JP4972881B2 - Tube structure used for water purifier, water purifier, water purification system, and water purification method using the same - Google Patents

Tube structure used for water purifier, water purifier, water purification system, and water purification method using the same Download PDF

Info

Publication number
JP4972881B2
JP4972881B2 JP2005172009A JP2005172009A JP4972881B2 JP 4972881 B2 JP4972881 B2 JP 4972881B2 JP 2005172009 A JP2005172009 A JP 2005172009A JP 2005172009 A JP2005172009 A JP 2005172009A JP 4972881 B2 JP4972881 B2 JP 4972881B2
Authority
JP
Japan
Prior art keywords
water
silver
tube
water purifier
tube structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005172009A
Other languages
Japanese (ja)
Other versions
JP2006348966A (en
Inventor
玲子 馬場
睦夫 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2005172009A priority Critical patent/JP4972881B2/en
Publication of JP2006348966A publication Critical patent/JP2006348966A/en
Application granted granted Critical
Publication of JP4972881B2 publication Critical patent/JP4972881B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment

Description

本発明は、水道蛇口に接続して水道水の浄化を行う浄水器、特にシステムキッチンなどに組み込まれるアンダーシンク浄水器に用いられるチューブ構造体に関するものである。より詳しくは、浄水器の通水部に接続された浄水チューブ内の細菌汚染を防止するために、例えば、銀単体またはハロゲン化銀、硝酸銀、硫酸銀、硫化銀、酸化銀、炭酸銀、リン酸銀に代表される抗菌剤を含有する成形体を内部に含んでなるチューブ構造体、およびそれを浄水出口側の通水部に設置した浄水器、浄水システム、浄水方法に関する。   The present invention relates to a tube structure used in a water purifier that is connected to a water tap and purifies tap water, in particular, an under-sink water purifier incorporated in a system kitchen or the like. More specifically, in order to prevent bacterial contamination in the water purification tube connected to the water purifier of the water purifier, for example, silver alone or silver halide, silver nitrate, silver sulfate, silver sulfide, silver oxide, silver carbonate, phosphorus The present invention relates to a tube structure that includes a molded body containing an antibacterial agent typified by acid silver, and a water purifier, a water purification system, and a water purification method in which the tube structure is installed in a water passage on the water purification outlet side.

従来から、水道蛇口に接続して水道水を浄化する浄水器のカ−トリッジとしては、活性炭や中空糸膜を充填したものが多く知られている。これらのろ過材料を通過させることにより水道水が浄化されるのであるが、ろ過材料の能力には限りがあるため、使用者は必要に応じて新しいカ−トリッジに交換する。   2. Description of the Related Art Conventionally, many water purifier cartridges that are connected to a water tap and purify the tap water are filled with activated carbon or hollow fiber membranes. Although the tap water is purified by passing through these filter materials, the capacity of the filter material is limited, so the user replaces the cartridge with a new cartridge as necessary.

水道水に含まれる遊離残留塩素を分解するろ過材料としては、特許文献1に記載されているような粒状活性炭や、特許文献2に記載されているような繊維状活性炭の成形体などがある。粒状活性炭あるいは繊維状活性炭で遊離塩素を分解した浄水は、カルキ臭が無く飲用に適しているが、長期間の放置などによって空気中の細菌が侵入すると、水道水に比べて細菌が増殖しやすい。浄水器内部の水についても同様で、浄水出口に細菌が付着すると、カートリッジの出口から浄水器の浄水出口までの間に溜まった浄水中で細菌が増殖する可能性がある。しかしながら、活性炭として粒状活性炭を用いる場合には、粒状活性炭に銀を添着することで抗菌効果を発揮することが出来るものの、遊離塩素の分解という点では性能が低いものとなる。一方、抗菌効果と除塩素性能とを共に高めるためには繊維状活性炭を用いることが好ましいが、その場合、製法上の問題から繊維状活性炭に銀を添着させることが難しい。   Examples of the filtering material for decomposing free residual chlorine contained in tap water include granular activated carbon as described in Patent Document 1, and a molded body of fibrous activated carbon as described in Patent Document 2. Purified water that decomposes free chlorine with granular activated carbon or fibrous activated carbon is suitable for drinking with no odor of chalk, but if bacteria in the air invade after leaving for a long period of time, bacteria are more likely to grow than tap water. . The same applies to the water inside the water purifier, and if bacteria adhere to the water purification outlet, the bacteria may grow in the purified water collected between the outlet of the cartridge and the water purification outlet of the water purifier. However, when granular activated carbon is used as activated carbon, the antibacterial effect can be exhibited by adding silver to the granular activated carbon, but the performance is low in terms of decomposition of free chlorine. On the other hand, in order to enhance both the antibacterial effect and the chlorine removal performance, it is preferable to use fibrous activated carbon. However, in that case, it is difficult to attach silver to the fibrous activated carbon due to a problem in the production method.

さらには、内層チューブの外周面に混合樹脂から成る外層チューブを積層し、該内層チューブに抗菌剤を含有して共押出成形された浄水器用積層チューブを用いた浄水システム(例えば、特許文献3参照)が提案されている。しかしながら、この浄水器用積層チューブを用いた浄水システムでは、抗菌剤を浄水流路の内表面もしくは流路のある一断面に設けるだけであるので、水のごく一部が抗菌剤に接触するだけであるため、充分な抗菌作用を発揮することが出来ない。また、一度浄水流路が汚染されると殺菌することが困難である。
特開平11−47733号公報 特開平9−248557号公報 特開2004−204920号公報
Furthermore, a water purification system using a laminated tube for a water purifier in which an outer layer tube made of a mixed resin is laminated on the outer peripheral surface of the inner layer tube, and the inner layer tube contains an antibacterial agent and is coextruded (for example, see Patent Document 3) ) Has been proposed. However, in the water purification system using this laminated tube for water purifiers, the antibacterial agent is only provided on the inner surface of the water purification channel or on one section of the channel, so only a small part of the water contacts the antibacterial agent. For this reason, sufficient antibacterial action cannot be exhibited. Moreover, once the purified water flow path is contaminated, it is difficult to sterilize.
JP 11-47733 A Japanese Patent Laid-Open No. 9-248557 JP 2004-204920 A

本発明は、上述のような問題点に鑑み、抗菌能を有する抗菌剤を含有させた成形体を含んでなるチューブ構造体を浄水器の通水部に設置することにより、成形体に含まれた抗菌剤を徐々に水中に溶出させることによって、浄水器内部に溜まった水の細菌増殖を長期間に渡って抑制することができるとともに、安全性の高い飲料水を製造できる浄水器および浄水システム、浄水方法を提供するものである。   In view of the above problems, the present invention is included in a molded body by installing a tube structure including a molded body containing an antibacterial agent having antibacterial activity in a water passage portion of a water purifier. By eluting the antibacterial agent gradually into the water, the water purifier and the water purification system can suppress the bacterial growth of the water accumulated inside the water purifier over a long period of time and can produce highly safe drinking water. It provides water purification methods.

上記課題を解決するための本発明は、次の(1)〜(10)を特徴とするものである。   The present invention for solving the above problems is characterized by the following (1) to (10).

(1)形体をチューブの内部に有するチューブ構造体であって、前記チューブ構造体を形成するチューブは高分子材料からなり、前記成形体は抗菌剤を含んでなる担体を有してなり、かつ、前記成形体が前記チューブと一体に成形されることなく形成されたチューブ構造体。
(2)高分子材料がポリアミド、ポリエステル、ポリスルホン、ポリエチレン、エチレン・酢酸ビニル共重合体、ポリプロピレン、ポリアクリロニトリル、ポリビニルアルコール、およびポリフッ化ビニリデンからなる群から選ばれる少なくとも1種を含む樹脂組成物であることを特徴とする(1)に記載のチューブ構造体。
(1) the adult form a tube structure having the interior of the tube, the tube forming the tube structure is made of polymeric material, the shaped body comprises a carrier comprising the antimicrobial agent, and, tube structure formed without previous KiNaru features are molded integrally with the tube.
(2) A resin composition in which the polymer material includes at least one selected from the group consisting of polyamide, polyester, polysulfone, polyethylene, ethylene / vinyl acetate copolymer, polypropylene, polyacrylonitrile, polyvinyl alcohol, and polyvinylidene fluoride. The tube structure according to (1), wherein the tube structure is provided.

(1)成形体をチューブの内部に挿入した浄水器に用いるチューブ構造体であって、前記チューブ構造体を形成するチューブは高分子材料からなり、前記成形体は細孔が形成される親水性が付与された高分子材料を用いて形成された中空糸膜状であり、抗菌剤を含んでなる担体を細孔が形成される親水性が付与された高分子材料を用いてその表面にコーティングしてなり、かつ、前記成形体が前記チューブと一体に成形されることなく形成され、前記成形体を水と接触させることにより、前記担体に含まれる抗菌剤が前記水中に溶出することを特徴とする浄水器に用いるチューブ構造体。
(2)チューブに用いられる高分子材料がポリアミド、ポリエステル、ポリスルホン、ポリエチレン、エチレン・酢酸ビニル共重合体、ポリプロピレン、ポリアクリロニトリル、ポリビニルアルコール、およびポリフッ化ビニリデンからなる群から選ばれる少なくとも1種を含む樹脂組成物であることを特徴とする(1)に記載のチューブ構造体。
(1) A tube structure used in a water purifier in which a molded body is inserted into a tube, wherein the tube forming the tube structure is made of a polymer material, and the molded body is hydrophilic so that pores are formed. A hollow fiber membrane formed using a polymer material provided with an antibacterial agent, and coated on the surface with a hydrophilic polymer material provided with hydrophilicity to form pores. The molded body is formed without being molded integrally with the tube, and the antibacterial agent contained in the carrier is eluted into the water by bringing the molded body into contact with water. The tube structure used for the water purifier .
(2) The polymer material used for the tube includes at least one selected from the group consisting of polyamide, polyester, polysulfone, polyethylene, ethylene / vinyl acetate copolymer, polypropylene, polyacrylonitrile, polyvinyl alcohol, and polyvinylidene fluoride. The tube structure according to (1), which is a resin composition.

)前記担体に含まれる抗菌剤が、銀単体または銀化合物であることを特徴とする(1)または(2)に記載の浄水器に用いるチューブ構造体。 ( 3 ) The tube structure used for the water purifier according to (1) or (2) , wherein the antibacterial agent contained in the carrier is a silver simple substance or a silver compound.

前記銀化合物が、ハロゲン化銀、硝酸銀、硫酸銀、硫化銀、酸化銀、炭酸銀、およびリン酸銀からなる群から選ばれる少なくとも1種を含むことを特徴とする(3)に記載の浄水器に用いるチューブ構造体。 (4) the silver compound, silver halide, nitrate, silver sulfate, silver sulfide, silver oxide, in characterized in that it comprises at least one selected from the group consisting of silver carbonate, and silver phosphate (3) The tube structure used for the water purifier of description.

前記抗菌剤を含んでなる担体が、銀添着活性炭を含んでなるものであることを特徴とする(3)または(4)に記載の浄水器に用いるチューブ構造体。 ( 5 ) The tube structure used in the water purifier according to (3) or (4) , wherein the carrier comprising the antibacterial agent comprises silver-impregnated activated carbon.

)(1)〜(5)のいずれかに記載の浄水器に用いるチューブ構造体が浄水出口側の通水部に設置されてなる浄水器。 ( 6 ) A water purifier in which a tube structure used in the water purifier according to any one of (1) to (5) is installed in a water passage on the water purification outlet side.

)()に記載の浄水器と、吐出口と、給水栓とを備えてなる浄水システム。 ( 7 ) A water purification system comprising the water purifier according to ( 6 ), a discharge port, and a water tap.

)()に記載の浄水器を用いて浄水することを特徴とする浄水方法。
( 8 ) A water purification method characterized by purifying water using the water purifier according to ( 7 ).

本発明によれば、浄水器内部に溜まった水の細菌増殖を長期間に渡って抑制することができ、安全性の高い飲料水を製造できる浄水器、浄水システム、および浄水方法を提供することができる。   According to the present invention, it is possible to provide a water purifier, a water purification system, and a water purification method capable of suppressing bacterial growth of water accumulated in a water purifier for a long period of time and producing highly safe drinking water. Can do.

以下に、本発明の望ましい実施の形態を説明する。なお、本発明は以下に示す実施の態様に限定されるものではない。   Hereinafter, preferred embodiments of the present invention will be described. In addition, this invention is not limited to the aspect shown below.

本発明は、抗菌剤を含む成形体をチューブの内部に有するチューブ構造体であって、前記チューブ構造体を形成するチューブは高分子材料からなり、かつ、前記抗菌剤を含む成形体が前記チューブと一体に成形されることなく形成されたチューブ構造体を提供するものである。さらに、かかるチューブ構造体を浄水出口側の通水部に設置した浄水器とし、当該浄水器の浄水出口側の通水部を通過する、または当該浄水器の浄水出口側の通水部内で滞留する水を、前記抗菌剤を含む成形体と接触させることにより、抗菌剤を前記水中に徐々に溶出させて、前記浄水出口側の通水部の細菌汚染を効果的に防止することができる浄水器、浄水システムおよび浄水方法を提供するものである。   The present invention is a tube structure having a molded body containing an antibacterial agent inside the tube, the tube forming the tube structure is made of a polymer material, and the molded body containing the antibacterial agent is the tube. And a tube structure formed without being molded integrally with each other. Furthermore, the tube structure is a water purifier installed in the water purifying outlet side water passage, and passes through the water purifying outlet side water purifying section of the water purifier or stays in the water purifying outlet side water purifying section of the water purifier. Purified water that can effectively prevent bacterial contamination of the water passage portion on the water purification outlet side by gradually eluting the antibacterial agent into the water by bringing the water to be brought into contact with the molded article containing the antibacterial agent. Water purifier, water purification system and water purification method.

本発明のチューブに用いられる高分子材料は、加熱溶融して成形可能な樹脂組成物であることが好ましく、かかる樹脂組成物としては、ポリアミド、ポリエステル、ポリスルホン、ポリエチレン、エチレン・酢酸ビニル共重合体、ポリプロピレン、ポリアクリロニトリル、ポリビニルアルコール、およびポリフッ化ビニリデンからなる群から選ばれる少なくとも1種を含んでなる樹脂組成物であることが好ましい。さらに好ましい樹脂組成物としては、有機溶媒に可溶なポリスルホンやポリフッ化ビニリデンなどが挙げられる。なお、ここで言う成形可能とは、熱を加えると高分子材料の原料全体が軟らかくなり、流動性を持つ有機高分子化合物であることを意味する。   The polymer material used for the tube of the present invention is preferably a resin composition that can be molded by heating and melting, and examples of the resin composition include polyamide, polyester, polysulfone, polyethylene, and ethylene / vinyl acetate copolymer. And a resin composition comprising at least one selected from the group consisting of polypropylene, polyacrylonitrile, polyvinyl alcohol, and polyvinylidene fluoride. More preferable resin compositions include polysulfone and polyvinylidene fluoride which are soluble in an organic solvent. The term “moldable” as used herein means an organic polymer compound having fluidity because the entire raw material of the polymer material becomes soft when heat is applied.

かかる高分子材料を用いて本発明のチューブとするためには、例えば、前記高分子材料を加熱溶融した後に、金型内に押し込んで直接チューブを成形する方法(「金型成形法」と称する。)や、前記高分子材料を加熱溶融し、板、棒、管などに成形した成形体に孔を開けたり、曲げたりして最終的にチューブとする方法(「成形後加工法」と称する。)が採用され得るが、一回的に成形することが可能な金型成形法が好ましく用いられる。   In order to obtain the tube of the present invention using such a polymer material, for example, the polymer material is heated and melted and then pressed into a mold to directly mold the tube (referred to as “mold molding method”). ), Or a method in which the polymer material is heated and melted and a hole is formed or bent in a molded body formed into a plate, rod, tube or the like (hereinafter referred to as a “post-molding processing method”). .) Can be employed, but a mold forming method that can be formed once is preferably used.

また、本発明のチューブは、単数の樹脂組成物、または複数の樹脂組成物の混合物を押出成形したり、複数の樹脂組成物を共押出成形したりすることなどによっても得られる。本発明のチューブが、複数の樹脂組成物を共押出成形することにより得られる方法としては、例えば、ポリエチレン、またはポリプロピレンからなる内層チューブの外周面に、可塑剤を添加せずに、水素添加スチレン・ブタジエン・ラバー40〜90重量%と、エチレン系コポリマー60〜10重量%の配合割合で混合して得られる混合樹脂を用いて外層チューブを一体的に積層する方法などが挙げられる。かかる方法により得られたチューブの内層チューブの厚みは1mm以下であって、かつ内外層チューブの全肉厚が4mm以下であることが好ましい。   The tube of the present invention can also be obtained by extruding a single resin composition or a mixture of a plurality of resin compositions, coextruding a plurality of resin compositions, and the like. Examples of the method of obtaining the tube of the present invention by coextrusion of a plurality of resin compositions include, for example, hydrogenated styrene without adding a plasticizer to the outer peripheral surface of an inner layer tube made of polyethylene or polypropylene. -The method of laminating | stacking an outer layer tube integrally using the mixed resin obtained by mixing by the mixing | blending ratio of 40 to 90 weight% of butadiene rubber and 60 to 10 weight% of ethylene-type copolymers, etc. are mentioned. The thickness of the inner layer tube of the tube obtained by such a method is preferably 1 mm or less, and the total thickness of the inner and outer layer tubes is preferably 4 mm or less.

なお、ポリエチレン、ポリプロピレン、あるいはエチレン・酢酸ビニル共重合体からなり、可塑剤を含有しない単層のチューブを用いる場合、柔軟性(撓み性)が十分でないことがあり、例えば、アンダーシンク型や据置型の浄水器本体を設置する際や、狭いスペース内(例えば、台所のシンク下)に配置する際に、配管を屈曲させる作業の効率が悪くなることがあるため、共押出成形により積層チューブとすることで柔軟性を改善することが好ましい。   In addition, when a single-layer tube made of polyethylene, polypropylene, or ethylene / vinyl acetate copolymer and containing no plasticizer is used, flexibility (flexibility) may not be sufficient. For example, an undersink type or stationary When installing a water purifier body of a mold or when placing it in a narrow space (for example, under a kitchen sink), the efficiency of the work of bending the pipe may be deteriorated. It is preferable to improve the flexibility.

本発明のチューブ構造体を形成する抗菌剤を含む成形体を、前記チューブ内部に配置して、チューブ構造体とする方法としては、該抗菌剤を含む成形体がチューブから飛び出すことを防止する構成とすることが好ましく、例えば、チューブ端面に逆止弁やメッシュフィルターを用いることが好ましく採用される。   As a method of disposing the molded body containing the antibacterial agent forming the tube structure of the present invention inside the tube to form the tube structure, the molded body containing the antibacterial agent is prevented from jumping out of the tube. For example, it is preferable to use a check valve or a mesh filter on the end face of the tube.

本発明のチューブ構造体を形成する成形体に含まれる抗菌剤は、銀単体または銀化合物であることが好ましい。ここで、銀化合物としては、ハロゲン化銀、硝酸銀、硫酸銀、硫化銀、酸化銀、炭酸銀、リン酸銀などが例示される。また、かかる抗菌剤を含む成形体は、銀単体または銀化合物を物質の表面ないし内部に付着させた銀を含有する担体を含んでなることが好ましく、中でも、担体として活性炭を用いた銀添着活性炭や、銀ゼオライト、銀リン酸ジルコニウム、銀リン酸亜鉛カルシウム、銀リン酸カルシウム、銀ガラスが好ましく用いられる。また、イオン交換機能を持つゼオライトを担体とした銀ゼオライトを選択した場合には、銀イオンをゼオライト内部の陽イオンとあらかじめ置換して担持させておくことができ、銀単体を水中に溶出しやすい形態で保持することができる点で好ましく用いられる。   The antibacterial agent contained in the molded body forming the tube structure of the present invention is preferably a silver simple substance or a silver compound. Here, examples of the silver compound include silver halide, silver nitrate, silver sulfate, silver sulfide, silver oxide, silver carbonate, and silver phosphate. In addition, the molded article containing such an antibacterial agent preferably comprises a carrier containing silver in which a silver simple substance or a silver compound is adhered to the surface or inside of the substance, and among them, a silver-impregnated activated carbon using activated carbon as the carrier. Silver zeolite, silver zirconium phosphate, silver zinc calcium phosphate, silver calcium phosphate, and silver glass are preferably used. In addition, when a silver zeolite with a zeolite having an ion exchange function as a carrier is selected, the silver ion can be preliminarily substituted with a cation inside the zeolite and supported, and the silver simple substance is easily eluted in water. It is preferably used in that it can be held in a form.

ここで、本発明に用いられる成形体に含まれる前記銀添着活性炭の形状は、球状、粉末状、繊維状、顆粒状、破砕状等のいずれでも良いが、中でも粉末状または粒状が均一に混合することができるため好ましい。かかる銀添着活性炭の製造方法としては、例えば、硝酸銀溶液中に活性炭を入れ硝酸銀を吸着させながら活性炭表面近傍で還元処理を行い、金属銀(銀単体)、酸化銀、塩化銀を析出させ、その後、還元処理後の活性炭を洗浄し、硝酸イオンを取り除き脱水・乾燥を行うことで達成できる。   Here, the shape of the silver-impregnated activated carbon contained in the molded product used in the present invention may be any of spherical, powdery, fibrous, granular, crushed, etc., and among these, the powdery or granular are mixed uniformly. This is preferable because it can be performed. As a method for producing such silver impregnated activated carbon, for example, activated carbon is placed in a silver nitrate solution and reduced near the surface of the activated carbon while adsorbing silver nitrate to deposit metallic silver (silver simple substance), silver oxide, and silver chloride, and then This can be achieved by washing the activated carbon after the reduction treatment, removing nitrate ions and performing dehydration and drying.

本発明に用いられる成形体に含まれる抗菌剤は、銀添着活性炭の場合、該成形体が水中の酸素や微量の塩素などの酸化剤と接触することにより、前記銀添着活性炭の表面近傍に析出し、析出した抗菌剤が酸化されて溶出する。   In the case of silver-impregnated activated carbon, the antibacterial agent contained in the molded product used in the present invention is deposited near the surface of the silver-immobilized activated carbon by contacting the molded product with an oxidizing agent such as oxygen in water or a small amount of chlorine. Then, the deposited antibacterial agent is oxidized and eluted.

このようにして水中に溶出した抗菌剤の濃度は、例えば、抗菌剤が銀の担体または銀化合物である場合、該抗菌剤を含む成形体を内部に有するチューブ構造体に通水して得られた浄水をガラス瓶などの容器に採取し、その体積の約1%の硝酸を添加して銀を完全にイオン化した後、ICP(誘導結合プラズマ発光分析装置)もしくは原子吸光分析法で測定をすることができる。このようにして測定した水中に溶出した銀イオン濃度は、米国環境保護庁(EPA)の飲料水質ガイドラインに健康へのリスクは無いと記載されている100ppb以下であれば良く、また、細菌の数が増加しない抗菌効果の点で5ppb以上さらに好ましくは10ppb以上であれば細菌の数が減少する殺菌効果も期待できるため、さらに望ましい。   The concentration of the antibacterial agent eluted in water in this way is obtained, for example, by passing water through a tube structure having a molded body containing the antibacterial agent inside when the antibacterial agent is a silver carrier or a silver compound. The collected water is collected in a glass bottle or other container, nitric acid is added to about 1% of its volume to completely ionize the silver, and then measured by ICP (Inductively Coupled Plasma Atomic Emission Spectrometer) or atomic absorption spectrometry. Can do. The concentration of silver ions eluted in the water thus measured may be 100 ppb or less as described in the United States Environmental Protection Agency (EPA) drinking water quality guideline as having no risk to health, and the number of bacteria In view of the antibacterial effect that does not increase, 5 ppb or more, more preferably 10 ppb or more, is more desirable because a bactericidal effect that reduces the number of bacteria can be expected.

成形体に含まれた抗菌剤の水中への溶出は、長期間に渡って細菌の繁殖抑制効果が持続するように、かつ、通水初期に大部分が溶出して飲料水中に過剰に含まれないようにするため、抗菌剤単独でまたは抗菌剤を含んでなる担体を、成形体に用いられる高分子材料に練り混んで成形したり、N,N-ジメチルホルムアミド(DMF)やN,N-ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリドン(NMP)などの有機溶媒に溶解した成形体に用いられる高分子材料中に、抗菌剤単独でまたは抗菌剤を含んでなる担体を混合して成形したりすることが好ましく採用される。あるいは、抗菌剤単独でまたは抗菌剤を含んでなる担体を表面にコーティングしたり、平膜状の成形体の内層に挟んだり、または筒状の中空部に充填したりすることも、水に接触しない抗菌剤を減らして、効果的に抗菌剤の溶出持続性を向上することができる。   The antibacterial agent contained in the molded product is dissolved in water so that the effect of inhibiting bacterial growth can be maintained over a long period of time, and most of the antibacterial agent is eluted in the initial stage of water flow and is excessively contained in the drinking water. In order to prevent this, the antibacterial agent alone or a carrier containing the antibacterial agent is kneaded and mixed with a polymer material used for the molded article, or N, N-dimethylformamide (DMF) or N, N- An antibacterial agent alone or a carrier containing the antibacterial agent is mixed in a polymer material used for a molded article dissolved in an organic solvent such as dimethylacetamide (DMAc) or N-methyl-2-pyrrolidone (NMP). It is preferably employed to mold. Alternatively, the antibacterial agent alone or a carrier containing the antibacterial agent may be coated on the surface, sandwiched between the inner layers of a flat membrane-like molded product, or filled into a cylindrical hollow part, or in contact with water. The antibacterial agent that is not used can be reduced, and the elution persistence of the antibacterial agent can be effectively improved.

また、前記成形体の形状は、平膜状、繊維状、棒状、筒状等のいずれの形状でも良いが、ハンドリング性や容易に交換可能であることから筒状が好ましい。なお、ここでいう筒状の成形体には、中空糸膜状に成形された成形体も含まれるものとする。他方、本発明で用いられる抗菌剤を含む成形体のかわりに、抗菌剤を含んだ粒状体が用いられる場合、微粉が流出し、それを飲用する危険がある。従って、図2〜5に示すように平膜状、繊維状、棒状、筒状の成形体とすることにより上記危険性を回避できるほか、取り扱いや組立および交換が容易となる。   Further, the shape of the molded body may be any shape such as a flat membrane shape, a fiber shape, a rod shape, and a cylindrical shape, but a cylindrical shape is preferable because it is easy to handle and can be easily replaced. In addition, the cylindrical molded body here also includes a molded body molded into a hollow fiber membrane. On the other hand, when a granular material containing an antibacterial agent is used instead of the molded product containing the antibacterial agent used in the present invention, there is a risk that fine powder will flow out and be consumed. Therefore, as shown in FIGS. 2 to 5, the above-mentioned danger can be avoided by using a flat film-like, fiber-like, rod-like, or cylindrical shaped body, and handling, assembly, and replacement are facilitated.

本発明に用いられる抗菌剤を含む成形体を製造する場合において、成形体に用いられる高分子材料に親水性高分子を添加する方法も好ましく採用される。このように親水性高分子を添加することは、前記成形体に用いられる高分子材料に親水性や高い含水率を付与する上で好ましく、かかる親水性高分子を前記高分子材料中に1〜30重量%含まれるように調製するのが良い。また、前記親水性高分子は、前記成形体を成形した後の熱処理や、有機溶媒で抽出・除去することにより当該成形体の細孔が形成され、かつ、前記親水性高分子の分子量が大きくなると当該細孔の孔径が大きくなるので好ましい。すなわち、成形体に形成された細孔の孔径を大きくすることにより、前記成形体内部の抗菌剤と水を接触させる機会を増大させ、抗菌剤の溶出を増進させる効果が得られるためである。   In the case of producing a molded article containing the antibacterial agent used in the present invention, a method of adding a hydrophilic polymer to the polymer material used for the molded article is also preferably employed. The addition of a hydrophilic polymer in this manner is preferable for imparting hydrophilicity and high water content to the polymer material used in the molded body. It is good to prepare so that it may contain 30 weight%. In addition, the hydrophilic polymer is formed with pores of the molded body by heat treatment after molding the molded body or extracted / removed with an organic solvent, and the hydrophilic polymer has a large molecular weight. This is preferable because the pore diameter of the pores becomes large. That is, by increasing the pore diameter of the pores formed in the molded body, it is possible to increase the chance of bringing the antimicrobial agent inside the molded body into contact with water and to enhance the elution of the antimicrobial agent.

かかる親水性高分子としては、例えば、ポリエチレングリコール(PEG300、平均分子量300)やポリビニルピロリドン(PVP、K30、分子量4万)などの親水性に優れた高分子を使用することができる。一方、前記成形体からの抗菌剤の溶出により抗菌剤の濃度が100ppb以上になる場合には、親水性高分子を添加しない態様が好ましく採用される。   As such a hydrophilic polymer, for example, a polymer having excellent hydrophilicity such as polyethylene glycol (PEG 300, average molecular weight 300) and polyvinylpyrrolidone (PVP, K30, molecular weight 40,000) can be used. On the other hand, when the concentration of the antibacterial agent is 100 ppb or more due to the elution of the antibacterial agent from the molded article, an embodiment in which no hydrophilic polymer is added is preferably employed.

本発明に用いられる抗菌剤を含む成形体は、例えば以下のようにして成形することができる。すなわち、成形体に用いられる高分子材料としてポリスルホンをDMAcに溶解した後、銀添着活性炭を添加して均一混合してポリマー溶液とする。そして、このポリマー溶液をガラス板上に流延し、均一の厚みになるように引き伸ばした後、水中に投入して凝固させる。このようにして得られた平膜を、熱水洗浄して過剰のDMAcを除去後、乾燥して銀添着活性炭入り平膜とする。さらには、平膜にする代わりに該ポリマー溶液をモノフィラメントや、中空糸膜などにコーティングする方法などによって、繊維状物、棒状物、ならびに筒状物が得られ、これらを熱水洗浄後、乾燥して銀添着活性炭入り成形体が得られるのである。   The molded body containing the antibacterial agent used in the present invention can be molded, for example, as follows. That is, after dissolving polysulfone as a polymer material used in the molded body in DMAc, silver-impregnated activated carbon is added and uniformly mixed to obtain a polymer solution. The polymer solution is cast on a glass plate, stretched to a uniform thickness, and then poured into water to be solidified. The flat membrane thus obtained is washed with hot water to remove excess DMAc and then dried to obtain a flat membrane with silver-impregnated activated carbon. Furthermore, instead of using a flat membrane, a fibrous material, a rod-like material, and a cylindrical material can be obtained by coating the polymer solution onto a monofilament, a hollow fiber membrane, etc., which are washed with hot water and then dried. Thus, a molded article with silver-impregnated activated carbon is obtained.

本発明の浄水器としては、給水栓に連結して流入する原水をろ過する浄水器用カートリッジを備えており、前記カートリッジには活性炭に代表される吸着剤層と中空糸膜束とが原水の流れ方向にこの順で配置されているものであって、前記チューブ構造体を当該浄水器の浄水出口側の通水部に設置されたものが例示される。吸着剤層では水道水中の遊離残留塩素を分解するのでカルキ臭が除去され、中空糸膜束では鉄サビや細菌などが除去され、より安全で美味しい水を供給することができる。
ここで言う中空糸膜束とは、例えば複数本の中空糸膜を束ねてストレート状或いはU字状に折り曲げた中空糸膜の集合体をいう。かかる中空糸膜の孔径は、10μm以下であると好ましく、さらに好ましくは2μm以下である。さらに微小な固体を除去する場合には、孔径0.1μm以下のものを用いると好ましい。その素材としては、ポリアクリロニトリル、ポリフェニレンスルフォン、ポリフェニレンスルフィドスルフォン、ポリフッ化ビニリデン、ポリプロピレン、ポリエチレン、ポリスルホン、ポリビニルアルコール、酢酸セルロースやセラミック等の有機・無機素材からなる群から選ばれる少なくとも1種を含んでいると好ましく、さらに好ましくはポリスルホンやポリフッ化ビニリデンが良い。
The water purifier of the present invention is provided with a water purifier cartridge that is connected to a water faucet and filters raw water flowing in, and the cartridge has an adsorbent layer typified by activated carbon and a hollow fiber membrane bundle flowing in the raw water. The thing arrange | positioned in this order in a direction, Comprising: What installed the said tube structure in the water flow part by the side of the water purification outlet of the said water purifier is illustrated. In the adsorbent layer, free residual chlorine in tap water is decomposed, so the odor is removed. In the hollow fiber membrane bundle, iron rust and bacteria are removed, and safer and more delicious water can be supplied.
The hollow fiber membrane bundle mentioned here refers to an aggregate of hollow fiber membranes, for example, a bundle of a plurality of hollow fiber membranes and bent into a straight shape or a U shape. The hole diameter of such a hollow fiber membrane is preferably 10 μm or less, more preferably 2 μm or less. Furthermore, when removing a fine solid, it is preferable to use a thing with a hole diameter of 0.1 micrometer or less. The material includes at least one selected from the group consisting of organic and inorganic materials such as polyacrylonitrile, polyphenylene sulfone, polyphenylene sulfide sulfone, polyvinylidene fluoride, polypropylene, polyethylene, polysulfone, polyvinyl alcohol, cellulose acetate and ceramics. It is preferable to use polysulfone or polyvinylidene fluoride.

本発明の浄水システムは、前記浄水器と給水栓と吐出口とを備えてなり、前記チューブ構造体を浄水側チューブとして用いられることを特徴とする。ビルトインタイプのいわゆるアンダーシンク型の浄水器の設置図を示す図6を用いて説明すると、本発明の浄水システムは図6に示すように給水栓5と、前記浄水器用カートリッジ6と、水道蛇口7と、浄水器用バルブ8と、吐出口9とからなっており、給水栓5と浄水器用カートリッジ6が原水側チューブ3および浄水側チューブ4と接続されている。このようなアンダーシンク型の浄水システムは、流し台の上部には水道蛇口7と、浄水器用カートリッジ8と、吐出口9のみが存在し、その他の部材は流し台の下部に収納されるため流し台周辺の見栄えに影響を及ぼさず好適である。   The water purification system of the present invention comprises the water purifier, a water faucet, and a discharge port, and the tube structure is used as a water purification side tube. If it demonstrates using FIG. 6 which shows the installation figure of what is called an undersink type water purifier of a built-in type, the water purifying system of this invention will show the water tap 5, the said water purifier cartridge 6, and the water tap 7 as shown in FIG. And the water purifier valve 8 and the discharge port 9, and the water faucet 5 and the water purifier cartridge 6 are connected to the raw water side tube 3 and the water purification side tube 4. In such an undersink type water purification system, only the water tap 7, the water purifier cartridge 8 and the discharge port 9 exist at the upper part of the sink, and the other members are housed in the lower part of the sink, so It is suitable without affecting the appearance.

本発明の浄水方法は、アンダーシンク型の浄水器の設置図を示す図6を参照しながら説明する。前記浄水器用カートリッジ6は略円柱型の形をなしており、水道蛇口7に設けられた浄水器用バルブ8を開くと、水道水が原水受入口から浄水器用カートリッジ6の内部に流入する。水道水はカートリッジ内を流れ、活性炭で遊離塩素が分解され、次いで中空糸膜モジュールの中空糸膜により鉄サビや細菌などが除去され、浄水として浄水供給口から水道蛇口7に供給され、水道蛇口の吐出口9から吐出される。   The water purification method of this invention is demonstrated referring FIG. 6 which shows the installation figure of an undersink type water purifier. The water purifier cartridge 6 has a substantially cylindrical shape. When the water purifier valve 8 provided in the water tap 7 is opened, tap water flows into the water purifier cartridge 6 from the raw water receiving port. Tap water flows in the cartridge, free chlorine is decomposed by activated carbon, iron rust, bacteria, etc. are then removed by the hollow fiber membrane of the hollow fiber membrane module, and the purified water is supplied to the water tap 7 from the purified water supply port. From the discharge port 9.

水道蛇口7の浄水器用バルブ8を閉じると通水が停止し、浄水器用カートリッジ6の浄水供給口から水道蛇口の吐出口9までの間に、浄水が滞留する。   When the water purifier valve 8 of the water faucet 7 is closed, the water flow stops, and the purified water stays between the water purifying supply port of the water purifier cartridge 6 and the discharge port 9 of the water faucet.

そして、浄水器の浄水出口側の通水部に滞留した水は、殺菌効果を有する塩素が除去されているため、吐出口の先端から一般細菌が侵入して繁殖し、やがては浄水器用カートリッジにまで及ぶ危険がある。特にアンダーシンク型の浄水システムはその構造上、チューブが長くならざるを得ないため、この部分で一般細菌が繁殖しやすくなっている。そのため、本発明のチューブ構造体を浄水器の浄水出口側の通水部に設置して、前記浄水システムを用いた浄水方法を採用することにより細菌汚染のない安全で美味しい水を得ることができるのである。特に、本発明のチューブ構造体は、抗菌剤を含む成形体が前記チューブと一体に成形されることなく形成されているので、抗菌剤を含む成形体のみを交換することが可能であり、長期間に渡って細菌増殖が抑制できるという優れた効果が得られることになる。   And the water staying in the water passage on the water purifier outlet side of the water purifier has been sterilized and chlorine has been removed, so that general bacteria will invade and propagate from the tip of the discharge port. There is a risk that extends to In particular, the undersink type water purification system has a long tube due to its structure, so that general bacteria can easily propagate in this area. Therefore, safe and delicious water free from bacterial contamination can be obtained by installing the tube structure of the present invention in the water passage on the water purification outlet side of the water purifier and adopting the water purification method using the water purification system. It is. In particular, the tube structure of the present invention is formed without the molded body containing the antibacterial agent being molded integrally with the tube, so that it is possible to replace only the molded body containing the antibacterial agent. An excellent effect that bacterial growth can be suppressed over a period of time can be obtained.

以下に実施例を記載して本発明をより具体的に説明する。なお、本発明はこの実施例に何ら限定されるものではない。なお、銀イオンの溶出試験およびポリフッ化ビニリデン(PVDF)中空糸膜の製造方法は以下の方法で行った。   Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited to this example. In addition, the elution test of a silver ion and the manufacturing method of a polyvinylidene fluoride (PVDF) hollow fiber membrane were performed with the following method.

[銀イオンの溶出試験(銀イオン濃度測定)]
(1)各浸漬条件における銀イオン濃度
飲料水100ml中に、実施例および比較例で得られた抗菌剤を含む成形体を入れ、40℃静置下で24時間または120時間浸漬した。該浸漬液を採取し、その体積の約1%の硝酸を添加して銀を完全にイオン化した後、ICPにて銀イオン濃度を測定し、表1に示した。
[Silver ion dissolution test (silver ion concentration measurement)]
(1) Silver ion concentration in each immersion condition The molded object containing the antibacterial agent obtained by the Example and the comparative example was put in 100 ml of drinking water, and it was immersed for 24 hours or 120 hours at 40 degreeC stationary. The immersion liquid was sampled, and about 1% of the volume of nitric acid was added to completely ionize the silver, and then the silver ion concentration was measured by ICP.

(2)通水/滞水時における銀イオン濃度
チューブ内に抗菌剤を含む成形体を入れ、遊離塩素が分解された水を4L/分の通水量で所定時間通水後停止した。1晩(15時間)滞水後、チューブ内の滞留水を抜き出し、滞留水中の銀イオン濃度を測定した。この通水/滞水操作を通水量が2万Lになるまで繰り返し、各通水時点で銀イオン濃度を測定し、表2に示した。
(2) Silver ion concentration at the time of water flow / stagnation The molded article containing the antibacterial agent was placed in the tube, and the water in which free chlorine was decomposed was stopped after water flow at a flow rate of 4 L / min for a predetermined time. After staying overnight (15 hours), the stagnant water in the tube was withdrawn, and the silver ion concentration in the stagnant water was measured. This water flow / water retention operation was repeated until the water flow amount reached 20,000 L, and the silver ion concentration was measured at each time of water flow.

[ポリフッ化ビニリデン(PVDF)中空糸膜の製造方法]
重量平均分子量42万のフッ化ビニリデンホモポリマー30重量%とジメチルスルホキシド70重量%を120℃で溶解させてポリマー溶液を得た。乾式長2cmでチューブインオリフィス(オリフィス外径2.0mm、チューブ外径0.8mm、チューブ内径0.5mm)のオリフィスから前記ポリマー溶液を、チューブから80重量%ジメチルスルホキシド水系液を共に押出して、液温25℃の80重量%ジメチルスルホキシド水系液中で凝固させ、中空糸を得た。得られた中空糸を30℃で水洗した。引き続き80℃の熱水浴に8m/分で供給して、熱水浴中で1.5倍(引取速度12m/分)に延伸した後、さらに緊張下に11.2m/分に減速して7%の弛緩率で弛緩させ、70℃の温水中で脱溶媒して中空糸膜を得た。この中空糸膜は、純水透過量3.1m/(m・h・100kPa)、内径0.86mm、外径1.32mm、強度5.2MN/m以上、伸度87%であった。
[Method for producing polyvinylidene fluoride (PVDF) hollow fiber membrane]
A polymer solution was obtained by dissolving 30% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 420,000 and 70% by weight of dimethyl sulfoxide at 120 ° C. Extrude the polymer solution from the orifice of 2 cm dry length and tube-in orifice (orifice outer diameter 2.0 mm, tube outer diameter 0.8 mm, tube inner diameter 0.5 mm), and 80 wt% dimethyl sulfoxide aqueous solution from the tube together. A hollow fiber was obtained by coagulation in an 80% by weight dimethyl sulfoxide aqueous solution at a liquid temperature of 25 ° C. The obtained hollow fiber was washed with water at 30 ° C. Then, after supplying to a hot water bath at 80 ° C. at 8 m / min and stretching 1.5 times (take-off speed 12 m / min) in the hot water bath, it was further decelerated to 11.2 m / min under tension. A hollow fiber membrane was obtained by relaxing at a relaxation rate of 7% and removing the solvent in warm water at 70 ° C. This hollow fiber membrane had a pure water permeability of 3.1 m 3 / (m 2 · h · 100 kPa), an inner diameter of 0.86 mm, an outer diameter of 1.32 mm, a strength of 5.2 MN / m 2 or more, and an elongation of 87%. It was.

[実施例1]
<抗菌剤を含む成形体>
ポリスルホン(AMOCO社製)20gをDMAc(98%、和光純薬)180gに加え、90℃に加熱しながら2時間攪拌して溶解した後、室温まで冷却して銀添着活性炭(ヤシ殻を原料とした粒状活性炭を母体とし、その表面または内部に銀化合物を1重量%担持させた粒度が24〜42メッシュのもの)1gを加えて混合した。該ポリマー溶液中にポリフッ化ビニリデン(PVDF)中空糸膜(内径0.86mm、外径1.31mm)を1分間浸漬後、水中に投入して凝固させた。この後、90℃熱水で10分間抽出・洗浄した後、40℃で乾燥して抗菌剤を含む成形体である銀添着活性炭コーティングPVDF中空糸膜を得た。
[Example 1]
<Molded product containing antibacterial agent>
20 g of polysulfone (manufactured by AMOCO) was added to 180 g of DMAc (98%, Wako Pure Chemical Industries, Ltd.), dissolved by stirring for 2 hours while heating to 90 ° C., cooled to room temperature, and then silver-impregnated activated carbon (coconut shell was used as a raw material) 1 g of a granular particle having a particle size of 24 to 42 mesh with 1% by weight of a silver compound supported on the surface or inside thereof was added and mixed. A polyvinylidene fluoride (PVDF) hollow fiber membrane (inner diameter 0.86 mm, outer diameter 1.31 mm) was immersed in the polymer solution for 1 minute, and then poured into water to be solidified. Then, after extracting and washing with 90 ° C. hot water for 10 minutes, it was dried at 40 ° C. to obtain a silver-impregnated activated carbon-coated PVDF hollow fiber membrane that was a molded article containing an antibacterial agent.

また、銀添着活性炭の代わりに銀ゼオライト(シナネンゼオミック)を用いて同様にして銀ゼオライトコーティングPVDF中空糸膜を得た。   Further, a silver zeolite-coated PVDF hollow fiber membrane was obtained in the same manner using silver zeolite (Sinanen Zeomic) instead of silver-impregnated activated carbon.

<チューブ>
ポリエチレンチューブ(山一化工製、外径18mm、内径15mm、長さ60cm)を用いた。
<Tube>
A polyethylene tube (manufactured by Yamaichi Kako, outer diameter 18 mm, inner diameter 15 mm, length 60 cm) was used.

<チューブ構造体>
上記チューブの一端に密栓をし、図2のように抗菌剤を含む成形体(銀添着活性炭コーティングPVDF中空糸膜、長さ55cm)0.55gを挿入後、飲料水100mlを充填して密栓をした。該チューブを40℃静置下で24時間放置した後、密栓を外して飲料水を抜き出し、飲料水中の銀イオン濃度を測定したところ、33ppbであった。
<Tube structure>
The tube is sealed at one end, and 0.55 g of a molded body containing an antibacterial agent (silver-impregnated activated carbon coated PVDF hollow fiber membrane, length 55 cm) is inserted as shown in FIG. did. The tube was left standing at 40 ° C. for 24 hours, then the cap was removed, the drinking water was extracted, and the silver ion concentration in the drinking water was measured and found to be 33 ppb.

[実施例2]
実施例1記載の抗菌剤を含む成形体(銀添着活性炭コーティングPVDF中空糸膜、長さ55cm)0.55gを飲料水100ml容試薬ビンに入れ、40℃静置下で浸漬した。24時間毎に飲料水を全量入れ替えると共に、飲料水中の銀イオン濃度をその都度測定した。浸漬時間は120時間まで行った。銀イオン濃度は120時間後も検出でき、平均値は30ppbであった。
[Example 2]
0.55 g of a molded product (silver-impregnated activated carbon-coated PVDF hollow fiber membrane, length 55 cm) containing the antibacterial agent described in Example 1 was placed in a 100-ml reagent bottle of drinking water and immersed at 40 ° C. while standing still. The total amount of drinking water was changed every 24 hours, and the silver ion concentration in the drinking water was measured each time. The immersion time was up to 120 hours. The silver ion concentration could be detected after 120 hours, and the average value was 30 ppb.

[実施例3]
ポリスルホン(AMOCO社製)20gをDMAc(98%、和光純薬)180gに加え、90℃に加熱しながら2時間攪拌して溶解した後、PEG(PEG300、平均分子量300、和光純薬)4gを加えて均一溶液とした。室温に冷却後、銀添着活性炭(ヤシ殻を原料とした粒状活性炭を母体とし、その表面または内部に銀化合物を1重量%担持させ、粒度が24〜42メッシュのもの)1gを加えて混合した。該ポリマー溶液中にポリフッ化ビニリデン(PVDF)中空糸膜(内径0.86mm、外径1.32mm)を1分間浸漬後、水中に投入して凝固させた。この後、90℃熱水で10分間抽出・洗浄した後、40℃で乾燥して抗菌剤を含む成形体である銀添着活性炭コーティングPVDF中空糸膜を得た。
[Example 3]
After adding 20 g of polysulfone (manufactured by AMOCO) to 180 g of DMAc (98%, Wako Pure Chemical Industries), stirring and dissolving for 2 hours while heating to 90 ° C., 4 g of PEG (PEG 300, average molecular weight 300, Wako Pure Chemical Industries) was added. In addition, a uniform solution was obtained. After cooling to room temperature, 1 g of silver-impregnated activated carbon (granular activated carbon made from coconut shell as a base material, carrying 1% by weight of a silver compound on its surface or inside and having a particle size of 24 to 42 mesh) was added and mixed. . A polyvinylidene fluoride (PVDF) hollow fiber membrane (inner diameter 0.86 mm, outer diameter 1.32 mm) was immersed in the polymer solution for 1 minute, and then poured into water to be solidified. Then, after extracting and washing with 90 ° C. hot water for 10 minutes, it was dried at 40 ° C. to obtain a silver-impregnated activated carbon-coated PVDF hollow fiber membrane that was a molded article containing an antibacterial agent.

図2のように抗菌剤を含む成形体(銀添着活性炭コーティングPVDF中空糸膜、長さ55cm)0.55gを飲料水100ml容試薬ビンに入れ、40℃静置下で浸漬した。24時間毎に飲料水全量を入れ替えると共に、飲料水中の銀イオン濃度を測定した。浸漬時間は120時間まで行った。銀イオン濃度は120時間後も検出でき、平均値は35ppbであった。   As shown in FIG. 2, 0.55 g of a molded product containing an antibacterial agent (silver-impregnated activated carbon-coated PVDF hollow fiber membrane, length 55 cm) was placed in a 100 ml drinking water reagent bottle and immersed under standing at 40 ° C. The total amount of drinking water was changed every 24 hours, and the silver ion concentration in the drinking water was measured. The immersion time was up to 120 hours. The silver ion concentration could be detected after 120 hours, and the average value was 35 ppb.

[実施例4]
内層チューブ(材質:ポリエチレン)と外層チューブが共押出成形されたチューブ(内径10mm、長さ80cm、容積60ml)内に、実施例1記載の抗菌剤を含む成形体(銀添着活性炭コーティングPVDF中空糸膜、77cmを3本)2.32gを挿入した。浄水器側のチューブには逆止弁、他端にはメッシュフィルターがあるので抗菌剤を含む成形体が飛び出すことは無い。該PVDF中空糸膜からの銀溶出寿命を測定するために、飲料水を活性炭および中空糸膜が充填された浄水器に通水して、遊離塩素が分解された水を上記チューブに4L/分の通水量で8時間通水後停止した。15時間滞水後、チューブ内の滞留水を抜き出し、滞留水中の銀イオン濃度を測定した。この通水/滞水操作を通水量が2万Lになるまで繰り返し、各通水時点で銀イオン濃度を測定した。その結果、2万L通水後15時間滞留水中の銀イオン濃度は28ppbであり、まだ銀イオンの溶出寿命を保持しており、かつ抗菌効果があるとされる5ppb以上であった。
[Example 4]
A molded body (silver-impregnated activated carbon coated PVDF hollow fiber) containing the antibacterial agent described in Example 1 in a tube (inner diameter 10 mm, length 80 cm, volume 60 ml) in which an inner layer tube (material: polyethylene) and an outer layer tube are co-extruded. Membrane, 3 pieces of 77 cm) 2.32 g were inserted. Since the tube on the water purifier side has a check valve and the other end has a mesh filter, the molded body containing the antibacterial agent does not pop out. In order to measure the elution life of silver from the PVDF hollow fiber membrane, drinking water was passed through a water purifier filled with activated carbon and a hollow fiber membrane, and water with free chlorine decomposed was passed through the tube at 4 L / min. The water flow was stopped after 8 hours. After 15 hours of stagnation, the stagnant water in the tube was withdrawn, and the silver ion concentration in the stagnant water was measured. This water flow / water retention operation was repeated until the water flow amount reached 20,000 L, and the silver ion concentration was measured at each water flow point. As a result, the silver ion concentration in the stagnation water for 15 hours after passing 20,000 L was 28 ppb, which was 5 ppb or more, which still holds the elution life of silver ions and has an antibacterial effect.

[実施例5]
ポリスルホン(AMOCO社製)20gをDMAc(98%、和光純薬)180gに加え、90℃に加熱しながら2時間攪拌して溶解した後、室温まで冷却して、銀ゼオライト(シナネンゼオミック、銀担持量2.5%)1gを加えて混合した。該溶液中にポリフッ化ビニリデン(PVDF)中空糸膜(内径0.86mm、外径1.32mm)を1分間浸漬後、水中に投入して凝固させた。この後、90℃熱水で10分間抽出・洗浄した後、40℃で乾燥して抗菌剤を含む成形体である銀ゼオライトコーティングPVDF中空糸膜を得た。
[Example 5]
20 g of polysulfone (manufactured by AMOCO) was added to 180 g of DMAc (98%, Wako Pure Chemical Industries, Ltd.), dissolved by stirring for 2 hours while heating to 90 ° C., cooled to room temperature, and then silver zeolite (sinanezeomic, silver supported) 1 g (amount 2.5%) was added and mixed. A polyvinylidene fluoride (PVDF) hollow fiber membrane (inner diameter 0.86 mm, outer diameter 1.32 mm) was immersed in the solution for 1 minute and then poured into water to solidify. Then, after extracting and washing | cleaning for 10 minutes with 90 degreeC hot water, it dried at 40 degreeC and obtained the silver zeolite coating PVDF hollow fiber membrane which is a molded object containing an antibacterial agent.

該銀ゼオライト中空糸膜(長さ77cmを3本)2.32gを実施例4記載のチューブに挿入した。通水/滞水操作は実施例4と同様にして2万Lまで通水した後、滞留水中の銀イオン濃度を測定したところ30ppbであった。銀ゼオライトをコーティングした中空糸膜でも銀添着活性炭と同様銀イオン溶出寿命が保持されていた。   2.32 g of the silver zeolite hollow fiber membrane (3 pieces having a length of 77 cm) was inserted into the tube described in Example 4. The water flow / water retention operation was carried out in the same manner as in Example 4 until water flowed to 20,000 L, and the silver ion concentration in the retained water was measured and found to be 30 ppb. The hollow fiber membrane coated with silver zeolite also maintained the elution life of silver ions like the silver-impregnated activated carbon.

[比較例1]
銀添着活性炭粉末(ヤシ殻を原料とした粒状活性炭を母体とし、その表面または内部に銀化合物を1重量%担持させ、粒度が24〜70メッシュのもの)1gを飲料水100mlに入れ、実施例1と同様にして銀イオン濃度を測定したところ、66ppbであった。銀イオン濃度は目標範囲内であるが、成形体とはせずに粉末状とした場合には銀添着活性炭からの微粉が流出するのでチューブ内に保持しておくことは困難であった。
[Comparative Example 1]
Example 1 Example: 1 g of silver-impregnated activated carbon powder (with granular activated carbon made from coconut shell as a base material and having 1% by weight of a silver compound supported on the surface or inside thereof and a particle size of 24 to 70 mesh) is placed in 100 ml of drinking water. When the silver ion concentration was measured in the same manner as in Example 1, it was 66 ppb. Although the silver ion concentration is within the target range, when it is made into a powder form without forming a compact, fine powder from the silver-impregnated activated carbon flows out, so it is difficult to keep it in the tube.

[比較例2]
実施例4記載の内層チューブ(材質:ポリエチレン)と外層チューブが共押出成形されたチューブ(内径10mm、長さ80cm、容積60ml)のみで実施例4と同様の通水/滞水操作で滞留水中の銀イオン濃度を測定した。各通水時点とも銀イオン濃度は検出限界以下であった。
[Comparative Example 2]
Only the tube (inner diameter 10 mm, length 80 cm, volume 60 ml) in which the inner layer tube (material: polyethylene) and the outer layer tube described in Example 4 are co-extruded is used to carry out stagnant water in the same water flow / stagnation operation as in Example 4. The silver ion concentration of was measured. The silver ion concentration was below the detection limit at each water flow point.

Figure 0004972881
Figure 0004972881

Figure 0004972881
Figure 0004972881

抗菌剤を含む内層チューブと外層チューブとが共押出成形された従来のチューブの概略図である。It is the schematic of the conventional tube by which the inner layer tube containing an antibacterial agent and the outer layer tube were coextruded. 本発明の好ましい実施態様である、抗菌剤を含む成形体が筒状であるチューブ構造体の概略図である。It is the schematic of the tube structure which is a preferable embodiment of this invention and the molded object containing an antibacterial agent is cylindrical. 本発明の好ましい実施態様である、抗菌剤を含む成形体が棒状であるチューブ構造体の概略図である。It is the schematic of the tube structure which is a preferable embodiment of this invention and the molded object containing an antibacterial agent is rod shape. 本発明の好ましい実施態様である、抗菌剤を含む成形体が繊維状(集合体の場合)であるチューブ構造体の概略図である。It is the schematic of the tube structure which is a preferable embodiment of this invention and the molded object containing an antibacterial agent is fibrous (in the case of an aggregate). 本発明の好ましい実施態様である、抗菌剤を含む成形体が平膜状であるチューブ構造体の概略図である。It is the schematic of the tube structure which is a preferable embodiment of this invention and the molded object containing an antibacterial agent is flat membrane shape. 浄水器用カートリッジをアンダーシンク浄水器に装着した状態を示す概略図である。It is the schematic which shows the state which mounted | wore the undersink water purifier with the cartridge for water purifiers.

符号の説明Explanation of symbols

1 チューブ(図1の場合は、チューブの外層)
2 抗菌剤を含む成形体(図1の場合は、チューブの内層)
3 原水側チューブ
4 浄水側チューブ
5 給水栓
6 浄水器用カートリッジ
7 水道蛇口
8 浄水器用バルブ
9 吐出口
1 Tube (in the case of Fig. 1, the outer layer of the tube)
2 Molded body containing antibacterial agent (in the case of FIG. 1, the inner layer of the tube)
3 Raw water side tube 4 Water purification side tube 5 Water tap 6 Water purifier cartridge 7 Water faucet 8 Water purifier valve 9 Discharge port

Claims (8)

成形体をチューブの内部に挿入した浄水器に用いるチューブ構造体であって、前記チューブ構造体を形成するチューブは高分子材料からなり、前記成形体は細孔が形成される親水性が付与された高分子材料を用いて形成された中空糸膜状であり、抗菌剤を含んでなる担体を細孔が形成される親水性が付与された高分子材料を用いてその表面にコーティングしてなり、かつ、前記成形体が前記チューブと一体に成形されることなく形成され、前記成形体を水と接触させることにより、前記担体に含まれる抗菌剤が前記水中に溶出することを特徴とする浄水器に用いるチューブ構造体。 A tube structure used for a water purifier in which a molded body is inserted into a tube, wherein the tube forming the tube structure is made of a polymer material, and the molded body has hydrophilicity to form pores. It is a hollow fiber membrane formed using a high molecular weight material, and is coated on the surface with a hydrophilic high molecular weight material that forms pores with a carrier containing an antibacterial agent. And the molded body is formed without being molded integrally with the tube, and the antibacterial agent contained in the carrier is eluted into the water by bringing the molded body into contact with water. Tube structure used for the vessel . 前記チューブに用いられる前記高分子材料がポリアミド、ポリエステル、ポリスルホン、ポリエチレン、エチレン・酢酸ビニル共重合体、ポリプロピレン、ポリアクリロニトリル、ポリビニルアルコール、およびポリフッ化ビニリデンからなる群から選ばれる少なくとも1種を含む樹脂組成物であることを特徴とする請求項1に記載の浄水器に用いるチューブ構造体。Resin containing at least one selected from the group consisting of polyamide, polyester, polysulfone, polyethylene, ethylene / vinyl acetate copolymer, polypropylene, polyacrylonitrile, polyvinyl alcohol, and polyvinylidene fluoride as the polymer material used for the tube It is a composition, The tube structure used for the water purifier of Claim 1 characterized by the above-mentioned. 前記担体に含まれる抗菌剤が、銀単体または銀化合物であることを特徴とする請求項1または2に記載の浄水器に用いるチューブ構造体。 The tube structure used for the water purifier according to claim 1 or 2 , wherein the antibacterial agent contained in the carrier is a silver simple substance or a silver compound. 前記銀化合物が、ハロゲン化銀、硝酸銀、硫酸銀、硫化銀、酸化銀、炭酸銀、およびリン酸銀からなる群から選ばれる少なくとも1種を含むことを特徴とする請求項に記載の浄水器に用いるチューブ構造体。 The purified water according to claim 3 , wherein the silver compound contains at least one selected from the group consisting of silver halide, silver nitrate, silver sulfate, silver sulfide, silver oxide, silver carbonate, and silver phosphate. Tube structure used for the vessel . 前記抗菌剤を含んでなる担体が、銀添着活性炭を含んでなるものであることを特徴とする請求項またはに記載の浄水器に用いるチューブ構造体。 The tube structure used for a water purifier according to claim 3 or 4 , wherein the carrier comprising the antibacterial agent comprises silver-impregnated activated carbon. 請求項1〜のいずれかに記載の浄水器に用いるチューブ構造体が浄水出口側の通水部に設置されてなる浄水器。 The water purifier by which the tube structure used for the water purifier in any one of Claims 1-5 is installed in the water flow part by the side of a water purifier outlet. 請求項に記載の浄水器と、吐出口と、給水栓とを備えてなる浄水システムであって、前記チューブ構造体を浄水側チューブとして用いられることを特徴とする浄水システム。 A water purification system comprising the water purifier according to claim 6 , a discharge port, and a water faucet, wherein the tube structure is used as a water purification side tube. 請求項に記載の浄水器を用いて浄水することを特徴とする浄水方法。 A water purification method, wherein water is purified using the water purifier according to claim 7 .
JP2005172009A 2005-06-13 2005-06-13 Tube structure used for water purifier, water purifier, water purification system, and water purification method using the same Expired - Fee Related JP4972881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005172009A JP4972881B2 (en) 2005-06-13 2005-06-13 Tube structure used for water purifier, water purifier, water purification system, and water purification method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005172009A JP4972881B2 (en) 2005-06-13 2005-06-13 Tube structure used for water purifier, water purifier, water purification system, and water purification method using the same

Publications (2)

Publication Number Publication Date
JP2006348966A JP2006348966A (en) 2006-12-28
JP4972881B2 true JP4972881B2 (en) 2012-07-11

Family

ID=37645048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005172009A Expired - Fee Related JP4972881B2 (en) 2005-06-13 2005-06-13 Tube structure used for water purifier, water purifier, water purification system, and water purification method using the same

Country Status (1)

Country Link
JP (1) JP4972881B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4929508B2 (en) * 2007-05-16 2012-05-09 クラレケミカル株式会社 Silver impregnated activated carbon, method for producing the same, and water purifier
WO2010011483A2 (en) * 2008-07-21 2010-01-28 3M Innovative Properties Company Apparatus for dispersing additive into a fluid stream
BR112013004846A2 (en) 2010-09-08 2016-05-31 Unilever Nv "Antimicrobial Membrane, Filter, Water Purification Device and Process for Making an Antimicrobial Membrane".
US9745206B2 (en) 2010-09-08 2017-08-29 Pall Corporation Outlet for shower or faucet head
US20120055888A1 (en) * 2010-09-08 2012-03-08 Pall Europe Limited Outlet for shower or faucet head
CN105600889B (en) * 2015-11-10 2018-01-30 慈溪市互丰净水设备配件有限公司 A kind of bacteriological protection reverse current protection device and its application
CN116201963B (en) * 2022-12-30 2023-10-24 湖南大众管业有限责任公司 PE drinking water pipe capable of preventing scaling and preparation method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634559Y2 (en) * 1981-01-28 1988-02-05
JPH03174295A (en) * 1989-12-01 1991-07-29 Yasaka Sangyo Kk Antibacterial tube
JPH03262593A (en) * 1990-03-12 1991-11-22 I I C:Kk Water purifier
JPH0422092U (en) * 1990-06-13 1992-02-24
JP3253410B2 (en) * 1992-04-09 2002-02-04 武田薬品工業株式会社 Water purification material, its manufacturing method and water purification method
CA2319736C (en) * 1998-02-05 2009-01-27 E.I. Du Pont De Nemours And Company Water purification apparatus
JP2000154320A (en) * 1998-11-19 2000-06-06 Mitsubishi Chem Mkv Co Antimicrobial resin composition and antimicrobial transparent sheet
JP2000288539A (en) * 1999-04-02 2000-10-17 Heikei Sai Prevention of bacterial contamination of reverse osmosis membrane water purifier, and bacteria-removing and antibacterial system
JP4815722B2 (en) * 2001-09-06 2011-11-16 東レ株式会社 Water purifier
JP4387662B2 (en) * 2002-12-25 2009-12-16 株式会社八興 Laminated hose for water purifier

Also Published As

Publication number Publication date
JP2006348966A (en) 2006-12-28

Similar Documents

Publication Publication Date Title
JP4972881B2 (en) Tube structure used for water purifier, water purifier, water purification system, and water purification method using the same
EP2527023B1 (en) Complex filter for water purification
Yu et al. Characterization and inhibitory effect of antibacterial PAN-based hollow fiber loaded with silver nitrate
US20100032353A1 (en) Liquid dispenser or water purification unit with antimicrobial mouthpiece or housing
WO2000000268A1 (en) Antimicrobial semi-permeable membranes
KR20090111811A (en) Modular water purification unit
JP2010227757A (en) Composite separation membrane
JP2004230335A (en) Water purification cartridge, and water purifier
KR20160148760A (en) A mixed filter having a multi-layer structure prepared by laminating an antimicrobial sediment filter matrial and an adsorbing filter material and a composite filter using the mixed filter
JP2008080315A (en) Cartridge for water purifiers, and water purifier
CN102120146B (en) Preparation method of filter core of composite ultrafiltration tube membrane
CN103550970A (en) Multi-component alloy water purification mesh material and water purification filter element made from same
TWI787505B (en) Intrinsically anti-microbial hollow fiber membrane for filtration of liquids, process of making an intrinsically anti-microbial hollow fiber membrane and device for liquid filtration
JP2021171729A (en) Hollow fiber adsorbent, water purifier, and method for producing pure water
JP2007237164A (en) Cartridge for water purifier and water purifier
JP2020185501A (en) Adsorbent for water purification, manufacturing method of adsorbent for water purification, radioactive substance concentration detector, and land-based aquaculture system
JP4622576B2 (en) Water purifier, water purification system and water purification method using the same
JP5147021B2 (en) Water purifier
KR20060123823A (en) Nano silver sterilization reverse osmosis fiber membrane film
KR101628379B1 (en) Method For Manufacturing an Anti-Virus Hollow Fiber Membrane And The Water Purifier Comprising The Anti-Virus Hollow Fiber Membrane
KR200373502Y1 (en) Water treatment filter for a bedet
KR200392602Y1 (en) NANO SILVER STERILIZATION REVERSE OSMOSIS FIBER MEMBRANE Film
KR0137384B1 (en) Reverse osmosis module using antibiotic permeation water collection tube
CN209974372U (en) Composite material nanofiber water purification device
WO2020091021A1 (en) Water treatment cartridge and water purifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120111

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120326

R151 Written notification of patent or utility model registration

Ref document number: 4972881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees