JP4971751B2 - Manufacturing method of high-concentration carburized steel - Google Patents

Manufacturing method of high-concentration carburized steel Download PDF

Info

Publication number
JP4971751B2
JP4971751B2 JP2006299836A JP2006299836A JP4971751B2 JP 4971751 B2 JP4971751 B2 JP 4971751B2 JP 2006299836 A JP2006299836 A JP 2006299836A JP 2006299836 A JP2006299836 A JP 2006299836A JP 4971751 B2 JP4971751 B2 JP 4971751B2
Authority
JP
Japan
Prior art keywords
temperature
carburizing
carburization
steel
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006299836A
Other languages
Japanese (ja)
Other versions
JP2008115427A (en
Inventor
敏之 森田
将臣 猿山
博幸 露崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006299836A priority Critical patent/JP4971751B2/en
Priority to EP07830687A priority patent/EP2085493A4/en
Priority to CN2007800413430A priority patent/CN101535522B/en
Priority to PCT/JP2007/070953 priority patent/WO2008056552A1/en
Priority to US12/447,914 priority patent/US20100126632A1/en
Publication of JP2008115427A publication Critical patent/JP2008115427A/en
Application granted granted Critical
Publication of JP4971751B2 publication Critical patent/JP4971751B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium

Description

本発明は、高濃度浸炭鋼の製造方法に関し、さらに詳しくは、浸炭処理によって表面に微細、かつ球状の炭化物を多量に析出させることが可能な高濃度浸炭鋼の製造方法に関する。   The present invention relates to a method for producing high-concentration carburized steel, and more particularly, to a method for producing high-concentration carburized steel capable of precipitating a large amount of fine and spherical carbides on the surface by carburizing treatment.

浸炭とは、鋼を浸炭性雰囲気中で加熱し、表面の炭素濃度を高める処理をいう。浸炭は、一般に低炭素鋼に適用され、浸炭後に焼入れされて使用される。このような浸炭−焼入れ処理された材料は、肌焼鋼あるいは浸炭鋼と呼ばれており、表面が硬く、内部は柔らかいので、軸、軸受け、歯車、ピストンピン、カムなどの機械部品に賞用されている。
浸炭の中でも、材料表面近傍の炭素濃度を高めて炭化物を析出させる処理は、特に「高濃度浸炭」と呼ばれている。高濃度浸炭により得られる材料は、組織中に硬い炭化物が分散しているので、従来より行われている共析浸炭により得られる材料よりも耐摩耗性、面疲労強度が高いという特徴がある。
しかしながら、高濃度浸炭処理材の特性は、炭化物の分散形態の影響を強く受けるので、高い強度を得るためには、炭化物を微細・球状・大量に分散させる必要がある(非特許文献1参照)。特に、粒界に析出した粗大な炭化物は、強度低下の原因となる。
Carburizing refers to a process in which steel is heated in a carburizing atmosphere to increase the carbon concentration on the surface. Carburization is generally applied to low carbon steel and is used after being carburized. Such carburized-quenched material is called case-hardened steel or carburized steel, its surface is hard and the inside is soft, so it is award for mechanical parts such as shafts, bearings, gears, piston pins, cams, etc. Has been.
Among the carburizing processes, the process of increasing the carbon concentration in the vicinity of the material surface to precipitate carbides is called “high-concentration carburizing”. A material obtained by high-concentration carburizing is characterized by higher wear resistance and surface fatigue strength than materials obtained by conventional eutectoid carburizing because hard carbides are dispersed in the structure.
However, since the characteristics of the high-concentration carburized material are strongly influenced by the dispersion form of carbides, it is necessary to disperse the carbides finely, spherically, and in large quantities in order to obtain high strength (see Non-Patent Document 1). . In particular, coarse carbides precipitated at the grain boundaries cause a decrease in strength.

そこでこの問題を解決するために、従来から種々の提案がなされている。
例えば、特許文献1には、
C:0.05〜0.45%を含有する鋼で製造した機械構造部品を、
(イ) 880℃以上の温度でプラズマ浸炭することにより、部品表面のC濃度を鋼のAcm以上にして表面近傍に炭化物を析出させる一次浸炭を行い、
(ロ) 徐冷して鋼のAr1より低い温度に降温し、いったんそこで保持したのち、Ar1を超える温度に昇温し、
(ハ) 一次浸炭の温度より10〜60℃低い温度において、再びプラズマ浸炭による二次浸炭を行い、
(ニ) 直ちに、または拡散処理を施したのち、焼入れ焼戻しをし、
表面C濃度が1.5%以上であり、浸炭層の炭化物形状がほぼ球形であって、耐摩耗性と耐ピッチング性に優れた部品を得ることからなる鋼の浸炭処理方法
が開示されている。
また、同文献には、
上記工程(ハ)に続いて、
(ホ) 再び徐冷して鋼のAr1より低い温度に降温し、いったんそこに保持したのち、Ar1を超える温度に昇温し、
(ヘ) 二次浸炭の温度よりさらに10〜60℃低い温度において、再びプラズマ浸炭による三次浸炭を行い、
その後に工程(ニ)を行うことにより、
表面C濃度1.7%以上で、浸炭層の炭化物形状がほぼ球形であって、耐摩耗性と耐ピッチング性に優れた部品を得ることからなる鋼の浸炭処理方法
が開示されている。
In order to solve this problem, various proposals have heretofore been made.
For example, Patent Document 1 discloses that
C: Machine structural parts manufactured with steel containing 0.05 to 0.45%,
(A) Perform primary carburization by depositing carbide near the surface by making the C concentration on the part surface more than Acm of steel by plasma carburizing at a temperature of 880 ° C. or higher,
(B) Slowly cool, lower the temperature to lower than Ar1 of the steel, hold it there, then raise the temperature to higher than Ar1,
(C) Secondary carburization by plasma carburization is performed again at a temperature lower by 10 to 60 ° C. than the temperature of primary carburization,
(D) Immediately or after diffusion treatment, quenching and tempering,
A carburizing method for steel is disclosed, which has a surface C concentration of 1.5% or more, and the carburized layer has a substantially spherical carbide shape and has a component with excellent wear resistance and pitting resistance. .
In the same document,
Following the above step (c),
(E) Slowly cool again, lower the temperature to lower than Ar1 of the steel, hold it there, then raise the temperature to higher than Ar1,
(F) At a temperature lower by 10-60 ° C. than the temperature of the secondary carburization, again perform the third carburization by plasma carburization,
By performing step (d) after that,
A steel carburizing method is disclosed which comprises obtaining a part having a surface C concentration of 1.7% or more and a carburized layer having a substantially spherical carbide shape and excellent wear resistance and pitting resistance.

同文献には、
(1) 浸炭処理法としてプラズマ浸炭を用いると、高いカーボンポテンシャルにもかかわらず、すすの発生が軽微であるので、浸炭ムラの心配がない点、
(2) 一次浸炭においてAcmを超える高度の浸炭を行っているので、炭化物をオーステナイト粒界に塊状に析出させることができる点、
(3) 浸炭後、いったん温度をAr1より低い温度に降温し、再度Ar1を超える温度に昇温すると、オーステナイト粒界が移動し、はじめに粒界に存在していた炭化物は、新オーステナイト粒内に残存することになる点、
(4) さらに二次浸炭を行うことにより、新オーステナイト粒界に炭化物が析出し、この新しく生成した炭化物と、上記の残存炭化物をあわせて、炭化物分布が好ましい浸炭層が得られる点、
が記載されている。
In the same document,
(1) When plasma carburizing is used as the carburizing method, soot generation is slight despite the high carbon potential, so there is no concern about uneven carburization.
(2) Since carburizing at a high level exceeding Acm is performed in the primary carburizing, the carbide can be precipitated in a mass at the austenite grain boundary,
(3) After carburizing, once the temperature is lowered to a temperature lower than Ar1, and again raised to a temperature exceeding Ar1, the austenite grain boundaries move, and the carbides that were initially present at the grain boundaries are moved into the new austenite grains. The point that will remain,
(4) By further performing secondary carburization, carbide is precipitated at the new austenite grain boundary, and the newly generated carbide and the above remaining carbide are combined to obtain a carburized layer with preferable carbide distribution,
Is described.

さらに、特許文献2には、
浸炭処理により表面炭素濃度を0.8%以上とした鋼製部品をこの浸炭処理後300℃以下の温度まで0.1℃/sec以上の冷却速度で冷却し、次いで、鋼のAc1変態温度よりも50℃高くかつ150℃低い温度域に鋼製部品を加熱した後同温度で保持し、更に、10℃/sec以下の加熱温度で心部がオーステナイト単相ないしはオーステナイトとフェライトの2相であってフェライト面積率が30%以下となる温度まで昇温して保持した後、直接焼入れを行うかもしくは所定の焼入れ温度まで温度を下げたあと焼入れを行う鋼製部品の浸炭熱処理方法が開示されている。
同文献には、浸炭処理した鋼製部品を鋼のAc1変態温度より50℃高くかつ150℃低い温度域に保持することによって、微細炭化物を成長させることができる点が記載されている。
Furthermore, Patent Document 2 includes
A steel part having a surface carbon concentration of 0.8% or higher by carburizing treatment is cooled at a cooling rate of 0.1 ° C./sec or higher to a temperature of 300 ° C. or lower after the carburizing treatment, and then from the Ac1 transformation temperature of the steel. The steel part was heated to a temperature range of 50 ° C. and 150 ° C. and kept at the same temperature, and at the heating temperature of 10 ° C./sec or less, the core portion was austenite single phase or two phases of austenite and ferrite. A method of carburizing heat treatment of steel parts is disclosed in which the steel is heated to a temperature at which the ferrite area ratio is 30% or less and held, and then directly quenched or quenched after being lowered to a predetermined quenching temperature. Yes.
This document describes that fine carbides can be grown by maintaining a carburized steel part in a temperature range that is 50 ° C. and 150 ° C. lower than the Ac1 transformation temperature of the steel.

下村哲也、森田敏之、井上幸一郎、電気製鋼、77(2006)、11Tetsuya Shimomura, Toshiyuki Morita, Koichiro Inoue, Electric Steelmaking, 77 (2006), 11 特許第2808621号公報Japanese Patent No. 2808621 特開平6−108226号公報JP-A-6-108226

特許文献2に開示されているように、1回の浸炭処理のみによって、微細かつ球状の炭化物を大量に分散させるのは難しい。そのため、従来行われている高濃度浸炭は、1次浸炭及び2次浸炭の2回の浸炭を行うものが多い。1次浸炭は、主として、表面に高濃度の炭素を固溶させ、2次浸炭を行うための再加熱時に微細な炭化物を多量に析出させることを目的として行われる。一方、2次浸炭は、主として、1次浸炭後の再加熱時に生成した微細な炭化物を成長させることを目的として行われる。そのためには、1次浸炭と2次浸炭の温度差が十分あることが望ましい。   As disclosed in Patent Document 2, it is difficult to disperse a fine and spherical carbide in a large amount only by a single carburizing process. For this reason, many high-concentration carburizations that have been performed in the past involve many carburizations of primary carburization and secondary carburization. The primary carburization is mainly performed for the purpose of precipitating a large amount of fine carbides at the time of reheating for carrying out the secondary carburization by dissolving a high concentration of carbon on the surface. On the other hand, the secondary carburization is performed mainly for the purpose of growing fine carbides generated during reheating after the primary carburization. For that purpose, it is desirable that there is a sufficient temperature difference between the primary carburization and the secondary carburization.

しかしながら、1次浸炭と2次浸炭の温度差を大きくするために、1次浸炭の温度を上昇させると、炉の寿命が低下する。また、肌焼鋼は、通常、仕上げ加工することなくそのまま使用されるが、必要以上の高温加熱は、材料の変形を増大させる原因となる。
一方、この問題を解決するために、1次浸炭の温度を下げると同時に2次浸炭の温度を下げると、2次浸炭時の炭素の拡散速度が低下する。そのため、必要量の炭化物を析出させるのに長時間を要し、作業効率が低下する。
さらに、1次浸炭の温度のみを下げ、2次浸炭の温度を高く維持すると、1次浸炭と2次浸炭の温度差が小さくなる。そのため、粒界に片状・粗大な炭化物が析出しやすくなり、組織の再現性が低下する。
However, if the temperature of the primary carburization is increased in order to increase the temperature difference between the primary carburization and the secondary carburization, the life of the furnace is reduced. Further, the case-hardened steel is usually used as it is without finishing, but heating at a higher temperature than necessary causes an increase in deformation of the material.
On the other hand, in order to solve this problem, if the temperature of the secondary carburization is lowered at the same time as the temperature of the primary carburization is lowered, the carbon diffusion rate during the secondary carburization is lowered. For this reason, it takes a long time to precipitate the necessary amount of carbide, and the working efficiency is lowered.
Furthermore, if only the temperature of the primary carburization is lowered and the temperature of the secondary carburization is kept high, the temperature difference between the primary carburization and the secondary carburization becomes small. Therefore, flakes and coarse carbides are likely to precipitate at the grain boundaries, and the reproducibility of the structure is reduced.

本発明が解決しようとする課題は、炉の寿命を低下させることなく、微細かつ球状の炭化物を大量に分散させることが可能な高濃度浸炭鋼の製造方法を提供することにある。
また、本発明が解決しようとする他の課題は、浸炭処理後に大きな変形を生じさせることのない高濃度浸炭鋼の製造方法を提供することにある。
また、本発明が解決しようとする他の課題は、作業効率を低下させることなく、微細かつ球状の炭化物を大量に分散させることが可能な高濃度浸炭鋼の製造方法を提供することにある。
さらに、本発明が解決しようとする他の課題は、粒界に片状・粗大な炭化物が析出せず、組織の再現性が高い高濃度浸炭鋼の製造方法を提供することにある。
The problem to be solved by the present invention is to provide a method for producing high-concentration carburized steel that can disperse a large amount of fine and spherical carbides without reducing the life of the furnace.
Another problem to be solved by the present invention is to provide a method for producing high-concentration carburized steel that does not cause significant deformation after carburizing treatment.
Another problem to be solved by the present invention is to provide a method for producing high-concentration carburized steel that can disperse a large amount of fine and spherical carbides without reducing the working efficiency.
Furthermore, another problem to be solved by the present invention is to provide a method for producing a high-concentration carburized steel in which flakes and coarse carbides do not precipitate at grain boundaries and the structure has high reproducibility.

上記課題を解決するために本発明に係る高濃度浸炭鋼の製造方法は、以下の工程を備えていることを要旨とする。
(イ) C:0.15〜0.30mass%、Si:0.40〜0.80mass%、Mn:0.3〜0.8mass%、Cr:1.25〜2.00mass%、残部がFe及び不可避的不純物からなる鋼材を、1100℃以下である1次浸炭温度T1(℃)において、その表面炭素濃度CがCeu<C≦C(Acm)となるまで浸炭させる1次浸炭工程。
但し、
Ceuは、前記鋼材の共析炭素濃度、
C(Acm)は、前記1次浸炭温度T1における前記鋼材のAcm線に相当する炭素濃度。
(ロ) 前記1次浸炭工程終了後、前記鋼材を冷却速度1℃/分以上で700℃以下まで冷却する冷却工程。
(ハ) 前記鋼材を2次浸炭開始温度T2sまで昇温させ、2次浸炭温度T2を前記2次浸炭開始温度T2sに維持したまま前記鋼材を浸炭させる2次浸炭初期工程。
但し、
Ac1点(℃)≦T2s(℃)≦1次浸炭温度T1−100℃≦2次浸炭開始直後における前記鋼材の表面炭素濃度に相当するAcm線温度(℃)、
T2S≦T2≦前記鋼材の表面炭素濃度に相当するAcm線温度(℃)。
(ニ) 前記2次浸炭初期工程終了後、引き続き前記鋼材を焼入れ温度Tq(℃)まで昇温させ、前記焼入れ温度Tqにおいてさらに浸炭させる2次浸炭後期工程。
但し、
Tq≦前記鋼材の表面炭素濃度に相当するAcm線温度(℃)。
(ホ) 前記2次浸炭後期工程終了後、前記鋼材を焼入れする焼入れ工程。
In order to solve the above-described problems, the high-concentration carburized steel manufacturing method according to the present invention includes the following steps.
(A) C: 0.15 to 0.30 mass%, Si: 0.40 to 0.80 mass%, Mn: 0.3 to 0.8 mass%, Cr: 1.25 to 2.00 mass%, the balance being Fe And a primary carburizing step of carburizing a steel material composed of inevitable impurities at a primary carburizing temperature T1 (° C.) of 1100 ° C. or less until the surface carbon concentration C becomes Ceu <C ≦ C (Acm).
However,
Ceu is the eutectoid carbon concentration of the steel material,
C (Acm) is a carbon concentration corresponding to the Acm line of the steel material at the primary carburizing temperature T1.
(B) A cooling step of cooling the steel material to a temperature of 700 ° C. or less at a cooling rate of 1 ° C./min after the completion of the primary carburizing step.
(C) the steel material is warm to the secondary carburization start temperature T2s, the secondary carburization temperature T 2 a secondary carburization initial step of carburizing a pre Symbol steel while maintaining the secondary carburization start temperature T2s.
However,
Ac1 point (° C.) ≦ T 2 s (° C.) ≦ primary carburizing temperature T 1 −100 ° C. ≦ Acm line temperature (° C.) corresponding to the surface carbon concentration of the steel immediately after the start of secondary carburizing,
T2S ≦ T2 ≦ Acm line temperature (° C.) corresponding to the surface carbon concentration of the steel material.
(D) A secondary carburizing late process in which the steel material is continuously heated to the quenching temperature Tq (° C.) after the secondary carburizing initial process is completed, and further carburized at the quenching temperature Tq.
However,
Tq ≦ Acm line temperature (° C.) corresponding to the surface carbon concentration of the steel material.
(E) A quenching step of quenching the steel after the end of the secondary carburization late step.

1次浸炭温度T1で1次浸炭を行った後、さらに2次浸炭を行う場合において、2次浸炭を焼入れ温度Tqより低い2次浸炭温度T2で浸炭を行う2次浸炭初期工程と、焼入れ温度Tqにおいて浸炭を行う2次浸炭後期工程に分割すると、1次浸炭温度T1が相対的に低温であっても、1次浸炭温度T1と2次浸炭温度T2の温度差を十分に取ることができる。そのため、炉の寿命低下や浸炭処理後の大きな変形を生じさせることなく、微細かつ球状の炭化物を大量に分散させることができる。また、2次浸炭後期工程においては、相対的に高温で浸炭が行われるので、作業効率を低下させることもない。さらに、1次浸炭温度T1と2次浸炭温度T2の温度差を十分に取ることができるので、材料間に組成のバラツキがあっても、粒界への片状・粗大な炭化物の析出を確実に抑制することができる。   After performing primary carburization at the primary carburizing temperature T1, and further performing secondary carburizing, the secondary carburizing initial process in which the secondary carburizing is performed at the secondary carburizing temperature T2 lower than the quenching temperature Tq, and the quenching temperature. When divided into the secondary carburization late stage in which carburizing is performed at Tq, even if the primary carburizing temperature T1 is relatively low, the temperature difference between the primary carburizing temperature T1 and the secondary carburizing temperature T2 can be sufficiently taken. . Therefore, it is possible to disperse a large amount of fine and spherical carbides without causing a decrease in the life of the furnace or a large deformation after the carburizing process. Further, since the carburizing is performed at a relatively high temperature in the second stage of the second carburizing process, the work efficiency is not lowered. In addition, since the temperature difference between the primary carburizing temperature T1 and the secondary carburizing temperature T2 can be taken sufficiently, even if there is a variation in composition between materials, precipitation of coarse and coarse carbides at grain boundaries is ensured. Can be suppressed.

以下に、本発明の一実施の形態について詳細に説明する。
初めに、本発明に係る高濃度浸炭鋼の製造方法が適用される鋼材について説明する。
本発明に係る方法が適用される鋼材は、以下のような合金元素を含み、残部がFe及び不可避的不純物からなる。合金元素の種類、その成分範囲、及び、その限定理由は、以下の通りである。
Hereinafter, an embodiment of the present invention will be described in detail.
First, steel materials to which the method for producing high-concentration carburized steel according to the present invention is applied will be described.
The steel material to which the method according to the present invention is applied includes the following alloy elements, with the balance being Fe and inevitable impurities. The types of alloy elements, their component ranges, and the reasons for their limitations are as follows.

(1) C:0.15〜0.30mass%。
C量が少ないと、心部にフェライトが生成し、強度を低下させる。従って、C量は、0.15mass%以上が好ましい。
一方、C量が過剰になると、素材の硬さを上げ、製造性(特に、被削性)を低下させる。従って、C量は、0.30mass%以下が好ましい。
(1) C: 0.15 to 0.30 mass%.
When the amount of C is small, ferrite is generated in the core and the strength is lowered. Therefore, the amount of C is preferably 0.15 mass% or more.
On the other hand, when the amount of C is excessive, the hardness of the material is increased and the manufacturability (particularly machinability) is decreased. Therefore, the amount of C is preferably 0.30 mass% or less.

(2) Si:0.40〜0.80mass%。
Si量が少ないと、マトリックスの焼戻し硬さが低下し、強度を低下させる。従って、Si量は、0.40mass%以上が好ましい。
一方、Si量が過剰になると、炭化物の生成量が低下し、強度を低下させる。また、心部にフェライトが生成し、強度を低下させる。従って、Si量は、0.80mass%以下が好ましい。
(2) Si: 0.40 to 0.80 mass%.
When the amount of Si is small, the tempering hardness of the matrix is lowered and the strength is lowered. Therefore, the amount of Si is preferably 0.40 mass% or more.
On the other hand, when the amount of Si becomes excessive, the amount of carbide generated decreases and the strength decreases. In addition, ferrite is generated at the core, reducing the strength. Therefore, the amount of Si is preferably 0.80 mass% or less.

(3) Mn:0.3〜0.8mass%。
Mn量が少ないと、マトリックスの焼入れ性が低下し、不完全焼入れにより強度が低下する。従って、Mn量は、0.3mass%以上が好ましい。
一方、Mn量が過剰になると、素材の硬さを上げ、製造性(特に、被削性)を低下させる。従って、Mn量は、0.8mass%以下が好ましい。
(3) Mn: 0.3 to 0.8 mass%.
When the amount of Mn is small, the hardenability of the matrix is lowered, and the strength is lowered due to incomplete quenching. Therefore, the amount of Mn is preferably 0.3 mass% or more.
On the other hand, when the amount of Mn becomes excessive, the hardness of the material is increased and manufacturability (particularly machinability) is lowered. Therefore, the amount of Mn is preferably 0.8 mass% or less.

(4) Cr:1.25〜2.00mass%。
Cr量が少ないと、炭化物の生成量が低下し、強度を低下させる。また、心部にフェライトが生成し、強度を低下させる。従って、Cr量は、1.25mass%以上が好ましい。
一方、Cr量が過剰になると、素材の硬さを上げ、製造性(特に、被削性)を低下させる。従って、Cr量は、2.00mass%以下が好ましい。
(4) Cr: 1.25 to 2.00 mass%.
If the amount of Cr is small, the amount of carbide produced is reduced and the strength is reduced. In addition, ferrite is generated at the core, reducing the strength. Therefore, the Cr amount is preferably 1.25 mass% or more.
On the other hand, when the amount of Cr is excessive, the hardness of the material is increased and the manufacturability (particularly machinability) is decreased. Therefore, the Cr amount is preferably 2.00 mass% or less.

次に、本発明に係る高濃度浸炭鋼の製造方法について説明する。
本発明に係る高濃度浸炭鋼の製造方法は、1次浸炭工程と、冷却工程と、2次浸炭初期工程と、2次浸炭後期工程と、焼入れ工程とを備えている。
Next, the manufacturing method of the high concentration carburized steel which concerns on this invention is demonstrated.
The manufacturing method of the high-concentration carburized steel according to the present invention includes a primary carburizing step, a cooling step, a secondary carburizing initial step, a secondary carburizing late step, and a quenching step.

1次浸炭工程は、上述の組成を有する鋼材を、1次浸炭温度T1(℃)において、その表面炭素濃度CがCeu<C≦C(Acm)となるように浸炭させる工程である。
1次浸炭温度T1は、少なくとも、後述する2次浸炭開始温度T2sよりも100℃以上高い温度であればよい。一般に、1次浸炭温度T1が高くなるほど、短時間で所定の炭素濃度まで浸炭することができる。1次浸炭温度T1は、具体的には、900℃以上が好ましい。
一方、1次浸炭温度T1が高くなりすぎると、炉の寿命を低下させ、あるいは、浸炭中における鋼材の変形が増大する場合がある。従って、1次浸炭温度T1は、具体的には、1100℃以下が好ましく、さらに好ましくは、1000℃以下である。
The primary carburizing step is a step of carburizing a steel material having the above composition so that the surface carbon concentration C is Ceu <C ≦ C (Acm) at the primary carburizing temperature T1 (° C.).
The primary carburizing temperature T1 may be at least 100 ° C. higher than the secondary carburizing start temperature T2s described later. In general, the higher the primary carburizing temperature T1, the shorter the time required for carburizing to a predetermined carbon concentration. Specifically, the primary carburizing temperature T1 is preferably 900 ° C. or higher.
On the other hand, if the primary carburizing temperature T1 becomes too high, the life of the furnace may be reduced, or the deformation of the steel material during carburizing may increase. Therefore, the primary carburizing temperature T1 is specifically preferably 1100 ° C. or lower, more preferably 1000 ° C. or lower.

また、浸炭は、鋼材の表面炭素濃度CがCeu<C≦C(Acm)となるように行う。
ここで、「表面炭素濃度」とは、表面から10μmの領域内の平均炭素濃度をいう。
また、「Ceu」とは、上述した範囲のSi、Mn、及びCrを含む鋼材の共析炭素濃度をいう。上述した鋼材の場合、いずれも、共析炭素濃度は、0.5mass%以上となる。
さらに、「C(Acm)」とは、1次浸炭温度T1における、上述した範囲のSi、Mn及びCrを含む鋼材のAcm線に相当する炭素濃度をいう。C≦C(Acm)となるまで浸炭を行うことは、鋼材の表面温度がAcm線以上となる温度(すなわち、表面がγ相単相となる温度)で1次浸炭を行うことを意味する。
Carburization is performed such that the surface carbon concentration C of the steel material satisfies Ceu <C ≦ C (Acm).
Here, “surface carbon concentration” refers to an average carbon concentration within a region of 10 μm from the surface.
“Ceu” refers to the eutectoid carbon concentration of a steel material containing Si, Mn, and Cr in the above-described range. In the case of the steel materials described above, the eutectoid carbon concentration is 0.5 mass% or more.
Furthermore, “C (Acm)” refers to the carbon concentration corresponding to the Acm line of the steel material containing Si, Mn and Cr in the above-described range at the primary carburizing temperature T1. Carburizing until C ≦ C (Acm) means that the primary carburizing is performed at a temperature at which the surface temperature of the steel material is equal to or higher than the Acm line (that is, the temperature at which the surface becomes a single γ phase).

表面炭素濃度Cが少ないと、後述する2次浸炭の昇温中に、マトリックス内に炭化物が析出しない。昇温中にマトリックス内に炭化物が析出しないと、2次浸炭時に粒界に粗大な炭化物が生成する。従って、1次浸炭は、表面炭素濃度CがCeuより大きくなるように行う必要がある。
一方、表面の炭素濃度Cが過剰になると、1次浸炭中に粒界に炭化物が生成する。1次浸炭で生成した炭化物は、そのまま残存するため、粗大な炭化物の生成は防止しなければならない。具体的には、長径5μm以上の粗大な炭化物が存在しないことが好ましい。従って、1次浸炭は、表面炭素濃度CがC(Acm)以下となるように行う必要がある。
例えば、上述した組成を有する鋼材の場合、1次浸炭温度T1を950〜1000℃とすると、C(Acm)は、1.25〜1.4mass%程度となる。
When the surface carbon concentration C is low, carbides do not precipitate in the matrix during the temperature increase of the secondary carburization described later. If carbides do not precipitate in the matrix during temperature rise, coarse carbides are generated at the grain boundaries during secondary carburization. Therefore, the primary carburization needs to be performed so that the surface carbon concentration C is higher than Ceu.
On the other hand, if the surface carbon concentration C is excessive, carbides are generated at the grain boundaries during the primary carburization. Since the carbide generated by the primary carburization remains as it is, generation of coarse carbides must be prevented. Specifically, it is preferable that there is no coarse carbide having a major axis of 5 μm or more. Accordingly, the primary carburization needs to be performed so that the surface carbon concentration C is C (Acm) or less.
For example, in the case of a steel material having the above-described composition, when the primary carburizing temperature T1 is 950 to 1000 ° C., C (Acm) is about 1.25 to 1.4 mass%.

1次浸炭を行う際の浸炭方法は、特に限定されるものではなく、種々の方法を用いることができる。特に、ガス浸炭及び真空浸炭は、取り扱いが容易で、処理時間も短いので、浸炭方法として好適である。特定の浸炭方法を採用した場合において、浸炭条件を最適化すると、表面の炭素濃度Cを上述の範囲に収めることができる。
例えば、ガス浸炭は、浸炭性ガス雰囲気中で鋼材を加熱することにより浸炭を行う。この場合、浸炭量は、浸炭雰囲気のカーボンポテンシャルにより制御することができる。カーボンポテンシャルとは、雰囲気と平衡する純鉄の表面平衡炭素濃度であり、雰囲気中のCO/CO2比やH2O量に依存する。一般に、カーボンポテンシャルが高くなるほど、及び/又は、1次浸炭温度T1が高くなるほど、短時間で表面の炭素濃度を高めることができる。
また、例えば、真空浸炭は、鋼材を挿入した炉内を1.3Pa程度に減圧した後、浸炭温度に加熱し、メタン、プロパンなどの炭化水素ガスを炉内に導入することにより浸炭を行う。この場合、浸炭量は、炭化水素ガスの導入時間により制御することができる。なお、真空浸炭を行うと、表面近傍の炭素濃度が高くなりすぎる場合があるので、このような場合には、浸炭後に炭化水素ガスの供給を止め、その状態で保持する拡散処理を行うのが一般的である。
The carburizing method when performing the primary carburizing is not particularly limited, and various methods can be used. In particular, gas carburizing and vacuum carburizing are suitable as carburizing methods because they are easy to handle and the processing time is short. When a specific carburizing method is employed, the carbon concentration C on the surface can be kept within the above range by optimizing the carburizing conditions.
For example, gas carburizing is performed by heating a steel material in a carburizing gas atmosphere. In this case, the carburizing amount can be controlled by the carbon potential of the carburizing atmosphere. The carbon potential is the surface equilibrium carbon concentration of pure iron that is in equilibrium with the atmosphere, and depends on the CO / CO 2 ratio and the amount of H 2 O in the atmosphere. In general, the higher the carbon potential and / or the higher the primary carburizing temperature T1, the higher the surface carbon concentration.
For example, vacuum carburization is performed by depressurizing the inside of the furnace into which the steel material is inserted to about 1.3 Pa, then heating to a carburizing temperature, and introducing hydrocarbon gas such as methane or propane into the furnace. In this case, the carburization amount can be controlled by the introduction time of the hydrocarbon gas. In addition, since the carbon concentration near the surface may become too high when vacuum carburizing is performed, in such a case, the supply of hydrocarbon gas is stopped after carburizing, and diffusion treatment is performed to hold in that state. It is common.

冷却工程は、1次浸炭工程終了後、鋼材を冷却速度1℃/分以上で700℃以下まで冷却する工程である。
1次浸炭終了後、鋼材は、一端、700℃以下の温度まで冷却される。700℃以下の温度まで冷却するのは、2次浸炭の再加熱の際に、粒内に微細な炭化物を析出させるためである。この場合、冷却速度が遅すぎると、冷却中に片状・粗大な炭化物が粒界に析出するので好ましくない。冷却時に生じた粗大な炭化物は、後述の工程においても消滅せず、鋼材の強度を低下させる原因となる。従って、冷却速度は、1℃/分以上が好ましい。冷却速度は、速いほどよい。
The cooling step is a step of cooling the steel material to a temperature of 700 ° C. or lower at a cooling rate of 1 ° C./min or higher after the completion of the primary carburizing step.
After the completion of the primary carburization, the steel material is cooled to a temperature of 700 ° C. or lower at one end. The reason for cooling to a temperature of 700 ° C. or lower is to precipitate fine carbides in the grains during the reheating of the secondary carburization. In this case, if the cooling rate is too slow, it is not preferable because flakes and coarse carbides precipitate at the grain boundaries during cooling. Coarse carbides generated at the time of cooling do not disappear even in a process described later, and cause a reduction in the strength of the steel material. Therefore, the cooling rate is preferably 1 ° C./min or more. The faster the cooling rate, the better.

2次浸炭初期工程は、冷却された鋼材を2次浸炭開始温度T2sまで昇温させ、2次浸炭温度T2において鋼材を浸炭させる工程である。
ここで、「2次浸炭開始温度T2s」とは、次の(1)式の条件を満たす温度をいう。
Ac1点(℃)≦T2s(℃)≦1次浸炭温度T1−100℃≦2次浸炭開始直後における前記鋼材の表面炭素濃度に相当するAcm線温度(℃) ・・・(1)
2次浸炭開始温度T2sと1次浸炭温度T1との温度差は、100℃以上が好ましい。両者の温度差が100℃未満になると、粒界に片状・粗大な炭化物が生成するおそれがある。両者の温度差は、大きいほどよい。
また、2次浸炭開始温度T2sは、Ac1点以上であり、かつ、2次浸炭開始直後における鋼材の表面炭素濃度に相当するAcm線温度以下である必要がある。これは、鋼材の表面温度がAc1点とAcm線の間の温度(すなわち、表面がγ+Fe3C相となる温度)で2次浸炭を開始することを意味する。
The secondary carburizing initial step is a step of raising the temperature of the cooled steel material to the secondary carburizing start temperature T2s and carburizing the steel material at the secondary carburizing temperature T2.
Here, the “secondary carburization start temperature T2s” refers to a temperature that satisfies the following equation (1).
Ac1 point (° C) ≤ T2s (° C) ≤ primary carburizing temperature T1-100 ° C ≤ Acm line temperature (° C) corresponding to the surface carbon concentration of the steel immediately after the start of secondary carburizing (1)
The temperature difference between the secondary carburizing start temperature T2s and the primary carburizing temperature T1 is preferably 100 ° C. or higher. If the temperature difference between the two is less than 100 ° C., flaky and coarse carbides may be generated at the grain boundaries. The larger the temperature difference between the two, the better.
Further, the secondary carburization start temperature T2s needs to be not less than the Ac1 point and not more than the Acm line temperature corresponding to the surface carbon concentration of the steel material immediately after the start of the secondary carburization. This means that the secondary carburization starts at a temperature between the Ac1 point and the Acm line (that is, the temperature at which the surface becomes the γ + Fe 3 C phase).

「2次浸炭温度T2」とは、次の(2)式の条件を満たす温度をいう。
T2S≦T2≦前記鋼材の表面の炭素濃度に相当するAcm線温度(℃)・・・(2)
2次浸炭温度T2は、2次浸炭開始温度T2sと同一であっても良く、あるいは、それより高い温度であってもよい。
2次浸炭温度T2が2次浸炭開始温度T2sと同一である場合、2次浸炭温度T2での保持時間は、後述する焼入れ温度Tqまで昇温したときに、鋼材の表面温度がAcm線温度を超えない時間であればよい。一般に、2次浸炭温度T2での保持時間が長くなるほど、表面の炭素濃度が上昇し、これに応じて表面のAcm線温度も上昇するので、鋼材の表面温度をAcm線以下に保ったまま、浸炭を行うことができる。後述する焼入れ温度Tqに昇温したときに鋼材の表面温度を確実にAcm線以下とするためには、2次浸炭温度T2での保持時間は、15分以上が好ましい。
The “secondary carburizing temperature T2” refers to a temperature that satisfies the following equation (2).
T2S ≤ T2 ≤ Acm line temperature (° C) corresponding to the carbon concentration on the surface of the steel (2)
The secondary carburizing temperature T2 may be the same as the secondary carburizing start temperature T2s or may be a higher temperature.
When the secondary carburizing temperature T2 is the same as the secondary carburizing start temperature T2s, the holding time at the secondary carburizing temperature T2 is such that when the temperature is raised to the quenching temperature Tq described later, the surface temperature of the steel material becomes the Acm line temperature. It is sufficient if the time does not exceed. In general, the longer the holding time at the secondary carburizing temperature T2, the higher the carbon concentration on the surface, and the Acm line temperature on the surface also increases accordingly. Therefore, the surface temperature of the steel material is kept below the Acm line, Carburization can be performed. In order to ensure that the surface temperature of the steel material is below the Acm line when the temperature is raised to the quenching temperature Tq described later, the holding time at the secondary carburizing temperature T2 is preferably 15 minutes or more.

一方、2次浸炭温度T2が2次浸炭開始温度T2sより高い場合、2次浸炭温度T2は、2次浸炭開始温度T2sから階段状に温度を上昇させても良く、あるいは、連続的に上昇させてもよい。
「階段状」とは、一定温度で所定時間保持した後、温度を所定の温度幅で上昇させ、さらにその温度で所定時間保持することを繰り返すことをいう。階段状に温度を上昇させる場合であっても、温度の上昇幅及び保持温度での保持時間を最適化すると、鋼材の表面温度をAcm線以下に保ったまま、浸炭を行うことができる。
また、「連続的」とは、所定の昇温速度で温度を上昇させることをいう。連続的に温度を上昇させる場合であっても、昇温速度を最適化することによって、鋼材の表面温度をAcm線以下に保ったまま、浸炭を行うことができる。
On the other hand, when the secondary carburizing temperature T2 is higher than the secondary carburizing start temperature T2s, the secondary carburizing temperature T2 may be raised stepwise from the secondary carburizing start temperature T2s or may be continuously increased. May be.
“Staircase” means that after holding at a constant temperature for a predetermined time, the temperature is increased by a predetermined temperature range and then holding at that temperature for a predetermined time is repeated. Even when the temperature is raised stepwise, carburization can be performed while maintaining the surface temperature of the steel material below the Acm line by optimizing the temperature increase range and the holding time at the holding temperature.
“Continuous” refers to increasing the temperature at a predetermined rate of temperature increase. Even when the temperature is continuously increased, carburization can be performed while the surface temperature of the steel material is kept below the Acm line by optimizing the heating rate.

2次浸炭後期工程は、2次浸炭初期工程終了後、引き続き鋼材を焼入れ温度Tq(℃)まで昇温させ、焼入れ温度Tqにおいてさらに浸炭させる工程である。
但し、Tq≦前記鋼材の表面炭素濃度に相当するAcm線温度(℃)。
2次浸炭後期工程は、単に鋼材の温度を焼入れ温度Tqまで上昇させるためだけではなく、より高温において浸炭を行わせ、粒界に片状・粗大な炭化物を析出させることなく、短時間で表面の炭素濃度を目的とする炭素濃度とするための工程でもある。従って、焼入れ温度Tqは、鋼材の表面炭素濃度に相当するAcm線温度以下である必要がある。2次浸炭初期工程の浸炭条件を最適化すると、鋼材の表面温度をAcm線温度以下に保ったまま、焼入れ温度Tqまで昇温することができる。
一般に、焼入れ温度Tqが低くなるほど、保持中に、粒界に片状・粗大な炭化物が生成しにくくなる。しかしながら、焼入れ温度Tqが低くなりすぎると、炭素の拡散速度が低下するだけでなく、心部の焼入れが不十分となる。従って、焼入れ温度Tqは、鋼材の心部がオーステナイト単相となる温度以上とするのが好ましい。
The secondary carburization late process is a process in which the steel material is continuously heated to the quenching temperature Tq (° C.) and further carburized at the quenching temperature Tq after completion of the secondary carburizing initial process.
However, Tq ≦ Acm line temperature (° C.) corresponding to the surface carbon concentration of the steel material.
The second stage of secondary carburizing is not only to raise the temperature of the steel material to the quenching temperature Tq, but also to perform carburizing at a higher temperature and to precipitate the flakes and coarse carbides at the grain boundaries in a short time. It is also a process for making the carbon concentration of the target carbon concentration. Accordingly, the quenching temperature Tq needs to be equal to or lower than the Acm line temperature corresponding to the surface carbon concentration of the steel material. When the carburizing conditions in the initial stage of secondary carburizing are optimized, the temperature can be raised to the quenching temperature Tq while keeping the surface temperature of the steel material below the Acm line temperature.
In general, the lower the quenching temperature Tq, the more difficult it is to form flakes and coarse carbides at the grain boundaries during holding. However, if the quenching temperature Tq is too low, not only the carbon diffusion rate is lowered, but the quenching of the core becomes insufficient. Accordingly, it is preferable that the quenching temperature Tq is equal to or higher than the temperature at which the core of the steel material becomes an austenite single phase.

焼入れ温度Tqでの保持時間は、特に限定されるものではなく、鋼材の組成、焼入れ温度Tq、鋼材に要求される特性等に応じて、最適な時間を選択する。一般に、保持時間が長くなるほど、鋼材の表面炭素濃度を上昇させることができる。耐摩耗性、面疲労強度に優れた高濃度浸炭鋼を得るためには、焼入れ温度Tqでの保持時間(すなわち、浸炭時間)は、15分以上が好ましい。
なお、2次浸炭初期工程において、段階的又は連続的に2次浸炭温度T2を上昇させる場合において、焼入れ温度Tqに達した時点で十分な浸炭量が得られ、かつ、鋼材の均熱も十分であるときには、焼入れ温度Tqに到達後、焼入れ温度Tqでの浸炭を実質的に行うことなく、直ちに焼入れを行ってもよい。
The holding time at the quenching temperature Tq is not particularly limited, and an optimum time is selected according to the composition of the steel material, the quenching temperature Tq, the characteristics required for the steel material, and the like. In general, the longer the holding time, the higher the surface carbon concentration of the steel material. In order to obtain a high-concentration carburized steel having excellent wear resistance and surface fatigue strength, the holding time at the quenching temperature Tq (that is, carburizing time) is preferably 15 minutes or more.
When the secondary carburizing temperature T2 is increased stepwise or continuously in the initial stage of secondary carburizing, a sufficient carburizing amount can be obtained when the quenching temperature Tq is reached, and the steel material has sufficient soaking. In this case, after reaching the quenching temperature Tq, quenching may be performed immediately without substantially performing carburization at the quenching temperature Tq.

焼入れ工程は、2次浸炭後期工程終了後、鋼材を焼入れする工程である。
焼入れは、表面の浸炭層及び心部をマルテンサイト変態させるために行われる。そのためには、2次浸炭後期工程終了後の鋼材は、急冷することが好ましい。焼入れ方法としては、具体的には、油焼入れ、ガス焼入れなどがある。
The quenching process is a process of quenching the steel material after the end of the secondary carburization late process.
Quenching is performed in order to transform the carburized layer and the core of the surface into martensite. For that purpose, it is preferable to rapidly cool the steel material after the end of the second stage carburizing process. Specific examples of the quenching method include oil quenching and gas quenching.

次に、本発明に係る高濃度浸炭鋼の製造方法の作用について説明する。
図1(a)〜図1(d)に、各種条件で高濃度浸炭した場合における組織変化の模式図を示す。なお、図1(a)〜図1(d)には、状態図も併せて示した。
高濃度浸炭は、1次浸炭と2次浸炭の2回の浸炭を行うものが多い。浸炭を2段階に分けて行う従来の高濃度浸炭は、図1(a)の状態図に示すように、1次浸炭終了時の表面の炭素濃度は、浸炭温度に対応するAcm線濃度より低い濃度になっている。すなわち、1次浸炭終了後の表面は、オーステナイト単相状態にある。そのため、この状態から所定の冷却速度で700℃以下まで冷却すると、鋼材の組織は、図1(a)の左図に示すように、粒界に粗大な炭化物が生成していない状態となる。
この状態から鋼材を2次浸炭温度まで昇温すると、図1(a)の中図に示すように、2次浸炭の昇温過程で粒内に球状・微細な炭化物が生成する。これは、2次浸炭は、鋼材の表面炭素濃度に相当するAcm線温度より低い温度(すなわち、表面がγ+Fe3C相となる温度)で行われ、1次浸炭に比べて炭素の拡散速度が遅くなるので、粒界に炭化物が析出しにくくなるためである。
2次浸炭温度に到達後、その温度で2次浸炭を開始すると、図1(a)の右図に示すように、昇温過程で生じた微細な炭化物が核となり、炭化物が成長する。
Next, the effect | action of the manufacturing method of the high concentration carburized steel which concerns on this invention is demonstrated.
Fig. 1 (a) to Fig. 1 (d) are schematic diagrams showing the structure change when high-concentration carburization is performed under various conditions. FIGS. 1A to 1D also show state diagrams.
Many of the high-concentration carburizations perform carburization twice, that is, primary carburization and secondary carburization. As shown in the state diagram of FIG. 1A, the conventional high-concentration carburizing performed in two stages of carburizing is such that the surface carbon concentration at the end of the primary carburizing is lower than the Acm line concentration corresponding to the carburizing temperature. It is concentration. That is, the surface after the end of primary carburization is in an austenite single phase state. Therefore, when cooling from this state to 700 ° C. or less at a predetermined cooling rate, the structure of the steel material is in a state in which coarse carbides are not generated at the grain boundaries as shown in the left diagram of FIG.
When the steel material is heated from this state to the secondary carburizing temperature, spherical and fine carbides are generated in the grains during the temperature raising process of the secondary carburizing as shown in the middle diagram of FIG. This is because the secondary carburization is performed at a temperature lower than the Acm line temperature corresponding to the surface carbon concentration of the steel material (that is, the temperature at which the surface becomes the γ + Fe 3 C phase), and the carbon diffusion rate is higher than that of the primary carburization. This is because it becomes slow, and it becomes difficult for carbide to precipitate at the grain boundaries.
After reaching the secondary carburizing temperature, when the secondary carburizing is started at that temperature, as shown in the right figure of FIG. 1A, fine carbides generated in the temperature raising process become nuclei and the carbides grow.

図1(a)に示すような組織を得るためには、1次浸炭終了時の温度はAcm線より高く、2次浸炭開始時の温度はAcm線より低くなっている必要がある。製造された鋼材にはロット間の成分バラツキがあり、鋼材ごとにAcm線の位置が多少変動するので、図1(a)に示すような組織を確実に得るためには、1次浸炭温度と2次浸炭温度の温度差を十分に取る必要がある。
しかしながら、温度差を十分に取るために、1次浸炭温度を上昇させると、炉の耐久性が低下する。一方、これを回避するために、2次浸炭温度を下げると、2次浸炭時における炭素の拡散速度が低下するので、生産性が大幅に低下する。
In order to obtain a structure as shown in FIG. 1A, the temperature at the end of the primary carburization needs to be higher than the Acm line, and the temperature at the start of the secondary carburization needs to be lower than the Acm line. The manufactured steel has component variations between lots, and the position of the Acm line varies slightly for each steel. Therefore, in order to reliably obtain a structure as shown in FIG. It is necessary to take a sufficient temperature difference between the secondary carburizing temperatures.
However, if the primary carburizing temperature is raised in order to take a sufficient temperature difference, the durability of the furnace is lowered. On the other hand, if the secondary carburizing temperature is lowered in order to avoid this, the carbon diffusion rate at the time of secondary carburizing is lowered, so that the productivity is greatly lowered.

さらに、炉の耐久性と生産性とを両立させるために、1次浸炭温度と2次浸炭温度の温度差を小さくすると、Acm線を挟んだ2段階の浸炭処理を再現性良く行うのが困難となる。
例えば、2次浸炭温度を従来と同等の温度に維持し、1次浸炭温度を下げた場合において、1次浸炭温度がAcm線より上にあるときには、1次浸炭終了後の鋼材の組織は、図1(b)の左図に示すように、粒界に粗大な炭化物が生成していない状態となる。しかしながら、2次浸炭開始温度がAcm線を越えると、図1(b)の中図に示すように、2次浸炭温度に保持している間に、2次浸炭の昇温過程で粒内に生成した微細な炭化物が再固溶する。粒内には炭化物を成長させるための核が無くなるので、炭化物は、形成エネルギーのより小さい粒界において優先的に生成する。その結果、図1(b)の右図に示すように、粒界に粗大な炭化物が生成する。
一方、2次浸炭温度を従来と同様の温度に維持し、1次浸炭温度を下げた場合において、1次浸炭温度がAcm線より下にあるときには、1次浸炭終了後の鋼材の組織は、図1(c)の左図に示すように、粒界に片状の炭化物が生成した状態となる。これを2次浸炭開始温度に昇温すると、図1(c)の中図に示すように、昇温過程で粒内に微細な炭化物が生成する。この状態から2次浸炭を行うと、図1(c)の右図に示すように、粒内の微細な炭化物と粒界に生成した片状の炭化物の双方が成長する。
図1(b)及び図1(c)のいずれの場合においても、粒界に生成した片状・粗大な炭化物は、高濃度浸炭鋼の強度を低下させる原因となる。
Furthermore, if the temperature difference between the primary carburizing temperature and the secondary carburizing temperature is made small in order to achieve both durability and productivity of the furnace, it is difficult to perform the two-stage carburizing process with the Acm line between them with good reproducibility. It becomes.
For example, when the primary carburizing temperature is above the Acm line when the secondary carburizing temperature is maintained at a temperature equivalent to the conventional temperature and the primary carburizing temperature is lowered, the structure of the steel material after the completion of the primary carburizing is: As shown in the left diagram of FIG. 1B, coarse carbides are not generated at the grain boundaries. However, when the secondary carburization start temperature exceeds the Acm line, as shown in the middle diagram of FIG. 1B, while maintaining the secondary carburization temperature, the secondary carburization temperature rises within the grains. The fine carbides that are produced re-dissolve. Since there are no nuclei for growing carbides in the grains, the carbides are preferentially generated at grain boundaries with lower formation energy. As a result, coarse carbides are generated at the grain boundaries as shown in the right diagram of FIG.
On the other hand, when the secondary carburizing temperature is maintained at the same temperature as the conventional one and the primary carburizing temperature is lowered, and the primary carburizing temperature is below the Acm line, the structure of the steel material after the completion of the primary carburizing is: As shown in the left figure of FIG.1 (c), it will be in the state which the piece-like carbide | carbonized_material produced | generated in the grain boundary. When the temperature is raised to the secondary carburization start temperature, fine carbides are generated in the grains during the temperature raising process, as shown in the middle diagram of FIG. When secondary carburization is performed from this state, both fine carbides in the grains and flake carbides generated at the grain boundaries grow as shown in the right figure of FIG.
In both cases of FIG. 1B and FIG. 1C, the flakes and coarse carbides generated at the grain boundaries cause the strength of the high-concentration carburized steel to decrease.

これに対し、1次浸炭温度を従来と同等以下にした状態で1次浸炭を終了させると、図1(d)の左図に示すように、1次浸炭終了後の鋼材の組織は、粒界に粗大な炭化物が生成していない状態となる。また、鋼材を冷却後、2次浸炭開始温度に昇温する場合において、2次浸炭開始温度を1次浸炭温度より100℃以上低い温度にすると、鋼材の表面温度をAcm線より低い温度に確実に持っていくことができる。そのため、2次浸炭開始温度に到達した時点では、図1(d)の中図に示すように、粒内に微細な炭化物が生成する。 この状態から、2次浸炭開始温度と同一温度で保持し、又は、2次浸炭開始温度から段階的若しくは連続的に温度を上昇させながら一定時間浸炭を行うと、粒界に炭化物が生成することなく、粒内の炭化物が成長する。
また、2次浸炭の進行に伴い、表面の炭素濃度が上昇し、表面のAcm線温度も上昇する。そのため、2次浸炭初期工程の条件を最適化すれば、鋼材を焼入れ温度に昇温しても、焼入れ温度が表面のAcm線温度を超えることがない。その結果、図1(d)の右図に示すように、粒界に炭化物を生成させることなく、粒内の炭化物を成長させることができる。
On the other hand, when the primary carburization is finished in a state where the primary carburization temperature is equal to or lower than the conventional one, as shown in the left diagram of FIG. A coarse carbide is not generated in the boundary. In addition, when the temperature is raised to the secondary carburization start temperature after cooling the steel material, if the secondary carburization start temperature is set to a temperature lower by 100 ° C. or more than the primary carburization temperature, the surface temperature of the steel material is surely kept below the Acm line Can be taken to. Therefore, when the secondary carburization start temperature is reached, fine carbides are generated in the grains as shown in the middle diagram of FIG. If this state is maintained at the same temperature as the secondary carburization start temperature, or if carburization is performed for a certain period of time while raising the temperature stepwise or continuously from the secondary carburization start temperature, carbides are generated at the grain boundaries. There is no growth within the grains.
As the secondary carburization proceeds, the surface carbon concentration increases and the surface Acm line temperature also increases. Therefore, if the conditions of the secondary carburizing initial process are optimized, the quenching temperature does not exceed the surface Acm line temperature even if the steel material is heated to the quenching temperature. As a result, as shown in the right figure of FIG. 1D, the carbides in the grains can be grown without generating carbides at the grain boundaries.

粒界に片状・粗大な炭化物の析出を防止するためには、1次浸炭をAcm線より高い温度で行い、2次浸炭をAcm線より低い温度で行う必要がある。本発明に係る高濃度浸炭鋼の製造方法は、1次浸炭終了後と2次浸炭開始時の温度差を十分に取ることができるので、鋼材の成分にロット間バラツキがある場合であっても、片状・粗大な炭化物の生成を確実に抑えることができる。また、充分な温度差を取るために1次浸炭温度を上昇させる必要がないので、炉の耐久性を低下させることもない。さらに、2次浸炭開始温度に到達した後、所定時間経過後に焼入れ温度に上昇させて浸炭が続行されるので、表面の炭素濃度を短時間で目的とする濃度に到達させることができる。   In order to prevent precipitation of coarse and coarse carbides at the grain boundaries, it is necessary to perform primary carburization at a temperature higher than the Acm line and perform secondary carburization at a temperature lower than the Acm line. Since the manufacturing method of the high-concentration carburized steel according to the present invention can sufficiently take a temperature difference between the end of the primary carburization and the start of the secondary carburization, even if there are lot-to-lot variations in the components of the steel material Thus, the formation of flakes and coarse carbides can be reliably suppressed. Moreover, since it is not necessary to raise the primary carburizing temperature in order to take a sufficient temperature difference, the durability of the furnace is not lowered. Furthermore, after reaching the secondary carburizing start temperature, the carburization is continued after raising the quenching temperature after a predetermined time has elapsed, so that the surface carbon concentration can reach the target concentration in a short time.

(実施例1〜15、比較例1〜5)
[1. 試料の作製]
種々の組成を有する鋼材について、種々の条件下で浸炭を行った。なお、浸炭は、いずれも1次浸炭と2次浸炭の2段階で行った。また、2次浸炭は、実施例15及び比較例1を除き、一定の温度(低温)で一定時間保持する2次浸炭初期工程と、焼入れ温度(高温)に昇温して一定時間保持する2次浸炭後期工程の2段階に分けて行った。図2に、典型的な浸炭処理パターンを示す。
(Examples 1-15, Comparative Examples 1-5)
[1. Preparation of sample]
The steel materials having various compositions were carburized under various conditions. Carburization was performed in two stages, primary carburization and secondary carburization. In addition, except for Example 15 and Comparative Example 1, the secondary carburizing is a secondary carburizing initial step that is maintained at a constant temperature (low temperature) for a certain period of time, and a temperature that is raised to a quenching temperature (high temperature) and maintained for a certain period of time 2 It was divided into two stages of the next carburization late process. FIG. 2 shows a typical carburizing pattern.

浸炭は、1次浸炭、2次浸炭初期及び2次浸炭後期のいずれも、
(1) 総浸炭時間の2%に当たる時間、浸炭ガスを流して浸炭を行う操作、及び
(2) 総浸炭時間の23%に当たる時間、真空引きをして拡散させる操作、
を合計4回繰り返すことにより行った。
但し、実施例15については、2次浸炭開始温度を750℃とし、焼入れ温度850℃に達するまで、浸炭しながら40分かけて昇温し、焼入れ温度に到達後、直ちに焼入れを行った。
また、比較例2の2次浸炭初期工程は、総浸炭時間の3%に当たる時間、浸炭ガスを流して浸炭する操作と、総浸炭時間の22%に当たる時間、真空引きをして拡散する操作を、合計4回繰り返した。
さらに、比較例3の2次浸炭初期工程は、総浸炭時間の1%に当たる時間、浸炭ガスを流して浸炭を行い、総浸炭時間の24%に当たる時間、真空引きをして拡散する操作を、合計4回繰り返した。
Carburization is performed in both primary carburization, initial secondary carburization, and late secondary carburization.
(1) A time corresponding to 2% of the total carburizing time, an operation of performing carburizing by flowing a carburizing gas, and (2) an operation of evacuating and diffusing for a time corresponding to 23% of the total carburizing time,
Was repeated a total of 4 times.
However, in Example 15, the secondary carburization start temperature was set to 750 ° C., the temperature was increased over 40 minutes while carburizing until the quenching temperature reached 850 ° C., and quenching was performed immediately after reaching the quenching temperature.
In addition, the secondary carburizing initial process of Comparative Example 2 includes a time corresponding to 3% of the total carburizing time, a carburizing gas flowing operation, a time corresponding to 22% of the total carburizing time, and an operation of evacuating and diffusing. , Repeated a total of 4 times.
Furthermore, in the secondary carburizing initial step of Comparative Example 3, the carburizing gas is flowed for a time corresponding to 1% of the total carburizing time, the carburizing gas is flown, and the operation corresponding to 24% of the total carburizing time is performed by evacuating and diffusing. Repeated a total of 4 times.

[2. 試験方法]
1次浸炭終了後の表面炭素濃度は、断面の炭素濃度分布をEPMAにより測定し、表面から10μmの領域内の平均炭素濃度を算出した。また、1次浸炭終了後及び焼入れ後の炭化物粒径は、試料断面をピクラルで腐食後、SEMを用いて写真撮影することにより測定し、1mm2中に存在する炭化物の粒径の最大値を「炭化物粒径」とした。さらに、焼入れ後の疲労強度は、回転曲げ疲労試験(JIS Z 2274に準拠)により測定した。
[2. Test method]
The surface carbon concentration after the end of the primary carburization was obtained by measuring the carbon concentration distribution in the cross section with EPMA and calculating the average carbon concentration in the region of 10 μm from the surface. The carbide particle size after the completion of primary carburization and after quenching is measured by taking a photograph using a SEM after the sample cross section is corroded with picral, and the maximum particle size of carbide present in 1 mm 2 is determined. “Carbide particle size”. Furthermore, the fatigue strength after quenching was measured by a rotating bending fatigue test (based on JIS Z 2274).

[3. 結果]
表1に、各種鋼材の成分、浸炭条件、及び試験結果を示す。
比較例1は、焼入れ後において、10μmを超える粗大な炭化物が生成した。これは、2次浸炭初期工程を省略し、直ちに885℃での2次浸炭後期工程を行っているために、2次浸炭の昇温過程で生じた微細な炭化物が再固溶したためと考えられる。
また、比較例2は、焼入れ後において、10μmを超える粗大な炭化物が生成した。これは、1次浸炭が過剰であり、1次浸炭終了時点で粗大な炭化物が既に生成していたためである。
また、比較例3は、6μmを超える粗大な炭化物が生成した。これは、1次浸炭が不十分であり、表面炭素濃度が共析炭素濃度に満たないために、2次浸炭開始温度到達時点で、粒内に微細な炭化物が生成しなかったためと考えられる。
また、比較例4は、粗大な炭化物はないが、疲労強度が低い。これは、2次浸炭初期温度と2次浸炭後期温度が同一であり、炭素の拡散速度が遅いために、十分な量の炭化物が生成しなかったためと考えられる。
さらに、比較例5は、7μmを超える粗大な炭化物が生成した。これは、2次浸炭初期温度における保持時間が短いために、2次浸炭後期温度に昇温したときに鋼材の表面温度がAcm線を越えたためと考えられる。
そのため、比較例1〜5は、いずれも疲労強度が700MPa未満であった。
[3. result]
Table 1 shows the components of various steel materials, carburizing conditions, and test results.
In Comparative Example 1, coarse carbides exceeding 10 μm were generated after quenching. This is probably because the initial stage of the second carburization was omitted and the second stage of the second carburization at 885 ° C. was performed immediately, so that fine carbides generated during the temperature raising process of the second carburization were re-dissolved. .
Moreover, the comparative example 2 produced | generated the coarse carbide | carbonized_material over 10 micrometers after hardening. This is because primary carburization is excessive and coarse carbides have already been generated at the end of primary carburization.
Moreover, the comparative example 3 produced | generated the coarse carbide | carbonized_material exceeding 6 micrometers. This is probably because primary carburization is insufficient and the surface carbon concentration is less than the eutectoid carbon concentration, so that fine carbides are not generated in the grains when the secondary carburization start temperature is reached.
In Comparative Example 4, there is no coarse carbide, but the fatigue strength is low. This is presumably because the initial carburizing initial temperature and the secondary carburizing late temperature were the same, and the carbon diffusion rate was slow, so that a sufficient amount of carbide was not generated.
Furthermore, the comparative example 5 produced | generated the coarse carbide | carbonized_material exceeding 7 micrometers. This is thought to be because the surface temperature of the steel material exceeded the Acm line when the temperature was raised to the secondary carburizing late temperature because the holding time at the secondary carburizing initial temperature was short.
Therefore, all of Comparative Examples 1 to 5 had a fatigue strength of less than 700 MPa.

これに対し、実施例1〜15は、いずれも疲労強度が700MPa以上であった。これは、適正な条件下で1次浸炭、2次浸炭初期、及び2次浸炭後期が行われているので、粒界に片状・粗大な炭化物を生成させることなく、微細かつ球状の炭化物を粒内に多量に形成することができたためと考えられる。   On the other hand, Examples 1 to 15 all had a fatigue strength of 700 MPa or more. This is because the primary carburizing, the initial carburizing initial stage, and the secondary carburizing late stage are performed under appropriate conditions, so that fine and spherical carbides can be produced without generating flakes and coarse carbides at the grain boundaries. It is thought that it was possible to form a large amount in the grain.

Figure 0004971751
Figure 0004971751

以上、本発明の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改変が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the present invention.

本発明に係る高濃度浸炭鋼の製造方法は、軸、軸受け、歯車ピストンピン、カムなどの機械部品の製造方法として使用することができる。   The manufacturing method of the high concentration carburized steel according to the present invention can be used as a manufacturing method of machine parts such as a shaft, a bearing, a gear piston pin, and a cam.

各種条件下で高濃度浸炭した場合における組織変化の模式図、及び、状態図である。It is the schematic diagram of a structure change at the time of carrying out high concentration carburizing on various conditions, and a state diagram. 実施例で用いた典型的な浸炭処理パターンを示す図である。It is a figure which shows the typical carburizing process pattern used in the Example.

Claims (3)

以下の工程を備えた高濃度浸炭鋼の製造方法。
(イ) C:0.15〜0.30mass%、Si:0.40〜0.80mass%、Mn:0.3〜0.8mass%、Cr:1.25〜2.00mass%、残部がFe及び不可避的不純物からなる鋼材を、1100℃以下である1次浸炭温度T1(℃)において、その表面炭素濃度CがCeu<C≦C(Acm)となるまで浸炭させる1次浸炭工程。
但し、
Ceuは、前記鋼材の共析炭素濃度、
C(Acm)は、前記1次浸炭温度T1における前記鋼材のAcm線に相当する炭素濃度。
(ロ) 前記1次浸炭工程終了後、前記鋼材を冷却速度1℃/分以上で700℃以下まで冷却する冷却工程。
(ハ) 前記鋼材を2次浸炭開始温度T2sまで昇温させ、2次浸炭温度T2を前記2次浸炭開始温度T2sに維持したまま前記鋼材を浸炭させる2次浸炭初期工程。
但し、
Ac1点(℃)≦T2s(℃)≦1次浸炭温度T1−100℃≦2次浸炭開始直後における前記鋼材の表面炭素濃度に相当するAcm線温度(℃)、
T2S≦T2≦前記鋼材の表面炭素濃度に相当するAcm線温度(℃)。
(ニ) 前記2次浸炭初期工程終了後、引き続き前記鋼材を焼入れ温度Tq(℃)まで昇温させ、前記焼入れ温度Tqにおいてさらに浸炭させる2次浸炭後期工程。
但し、
Tq≦前記鋼材の表面炭素濃度に相当するAcm線温度(℃)。
(ホ) 前記2次浸炭後期工程終了後、前記鋼材を焼入れする焼入れ工程。
The manufacturing method of high concentration carburized steel provided with the following processes.
(A) C: 0.15 to 0.30 mass%, Si: 0.40 to 0.80 mass%, Mn: 0.3 to 0.8 mass%, Cr: 1.25 to 2.00 mass%, the balance being Fe And a primary carburizing step of carburizing a steel material composed of inevitable impurities at a primary carburizing temperature T1 (° C.) of 1100 ° C. or less until the surface carbon concentration C becomes Ceu <C ≦ C (Acm).
However,
Ceu is the eutectoid carbon concentration of the steel material,
C (Acm) is a carbon concentration corresponding to the Acm line of the steel material at the primary carburizing temperature T1.
(B) A cooling step of cooling the steel material to a temperature of 700 ° C. or less at a cooling rate of 1 ° C./min after the completion of the primary carburizing step.
(C) the steel material is warm to the secondary carburization start temperature T2s, the secondary carburization temperature T 2 a secondary carburization initial step of carburizing a pre Symbol steel while maintaining the secondary carburization start temperature T2s.
However,
Ac1 point (° C.) ≦ T 2 s (° C.) ≦ primary carburizing temperature T 1 −100 ° C. ≦ Acm line temperature (° C.) corresponding to the surface carbon concentration of the steel immediately after the start of secondary carburizing,
T2S ≦ T2 ≦ Acm line temperature (° C.) corresponding to the surface carbon concentration of the steel material.
(D) A secondary carburizing late process in which the steel material is continuously heated to the quenching temperature Tq (° C.) after the secondary carburizing initial process is completed, and further carburized at the quenching temperature Tq.
However,
Tq ≦ Acm line temperature (° C.) corresponding to the surface carbon concentration of the steel material.
(E) A quenching step of quenching the steel after the end of the secondary carburization late step.
前記2次浸炭初期工程は、15分以上浸炭を行うものである請求項1に記載の高濃度浸炭鋼の製造方法。 The method for producing high-concentration carburized steel according to claim 1, wherein the secondary carburizing initial step is carburizing for 15 minutes or more. 前記2次浸炭後期工程は、前記焼入れ温度Tqにおいて15分以上浸炭を行うものである請求項1又は2に記載の高濃度浸炭鋼の製造方法。 3. The method for producing high-concentration carburized steel according to claim 1, wherein the second-stage carburizing late step is for carburizing at the quenching temperature Tq for 15 minutes or longer.
JP2006299836A 2006-11-06 2006-11-06 Manufacturing method of high-concentration carburized steel Expired - Fee Related JP4971751B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006299836A JP4971751B2 (en) 2006-11-06 2006-11-06 Manufacturing method of high-concentration carburized steel
EP07830687A EP2085493A4 (en) 2006-11-06 2007-10-26 Process for producing high-concentration carburized steel
CN2007800413430A CN101535522B (en) 2006-11-06 2007-10-26 Process for producing high-concentration carburized steel
PCT/JP2007/070953 WO2008056552A1 (en) 2006-11-06 2007-10-26 Process for producing high-concentration carburized steel
US12/447,914 US20100126632A1 (en) 2006-11-06 2007-10-26 Manufacturing method for high-concentration carburized steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006299836A JP4971751B2 (en) 2006-11-06 2006-11-06 Manufacturing method of high-concentration carburized steel

Publications (2)

Publication Number Publication Date
JP2008115427A JP2008115427A (en) 2008-05-22
JP4971751B2 true JP4971751B2 (en) 2012-07-11

Family

ID=39364374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006299836A Expired - Fee Related JP4971751B2 (en) 2006-11-06 2006-11-06 Manufacturing method of high-concentration carburized steel

Country Status (5)

Country Link
US (1) US20100126632A1 (en)
EP (1) EP2085493A4 (en)
JP (1) JP4971751B2 (en)
CN (1) CN101535522B (en)
WO (1) WO2008056552A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2530178B1 (en) * 2010-01-27 2018-10-24 JFE Steel Corporation Case-hardened steel and carburized material
CN102676983B (en) * 2011-03-11 2014-03-26 青岛德盛机械制造有限公司 Carburization processing method
CN102796852B (en) * 2012-07-16 2014-07-02 鑫光热处理工业(昆山)有限公司 Carburizing reinforced isothermal quenching workpiece and processing method thereof
WO2014034150A1 (en) * 2012-09-03 2014-03-06 新日鐵住金株式会社 Carburized component
CN102877072B (en) * 2012-10-15 2014-08-27 常州市新城光大热处理有限公司 Technology for quickly carburizing gear like parts at variable temperatures and carbon potentials
CN102912282B (en) * 2012-10-24 2017-06-20 哈尔滨东安发动机(集团)有限公司 The secondary carburizing process method of 16Cr3NiWMoVNbE materials
US20160123951A1 (en) * 2013-05-10 2016-05-05 Hitachi, Ltd. Software and Method of Calculation of Carbon Concentration Distribution
JP6337580B2 (en) * 2013-06-26 2018-06-06 大同特殊鋼株式会社 Carburized parts
CN105899697B (en) * 2013-12-27 2017-09-05 新日铁住金株式会社 The manufacture method and carburizing steel part of carburizing steel part
JP6425025B2 (en) * 2015-02-23 2018-11-21 大同特殊鋼株式会社 Method of manufacturing high concentration carburized steel
CN104726819B (en) * 2015-03-20 2017-09-19 上海人本集团有限公司 Carburizing Heat-Treatment of Steel carburization process
CN104949769B (en) * 2015-06-23 2018-04-03 南车戚墅堰机车有限公司 A kind of method that the change of carburizing temperature field is quickly found not against temp measuring system
CN109321871A (en) * 2018-10-30 2019-02-12 安徽芜湖海螺建筑安装工程有限责任公司 The anti-anchoring piece bending cutter material and preparation method thereof that bursts apart
CN109201967A (en) * 2018-10-30 2019-01-15 安徽芜湖海螺建筑安装工程有限责任公司 Resisting fractre anchoring piece bending cutter assembly
CN109201966A (en) * 2018-10-30 2019-01-15 安徽芜湖海螺建筑安装工程有限责任公司 The anti-anchoring piece bending cutter assembly that bursts apart
CN109207912A (en) * 2018-10-31 2019-01-15 安徽芜湖海螺建筑安装工程有限责任公司 Anti-drag anchoring part and preparation method thereof
CN109338274A (en) * 2018-11-21 2019-02-15 中国航发哈尔滨东安发动机有限公司 A kind of 15Cr14Co12Mo5Ni2WA steel secondary low-voltage vacuum carburization method
CN110923411B (en) * 2019-12-11 2021-07-30 洛阳北方易初摩托车有限公司 Carburizing and quenching tissue refining process method for box type multipurpose furnace
CN111140161B (en) * 2019-12-30 2021-10-22 无锡森亘精密机械有限公司 Drill shank for special equipment for mine and production process thereof
CN111826604B (en) * 2020-07-15 2022-03-01 湖南南方宇航高精传动有限公司 Method for performing differential deep carburization on different parts of same part
CN113943916A (en) * 2021-10-20 2022-01-18 石家庄双剑工具有限公司 File manufacturing process
CN113969389A (en) * 2021-10-28 2022-01-25 惠州市思逸臻实业有限公司 Low-temperature carburizing process for screw production
CN115287584B (en) * 2022-08-08 2024-04-12 重庆齿轮箱有限责任公司 Carburizing and quenching method for medium alloy carburizing steel

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5569252A (en) * 1978-11-20 1980-05-24 Komatsu Ltd Carburizing method for steel
JP2808621B2 (en) 1988-11-28 1998-10-08 大同特殊鋼株式会社 Method of carburizing steel
JPH06108226A (en) * 1992-09-30 1994-04-19 Daido Steel Co Ltd Carburizing heat treatment of steel-made parts
JP3385722B2 (en) * 1994-06-15 2003-03-10 住友金属工業株式会社 Carburizing and quenching method
JP3413975B2 (en) * 1994-08-08 2003-06-09 日本精工株式会社 Rolling bearing with excellent wear resistance
JP3894635B2 (en) * 1997-08-11 2007-03-22 株式会社小松製作所 Carburized member, manufacturing method thereof, and carburizing system
JP4188307B2 (en) * 2004-12-10 2008-11-26 大同特殊鋼株式会社 Carburized parts and manufacturing method thereof

Also Published As

Publication number Publication date
CN101535522A (en) 2009-09-16
EP2085493A1 (en) 2009-08-05
WO2008056552A1 (en) 2008-05-15
CN101535522B (en) 2011-05-18
EP2085493A4 (en) 2009-11-25
JP2008115427A (en) 2008-05-22
US20100126632A1 (en) 2010-05-27

Similar Documents

Publication Publication Date Title
JP4971751B2 (en) Manufacturing method of high-concentration carburized steel
JP5639064B2 (en) Method for producing carbonitrided member
JP4022607B2 (en) Manufacturing method of high surface pressure resistant member
JP4927234B2 (en) Surface hardened steel part and method for manufacturing the same
JP4627776B2 (en) High concentration carburizing / low strain quenching member and method of manufacturing the same
JP2779170B2 (en) Carburizing and quenching method
WO2010064617A1 (en) Carbonitrided member and process for producing carbonitrided member
JP5135558B2 (en) Induction hardened steel, induction hardened rough shape, method for producing the same, and induction hardened steel parts
JP5824063B2 (en) Manufacturing method of steel parts
JP2007308772A (en) Carburized parts and manufacturing method therefor
JP2016050350A (en) Steel component for high strength high toughness machine structure excellent in pitching resistance and abrasion resistance and manufacturing method therefor
JP5076535B2 (en) Carburized parts and manufacturing method thereof
JP2019218582A (en) Mechanical component
JP4188307B2 (en) Carburized parts and manufacturing method thereof
JP4102866B2 (en) Gear manufacturing method
JP6765551B2 (en) Forged heat-treated product of Hada-yaki steel
JP2000129347A (en) Production of high strength parts
JP4116787B2 (en) Steel member
JP4940849B2 (en) Vacuum carburized parts and method for manufacturing the same
JP7270343B2 (en) Method for manufacturing mechanical parts
JP4821582B2 (en) Steel for vacuum carburized gear
JP2016156037A (en) Method of producing super carburized steel
JPH0559527A (en) Production of steel excellent in wear resistance and rolling fatigue characteristic
JP4149576B2 (en) Method for producing high-temperature carburizing steel and high-temperature carburizing steel obtained by the method
JP7010320B2 (en) Rough material for vacuum carburizing and its manufacturing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080425

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees