactured. However, it is difficult to control three-dimensional integration by this method, and a smooth substrate is required.

一方、キャスト法では、基板上にたらす溶液の量と粒子濃度を制御することで、3次元的に均一な微粒子の集積を行うことが可能であるが、緻密で均一な単粒子膜を作製することは難しい。   On the other hand, in the casting method, it is possible to accumulate fine particles that are three-dimensionally uniform by controlling the amount of the solution applied on the substrate and the particle concentration, but a dense and uniform single particle film is produced. It ’s difficult.

静電吸着による集積化は、静電引力を利用して基板上に微粒子を吸着させる方法であるが、基板と粒子のそれぞれの表面に電荷が必要であるため、基板と粒子の適用範囲に制限が生じる。   Integration by electrostatic adsorption is a method in which fine particles are adsorbed on a substrate using electrostatic attraction. However, since electric charges are required on the surfaces of the substrate and particles, the application range of the substrate and particles is limited. Occurs.

また、粒子の重力による沈降を利用する方法では、粒子が沈降する十分なサイズと質量を持っている必要がある。また、この方法は3次元の結晶作製には有効であるが、緻密な単粒子膜を作ることには不向きである。
特開平8−229474号公報
In addition, the method using the sedimentation of particles due to gravity needs to have a sufficient size and mass for the particles to settle. This method is effective for producing a three-dimensional crystal, but is not suitable for producing a dense single particle film.
JP-A-8-229474

以上のような従来における微粒子の集積化技術には、優れた利点がある一方で、電荷を有する微粒子を必要としたり、所定形状の基材を必要としたり、大面積での微粒子集積が難しいといった制限がある。そのため、多様な微粒子集積材料の設計のためには、これらの制限によらない多様な集積法が求められている。   The conventional fine particle integration techniques as described above have excellent advantages, but require fine particles having a charge, require a substrate having a predetermined shape, and are difficult to collect fine particles over a large area. There is a limit. Therefore, in order to design various fine particle accumulation materials, various accumulation methods that do not depend on these limitations are required.

そこで本発明は、上記のとおりの背景から、多様なナノ粒子に適用することができ、様々な形状の基材上に大面積で簡便にナノ粒子を集積可能な方法を提供することを課題としている。   Therefore, the present invention has an object to provide a method that can be applied to various nanoparticles from the background as described above, and can easily collect nanoparticles on a substrate of various shapes in a large area. Yes.

また本発明は、基材上にナノ粒子が規則的に集積化された新規なナノ粒子集積体を提供することを課題としている。   Another object of the present invention is to provide a novel nanoparticle assembly in which nanoparticles are regularly integrated on a substrate.

本発明は、上記の課題を解決するものとして、以下のことを特徴としている。   The present invention is characterized by the following in order to solve the above problems.

<1>非水素結合性の溶媒中において、水素結合性の分子と、水素結合性の官能基を表面に有するナノ粒子とを、水素結合性の官能基を表面に有する基材表面に存在させて、これにより、水素結合性の分子が水素結合で組織化された分子マクロクラスターを基材表面に形成させると共に、この分子マクロクラスターにナノ粒子を吸着させる工程を含むことを特徴とするナノ粒子集積体の製造方法。   <1> In a non-hydrogen bonding solvent, hydrogen bonding molecules and nanoparticles having hydrogen bonding functional groups on the surface are present on the surface of the substrate having hydrogen bonding functional groups on the surface. In this way, the nanoparticle includes a step of forming a molecular macrocluster in which hydrogen-bonding molecules are organized by hydrogen bonds on the surface of the substrate and adsorbing the nanoparticle to the molecular macrocluster. A manufacturing method of an aggregate.

<2>水素結合性の分子を分散媒としたナノ粒子分散液を基材上に付着させ、この基材を非水素結合性の溶媒中に浸漬させることで、当該溶媒中において水素結合性の分子とナノ粒子とを基材表面に存在させて、これにより、水素結合性の分子が水素結合で組織化された分子マクロクラスターを基材表面に形成させると共に、この分子マクロクラスターにナノ粒子を吸着させることを特徴とする<1>のナノ粒子集積体の製造方法。   <2> A nanoparticle dispersion liquid containing hydrogen bonding molecules as a dispersion medium is attached on a base material, and the base material is immersed in a non-hydrogen bonding solvent so that the hydrogen bonding property in the solvent is reduced. Molecules and nanoparticles are present on the surface of the substrate, thereby forming molecular macroclusters in which hydrogen-bonding molecules are organized by hydrogen bonds on the surface of the substrate. The method for producing a nanoparticle assembly according to <1>, wherein the nanoparticle assembly is adsorbed.

<3>非水素結合性の溶媒中に基材を浸漬させ、これとは別途に、水素結合性の分子を分散媒としたナノ粒子分散液を当該溶媒中に投入することで、当該溶媒中において水素結合性の分子とナノ粒子とを基材表面に存在させて、これにより、水素結合性の分子が水素結合で組織化された分子マクロクラスターを基材表面に形成させると共に、この分子マクロクラスターにナノ粒子を吸着させることを特徴とする<1>のナノ粒子集積体の製造方法。   <3> The base material is immersed in a non-hydrogen bonding solvent, and separately from this, a nanoparticle dispersion liquid using hydrogen bonding molecules as a dispersion medium is put into the solvent, so that In this case, hydrogen bonding molecules and nanoparticles are present on the surface of the substrate, thereby forming molecular macroclusters in which the hydrogen bonding molecules are organized by hydrogen bonding on the substrate surface. <1> The method for producing a nanoparticle assembly according to <1>, wherein the nanoparticles are adsorbed on the cluster.

<4>水素結合性の官能基を表面に有する基材上に、水素結合性の官能基を表面に有するナノ粒子が単層ないし数層集積され、少なくとも基材上へ直接に配置された単粒子層が、規則性をもつ構造で配置されていることを特徴とするナノ粒子集積体。   <4> A single layer or several layers of nanoparticles having a hydrogen bondable functional group on the surface thereof are accumulated on a substrate having a hydrogen bondable functional group on the surface, and at least a single particle disposed directly on the substrate. A nanoparticle assembly, wherein the particle layer is arranged in a regular structure.

<5>規則性をもつ構造が、ナノ粒子が密である領域と疎である領域とが交互に繰り返される網目構造であることを特徴とする<4>のナノ粒子集積体。   <5> The nanoparticle assembly according to <4>, wherein the structure having regularity is a network structure in which a region where the nanoparticles are dense and a region where the nanoparticles are sparse are alternately repeated.

<6>規則性をもつ構造が、ナノ粒子が緻密かつ一様に配置された構造であることを特徴とする<4>のナノ粒子集積体。   <6> The nanoparticle assembly according to <4>, wherein the structure having regularity is a structure in which nanoparticles are densely and uniformly arranged.

上記のとおりの本発明によれば、分子マクロクラスターを利用した吸着による方法であるため、多様なナノ粒子の集積が可能である。また、基材の形状に制約がなく、様々な形状の基材上に大面積でナノ粒子を集積させることができる。さらに、集積のために必要とする器具が少なく簡便な手段でナノ粒子集積体を得ることができる。   According to the present invention as described above, since the method is based on adsorption using molecular macroclusters, various nanoparticles can be accumulated. Moreover, there is no restriction | limiting in the shape of a base material, A nanoparticle can be integrated | stacked by a large area on the base material of various shapes. Furthermore, a nanoparticle aggregate can be obtained by a simple means with few tools required for accumulation.

また本発明によれば、基材上にナノ粒子が規則的に集積化された新規なナノ粒子集積体が提供される。   The present invention also provides a novel nanoparticle assembly in which nanoparticles are regularly integrated on a substrate.

本発明は上記のとおりの特徴をもつものであるが、以下にその実施の形態について説明する。   The present invention has the features as described above, and an embodiment thereof will be described below.

本発明に係るナノ粒子集積体の製造方法において、非水素結合性の溶媒としては、非極性溶媒または低極性溶媒として知られているものを用いることができる。その具体例としては、ペンタン、ヘキサン、シクロヘキサン、ヘプタン、オクタン等の脂肪族炭化水素、ベンゼン、トルエン、o−キシレン、m−キシレン、p−キシレン、エチルベンゼン等の芳香族炭化水素などが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、これらよりも高い極性をもつ溶媒を単独でまたは上記の溶媒と組み合わせて用いてもよいが、本発明では非極性溶媒または低極性溶媒を用いることが好ましい。   In the method for producing a nanoparticle assembly according to the present invention, as the non-hydrogen bonding solvent, a solvent known as a nonpolar solvent or a low polarity solvent can be used. Specific examples thereof include aliphatic hydrocarbons such as pentane, hexane, cyclohexane, heptane, and octane, and aromatic hydrocarbons such as benzene, toluene, o-xylene, m-xylene, p-xylene, and ethylbenzene. These may be used alone or in combination of two or more. In addition, a solvent having a higher polarity than these may be used alone or in combination with the above solvent, but in the present invention, it is preferable to use a nonpolar solvent or a low polarity solvent.

水素結合性の分子としては、分子マクロクラスターを基材表面に形成し、そこにナノ粒子を吸着させ得るものであれば特に制限はないが、その具体例としては、低分子のアルコール、カルボン酸、アミド、アミンなどが挙げられる。なお、分子マクロクラスターは、水素結合性の分子が水素結合で組織化された厚さ数nmないし数十nmの分子膜のことである。   The hydrogen-bonding molecule is not particularly limited as long as it can form a molecular macrocluster on the surface of the substrate and adsorb nanoparticles on the substrate surface. Specific examples thereof include low-molecular alcohols and carboxylic acids. , Amide, amine and the like. The molecular macrocluster is a molecular film having a thickness of several nanometers to several tens of nanometers in which hydrogen bonding molecules are organized by hydrogen bonds.

水素結合性の官能基を表面に有するナノ粒子としては、それ自体が水素結合性の官能基を有しているものであっても、表面修飾により水素結合性の官能基を付与したものであってもよい。その具体例としては、Fe、Co、Ni、Cu、Zn、Ru、Rh、Pd、Ag、W、Pt、Au等の金属単体粒子またはこれらの合金粒子を水素結合性の官能基で表面修飾したものや、半導体粒子、シリカ粒子、セラミックス粒子、有機ポリマー粒子、あるいはこれらを水素結合性の官能基で表面修飾したものなどが挙げられる。   Nanoparticles having hydrogen-bonding functional groups on the surface are those that have been provided with hydrogen-bonding functional groups by surface modification, even if they themselves have hydrogen-bonding functional groups. May be. Specific examples thereof include surface modification of single metal particles such as Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, W, Pt, and Au, or alloy particles thereof with hydrogen-bonding functional groups. And semiconductor particles, silica particles, ceramic particles, organic polymer particles, or those obtained by surface-modifying these with hydrogen-bonding functional groups.

表面修飾により水素結合性の官能基を金属ナノ粒子の表面に導入する場合、一例として、水素結合性の官能基をもつチオール化合物、たとえば次式:
HS−R−X
(式中、Rは炭化水素鎖であり、鎖状または分岐鎖状の脂肪族炭化水素鎖や、脂環式環または芳香環を含む炭化水素鎖等であってよい。たとえば−(CH−:n=5〜14のもの等が挙げられる。)で示されるものを、公知の方法により粒子表面に導入することができる。水素結合性の官能基(X)としては、−OH、−COOH、−COSH、−CONH、−CONHR、−NH、−NHR(R=炭化水素基)など各種のものであってよい。
In the case of introducing a hydrogen bonding functional group to the surface of the metal nanoparticle by surface modification, as an example, a thiol compound having a hydrogen bonding functional group, for example, the following formula:
HS-R-X
(In the formula, R is a hydrocarbon chain, and may be a linear or branched aliphatic hydrocarbon chain, a hydrocarbon chain containing an alicyclic ring or an aromatic ring, and the like. For example, — (CH 2 ) n- : n = 5-14 may be mentioned.) and the like can be introduced into the particle surface by a known method. Examples of the hydrogen bonding functional group (X) include various groups such as —OH, —COOH, —COSH, —CONH 2 , —CONHR 0 , —NH 2 , —NHR 0 (R 0 = hydrocarbon group). It's okay.

また、水酸基をもつガラス基板等においては、シランカップリング剤を用い、たとえばカルボン酸やアミド基等を付加することも考慮される。   In addition, in a glass substrate having a hydroxyl group, it is considered to use a silane coupling agent and add, for example, a carboxylic acid or an amide group.

なお、本発明において「ナノ粒子」には、粒径1〜100nmのもの、たとえば投影面積を円に換算したときの直径を用いた平均粒径で1〜100nm(一次粒子でも二次粒子であってもよい)のものが含まれる。   In the present invention, “nanoparticles” are those having a particle diameter of 1 to 100 nm, for example, an average particle diameter of 1 to 100 nm using a diameter when the projected area is converted into a circle (primary particles are secondary particles). May be included).

水素結合性の官能基を表面に有する基材としては、その形状に特に制限はないが、比較的滑らかな平面をもつ基板状のものなどが使用できる。また、それ自体が水素結合性の官能基を有しているものであっても、表面修飾により水素結合性の官能基を付与したものであってもよい。その具体例としては、シラノール基を表面にもつガラス、酸化シリコン、酸化物セラミックス、またはこれらを水素結合性の官能基で表面修飾したもの、あるいは金属材、セラミックス材、樹脂材等を水素結合性の官能基で表面修飾したものなどが挙げられる。   The substrate having a hydrogen-bonding functional group on the surface is not particularly limited, but a substrate having a relatively smooth plane can be used. Moreover, even if it has a hydrogen-bonding functional group itself, it may be provided with a hydrogen-bonding functional group by surface modification. Specific examples include glass having silanol groups on the surface, silicon oxide, oxide ceramics, or those obtained by surface modification with hydrogen bonding functional groups, or metal materials, ceramic materials, resin materials, etc. And the like which have been surface-modified with the above functional group.

なお、基材表面の水素結合性官能基とナノ粒子表面の水素結合性官能基と水素結合性分子の水素結合性官能基は、互いに同一でも異なっていてもよい。   The hydrogen bonding functional group on the surface of the substrate, the hydrogen bonding functional group on the surface of the nanoparticle, and the hydrogen bonding functional group of the hydrogen bonding molecule may be the same or different from each other.

非水素結合性の溶媒中における水素結合性分子の濃度は、たとえば10mol%未満、特に2mol%以下とし、室温またはその近傍の温度において基材上に分子マクロクラスターを形成する。   The concentration of hydrogen bonding molecules in the non-hydrogen bonding solvent is, for example, less than 10 mol%, particularly 2 mol% or less, and molecular macroclusters are formed on the substrate at room temperature or in the vicinity thereof.

本発明に係る方法を実行するために、より具体的には、水素結合性の分子を分散媒としたナノ粒子分散液を基材上に滴下等により付着させて、この基材を非水素結合性の溶媒中に浸漬させる。非水素結合性の溶媒中には、あらかじめ水素結合性の分子が含有されていてもよく、この非水素結合性の溶媒中にあらかじめ含有される水素結合性の分子と、ナノ粒子分散液の分散媒である水素結合性の分子とは、互いに同一種類であっても異なる種類であってもよい。   In order to carry out the method according to the present invention, more specifically, a nanoparticle dispersion using hydrogen bonding molecules as a dispersion medium is deposited on the substrate by dropping or the like, and the substrate is non-hydrogen bonded. Soak in a solvent. The non-hydrogen bonding solvent may contain hydrogen bonding molecules in advance, and the hydrogen bonding molecules previously contained in the non-hydrogen bonding solvent and dispersion of the nanoparticle dispersion liquid. The hydrogen-bonding molecules as the medium may be the same type or different types.

すると、非水素結合性の溶媒中に低濃度の水素結合性の分子を加えた溶液中では、基材表面とナノ粒子表面に水素結合性の分子が自己組織的に集合した分子マクロクラスターの吸着層が生じる。分子マクロクラスターが形成された表面間には引力が働くことがコロイドプローブ原子間力顕微鏡の測定により分かっており、この引力を利用してナノ粒子を基材上に集積する。   Then, in a solution in which a low-concentration hydrogen-bonding molecule is added to a non-hydrogen-bonding solvent, adsorption of molecular macroclusters in which hydrogen-bonding molecules are assembled in a self-organized manner on the substrate surface and nanoparticle surface A layer is produced. It is known from the measurement of a colloid probe atomic force microscope that an attractive force acts between surfaces on which molecular macroclusters are formed, and nanoparticles are accumulated on a substrate using this attractive force.

あるいは、非水素結合性の溶媒中に基材を浸漬させ、これとは別途に水素結合性の分子を分散媒としたナノ粒子分散液をこの溶媒中に投入するようにしてもよい。非水素結合性の溶媒中には、あらかじめ水素結合性の分子が含有されていてもよく、この非水素結合性の溶媒中にあらかじめ含有される水素結合性の分子と、ナノ粒子分散液の分散媒である水素結合性の分子とは、互いに同一種類であっても異なる種類であってもよい。   Alternatively, the substrate may be immersed in a non-hydrogen bonding solvent, and a nanoparticle dispersion liquid using a hydrogen bonding molecule as a dispersion medium may be separately added to this solvent. The non-hydrogen bonding solvent may contain hydrogen bonding molecules in advance, and the hydrogen bonding molecules previously contained in the non-hydrogen bonding solvent and dispersion of the nanoparticle dispersion liquid. The hydrogen-bonding molecules as the medium may be the same type or different types.

この場合においても、水素結合性の分子による吸着層間の引力によりナノ粒子が基材上に吸着し、集積体を形成する。   Even in this case, the nanoparticles are adsorbed on the base material by the attractive force between the adsorption layers due to the hydrogen bonding molecules to form an aggregate.

このようにしてナノ集積体の作製を行った後、必要に応じて、ナノ粒子が表面に集積した基材から風乾、減圧乾燥等により液分を除去する。このようにして形成されたナノ粒子集積体は、図1−A、図1−B,図3−A〜図3−CのAFM画像にも示されるように、基材上に、ナノ粒子が単層ないし数層集積され、少なくとも基材上へ直接に配置された単粒子層が、規則性をもつ構造で配置されている。   After producing the nano-aggregate as described above, the liquid component is removed from the base material on which the nanoparticles are accumulated, if necessary, by air drying, drying under reduced pressure, or the like. As shown in FIGS. 1A, 1-B, and AFM images of FIGS. 3-A to 3-C, the nanoparticle aggregate formed in this way has nanoparticles on the substrate. A single particle layer, which is a single layer or several layers, and is arranged at least directly on the substrate, is arranged in a regular structure.

ここで、「単層ないし数層」とは、典型的には、単粒子層、あるいはその上の少なくとも一部に形成された第2層を有するものである。しかし場合によっては第3層あるいは第4層を含んだものであってもよい。   Here, “single layer or several layers” typically includes a single particle layer or a second layer formed on at least a part thereof. However, depending on the case, it may include the third layer or the fourth layer.

また、「規則性をもつ構造」とは、図1のような、ナノ粒子が密である領域と疎である領域とが交互に繰り返される網目構造、図3のようなナノ粒子が緻密かつ一様に配置された膜状構造を包含するものである。   Further, the “structure with regularity” means a network structure in which the regions where the nanoparticles are dense and the regions where the nanoparticles are sparse are alternately repeated as shown in FIG. 1, or the nanoparticles as shown in FIG. Including a film-like structure arranged in the same manner.

そこで以下に実施例を示し、さらに詳しく説明する。もちろん、以下の例示によって発明が限定されることはない。   Therefore, an example will be shown below and will be described in more detail. Of course, the invention is not limited by the following examples.

<実施例1>
(エタノールマクロクラスターを利用した金ナノ粒子の集積)
非水素結合性の溶媒としてシクロヘキサン、水素結合性の分子としてエタノール、ナノ粒子として水酸基で表面修飾した金ナノ粒子を使用し、ガラス基板上に金ナノ粒子集合体を作製した。
<Example 1>
(Accumulation of gold nanoparticles using ethanol macroclusters)
A gold nanoparticle aggregate was prepared on a glass substrate using cyclohexane as a non-hydrogen bonding solvent, ethanol as a hydrogen bonding molecule, and gold nanoparticles surface-modified with a hydroxyl group as a nanoparticle.

金ナノ粒子として平均粒径7nmのものを用い、その表面をHS(CH10CHOHで修飾し、エタノール中に濃度12.5mMで分散させた。 Gold nanoparticles having an average particle diameter of 7 nm were used, and the surface thereof was modified with HS (CH 2 ) 10 CH 2 OH and dispersed in ethanol at a concentration of 12.5 mM.

この金ナノ粒子/エタノール分散液をガラス基板上へ32μl滴下し、その基板を20mlのシクロヘキサン中に2時間静置することでナノ粒子集積体を作製した。   32 μl of this gold nanoparticle / ethanol dispersion was dropped onto a glass substrate, and the substrate was allowed to stand in 20 ml of cyclohexane for 2 hours to prepare a nanoparticle aggregate.

シクロヘキサン中のエタノール濃度を変えて複数種類の集積体を作製した。エタノール濃度は、あらかじめシクロヘキサンに所定量のエタノールを混合しておくことにより変化させた。エタノール濃度0.3mol%の条件と、0.5mol%の条件で作製した集積体をAFMにより観察した画像を図1−A,図1−Bに示す。   Plural kinds of aggregates were produced by changing the ethanol concentration in cyclohexane. The ethanol concentration was changed by mixing a predetermined amount of ethanol with cyclohexane in advance. FIGS. 1A and 1B show images obtained by observing an aggregate produced under conditions of ethanol concentration of 0.3 mol% and 0.5 mol% by AFM.

エタノール濃度0.3mol%の条件では、ガラス基板上にまず、非常に細かい網目構造をもつ第1層目の粒子層が形成され、その上に部分的に第2層目の粒子層が形成された(図1−A)。   Under the condition of an ethanol concentration of 0.3 mol%, a first particle layer having a very fine network structure is first formed on a glass substrate, and a second particle layer is partially formed thereon. (FIG. 1-A).

エタノール濃度0.5mol%の条件では、0.3mol%の場合よりも基板上に粗く吸着し、穴の大きい粗い単粒子層状の網目構造を形成した(図1−B)。また、この条件では第2層目の粒子層は形成されなかった。   Under the condition of an ethanol concentration of 0.5 mol%, it was more roughly adsorbed on the substrate than in the case of 0.3 mol%, and a coarse single particle layered network structure with large holes was formed (FIG. 1-B). Under this condition, the second particle layer was not formed.

作製したナノ集積体の厚みはいずれも6nmから14nm程度であり、ほぼ金ナノ粒子1〜2個分に相当する。なお、図示はしないが、エタノール濃度の上昇につれてマクロクラスターによる引力が減少し、1.0mol%の条件では網状のパターンが消失し、粒子が基板を一様に覆った上に第2層目の金ナノ粒子層がまばらに乗っている状態が観察された。   The thicknesses of the produced nano-aggregates are all about 6 nm to 14 nm, which corresponds to about 1 to 2 gold nanoparticles. Although not shown in the drawing, the attractive force due to the macroclusters decreases as the ethanol concentration increases, the net-like pattern disappears under the condition of 1.0 mol%, and the particles cover the substrate uniformly and the second layer. A state in which the gold nanoparticle layer is sparsely observed was observed.

また、このナノ集積体は金ナノ粒子/エタノール分散液の濃度変化にも対応して変化を示し、エタノール濃度0.3mol%の条件において分散液濃度を減少させたところ、網目状の構造は維持したまま、より粗く基板上についた状態となった。   This nano-aggregate also changed corresponding to the concentration change of the gold nanoparticle / ethanol dispersion, and when the concentration of the dispersion was decreased under the condition of ethanol concentration of 0.3 mol%, the network structure was maintained. As a result, it became rougher on the substrate.

このように、マクロクラスター間に作用する引力や金ナノ粒子分散液の濃度を制御することで、金ナノ粒子の2次元集積体の形状や構造を変化させることができる。集積体の考えられる生成原理を図2(a)に示す。基板上に金ナノ粒子/エタノール分散液を滴下し、この基板をシクロヘキサン中に浸漬すると、基板上には金ナノ粒子を含んだエタノールによる吸着層が形成される。表面に水素結合性の官能基をもつ金ナノ粒子はエタノールに親和性を持つため、この吸着層に吸着し取り込まれ、その他の金ナノ粒子/エタノール分散液が流れ出してしまった後も基板上に残り、集積体を形成する。
<参考例1>
エタノール濃度を3.0mol%とした以外は実施例1と同様の条件にて集積体の作製を行った。作製した集積体をAFMにより観察した画像を図1−Cに示す。
Thus, by controlling the attractive force acting between the macroclusters and the concentration of the gold nanoparticle dispersion, the shape and structure of the two-dimensional gold nanoparticle aggregate can be changed. A possible generation principle of the aggregate is shown in FIG. When a gold nanoparticle / ethanol dispersion liquid is dropped on a substrate and the substrate is immersed in cyclohexane, an adsorption layer made of ethanol containing gold nanoparticles is formed on the substrate. Since the gold nanoparticles with hydrogen-bonding functional groups on the surface have an affinity for ethanol, they are adsorbed and taken in by this adsorption layer, and other gold nanoparticles / ethanol dispersion liquid flows out on the substrate. The remainder is formed.
<Reference Example 1>
An aggregate was produced under the same conditions as in Example 1 except that the ethanol concentration was 3.0 mol%. An image obtained by observing the produced aggregate by AFM is shown in FIG.

同図に示されるように、ガラス基板上にぼやっとした集積体が観察されるだけで、規則的な構造は観察されなかった。   As shown in the figure, only a rough accumulation was observed on the glass substrate, and no regular structure was observed.

この条件での集積体の生成原理は図2(b)に示すように考えられる。エタノール濃度が高い条件では、吸着層中のエタノールがバルクと自由に交換するため基板上に安定な吸着層が形成されない。そのため、この条件では金ナノ粒子はファンデルワールス力またはチオールの水酸基による水素結合により基板上へ吸着していることとなり、ランダムに基板への吸着と脱離を行うことが可能となるため、規則的な構造を持った集積体は形成されず、粒子がかなり大きくランダムに集合した集積体となる。
<比較例1>
ガラス基板として表面を疎水処理したものを用いた以外は実施例1と同様の条件にて、エタノール濃度を0.3mol%として集積体の作製を行ったが、金ナノ粒子は基板上へまったく吸着しなかった。
The generation principle of the aggregate under these conditions is considered as shown in FIG. Under conditions where the ethanol concentration is high, ethanol in the adsorption layer is freely exchanged with the bulk, so that a stable adsorption layer is not formed on the substrate. Therefore, under these conditions, the gold nanoparticles are adsorbed on the substrate by van der Waals force or hydrogen bonding by the thiol hydroxyl group, and can be adsorbed and desorbed randomly on the substrate. An aggregate having a specific structure is not formed, and an aggregate in which particles are considerably large and randomly gathered is formed.
<Comparative Example 1>
An aggregate was prepared with an ethanol concentration of 0.3 mol% under the same conditions as in Example 1 except that a glass substrate having a hydrophobic surface was used, but the gold nanoparticles were completely adsorbed onto the substrate. I did not.

この場合では、疎水表面にはエタノール吸着層は形成されなかったものと考えられるが、このように、疎水処理したガラス基板上では金ナノ粒子が吸着せず、規則的な構造も形成されなかっことから、基板上に形成されるエタノール吸着層がナノ粒子集合体の形成に大きな役割を担っていることが理解される。
<実施例2>
(プロピオン酸マクロクラスターを利用した金ナノ粒子の集積)
非水素結合性の溶媒としてシクロヘキサン、水素結合性の分子としてプロピオン酸を使用し、実施例1と同様な方法により、金ナノ粒子をガラス基板上に集積した。
In this case, it is considered that the ethanol adsorption layer was not formed on the hydrophobic surface, but gold nanoparticles were not adsorbed on the hydrophobic treated glass substrate, and no regular structure was formed. From this, it is understood that the ethanol adsorption layer formed on the substrate plays a large role in the formation of the nanoparticle aggregate.
<Example 2>
(Integration of gold nanoparticles using propionic acid macroclusters)
By using cyclohexane as a non-hydrogen bonding solvent and propionic acid as a hydrogen bonding molecule, gold nanoparticles were accumulated on a glass substrate in the same manner as in Example 1.

表面に水酸基を修飾した金ナノ粒子はプロピオン酸に不溶であったため、基板上に金ナノ粒子/エタノール分散液を10μl滴下し、20mlのシクロヘキサン中にプロピオン酸を加えた混合溶液中にこの基板を2時間以上浸漬することで集積体を作製した。   Since the gold nanoparticles modified with hydroxyl groups on the surface were insoluble in propionic acid, 10 μl of the gold nanoparticle / ethanol dispersion was dropped onto the substrate, and this substrate was placed in a mixed solution of propionic acid in 20 ml of cyclohexane. The aggregate was produced by immersing for 2 hours or more.

プロピオン酸濃度0.1〜10.0mol%の濃度範囲で作製した集積体のAFM像を図3に示す。プロピオン酸濃度0.1molの場合では、一様に基板を覆った単粒子膜と、その上に形成した疎の部分(暗いところに対応)のある粒子層を観察した(図3−A)。   FIG. 3 shows an AFM image of the aggregate produced in the concentration range of propionic acid concentration of 0.1 to 10.0 mol%. In the case of a propionic acid concentration of 0.1 mol, a single particle film uniformly covering the substrate and a particle layer having a sparse portion (corresponding to a dark place) formed thereon were observed (FIG. 3-A).

プロピオン酸濃度を1.0mol%まで上げると、粒子層に疎の部分は見られず、一様に基板を被覆した粒子層が観察された(図3−B)。   When the propionic acid concentration was increased to 1.0 mol%, a sparse portion was not seen in the particle layer, and a particle layer uniformly covering the substrate was observed (FIG. 3-B).

さらに、プロピオン酸濃度を10.0mol%に上げると、密についていた粒子が、粗くなり数多くの穴を観察した(図3−C)。   Further, when the propionic acid concentration was increased to 10.0 mol%, the dense particles became coarse and many holes were observed (FIG. 3-C).

このように、プロピオン酸マクロクラスターを利用することにより、より密に集積した金ナノ粒子の集積体が得られた。これは、エタノールマクロクラスター間に作用する引力に比べ、プロピオン酸マクロクラスター同士に作用する相互作用のほうが強いため、プロピオン酸濃度を変えて集積化を行った際、各プロピオン酸濃度におけるプロピオン酸マクロクラスター間に作用する引力が主に、金ナノ粒子の集積体形成に影響を及ぼしたと考えられる。   As described above, by using the propionic acid macrocluster, an aggregate of gold nanoparticles more densely collected was obtained. This is because the interaction between propionic acid macroclusters is stronger than the attractive force acting between ethanol macroclusters. Therefore, when integration was carried out by changing the propionic acid concentration, the propionic acid macro at each propionic acid concentration It is considered that the attractive force acting between the clusters mainly influenced the formation of gold nanoparticle aggregates.

実施例1において得られたナノ粒子集積体をAFMにより観察した画像である。It is the image which observed the nanoparticle aggregate | assembly obtained in Example 1 by AFM. 実施例1において得られたナノ粒子集積体をAFMにより観察した画像である。It is the image which observed the nanoparticle aggregate | assembly obtained in Example 1 by AFM. 参考例1において得られたナノ粒子集積体をAFMにより観察した画像である。It is the image which observed the nanoparticle aggregate | assembly obtained in Reference Example 1 by AFM. ナノ粒子集積体の生成原理を説明する図である。It is a figure explaining the production | generation principle of a nanoparticle aggregate. 実施例2において得られたナノ粒子集積体をAFMにより観察した画像である。It is the image which observed the nanoparticle aggregate | assembly obtained in Example 2 by AFM. 実施例2において得られたナノ粒子集積体をAFMにより観察した画像である。It is the image which observed the nanoparticle aggregate | assembly obtained in Example 2 by AFM. 実施例2において得られたナノ粒子集積体をAFMにより観察した画像である。It is the image which observed the nanoparticle aggregate | assembly obtained in Example 2 by AFM.

Claims (6)

非水素結合性の溶媒中において、水素結合性の分子と、水素結合性の官能基を表面に有するナノ粒子とを、水素結合性の官能基を表面に有する基材表面に存在させて、これにより、水素結合性の分子が水素結合で組織化された分子マクロクラスターを基材表面に形成させると共に、この分子マクロクラスターにナノ粒子を吸着させる工程を含むことを特徴とするナノ粒子集積体の製造方法。   In a non-hydrogen bonding solvent, hydrogen bonding molecules and nanoparticles having hydrogen bonding functional groups on the surface thereof are present on the surface of the substrate having hydrogen bonding functional groups. To form a molecular macrocluster in which hydrogen-bonding molecules are organized by hydrogen bonds on the substrate surface, and to adsorb nanoparticles to the molecular macrocluster. Production method. 水素結合性の分子を分散媒としたナノ粒子分散液を基材上に付着させ、この基材を非水素結合性の溶媒中に浸漬させることで、当該溶媒中において水素結合性の分子とナノ粒子とを基材表面に存在させて、これにより、水素結合性の分子が水素結合で組織化された分子マクロクラスターを基材表面に形成させると共に、この分子マクロクラスターにナノ粒子を吸着させることを特徴とする請求項1記載のナノ粒子集積体の製造方法。   By attaching a nanoparticle dispersion liquid using hydrogen bonding molecules as a dispersion medium on a substrate and immersing the substrate in a non-hydrogen bonding solvent, the hydrogen bonding molecules and the nano particles are dissolved in the solvent. By allowing particles to exist on the surface of the substrate, a molecular macrocluster in which hydrogen-bonding molecules are organized by hydrogen bonds is formed on the surface of the substrate, and nanoparticles are adsorbed to the molecular macrocluster. The method for producing a nanoparticle assembly according to claim 1. 非水素結合性の溶媒中に基材を浸漬させ、これとは別途に、水素結合性の分子を分散媒としたナノ粒子分散液を当該溶媒中に投入することで、当該溶媒中において水素結合性の分子とナノ粒子とを基材表面に存在させて、これにより、水素結合性の分子が水素結合で組織化された分子マクロクラスターを基材表面に形成させると共に、この分子マクロクラスターにナノ粒子を吸着させることを特徴とする請求項1記載のナノ粒子集積体の製造方法。   The substrate is immersed in a non-hydrogen bonding solvent, and separately from this, a nanoparticle dispersion liquid containing hydrogen bonding molecules as a dispersion medium is introduced into the solvent, thereby hydrogen bonding in the solvent. Molecules and nanoparticles are present on the surface of the substrate, thereby forming molecular macroclusters in which hydrogen-bonding molecules are organized by hydrogen bonds on the surface of the substrate. 2. The method for producing a nanoparticle assembly according to claim 1, wherein particles are adsorbed. 請求項1〜3のいずれかの方法により製造され、水素結合性の官能基を表面に有する基材上に、水素結合性の官能基を表面に有するナノ粒子が単層ないし数層集積され、少なくとも基材上へ直接に配置された単粒子層が、規則性をもつ構造で配置されていることを特徴とするナノ粒子集積体。 A nanoparticle produced by the method according to any one of claims 1 to 3 and having a hydrogen-bonding functional group on the surface thereof is accumulated in a single layer or several layers on the surface. A nanoparticle assembly, wherein at least single particle layers arranged directly on a substrate are arranged in a regular structure. 規則性をもつ構造が、ナノ粒子が密である領域と疎である領域とが交互に繰り返される網目構造であることを特徴とする請求項4記載のナノ粒子集積体。   5. The nanoparticle aggregate according to claim 4, wherein the structure having regularity is a network structure in which a region where the nanoparticles are dense and a region where the nanoparticles are sparse are alternately repeated. 規則性をもつ構造が、ナノ粒子が緻密かつ一様に配置された構造であることを特徴とする請求項4記載のナノ粒子集積体。   The nanoparticle assembly according to claim 4, wherein the structure having regularity is a structure in which nanoparticles are densely and uniformly arranged.
JP2007054876A 2007-03-05 2007-03-05 Method for producing nanoparticle assembly and nanoparticle assembly Expired - Fee Related JP4974712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007054876A JP4974712B2 (en) 2007-03-05 2007-03-05 Method for producing nanoparticle assembly and nanoparticle assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007054876A JP4974712B2 (en) 2007-03-05 2007-03-05 Method for producing nanoparticle assembly and nanoparticle assembly

Publications (2)

Publication Number Publication Date
JP2008213096A JP2008213096A (en) 2008-09-18
JP4974712B2 true JP4974712B2 (en) 2012-07-11

Family

ID=39833754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007054876A Expired - Fee Related JP4974712B2 (en) 2007-03-05 2007-03-05 Method for producing nanoparticle assembly and nanoparticle assembly

Country Status (1)

Country Link
JP (1) JP4974712B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1510861A1 (en) * 2003-08-26 2005-03-02 Sony International (Europe) GmbH Method for patterning organic materials or combinations of organic and inorganic materials
JP4863645B2 (en) * 2005-05-09 2012-01-25 独立行政法人科学技術振興機構 Method for forming molecular macrocluster and method for producing polymer thin film

Also Published As

Publication number Publication date
JP2008213096A (en) 2008-09-18

Similar Documents

Publication Publication Date Title
Masuda et al. Low-dimensional arrangement of SiO2 particles
Lau et al. Enhanced ordering in gold nanoparticles self-assembly through excess free ligands
Chen et al. Evaporation-induced assembly of quantum dots into nanorings
Lin et al. Formation of long-range-ordered nanocrystal superlattices on silicon nitride substrates
Yin et al. Self-assembly of spherical colloids into helical chains with well-controlled handedness
Ghosh et al. Spontaneous pattern formation by dip coating of colloidal suspensions on homogeneous surfaces
Prasad et al. Gold nanoparticle superlattices
JP5565731B2 (en) Optical material and manufacturing method thereof
Yella et al. Synthesis, characterization, and hierarchical organization of tungsten oxide nanorods: spreading driven by Marangoni flow
Barcelo et al. Fabrication of deterministic nanostructure assemblies with sub-nanometer spacing using a nanoimprinting transfer technique
TW201139286A (en) Nanoparticle film and forming method and application thereof
CN104105541A (en) Method for preparing polystyrene-stabilized nanoparticles and nanostructured substrate surfaces comprising same as well as nanostructured substrate surfaces as such and uses thereof
US20050118338A1 (en) Control of the spatial distribution and sorting of micro-or nano-meter or molecular scale objects on patterned surfaces
Laurenti et al. How micropatterning and surface functionalization affect the wetting behavior of ZnO nanostructured surfaces
KR101910378B1 (en) Two dimensional hybrid nanopatternd structures through spontaneous self-assembly of plasmonic nanoparticles on a hydrogel colloidal crystal monolayer
Amabilino Supramolecular chemistry at surfaces
Pu et al. Tribology study of dual-layer ultrathin ionic liquid films with bonded phase: Influences of the self-assembled underlayer
KR101473853B1 (en) Graphene patterning method
JP4974712B2 (en) Method for producing nanoparticle assembly and nanoparticle assembly
RU2324643C1 (en) Method of preparing thin-film nanocomposite coating on solid-state body
Watanabe et al. Micro-and Nanopatterned Copper Structures Using Directed Self-Assembly on Templates Fabricated from Phase-Separated Mixed Langmuir− Blodgett Films
KR20040100239A (en) Method for Fabricating a Patterned Array Having Nanometer or Less Size
Huang et al. Fabrication of colloidal arrays by self-assembly of sub-100 nm silica particles
Alejo et al. QDs supported on langmuir-blodgett films of polymers and gemini surfactant
Delon et al. Impacts of particle surface heterogeneity on the deposition of colloids on flat surfaces

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120410

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees