JP4973902B2 - Method for treating gallium-containing wastewater and apparatus used in the method - Google Patents

Method for treating gallium-containing wastewater and apparatus used in the method Download PDF

Info

Publication number
JP4973902B2
JP4973902B2 JP2001185365A JP2001185365A JP4973902B2 JP 4973902 B2 JP4973902 B2 JP 4973902B2 JP 2001185365 A JP2001185365 A JP 2001185365A JP 2001185365 A JP2001185365 A JP 2001185365A JP 4973902 B2 JP4973902 B2 JP 4973902B2
Authority
JP
Japan
Prior art keywords
gallium
water
hydroxide
solid
liquid separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001185365A
Other languages
Japanese (ja)
Other versions
JP2003001270A (en
Inventor
章 松本
一樹 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2001185365A priority Critical patent/JP4973902B2/en
Publication of JP2003001270A publication Critical patent/JP2003001270A/en
Application granted granted Critical
Publication of JP4973902B2 publication Critical patent/JP4973902B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Removal Of Specific Substances (AREA)
  • Water Treatment By Sorption (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガリウム含有廃水の処理装置に関する。さらに詳しくは、本発明は、化合物半導体のウエハー製造工場、デバイス製造工場等から排出されるガリウム含有廃水を処理して、特に希少かつ有価金属であるガリウムを効率的に回収することができるガリウム含有廃水の処理装置に関する。
【0002】
【従来の技術】
III−V族化合物半導体は、周期表のアルミニウム、ガリウム、インジウム等のIII族の元素と、リン、ヒ素、アンチモン等のV族の元素を組み合わせたもので、GaAs、GaAsP、GaP、GaN、GaAlAs、InGaAs、InGaP、InP等が化合物半導体として知られている。これらの化合物半導体を用いると、レーザー発光や、シリコン基板より高速で動く電子を発生させることが可能となり、半導体レーザー、受光素子、マイクロ波半導体、高速デジタルIC等の製造が可能となる。しかし、これらの金属元素のうち、ガリウムはシリコンに比べて地球上にごくわずかしか存在せず、高価かつ希少な金属であり、原料の入手過程や、結晶精製過程のコストを考えると、シリコンに比べて割高である。
従って、ウエハー製造メーカーやデバイス製造メーカーでは、ガリウムを回収することが行われている。ガリウムは、ウエハー製造メーカーであれば、インゴットからウエハーを切り出すスライシング工程や、ウエハー表面の研磨を行うラッピング工程、ポリッシング工程から研削屑として排出されたり、あるいは、ウエハーの硝酸、塩酸、硫酸、リン酸等の酸又はアンモニア水等のアルカリによる洗浄に際して、洗浄後の濃厚排液や、水洗後の希薄排液中にイオン状で含有されて排出される。また、デバイス製造メーカーにおいても、スライシング工程やウエハー上のチップを切り出すダイシング工程から研削屑として排出されたり、あるいは、ウエハー製造メーカーと同様に、酸・アルカリ洗浄液の濃厚排液、希薄排液中にイオン状で含有されて排出される。
従来、ガリウムの回収手段として、研削屑の場合は膜分離手段で回収したり、イオン状の場合はキレート樹脂により吸着し、その後脱離液中のガリウムを水酸化物として回収することが行われている。これらのガリウムを含む化合物半導体の代表例としてヒ化ガリウム(GaAs)が挙げられるが、ヒ素が含まれるためにガリウムの回収と同時にヒ素を処理することが必須となっている。
上記の従来技術におけるガリウムの回収は、キレート樹脂によるところが大きく、空間速度、pHや、鉄、アルミニウム、インジウム、カルシウム、マグネシウム等の共存金属イオン等により、吸着量及び吸着剤の寿命が大きく変動し、不経済となっていた。また、ヒ素の処理については、鉄塩を用いる共沈が主流で、ヒ素濃度に対して10重量倍以上の鉄塩を必要とするために大量の汚泥が発生し、産業廃棄物として処理されている。また、吸着剤の使用も提案されているが、極めて低濃度のヒ素を処理する場合を除いて、吸着剤の再生サイクルが短く、不経済となっていた。
本発明者らは、ガリウム含有廃水のpHを3〜9、より好ましくは3〜5に調整して、ガリウムを水不溶性の水酸化物として析出させ、水酸化物含有水を固液分離手段により水酸化物と処理水に分離することにより、ガリウムを効率的に回収し得ることを見いだした。しかし、ガリウム含有廃水が化合物半導体の研磨工程で発生した廃水あるいは研磨工程の廃水が貯槽で混合される場合は、ガリウムの回収を必ずしも安定して行うことができなかった。
【0003】
【発明が解決しようとする課題】
本発明は、化合物半導体のウエハー製造工場、デバイス製造工場等の研磨工程等から排出されるガリウム含有廃水、あるいは、研磨工程の廃水が貯槽で混合されるガリウム含有廃水を処理して、特に希少かつ有価金属であるガリウムを水酸化物として高濃縮された状態で余すことなく効率的に回収し得るガリウム含有廃水の処理装置を提供することを目的としてなされたものである。
【0004】
【課題を解決するための手段】
本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、研磨工程等から排出されるコロイダルシリカ等の懸濁物質が含まれるガリウム含有廃水から、あらかじめ前処理により懸濁物質を除去することにより、ガリウムの水酸化物の析出と分離を安定して行い、効率的なガリウムの回収が可能となることを見いだし、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、
(1)コロイダルシリカである懸濁物質が含まれるガリウム含有廃水が導入されて懸濁物質を除去する前処理工程と、懸濁物質が除去されたガリウム含有廃水中のガリウムを水酸化物とする水酸化物生成工程と、水酸化物生成工程からの水酸化物含有水が導入されて水酸化物と処理水に分離する固液分離工程において、前記水酸化物生成工程から循環槽を介して、固液分離で処理水と濃縮水に分けて、該処理水を回収して、該濃縮水から懸濁物質からなる凝集汚泥を分離除去後、水分を循環槽に返送する手段からなる固液分離工程であって、鉄を含んだ凝集汚泥を発生しないことを特徴とするガリウム含有廃水の処理方法
(2)処理水と濃縮水に分ける固液分離が膜分離である第1項記載のガリウム含有廃水の処理方法
(3)固液分離手段が、セラミック膜分離手段である第1項又は第2項記載のガリウム含有廃水の処理方法
(4)固液分離手段の後段にガリウムを吸着除去するガリウム吸着手段を有する第1〜3項のいずれか記載のガリウム含有廃水の処理方法
(5)固液分離手段の後段にヒ素を吸着除去するヒ素吸着手段を有する第1〜4項のいずれか記載のガリウム含有廃水の処理方法及び、
(6)コロイダルシリカである懸濁物質が含まれるガリウム含有廃水が導入されて該懸濁物質を除去する前処理手段と、該懸濁物質が除去されたガリウム含有廃水中のガリウムを水酸化物とする水酸化物生成手段と、水酸化物生成手段からの水酸化物含有水が導入されて水酸化物と処理水に分離する固液分離手段、前記水酸化物生成手段から循環槽を介して、固液分離で処理水と濃縮水に分けて、該処理水を回収して、該濃縮水から懸濁物質からなる凝集汚泥を分離除去後、水分を循環槽に返送する手段からなる固液分離手段を有する第1項記載のガリウム含有廃水の処理方法に用いる装置、
を提供するものである。
【0005】
【発明の実施の形態】
図1は、本発明のガリウム含有廃水の処理装置の一態様の系統図である。本態様の装置においては、前処理手段、水酸化物生成手段及び固液分離手段に加えて、活性炭吸着手段、ガリウム吸着手段、ヒ素吸着手段及び濃縮手段が備えられている。本態様の装置においては、前処理手段は循環槽1と膜分離装置2、水酸化物生成手段は反応槽3、固液分離手段は循環槽4と膜分離装置5、活性炭吸着手段は活性炭吸着塔6、ガリウム吸着手段はガリウム吸着塔7、ヒ素吸着手段はヒ素吸着塔8、濃縮手段は濃縮設備9からなる。
本発明装置において、懸濁物質が含まれるガリウム含有廃水が導入されて懸濁物質を除去する前処理手段に特に制限はなく、例えば、膜分離装置、遠心分離装置槽等を挙げることができる。これらの中で、膜分離装置は、懸濁物質を高濃縮することができるので好ましい。膜分離装置に用いる膜に特に制限はないが、セラミック膜を好適に用いることができる。セラミック膜としては、例えば、酸化アルミナを焼結したモノリス型のセラミック膜や、主として柱形のβ型窒化珪素結晶からなる単層ハニカム構造のセラミック膜等を挙げることができる。これらの中で、主として柱形のβ型窒化珪素結晶からなる単層ハニカム構造のセラミック膜を特に好適に用いることができる。この構造の膜は、モノリス型の従来のセラミック膜に比べ、気孔率が大きく取れることも相まって、低流速でも高フラックスが得られる。膜の孔径は懸濁物質の粒径に応じて適宜選択することができるが、懸濁物質がコロイダルシリカである場合は、孔径が0.05μm程度であることが好ましい。膜分離装置による濃縮の程度に特に制限はないが、濃縮水中の懸濁物質の濃度が5〜50重量%となるように濃縮することが好ましい。また、処理条件としては、0.01〜0.5Mpaの圧力で、循環槽へ濃縮水を循環するクロスフローによる回分式又は半回分式による濃縮方法が好ましい。
ガリウム含有廃水中に含まれる懸濁物質を前処理手段で除去することにより、ガリウムの回収を安定して行うことができる。ガリウム含有廃水中にコロイダルシリカのような懸濁物質が存在すると、ガリウム含有廃水のpHを調整してガリウムを水酸化物とするとき、アルカリ剤がコロイダルシリカを溶解して溶解性シリカにするために消費されたり、コロイダルシリカ表面のヒドロキシル基形成に消費される。従って、ガリウム含有廃水にシリカ系スラリーが混入する場合には、これらの残留するコロイド状物質を除去することにより、安定したガリウムの回収が可能となる。
【0006】
本発明装置において、懸濁物質が除去されたガリウム含有廃水中のガリウムを水酸化物とする水酸化物生成手段においては、ガリウム含有廃水のpHを調整する。ガリウムは、pH3〜9の範囲で水不溶性の水酸化物を生成する。従って、酸を含む洗浄排水の場合は、水酸化ナトリウム、消石灰等のアルカリを添加し、アルカリを含む廃水の場合は、塩酸、硫酸等の酸を添加してpHを調整する。ガリウム含有廃水のpHが3〜5となるように調整することが好ましい。ガリウム含有廃水のpH調整により、ガリウムや廃水中に共存する他の金属の水酸化物が生成し、ヒ素が共沈により除去される。水中のヒ素は、亜ヒ酸(H3AsO3)又はヒ酸(H3AsO4)の形態で存在する。亜ヒ酸は水酸化物と共沈しにくいので、あらかじめ次亜塩素酸塩等の酸化剤を用いて酸化し、ヒ酸としておくことが好ましい。As(III)200mg/Lを含有する廃水は、pH5〜7において、190〜200mg/Lの有効塩素で酸化することができる。なお、酸化還元電位を400mV以上にすることが好ましい。また、生成した水酸化物をさらにフロック化するために、高分子凝集剤を添加することができる。図1においては、反応槽を1基として示しているが、酸化剤の添加、pH調整、高分子凝集剤の添加を各槽に分けて行うこともできる。連続処理の点からは、酸化剤の添加、pH調整、高分子凝集剤の添加を各槽に分けて行うことが好ましい。なお、ガリウム含有廃水のガリウム濃度が低い等の理由により、水酸化物の生成量が少なくなるような場合は、共沈除去されるヒ素の量も少なくなってしまうため、ガリウム含有廃水が含有するヒ素と同当量程度の鉄塩を添加してもよい。
【0007】
本発明装置において、水酸化物生成手段からの水酸化物含有水が導入されて、水酸化物と処理水に分離する固液分離手段に特に制限はなく、例えば、膜分離装置、沈殿槽等を挙げることができる。これらの中で、膜分離装置は、水酸化物を高濃縮することができるので好ましい。膜分離装置に用いる膜に特に制限はないが、セラミック膜を好適に用いることができる。セラミック膜としては、例えば、酸化アルミナを焼結したモノリス型のセラミック膜や、窒化珪素を焼結し、球状のα型結晶をなくし主として柱形のβ型結晶からなる単層ハニカム構造のセラミック膜等を挙げることができる。これらの中で、主として柱形のβ型窒化珪素結晶からなる単層ハニカム構造のセラミック膜を特に好適に用いることができる。この構造の膜は、モノリス型の従来のセラミック膜に比べ、気孔率が大きく取れることも相まって、低流速でも高フラックスが得られる。孔径が0.002〜0.5μmの限外ろ過膜又は精密ろ過膜級の膜を使用することが好ましい。膜分離装置による濃縮の程度に特に制限はないが、濃縮水中の懸濁物質の濃度が5〜50重量%となるように濃縮することが好ましい。また、処理条件としては、0.01〜0.5Mpaの圧力で、循環槽へ濃縮水を循環するクロスフローによる回分式又は半回分式による濃縮方法が好ましい。膜分離装置を用いる濃縮により、水酸化物中のガリウム濃度が上昇し、精錬所などの回収先でのガリウム精製を効率よく行うことができ、また、リサイクルの際の輸送コストを低減することができる。なお、図1には示していないが、この水酸化物をさらに高濃縮するために、蒸発、乾燥等の処理を行うこともできる。さらに、ガリウムを酸又はアルカリを用いて溶解させたのち、蒸発、乾燥、膜等により濃縮して濃度を高めてリサイクルすることができる。また、図示はないが、回収した水酸化物を反応槽に返送して、ガリウム含有廃水と混合し、再度濃縮するようにしても良い。
【0008】
本発明装置においては、固液分離手段の後段に、活性炭吸着手段および/または膜分離手段を設けることが好ましい。活性炭吸着手段としては、例えば、活性炭を充填した活性炭吸着塔等を挙げることができる。使用する活性炭に特に制限はなく、ガス賦活炭、薬品賦活炭のいずれをも使用することができる。活性炭吸着手段又は膜分離手段によって、反応槽で添加した酸化剤、酸、アルカリ、洗浄工程で使用された界面活性剤等を吸着、除去することにより、後段のガリウム吸着手段、ヒ素吸着手段への負荷を軽減することができる。
膜分離手段に用いる膜に特に制限はないが、耐酸性を有する逆浸透膜又はナノフィルトレーション膜であることが好ましく、2価以上のイオンは濃縮するが、ナトリウムイオン、塩化物イオン等の1価イオンは通過させるナノフィルトレーション膜であることが特に好ましい。膜分離装置の膜型式に特に制限はなく、例えば、スパイラル、平膜、チューブラー、中空糸等を挙げることができる。膜分離装置の運転圧力は0.7〜5.5MPaであることが好ましく、濃縮倍率は、pHやスケール成分であるシリカイオン、カルシウムイオンの量にもよるが、おおよそ3〜10倍濃縮とすることが好ましい。膜分離装置の運転方法は、循環槽へ濃縮水を循環するクロスフローによる回分式又は半回分式による濃縮方法が好ましい。なお、水酸化物含有水に酸化剤、界面活性剤等が含まれない場合には、活性炭吸着手段を省くことができる。
【0009】
本発明装置においては、固液分離手段の後段に残存するガリウムを吸着除去するガリウム吸着手段を設けることが好ましい。ガリウム吸着手段としては、例えば、キレート樹脂を充填したガリウム吸着塔等を挙げることができる。キレート樹脂としては、例えば、イミノジ酢酸型、リン酸型、アミノメチルリン酸型、ポリアミン型、アミノカルボン酸型樹脂等を挙げることができる。これらの中で、リン酸型樹脂は、ガリウムの吸着量が大きく、ガリウムに対する選択性に優れているので、特に好適に用いることができる。ガリウム吸着塔に通水する処理水は、pH1〜2.5に調整し、空間速度10h-1以下で通水することが好ましく、0.5〜5h-1で通水することがより好ましい。ガリウムは両性であり、酸、アルカリのいずれの薬液にも溶解するので、キレート樹脂に吸着したガリウムは、塩酸、硫酸、硝酸等の酸又は水酸化ナトリウム等のアルカリを用いて脱離することができるが、塩酸又は硫酸は脱離率が高いので特に好適に用いることができる。塩酸を用いて脱離するとき、その濃度は1〜6モル/Lであることが好ましく、2〜3モル/Lであることがより好ましい。硫酸を用いて脱離するとき、その濃度は0.5〜3モル/Lであることが好ましく、1.5〜2モル/Lであることがより好ましい。脱離に用いる液のpHは、吸着時の通水pHよりも低pHとする。
【0010】
本発明装置においては、固液分離手段の後段に残存するヒ素を吸着除去するヒ素吸着手段を設けることが好ましい。ヒ素吸着手段に用いる吸着剤としては、例えば、イオン交換樹脂、キレート樹脂、ヒ素選択性吸着樹脂等を挙げることができる。これらの中で、ジルコニウムを母体とするヒ素選択性吸着樹脂や、含水酸化セリウムの粉体を高分子化合物に担持させたヒ素選択性吸着樹脂を好適に使用することができる。ヒ素選択性吸着樹脂を充填したヒ素吸着塔への通水は、pH5〜8、空間速度5〜10h-1で行うことが好ましい。ヒ素選択性吸着樹脂の再生廃液は、水酸化物生成手段に返送するのが好ましい。ヒ素吸着手段を通過することにより、処理水は、排出基準、環境基準を満足する。なお、ガリウム吸着手段とヒ素吸着手段の順には制限はない。
本発明装置においては、ガリウム吸着塔の脱離液中に含まれるガリウムを濃縮、回収する濃縮手段を設けることが好ましい。濃縮手段とする濃縮設備の形式に特に制限はなく、例えば、キレート樹脂を充填した吸着手段、逆浸透膜、ナノフィルトレーション膜等を備えた膜分離手段、蒸発や乾燥機等を挙げることができる。キレート樹脂を用いる場合は、ガリウム吸着手段とほぼ同様な処理を脱離液に施し、吸着手段に通水する。逆浸透膜、ナノフィルトレーション膜の場合は、硫酸、塩酸等を用いた脱離液が低pHであることから、pH1前後に耐えられる耐酸性の膜を使用することが好ましい。なお、図示しないが、ヒ素再生廃液を濃縮設備に導入して、ガリウムとともに濃縮することもできる。濃縮設備において、手段にもよるが10倍以上に濃縮することが可能である。
ヒ素吸着手段から流出する処理水は、中和処理設備、水回収設備等を設け、さらに適切な処理を施すことが好ましい。
【0011】
【発明の効果】
本発明のガリウム含有廃水の処理装置によれば、廃水中に含まれるコロイダルシリカなどの懸濁物質を、あらかじめ前処理によって除去することにより、安定してガリウムを水酸化物として回収するとともに、ヒ素も共沈により除去し、さらに水酸化物を高濃縮し、共存金属が減少した状態で残存ガリウム、ヒ素を吸着させることから、ガリウム、ヒ素の吸着量、吸着剤再生サイクルを大幅に延ばすことが可能である。本発明装置によれば、ガリウムを余すことなく、かつ効率よく回収すると同時に、ヒ素の鉄を含んだ凝集汚泥を発生することなく、ゼロディスチャージを達成することができ、地球環境保全上極めて有用である。
【図面の簡単な説明】
【図1】図1は、本発明のガリウム含有廃水の処理装置の一態様の系統図である。
【符号の説明】
1 循環槽
2 膜分離装置
3 反応槽
4 循環槽
5 膜分離装置
6 活性炭吸着塔
7 ガリウム吸着塔
8 ヒ素吸着塔
9 濃縮設備
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for treating gallium-containing wastewater. More specifically, the present invention treats gallium-containing wastewater discharged from wafer manufacturing factories, device manufacturing factories, etc. of compound semiconductors, and can particularly efficiently recover gallium, which is a rare and valuable metal. The present invention relates to a wastewater treatment apparatus.
[0002]
[Prior art]
A III-V compound semiconductor is a combination of Group III elements such as aluminum, gallium, and indium in the periodic table and Group V elements such as phosphorus, arsenic, and antimony. GaAs, GaAsP, GaP, GaN, GaAlAs InGaAs, InGaP, InP, and the like are known as compound semiconductors. When these compound semiconductors are used, it is possible to generate laser light emission and electrons that move faster than the silicon substrate, and it is possible to manufacture semiconductor lasers, light receiving elements, microwave semiconductors, high-speed digital ICs, and the like. However, among these metal elements, gallium is very scarce on the earth compared to silicon, and is an expensive and rare metal. Considering the cost of raw material acquisition and crystal refining processes, It is relatively expensive.
Accordingly, gallium is collected at wafer manufacturers and device manufacturers. Gallium is discharged as grinding waste from a slicing process for cutting a wafer from an ingot, a lapping process for polishing the wafer surface, a polishing process, or nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid on a wafer. In the case of washing with acid such as acid or alkali such as aqueous ammonia, it is contained and discharged in ionic form in the concentrated drainage after washing or in the diluted drainage after washing with water. Also in device manufacturers, they are discharged as grinding scraps from the slicing process and the dicing process of cutting chips on the wafer, or, like the wafer manufacturers, in the concentrated and diluted drainage of acid / alkali cleaning liquid Contained and discharged in ionic form.
Conventionally, as a means for collecting gallium, grinding scraps are collected by a membrane separation means, and in the case of ionic form, they are adsorbed by a chelate resin, and then gallium in the desorbed liquid is collected as a hydroxide. ing. A typical example of the compound semiconductor containing gallium is gallium arsenide (GaAs). However, since arsenic is contained, it is essential to treat arsenic simultaneously with the recovery of gallium.
The recovery of gallium in the above prior art is largely due to the chelate resin, and the amount of adsorption and the life of the adsorbent vary greatly depending on the space velocity, pH, and coexisting metal ions such as iron, aluminum, indium, calcium and magnesium. It was uneconomical. As for the treatment of arsenic, coprecipitation using iron salt is the mainstream, and it requires iron salt more than 10 weight times the arsenic concentration, so a large amount of sludge is generated and treated as industrial waste. Yes. The use of an adsorbent has also been proposed, but the adsorbent regeneration cycle was short and uneconomical except when treating very low concentrations of arsenic.
The inventors adjust the pH of gallium-containing wastewater to 3-9, more preferably 3-5, to precipitate gallium as a water-insoluble hydroxide, and the hydroxide-containing water is separated by solid-liquid separation means. It was found that gallium can be efficiently recovered by separating it into hydroxide and treated water. However, when the gallium-containing wastewater is generated in the compound semiconductor polishing process or the polishing process wastewater is mixed in the storage tank, gallium recovery cannot always be performed stably.
[0003]
[Problems to be solved by the invention]
The present invention treats gallium-containing wastewater discharged from a polishing process or the like of a compound semiconductor wafer manufacturing factory, a device manufacturing factory, or the like, or a gallium-containing wastewater mixed with a wastewater from a polishing process in a storage tank. The object of the present invention is to provide an apparatus for treating gallium-containing wastewater that can efficiently recover gallium, which is a valuable metal, as a hydroxide in a highly concentrated state.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have preliminarily suspended the suspended solids from gallium-containing wastewater containing suspended solids such as colloidal silica discharged from the polishing process. As a result of the removal, the inventors have found that gallium hydroxide can be precipitated and separated stably and that gallium can be efficiently recovered, and the present invention has been completed based on this finding.
That is, the present invention
(1) a hydroxide is introduced gallium-containing waste water that contains suspended solids is colloidal silica and the pretreatment step for removing the suspended solids, gallium gallium-containing waste water the suspended solids have been removed and a hydroxide generation step of, in the solid-liquid separation step of hydroxide-containing water is introduced to separate the hydroxide and treated water from the hydroxide producing step, a circulation tank from the hydroxide producing step The process water is divided into treated water and concentrated water by solid-liquid separation, and the treated water is collected, and after separating and removing the aggregated sludge composed of suspended substances from the concentrated water, the water is returned to the circulation tank. A method for treating gallium-containing wastewater , which is a solid-liquid separation step and does not generate agglomerated sludge containing iron ,
(2) The method for treating gallium-containing wastewater according to item 1, wherein the solid-liquid separation to be divided into treated water and concentrated water is membrane separation ,
(3) The method for treating gallium-containing wastewater according to item 1 or 2 , wherein the solid-liquid separation unit is a ceramic membrane separation unit,
(4) The method for treating gallium-containing wastewater according to any one of items 1 to 3, further comprising a gallium adsorption means for adsorbing and removing gallium after the solid-liquid separation means,
(5) The method for treating gallium-containing wastewater according to any one of items 1 to 4, further comprising an arsenic adsorption unit that adsorbs and removes arsenic after the solid-liquid separation unit, and
(6) Pretreatment means for removing suspending material by introducing gallium-containing wastewater containing suspended material that is colloidal silica, and gallium hydroxide in gallium-containing wastewater from which the suspended material has been removed Hydroxide generating means, solid-liquid separation means for introducing hydroxide-containing water from the hydroxide generating means and separating it into hydroxide and treated water, from the hydroxide generating means through a circulation tank Then, it is separated into treated water and concentrated water by solid-liquid separation, and the treated water is recovered, and after separating and removing the aggregated sludge composed of suspended solids from the concentrated water, the solid water comprising means for returning the water to the circulation tank is obtained. The apparatus used for the processing method of the gallium containing wastewater of Claim 1 which has a liquid separation means,
Is to provide.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a system diagram of an embodiment of the gallium-containing wastewater treatment apparatus of the present invention. In the apparatus of this aspect, in addition to the pretreatment means, hydroxide generation means and solid-liquid separation means, activated carbon adsorption means, gallium adsorption means, arsenic adsorption means and concentration means are provided. In the apparatus of this embodiment, the pretreatment means is the circulation tank 1 and the membrane separation apparatus 2, the hydroxide production means is the reaction tank 3, the solid-liquid separation means is the circulation tank 4 and the membrane separation apparatus 5, and the activated carbon adsorption means is the activated carbon adsorption. The tower 6, the gallium adsorption means are composed of a gallium adsorption tower 7, the arsenic adsorption means is composed of an arsenic adsorption tower 8, and the concentration means is composed of a concentration facility 9.
In the apparatus of the present invention, there is no particular limitation on the pretreatment means for removing the suspended substance by introducing the gallium-containing wastewater containing the suspended substance, and examples thereof include a membrane separator and a centrifuge tank. Among these, a membrane separation device is preferable because it can highly concentrate suspended substances. Although there is no restriction | limiting in particular in the membrane used for a membrane separator, A ceramic membrane can be used suitably. Examples of the ceramic film include a monolithic ceramic film obtained by sintering alumina oxide, and a ceramic film having a single-layer honeycomb structure mainly made of columnar β-type silicon nitride crystals. Among these, a ceramic film having a single-layer honeycomb structure mainly composed of columnar β-type silicon nitride crystals can be particularly preferably used. Compared with the monolithic type conventional ceramic film, the film having this structure is coupled with a large porosity, so that a high flux can be obtained even at a low flow rate. The pore size of the membrane can be appropriately selected according to the particle size of the suspended material, but when the suspended material is colloidal silica, the pore size is preferably about 0.05 μm. Although there is no restriction | limiting in particular in the grade of the concentration by a membrane separator, It is preferable to concentrate so that the density | concentration of the suspended substance in concentrated water may be 5 to 50 weight%. Further, as treatment conditions, a concentration method by a batch method or a semi-batch method by a cross flow in which concentrated water is circulated to a circulation tank at a pressure of 0.01 to 0.5 MPa is preferable.
By removing the suspended substances contained in the gallium-containing wastewater by the pretreatment means, gallium can be recovered stably. When suspended substances such as colloidal silica are present in gallium-containing wastewater, the alkali agent dissolves colloidal silica into soluble silica when the pH of gallium-containing wastewater is adjusted to make gallium hydroxide. Or consumed to form hydroxyl groups on the colloidal silica surface. Therefore, when the silica-based slurry is mixed into the gallium-containing wastewater, it is possible to recover gallium stably by removing these remaining colloidal substances.
[0006]
In the apparatus of the present invention, in the hydroxide generating means using gallium in the gallium-containing wastewater from which suspended substances are removed as hydroxide, the pH of the gallium-containing wastewater is adjusted. Gallium produces water-insoluble hydroxides in the pH range 3-9. Therefore, in the case of washing wastewater containing acid, an alkali such as sodium hydroxide or slaked lime is added, and in the case of wastewater containing alkali, the pH is adjusted by adding an acid such as hydrochloric acid or sulfuric acid. It is preferable to adjust the gallium-containing wastewater to have a pH of 3-5. By adjusting the pH of the gallium-containing wastewater, hydroxides of gallium and other metals that coexist in the wastewater are generated, and arsenic is removed by coprecipitation. Arsenic in water exists in the form of arsenous acid (H 3 AsO 3 ) or arsenic acid (H 3 AsO 4 ). Since arsenous acid is difficult to coprecipitate with hydroxide, it is preferably oxidized beforehand using an oxidizing agent such as hypochlorite to form arsenic acid. Wastewater containing 200 mg / L As (III) can be oxidized with 190-200 mg / L available chlorine at pH 5-7. Note that the redox potential is preferably 400 mV or more. Further, a polymer flocculant can be added in order to further flock the generated hydroxide. Although FIG. 1 shows one reaction tank, the addition of an oxidizing agent, pH adjustment, and addition of a polymer flocculant can be performed separately for each tank. From the viewpoint of continuous treatment, it is preferable to add the oxidizing agent, adjust the pH, and add the polymer flocculant separately for each tank. In addition, when the amount of hydroxide generated is reduced due to the low gallium concentration of the gallium-containing wastewater, the amount of arsenic removed by coprecipitation is also reduced, so the gallium-containing wastewater contains An iron salt equivalent to arsenic may be added.
[0007]
In the apparatus of the present invention, there is no particular limitation on the solid-liquid separation means in which the hydroxide-containing water from the hydroxide production means is introduced and separated into hydroxide and treated water, for example, a membrane separation device, a precipitation tank, etc. Can be mentioned. Among these, a membrane separator is preferable because it can highly concentrate hydroxide. Although there is no restriction | limiting in particular in the membrane used for a membrane separator, A ceramic membrane can be used suitably. As the ceramic film, for example, a monolithic ceramic film obtained by sintering alumina oxide, or a ceramic film having a single-layer honeycomb structure mainly formed by columnar β-type crystals by sintering silicon nitride and eliminating spherical α-type crystals. Etc. Among these, a ceramic film having a single-layer honeycomb structure mainly composed of columnar β-type silicon nitride crystals can be particularly preferably used. Compared with the monolithic type conventional ceramic film, the film having this structure is coupled with a large porosity, so that a high flux can be obtained even at a low flow rate. It is preferable to use an ultrafiltration membrane or a microfiltration membrane grade membrane having a pore size of 0.002 to 0.5 μm. Although there is no restriction | limiting in particular in the grade of the concentration by a membrane separator, It is preferable to concentrate so that the density | concentration of the suspended substance in concentrated water may be 5 to 50 weight%. Further, as treatment conditions, a concentration method by a batch method or a semi-batch method by a cross flow in which concentrated water is circulated to a circulation tank at a pressure of 0.01 to 0.5 MPa is preferable. Concentration using a membrane separator increases the concentration of gallium in the hydroxide, enabling efficient purification of gallium at a recovery site such as a smelter, and reducing transportation costs during recycling. it can. In addition, although not shown in FIG. 1, in order to concentrate this hydroxide further highly, processes, such as evaporation and drying, can also be performed. Furthermore, after gallium is dissolved using an acid or alkali, it can be recycled by evaporating, drying, concentrating it by a film or the like to increase its concentration. Although not shown, the recovered hydroxide may be returned to the reaction vessel, mixed with the gallium-containing wastewater, and concentrated again.
[0008]
In the apparatus of the present invention, it is preferable to provide activated carbon adsorption means and / or membrane separation means after the solid-liquid separation means. Examples of the activated carbon adsorption means include an activated carbon adsorption tower filled with activated carbon. There is no restriction | limiting in particular in activated carbon to be used, Any of gas activated charcoal and chemical activated charcoal can be used. By adsorbing and removing the oxidizing agent, acid, alkali, surfactant used in the washing process, etc. added in the reaction tank by the activated carbon adsorption means or membrane separation means, the gallium adsorption means and arsenic adsorption means in the subsequent stage can be removed. The load can be reduced.
There is no particular limitation on the membrane used for the membrane separation means, but it is preferably a reverse osmosis membrane or nanofiltration membrane having acid resistance, and divalent or higher ions are concentrated, but sodium ions, chloride ions, etc. It is particularly preferred that the nanofiltration membrane allows the monovalent ions to pass therethrough. There is no restriction | limiting in particular in the membrane type of a membrane separator, For example, a spiral, a flat membrane, a tubular, a hollow fiber etc. can be mentioned. The operating pressure of the membrane separator is preferably 0.7 to 5.5 MPa, and the concentration factor is approximately 3 to 10 times concentrated, although it depends on the pH and the amount of silica ions and calcium ions as scale components. It is preferable. The operation method of the membrane separator is preferably a batch method or a semi-batch method using a cross flow in which concentrated water is circulated to a circulation tank. In the case where the hydroxide-containing water does not contain an oxidizing agent, a surfactant or the like, the activated carbon adsorption means can be omitted.
[0009]
In the apparatus of the present invention, it is preferable to provide a gallium adsorption means for adsorbing and removing gallium remaining in the subsequent stage of the solid-liquid separation means. Examples of the gallium adsorption means include a gallium adsorption tower filled with a chelate resin. Examples of the chelating resin include iminodiacetic acid type, phosphoric acid type, aminomethyl phosphoric acid type, polyamine type, aminocarboxylic acid type resin, and the like. Among these, phosphoric acid type resins can be used particularly suitably because they have a large amount of gallium adsorption and are excellent in selectivity to gallium. The treated water that passes through the gallium adsorption tower is adjusted to pH 1 to 2.5, preferably at a space velocity of 10 h −1 or less, more preferably 0.5 to 5 h −1 . Since gallium is amphoteric and dissolves in both chemicals of acid and alkali, gallium adsorbed on the chelate resin may be detached using an acid such as hydrochloric acid, sulfuric acid or nitric acid, or an alkali such as sodium hydroxide. Although hydrochloric acid or sulfuric acid has a high elimination rate, it can be used particularly preferably. When desorbing using hydrochloric acid, the concentration is preferably 1 to 6 mol / L, more preferably 2 to 3 mol / L. When desorbing using sulfuric acid, the concentration is preferably 0.5 to 3 mol / L, and more preferably 1.5 to 2 mol / L. The pH of the liquid used for desorption is lower than the water flow pH during adsorption.
[0010]
In the apparatus of the present invention, it is preferable to provide an arsenic adsorption means for adsorbing and removing arsenic remaining in the subsequent stage of the solid-liquid separation means. Examples of the adsorbent used for the arsenic adsorption means include an ion exchange resin, a chelate resin, and an arsenic selective adsorption resin. Among these, an arsenic selective adsorption resin based on zirconium or an arsenic selective adsorption resin in which a cerium hydroxide-containing powder is supported on a polymer compound can be preferably used. It is preferable that the water flow to the arsenic adsorption tower filled with the arsenic selective adsorption resin is carried out at a pH of 5 to 8 and a space velocity of 5 to 10 h- 1 . The recycled waste liquid of the arsenic selective adsorption resin is preferably returned to the hydroxide generating means. By passing through the arsenic adsorption means, the treated water satisfies the discharge standard and the environmental standard. The order of the gallium adsorption means and the arsenic adsorption means is not limited.
In the apparatus of the present invention, it is preferable to provide a concentrating means for concentrating and recovering gallium contained in the desorption liquid of the gallium adsorption tower. There are no particular restrictions on the type of concentration equipment used as the concentration means, and examples include adsorption means filled with chelate resin, membrane separation means equipped with reverse osmosis membranes, nanofiltration membranes, evaporation and dryers, etc. it can. In the case of using a chelate resin, a treatment similar to that of the gallium adsorption means is performed on the desorbed liquid, and water is passed through the adsorption means. In the case of reverse osmosis membranes and nanofiltration membranes, it is preferable to use an acid-resistant membrane that can withstand about pH 1 because the desorbed solution using sulfuric acid, hydrochloric acid or the like has a low pH. Although not shown, the arsenic regeneration waste liquid can be introduced into a concentration facility and concentrated together with gallium. In the concentration equipment, it is possible to concentrate 10 times or more depending on the means.
The treated water flowing out from the arsenic adsorption means is preferably provided with a neutralization treatment facility, a water recovery facility, etc., and further subjected to an appropriate treatment.
[0011]
【Effect of the invention】
According to the apparatus for treating gallium-containing wastewater of the present invention, by removing suspended substances such as colloidal silica contained in the wastewater in advance by pretreatment, gallium is stably recovered as a hydroxide, and arsenic Can be removed by coprecipitation, and the remaining gallium and arsenic can be adsorbed in a state where the hydroxide is highly concentrated and the amount of coexisting metals is reduced, which can greatly extend the adsorption amount of gallium and arsenic and the adsorbent regeneration cycle. Is possible. According to the apparatus of the present invention, gallium can be recovered efficiently without waste, and at the same time, zero discharge can be achieved without generating agglomerated sludge containing arsenic iron, which is extremely useful for global environmental conservation. is there.
[Brief description of the drawings]
FIG. 1 is a system diagram of one embodiment of a treatment apparatus for gallium-containing wastewater according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Circulation tank 2 Membrane separation apparatus 3 Reaction tank 4 Circulation tank 5 Membrane separation apparatus 6 Activated carbon adsorption tower 7 Gallium adsorption tower 8 Arsenic adsorption tower 9 Concentration equipment

Claims (6)

コロイダルシリカである懸濁物質が含まれるガリウム含有廃水が導入されて懸濁物質を除去する前処理工程と、懸濁物質が除去されたガリウム含有廃水中のガリウムを水酸化物とする水酸化物生成工程と、水酸化物生成工程からの水酸化物含有水が導入されて水酸化物と処理水に分離する固液分離工程において、前記水酸化物生成工程から循環槽を介して、固液分離で処理水と濃縮水に分けて、該処理水を回収して、該濃縮水から懸濁物質からなる凝集汚泥を分離除去後、水分を循環槽に返送する手段からなる固液分離工程であって、鉄を含んだ凝集汚泥を発生しないことを特徴とするガリウム含有廃水の処理方法Water and pretreatment step for removing the suspended solids gallium-containing waste water that contains suspended solids is colloidal silica is introduced, gallium gallium-containing waste water the suspended solids have been removed as a hydroxide an oxide generation step, in the solid-liquid separation step of hydroxide-containing water is introduced to separate the hydroxide and treated water from the hydroxide producing step, through the circulation tank from the hydroxide producing step, Separated into treated water and concentrated water by solid-liquid separation, collects the treated water, separates and removes aggregated sludge composed of suspended solids from the concentrated water, and then returns the water to the circulation tank. a step, the processing method of the gallium-containing waste water, characterized in that no flocculation sludge generated that contains iron. 処理水と濃縮水に分ける固液分離が膜分離である請求項1記載のガリウム含有廃水の処理方法 The method for treating gallium-containing wastewater according to claim 1, wherein the solid-liquid separation to be divided into treated water and concentrated water is membrane separation . 固液分離手段が、セラミック膜分離手段である請求項1又は2記載のガリウム含有廃水の処理方法The method for treating gallium-containing wastewater according to claim 1 or 2 , wherein the solid-liquid separation means is a ceramic membrane separation means. 固液分離手段の後段にガリウムを吸着除去するガリウム吸着手段を有する請求項1〜3のいずれか記載のガリウム含有廃水の処理方法The method for treating gallium-containing wastewater according to any one of claims 1 to 3, further comprising gallium adsorption means for adsorbing and removing gallium after the solid-liquid separation means. 固液分離手段の後段にヒ素を吸着除去するヒ素吸着手段を有する請求項1〜4のいずれか記載のガリウム含有廃水の処理方法The method for treating gallium-containing wastewater according to any one of claims 1 to 4, further comprising an arsenic adsorption unit that adsorbs and removes arsenic after the solid-liquid separation unit. コロイダルシリカである懸濁物質が含まれるガリウム含有廃水が導入されて該懸濁物質を除去する前処理手段と、該懸濁物質が除去されたガリウム含有廃水中のガリウムを水酸化物とする水酸化物生成手段と、水酸化物生成手段からの水酸化物含有水が導入されて水酸化物と処理水に分離する固液分離手段、前記水酸化物生成手段から循環槽を介して、固液分離で処理水と濃縮水に分けて、該処理水を回収して、該濃縮水から懸濁物質からなる凝集汚泥を分離除去後、水分を循環槽に返送する手段からなる固液分離手段を有する請求項1記載のガリウム含有廃水の処理方法に用いる装置。Pretreatment means for removing suspending material by introducing gallium-containing wastewater containing suspended solids that are colloidal silica, and water containing gallium as a hydroxide in the gallium-containing wastewater from which the suspended matter has been removed An oxide generating means, a solid-liquid separation means for introducing hydroxide-containing water from the hydroxide generating means and separating it into a hydroxide and treated water, and a solid tank from the hydroxide generating means via a circulation tank. Solid-liquid separation means comprising means for separating treated water and concentrated water by liquid separation, collecting the treated water, separating and removing aggregated sludge composed of suspended substances from the concentrated water, and returning the water to the circulation tank The apparatus used for the processing method of the gallium containing wastewater of Claim 1 which has these.
JP2001185365A 2001-06-19 2001-06-19 Method for treating gallium-containing wastewater and apparatus used in the method Expired - Fee Related JP4973902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001185365A JP4973902B2 (en) 2001-06-19 2001-06-19 Method for treating gallium-containing wastewater and apparatus used in the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001185365A JP4973902B2 (en) 2001-06-19 2001-06-19 Method for treating gallium-containing wastewater and apparatus used in the method

Publications (2)

Publication Number Publication Date
JP2003001270A JP2003001270A (en) 2003-01-07
JP4973902B2 true JP4973902B2 (en) 2012-07-11

Family

ID=19024961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001185365A Expired - Fee Related JP4973902B2 (en) 2001-06-19 2001-06-19 Method for treating gallium-containing wastewater and apparatus used in the method

Country Status (1)

Country Link
JP (1) JP4973902B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101433104B1 (en) * 2006-09-28 2014-08-22 쿠리타 고교 가부시키가이샤 Process and equipment for the recovery of phosphoric acid from phosphoric acid-containing water

Also Published As

Publication number Publication date
JP2003001270A (en) 2003-01-07

Similar Documents

Publication Publication Date Title
CN111727171B (en) Method for recovering lithium from brine
KR20230051148A (en) How to recover lithium from brine
JP2010082546A (en) Water treatment apparatus and method
KR100382660B1 (en) Treatement process for fluorine-containing waters
KR19990082710A (en) Treatement process for fluorine-containing waters
JPH10137542A (en) Treatment of flue gas desulfurization waste water
TW548245B (en) A process for treating aqueous waste containing copper and copper CMP particles
JP2009207953A (en) Wastewater treatment apparatus and method
JP7455125B2 (en) Process for recovering lithium from brine with addition of alkali
JP4973902B2 (en) Method for treating gallium-containing wastewater and apparatus used in the method
JP2014151310A (en) Water treatment method and water treatment equipment
JP2006095425A (en) Method for purifying biological treatment water-containing water of waste water and apparatus for purifying the same
JP4973901B2 (en) Method for treating gallium-containing wastewater
WO2014108941A1 (en) Water treatment method and water treatment device
JP2010046562A (en) Resource recovery type water treatment method and system
JP3861283B2 (en) Method for treating gallium-containing wastewater
JP4900635B2 (en) Gallium-containing wastewater treatment apparatus and gallium-containing wastewater treatment method
JP2003001275A (en) Equipment for treatment of waste water containing gallium-arsenic
JP4021688B2 (en) Method and apparatus for treatment of wastewater containing fluorine and silicon
JP2003001268A (en) Equipment for treatment of waste water containing gallium
JP3826497B2 (en) Pure water production method
JP3912086B2 (en) Arsenic-containing wastewater treatment equipment
JP2003001271A (en) Equipment for treatment of waste water containing gallium
JP3937135B2 (en) Gallium polishing wastewater treatment equipment
JP2003001246A (en) Equipment for treatment of waste water containing gallium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120315

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees