JP4964404B2 - Positive electrode for lithium ion secondary battery and lithium ion secondary battery - Google Patents

Positive electrode for lithium ion secondary battery and lithium ion secondary battery Download PDF

Info

Publication number
JP4964404B2
JP4964404B2 JP2004048550A JP2004048550A JP4964404B2 JP 4964404 B2 JP4964404 B2 JP 4964404B2 JP 2004048550 A JP2004048550 A JP 2004048550A JP 2004048550 A JP2004048550 A JP 2004048550A JP 4964404 B2 JP4964404 B2 JP 4964404B2
Authority
JP
Japan
Prior art keywords
secondary battery
lithium secondary
double layer
electric double
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004048550A
Other languages
Japanese (ja)
Other versions
JP2004296431A (en
Inventor
和雄 生田
俊 大木島
啓史 上嶋
覚 鈴木
雅也 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004048550A priority Critical patent/JP4964404B2/en
Publication of JP2004296431A publication Critical patent/JP2004296431A/en
Application granted granted Critical
Publication of JP4964404B2 publication Critical patent/JP4964404B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウム二次電池用電極およびリチウム二次電池に関し、詳しくは、低温時に高出力を発揮するリチウム二次電池用電極およびこの電極を正極に用いたリチウム二次電池に関する。以下、便宜的に、本発明のリチウムイオン二次電池用正極を本発明のリチウムイオン二次電池用電極と呼ぶ。 The present invention relates to an electrode for a lithium secondary battery and a lithium secondary battery, and more particularly to an electrode for a lithium secondary battery that exhibits high output at a low temperature and a lithium secondary battery using the electrode as a positive electrode. Hereinafter, for convenience, the positive electrode for a lithium ion secondary battery of the present invention is referred to as an electrode for a lithium ion secondary battery of the present invention.

近年、ノート型コンピューター、小型携帯機器、あるいは自動車のクリーンなエネルギー源として高性能なリチウム二次電池が開発されている。車載用の電源は、民生用途と比較して使用条件が厳しくなる。具体的には、車載用の電源には、高エネルギー密度の要求に加えて、室温下での高出力特性、更には寒冷地でのエンジン始動の必要性から低温下(−30℃程度)での数秒間の短時間出力まで要求されている。   In recent years, high-performance lithium secondary batteries have been developed as clean energy sources for notebook computers, small portable devices, or automobiles. The on-vehicle power supply has severer usage conditions compared to consumer applications. Specifically, in-vehicle power supplies require high energy density, high output characteristics at room temperature, and the necessity of starting the engine in cold regions, at low temperatures (about -30 ° C). It is required to output for a few seconds.

例えば、室温での高出力化等の電池特性の改善を解決するために、電極薄膜化による低抵抗化等が試みられ、ある程度の特性改善されたリチウム二次電池が提供されるようになっている。   For example, in order to solve the improvement in battery characteristics such as higher output at room temperature, a reduction in resistance by reducing the electrode thickness has been attempted, and a lithium secondary battery having improved characteristics to some extent has been provided. Yes.

しかしながら、上記従来技術のリチウム二次電池では、低温下においては、電池材料自体に起因した大きな内部抵抗増加(特に固液界面での電荷移動抵抗の増加が著しい)が生じるため、十分な短時間出力特性が得られず、要求される特性を満足することは非常に難しかった。   However, in the above-described prior art lithium secondary battery, a large increase in internal resistance due to the battery material itself (particularly a significant increase in charge transfer resistance at the solid-liquid interface) occurs at low temperatures. The output characteristics were not obtained, and it was very difficult to satisfy the required characteristics.

低温下での電池の特性低下に関しては、従来より電池と低温時の特性が優れたキャパシタとの併用電源により低温時の電流を補償する方法も検討されている(たとえば、非特許文献1参照)。   Regarding the deterioration of battery characteristics at low temperatures, a method for compensating current at low temperatures by using a combined power source of a battery and a capacitor having excellent characteristics at low temperatures has been studied (see Non-Patent Document 1, for example). .

しかしながら、電池とキャパシタの2つのデバイスで電源を構成することは、部品点数の増加、電源重量や体積の増加等の大きな欠点が生じていた。   However, configuring a power source with two devices, a battery and a capacitor, has caused major drawbacks such as an increase in the number of components and an increase in the weight and volume of the power source.

また、リチウム二次電池に電気二重層キャパシタの材料として用いられる活性炭を配合した正極も検討されている(たとえば、特許文献1参照)。   In addition, a positive electrode in which activated carbon used as a material for an electric double layer capacitor in a lithium secondary battery has been studied (for example, see Patent Document 1).

しかし、特許文献1に開示されたリチウム二次電池は、低温での短時間出力特性においては、若干の特性改善はみられるものの、未だに十分な特性は得られていない。   However, although the lithium secondary battery disclosed in Patent Document 1 shows some improvement in the short-time output characteristics at a low temperature, sufficient characteristics are not yet obtained.

逆に、電気二重層キャパシタにおいて、活性炭とLi含有遷移金属酸化物を正極に用い、リチウムイオンを吸蔵・脱離しうる炭素材料を含む負極と、リチウム塩を含む有機電解液を用いることで、上限電圧4.2Vの二次電源が提案されている(たとえば、特許文献2参照)。   Conversely, in an electric double layer capacitor, using activated carbon and a Li-containing transition metal oxide as a positive electrode, using a negative electrode containing a carbon material capable of occluding and desorbing lithium ions, and an organic electrolyte containing a lithium salt, A secondary power supply with a voltage of 4.2 V has been proposed (see, for example, Patent Document 2).

しかしながら、電気二重層キャパシタにおいては、主体はあくまで活性炭であり、実質的な充放電は活性炭により行われている。Li含有遷移金属酸化物の役割は、負極に吸蔵させるリチウムイオンの提供とリチウムイオンが減少した場合に補う役割である。このため、Li含有遷移金属酸化物の持つ高エネルギー密度が十分に生かされず、車載用の電源に用いるにはエネルギー密度が低いとうに問題があった。また、電気二重層キャパシタにおいて用いられる活性炭は、室温においてより容量が多く発現するものを用いるため、低温においては未だ十分な特性は得られていなかった。   However, in the electric double layer capacitor, the main component is only activated carbon, and substantial charging / discharging is performed by activated carbon. The role of the Li-containing transition metal oxide is to provide lithium ions to be occluded in the negative electrode and to supplement when the lithium ions decrease. For this reason, the high energy density of the Li-containing transition metal oxide is not fully utilized, and there is a problem that the energy density is low for use in an in-vehicle power source. Moreover, since the activated carbon used in the electric double layer capacitor has a higher capacity at room temperature, sufficient characteristics have not yet been obtained at low temperatures.

また、車載用リチウム二次電池において低温下での短時間出力を向上させる手段として、正極に電気二重層キャパシタの材料である平均細孔径20Å以上の活性炭を添加したリチウム二次電池が提案されている(たとえば、特許文献3参照)。   In addition, as a means for improving short-time output at low temperatures in an in-vehicle lithium secondary battery, a lithium secondary battery in which activated carbon having an average pore diameter of 20 mm or more, which is a material of an electric double layer capacitor, is added to a positive electrode has been proposed. (For example, see Patent Document 3).

特許文献3に開示されたリチウム二次電池は、低温下での短時間出力の改善の効果を示している。   The lithium secondary battery disclosed in Patent Document 3 shows the effect of improving the short-time output at a low temperature.

そして、低温下での短時間出力の更なる改善が求められている。
西野、直井監修,「大容量キャパシタ技術と材料」,第2刷,株式会社シーエムシー,1998年10月,P144 特開2001−110418号公報 特開2000−106218号公報 特願2001−63853号公報
And further improvement of the short time output under low temperature is calculated | required.
Supervised by Nishino and Naoi, “High-capacity capacitor technology and materials”, 2nd edition, CMC Corporation, October 1998, P144 JP 2001-110418 A JP 2000-106218 A Japanese Patent Application No. 2001-63853

本発明は、上記実状に鑑みてなされたものであり、高エネルギー密度を維持しながら、簡便かつ安価に、低温での短時間出力特性にすぐれたリチウム二次電池用電極およびリチウム二次電池を提供することを解決すべき課題とする。   The present invention has been made in view of the above circumstances, and provides an electrode for a lithium secondary battery and a lithium secondary battery excellent in short-time output characteristics at a low temperature, easily and inexpensively while maintaining a high energy density. Providing is a problem to be solved.

本発明者らは上記課題を解決する目的で鋭意研究を重ねた結果、細孔径20Å以上の細孔容積が0.418cc/g以上である材料をリチウム二次電池の電極に含有することにより、高エネルギー密度を維持しながら、簡便かつ安価に、低温での短時間出力特性(以後、低温出力と称する)を満足するリチウム二次電池用電極およびリチウム二次電池を見出した。   As a result of intensive studies for the purpose of solving the above-mentioned problems, the present inventors have included in the electrode of a lithium secondary battery a material having a pore volume with a pore diameter of 20 mm or more of 0.418 cc / g or more. The present inventors have found an electrode for a lithium secondary battery and a lithium secondary battery that satisfy a short-time output characteristic at a low temperature (hereinafter referred to as low-temperature output) easily and inexpensively while maintaining a high energy density.

すなわち、本発明のリチウム二次電池用極は、リチウムイオンを吸蔵・放出できる活物質と、電気二重層容量を有する少なくとも一種の材料と、を含有した合剤層を有するリチウム二次電池用極であって、電気二重層容量を有する材料は炭素質材料であって、細孔径が20Å以上の細孔容積が0.418cc/g以上の細孔を有し、比表面積が1200m2/g以上、−30℃における静電容量が93F/g以上であり、合剤層全体を100wt%としたときに、12.3wt%以下で含まれることを特徴とする。 That is, the positive electrode for a lithium secondary battery of the present invention, the active material capable of intercalating and deintercalating lithium ions, at least one of a lithium secondary battery having material and a mixture layer containing having an electric double layer capacity a use positive electrode, a material having an electric double layer capacity is a carbonaceous material, pore size is more than the pore volume 20Å have pores greater than 0.418cc / g, specific surface area 1200m 2 / g or more state, and are capacitance 93F / g or more at -30 ° C., the entire mixture layer when the 100 wt%, characterized in that it is included in the following 12.3wt%.

また、本発明のリチウム二次電池は、リチウムイオンを吸蔵・放出できる活物質と、電気二重層容量を有する少なくとも一種の材料と、を含有した合剤層を有するリチウム二次電池用正極を用いたリチウム二次電池であって、電気二重層容量を有する材料は炭素質材料であって、細孔径が20Å以上の細孔容積が0.418cc/g以上の細孔を有し、比表面積が1200m2/g以上、−30℃における静電容量が93F/g以上であり、合剤層全体を100wt%としたときに、12.3wt%以下で含まれることを特徴とする。 Further, the lithium secondary battery of the present invention, the active material capable of intercalating and deintercalating lithium ions, and at least one material having an electric double layer capacity, a positive electrode for a lithium secondary battery having a mixture layer containing a lithium secondary battery using a material having an electric double layer capacity is a carbonaceous material, pore size is more than the pore volume 20Å have pores greater than 0.418cc / g, the ratio surface area of 1200 m 2 / g or more state, and are capacitance 93F / g or more at -30 ° C., the entire mixture layer when the 100 wt%, characterized in that it is included in the following 12.3wt%.

本発明のリチウム二次電池用電極は時定数増加に伴う電池電圧の降下スピードが鈍くなっており、このリチウム二次電池用電極を用いた本発明のリチウム二次電池は、低温下での短時間出力が向上している。   The lithium secondary battery electrode of the present invention has a slow battery voltage drop speed as the time constant increases, and the lithium secondary battery of the present invention using this lithium secondary battery electrode is short at low temperatures. Time output has been improved.

なお、本発明においては、電気二重層容量または擬似電気二重層容量を有する材料を、以下においては、電気二重層材料と称する。   In the present invention, a material having an electric double layer capacity or pseudo electric double layer capacity is hereinafter referred to as an electric double layer material.

本発明のリチウム二次電池は、細孔径20Å以上の細孔容積が0.418cc/g以上、比表面積が1200m 2 /g以上、−30℃における静電容量が93F/g以上である材料をリチウム二次電池の正極に含有することにより、高エネルギー密度を維持しながら、簡便かつ安価に高い低温出力を有するリチウム二次電池である。 The lithium secondary battery of the present invention is made of a material having a pore volume of 20 mm or more and a pore volume of 0.418 cc / g or more , a specific surface area of 1200 m 2 / g or more, and a capacitance at −30 ° C. of 93 F / g or more. By being contained in the positive electrode of a lithium secondary battery, it is a lithium secondary battery having a high low-temperature output simply and inexpensively while maintaining a high energy density.

(リチウム二次電池用電極)
本発明のリチウム二次電池用電極は、活物質と、少なくとも一種の電気二重層材料と、を含有した合剤層を有するリチウム二次電池用電極であって、電気二重層材料は、細孔径が20Å以上の細孔容積が0.418cc/g以上の細孔を有する。
(Electrode for lithium secondary battery)
An electrode for a lithium secondary battery of the present invention is an electrode for a lithium secondary battery having a mixture layer containing an active material and at least one electric double layer material, wherein the electric double layer material has a pore size Has a pore volume of 20 mm or more and a pore volume of 0.418 cc / g or more.

リチウム二次電池を大電流で放電した場合、電池内部の抵抗により大きく電圧が降下する。特に、−30℃程度の低温下では、電池内部の抵抗が著しく増加し、大電流で放電を開始した瞬間に電池の作動下限電圧まで電圧降下を生じ、ほとんど出力が得られなくなっていた。   When a lithium secondary battery is discharged with a large current, the voltage drops greatly due to the resistance inside the battery. In particular, at a low temperature of about −30 ° C., the internal resistance of the battery increased remarkably, causing a voltage drop to the operating lower limit voltage of the battery at the moment when discharging was started with a large current, and almost no output could be obtained.

リチウム複合酸化物(正極)や炭素材料(負極)等を活物質として用いたリチウム二次電池においては、充放電反応(電池反応)に伴い電解液中のリチウムイオンが活物質に挿入、脱離する。この挿入・脱離の反応スピードは遅く、大電流で放電すると大きな反応抵抗を生じる。特に−30℃程度の低温下では活物質の結晶格子の収縮や活物質への電解液の濡れ性低下等の影響によって、抵抗増加がより顕著になる。リチウム二次電池においては、炭素材料(負極)の安定した充放電特性を得るために、主溶媒としてエチレンカーボネートを用いている。しかしながら、この主溶媒は凝固点が高く(単溶媒で37℃)、低温下で非常に電解液の粘度が高くなり濡れ性が低下してしまっていた。   In lithium secondary batteries that use lithium composite oxide (positive electrode), carbon material (negative electrode), etc. as active materials, lithium ions in the electrolyte are inserted into and removed from the active materials during charge / discharge reactions (battery reactions). To do. The reaction speed of this insertion / desorption is slow, and a large reaction resistance occurs when discharged with a large current. In particular, at a low temperature of about −30 ° C., the resistance increase becomes more remarkable due to the influence of the shrinkage of the crystal lattice of the active material and the decrease in the wettability of the electrolyte to the active material. In a lithium secondary battery, ethylene carbonate is used as a main solvent in order to obtain stable charge / discharge characteristics of a carbon material (negative electrode). However, this main solvent has a high freezing point (37 ° C. with a single solvent), and the viscosity of the electrolytic solution becomes very high at low temperatures, resulting in a decrease in wettability.

そこで、本発明のリチウム二次電池用電極では、低温出力向上の手段として、電極合剤内に活物質と充放電時の高速応答性に優れる電気二重層材料を混在させる方法に着目した。   Therefore, in the electrode for the lithium secondary battery of the present invention, attention was paid to a method of mixing an active material and an electric double layer material excellent in high-speed response at the time of charge and discharge in the electrode mixture as a means for improving the low temperature output.

本発明のリチウム二次電池用電極は、活物質と電気二重層材料とを合剤層中に含有していることから、電池材料による大きな反応抵抗と等価回路上並列にキャパシタ成分が存在する構成となっている。このような構成を有することにより、大電流放電時における電圧過渡応答特性が変化する。すなわち、電気二重層材料を電極内に混在させると、時定数増加に伴う電池電圧の降下スピードが鈍り、低温下での短時間出力が向上する。   Since the electrode for a lithium secondary battery of the present invention contains the active material and the electric double layer material in the mixture layer, the capacitor component exists in parallel with the large reaction resistance due to the battery material and the equivalent circuit. It has become. By having such a configuration, the voltage transient response characteristic during large current discharge changes. That is, when the electric double layer material is mixed in the electrode, the battery voltage drop speed with increasing time constant becomes dull and the output for a short time at low temperature is improved.

電気二重層材料を合剤層中に多量に混在させれば、電極当りの正極活物質量を下げるばかりか、高比表面積の活性炭を保持するためのバインダ量が増加し、更にリチウム二次電池の高エネルギー密度を損なうため、少量の添加で大きな低温出力を得なければならない。このため、より電気二重層容量の大きな材料を添加する必要がある。   If a large amount of the electric double layer material is mixed in the mixture layer, not only the amount of the positive electrode active material per electrode is lowered, but also the amount of binder for holding activated carbon having a high specific surface area is increased, and further, the lithium secondary battery. In order to impair the high energy density, a large low-temperature output must be obtained with a small amount of addition. For this reason, it is necessary to add a material having a larger electric double layer capacity.

従来、電気二重層キャパシタとして注目される材料は、大きな電気二重層容量を得るために、高い比表面積を有することが求められる。しかし、低温時は、電解液粘度の増加によるイオン移動度の低下や電解液の濡れ性低下により、大きな細孔径が必要となっている。   Conventionally, a material that has attracted attention as an electric double layer capacitor is required to have a high specific surface area in order to obtain a large electric double layer capacity. However, at low temperatures, large pore diameters are required due to a decrease in ion mobility due to an increase in electrolyte solution viscosity and a decrease in wettability of the electrolyte solution.

本発明のリチウム二次電池用電極は、20Å以上と大きな細孔の細孔容積が0.418cc/g以上の電気二重層材料をリチウム二次電池用電極の合剤層中に含有することにより、エネルギー密度を低下させずに低温出力特性を大きく向上した。なお、細孔容積は、窒素ガス吸着によって細孔分布を計算する方法であり、かつ20Å以上の細孔を解析するのに適するBJH(Barrett−Joyner−Halenda)法で測定できる。   The electrode for a lithium secondary battery of the present invention contains an electric double layer material having a large pore volume of 2018 or more and a pore volume of 0.418 cc / g or more in the mixture layer of the electrode for the lithium secondary battery. The low temperature output characteristics are greatly improved without lowering the energy density. The pore volume is a method of calculating the pore distribution by nitrogen gas adsorption and can be measured by a BJH (Barrett-Joyner-Halenda) method suitable for analyzing pores of 20 mm or more.

また、20Å以上の細孔容積が、0.418cc/gより低い材料では、若干の低温出力の向上は見られるが、大幅な向上の効果は見られなくなる。   In addition, in a material having a pore volume of 20 mm or more and lower than 0.418 cc / g, a slight improvement in low-temperature output is observed, but a significant improvement effect is not observed.

電気二重層材料の比表面積1200m2/g以上である。比表面積が1200m2/g未満では、電解質イオンの吸着量が小さくなり、十分な電池特性が得られなくなる。BET比表面積が1200〜3000m2/gであることがより好ましい。3000m2/gを超えると、かさ密度が低下することから電極の作製が難しくなる。 The specific surface area of the electric double layer material Ru der 1200 m 2 / g or more. If the specific surface area is less than 1200 m 2 / g, the adsorption amount of the electrolyte ions becomes small, and sufficient battery characteristics cannot be obtained. More preferably, the BET specific surface area is 1200 to 3000 m 2 / g. If it exceeds 3000 m 2 / g, the bulk density will decrease, making it difficult to produce the electrode.

リチウム二次電池のエネルギー密度を大幅に低下させない電気二重層材料の添加量としては、合剤層全体を100wt%としたときに20wt%以下の添加量にする必要がある。しかしながら、大きな電気二重層容量を有する材料は一般に比表面積が高く、20wt%以下の添加量であっても電極の結着力低下による剥離や密度低下を招くことがある。このため、合剤層に占める電気二重層材料の添加量は、適宜選択される。   The addition amount of the electric double layer material that does not significantly reduce the energy density of the lithium secondary battery needs to be 20 wt% or less when the entire mixture layer is 100 wt%. However, a material having a large electric double layer capacity generally has a high specific surface area, and even if added in an amount of 20 wt% or less, peeling or a decrease in density may occur due to a decrease in the binding force of the electrode. For this reason, the addition amount of the electric double layer material in the mixture layer is appropriately selected.

電気二重層材料は、−30℃における静電容量が93F/g以上である。電気二重層材料が−30℃で93F/g以上の静電容量を有することで、低温下で高い出力特性を有するようになる。 Electric double layer materials, Ru der capacitance 93F / g or more at -30 ° C.. Since the electric double layer material has a capacitance of 93 F / g or more at −30 ° C., it has high output characteristics at low temperatures.

ここで、活物質は電気二重層材料で被覆することで、電極二重層材料の性能を効果的に発揮することができる。   Here, the performance of the electrode double layer material can be effectively exhibited by coating the active material with the electric double layer material.

本発明のリチウム二次電池用電極の上記効果は、リチウム複合酸化物や炭素材料等の電池材料の反応抵抗が大きい場合、より効果的となる特に、正極に適用される。さらに正極、負極の両極に上記構成を適用すればより効果的となる。 The above effect of the electrode for a lithium secondary battery of the present invention becomes more effective when the reaction resistance of the battery material such as lithium composite oxide or carbon material is large . In particular, it is applied to the positive electrode . Furthermore, it becomes more effective if the above configuration is applied to both the positive electrode and the negative electrode.

(正極への適用)
本発明のリチウム二次電池用正極おける電気二重層材料としては、活性炭、発泡炭素、ハードカーボン等の炭素質材料、金属酸化物等を用いることができる。電気二重層材料は、容易かつ低コストで高比表面積な細孔構造を得る事のできる活性炭が好ましい。
(Application to positive electrode)
The electric double layer material definitive for the positive electrode for lithium secondary battery of the present invention, it is possible to use activated carbon, foamed carbon, carbonaceous materials such as hard carbon, a metal oxide or the like. The electric double layer material is preferably activated carbon capable of easily obtaining a pore structure having a high specific surface area at low cost.

活性炭の賦活方法としては、水蒸気賦活、薬品賦活等が挙げられるが、効率よい(肥大したマクロ孔の存在が少なくてすみ、体積効率が良好である)薬品賦活が好ましい。また、賦活する薬品としては、塩化亜鉛を用いると原料の一部を侵食溶解する作用があるため、低温で高電気二重層容量を有するメソ孔以上の細孔を作りやすく好ましい。   Examples of the activated carbon activation method include water vapor activation, chemical activation, and the like, but efficient chemical activation (small amount of enlarged macropores is required and volume efficiency is good) is preferable. Further, as the chemical to be activated, when zinc chloride is used, it has an action of eroding and dissolving a part of the raw material, and therefore, it is preferable to easily form pores of mesopores or more having a high electric double layer capacity at a low temperature.

活性炭の原料は、特に限定されるものではない。たとえば、フェノール系、木質(木屑、ヤシ殻等のセルロース質あるいは栗等の澱粉質等)を挙げることができる。活性炭の原料としては、塩化亜鉛等の浸透しやすい木質材料がメソ孔を作るのに好ましい。   The raw material for the activated carbon is not particularly limited. For example, phenol-based materials and woody materials (cellulosic materials such as wood chips and coconut shells, and starch materials such as chestnuts) can be mentioned. As a raw material for the activated carbon, a wood material that easily penetrates, such as zinc chloride, is preferable for forming mesopores.

細孔の大きさは、IUPAC(International Union of Pure and Applied Chemistry)によって、細孔径の大きさにより主に以下の分類がなされている。   The size of the pores is classified mainly by the size of the pore size according to IUPAC (International Union of Pure and Applied Chemistry).

ミクロ孔 :2nm以下(従来の電気二重層キャパシタ材として主に注目されている領域)
メソ孔 :2nm〜50nm(本発明において細孔容積を規定した領域)
マクロ孔 :50nm以上
正極活物質は、式LixNi1-yy2(MはCo、Mn、Al、B、Ti、Mg、Feの中から選ばれる少なくとも一種の元素、0<x≦1.2、0<y≦0.25)で表される化合物からなる正極活物質を用いることが好ましい。更には、X線回折を用いた結晶構造解析による006面に起因する回折強度I006と102面に起因する回折強度I102との和を101面に起因する回折強度I101で除した値(I006+I102)/ I101が0.36〜0.42である正極活物質を用いることが好ましい。活物質合成時の原材料の配合比、焼成温度、雰囲気(酸素濃度、露点、CO2含有量等)を変えることにより、この強度比(I006+I102)/ I101のみを変えたLiNi0.82Co0.15Al0.032を作製した結果、強度比が0.42よりも大きくなると、サイクル評価後の内部抵抗が急激に増加した。これは初期における結晶欠陥が、リチウムイオンの拡散を阻害し抵抗成分となることや、更に充放電サイクルに伴う不純物層の生成や、活物質の膨張収縮による歪みの増加によると考えられる。また、ピーク強度比(I006+I102)/ I101が0.36よりも小さくなると結晶欠陥が少なくなり、リチウムイオンの拡散の阻害は小さくなると考えられるが、内部抵抗増加率は大きくなった。この原因は定かではないが、少量の結晶欠陥は歪みのピン止め効果のような状態で活物質の結晶構造変化をある程度抑制しているとためと思われる。また、正極活物質として、他のリチウム酸化物等の正極活物質を任意の割合で混合して、リチウム二次電池としても、この効果が損なわれるものではない。
Micropores: 2 nm or less (regions that are mainly attracting attention as conventional electric double layer capacitor materials)
Mesopore: 2 nm to 50 nm (region in which pore volume is defined in the present invention)
Macropores: 50 nm or more positive electrode active material, at least one element formula Li x Ni 1-y M y O 2 (M is Co, Mn, Al, B, Ti, Mg, selected from among Fe, 0 <x It is preferable to use a positive electrode active material made of a compound represented by ≦ 1.2, 0 <y ≦ 0.25). Furthermore, a value obtained by dividing the sum of the diffraction intensity I 006 attributed to the 006 plane and the diffraction intensity I 102 attributed to the 102 plane by the crystal structure analysis using X-ray diffraction by the diffraction intensity I 101 attributed to the 101 plane ( It is preferable to use a positive electrode active material in which I 006 + I 102 ) / I 101 is 0.36 to 0.42. LiNi 0.82 Co in which only this strength ratio (I 006 + I 102 ) / I 101 was changed by changing the mixing ratio of raw materials at the time of active material synthesis, firing temperature, and atmosphere (oxygen concentration, dew point, CO 2 content, etc.) As a result of producing 0.15 Al 0.03 O 2 , when the strength ratio was larger than 0.42, the internal resistance after cycle evaluation increased rapidly. This is thought to be due to the fact that crystal defects in the initial stage inhibit diffusion of lithium ions to become a resistance component, further generation of an impurity layer accompanying charge / discharge cycles, and increase in strain due to expansion and contraction of the active material. Further, when the peak intensity ratio (I 006 + I 102 ) / I 101 is smaller than 0.36, it is considered that the number of crystal defects decreases and the inhibition of lithium ion diffusion decreases, but the rate of increase in internal resistance increases. The reason for this is not clear, but it seems that a small amount of crystal defects suppresses the change in the crystal structure of the active material to some extent in a state like a pinning effect of strain. Moreover, this effect is not impaired even if it mixes positive electrode active materials, such as another lithium oxide, in arbitrary ratios as a positive electrode active material, and it is a lithium secondary battery.

正極活物質は、平均粒径が2〜15μmであることが望ましい。平均粒径が2μm以下では電解液との反応性が高くなり、充放電サイクルでの放電容量劣化や内部抵抗増加が大きくなる。また、平均粒径が15μm以上では電極への充填性が悪く、電池容量の低下を招く。   The positive electrode active material desirably has an average particle size of 2 to 15 μm. When the average particle size is 2 μm or less, the reactivity with the electrolytic solution increases, and the discharge capacity deterioration and the internal resistance increase in the charge / discharge cycle increase. On the other hand, when the average particle size is 15 μm or more, the filling property to the electrode is poor, and the battery capacity is reduced.

正極活物質は、窒素ガス吸着により測定されるBET比表面積が0.2m2/g〜1.5m2/gであることが望ましい。BET比表面積が0.2m2/g以下の場合は電解液との濡れ性が悪く、実効放電容量の低下を招く。また、BET比表面積が1.5m2/g以上の場合は電解液との反応性が高くなり、充放電サイクルでの放電容量劣化や内部抵抗増加が大きくなる。 The positive electrode active material is preferably a BET specific surface area measured by nitrogen gas adsorption is 0.2m 2 /g~1.5m 2 / g. When the BET specific surface area is 0.2 m 2 / g or less, the wettability with the electrolytic solution is poor and the effective discharge capacity is reduced. Further, when the BET specific surface area is 1.5 m 2 / g or more, the reactivity with the electrolytic solution is increased, and the discharge capacity deterioration and the internal resistance increase in the charge / discharge cycle are increased.

活性炭が正極合剤層中に占める量は、リチウム二次電池のエネルギー密度を低下させない12.3wt%以下が好ましい。これ以上添加すると、電極密度の低下やバインダ量の増加による室温でのリチウム二次電池のエネルギー密度が低下する。   The amount of activated carbon in the positive electrode mixture layer is preferably 12.3 wt% or less which does not decrease the energy density of the lithium secondary battery. If it is added more than this, the energy density of the lithium secondary battery at room temperature due to a decrease in electrode density or an increase in the amount of binder will decrease.

(負極への適用)
本発明のリチウム二次電池用電極が負極に用いられる場合には、Liイオンがインターカレートする活性炭等では、不可逆容量が大きくなる傾向があるため、インターカレートせず、負極電位で還元されない、擬似電気二重層容量をもつ導電性高分子が好ましい。特に還元され難いn型導電性高分子であるポリチオフェン、ポリアセチレン、ポリ(2,5−ピリジンジイル)、ポリ−p−フェニレン等が好ましい。
(Application to negative electrode)
When the lithium secondary battery electrode of the present invention is used for a negative electrode, activated carbon or the like in which Li ions are intercalated tends to increase the irreversible capacity, and therefore does not intercalate and is not reduced at the negative electrode potential. A conductive polymer having a pseudo electric double layer capacity is preferred. In particular, polythiophene, polyacetylene, poly (2,5-pyridinediyl), poly-p-phenylene and the like, which are n-type conductive polymers that are not easily reduced, are preferable.

負極活物質は、リチウムイオンを吸蔵・放出することができる材料であれば特に限定されるものではない。例えば、リチウム金属、グラファイト又は非晶質炭素等の炭素質材料等をあげることができる。そして、リチウムをショート不良等の発生原因となるデンドライト状リチウムの析出を生じさせることなく、電気化学的に吸蔵・放出し得るインターカレート材料である炭素質材料がより好ましい。炭素質材料は比表面積が比較的大きく、リチウムイオンの吸蔵・放出速度が速いため、特に室温での出力・回生密度を向上させる効果を示す。   The negative electrode active material is not particularly limited as long as it is a material that can occlude and release lithium ions. For example, a carbonaceous material such as lithium metal, graphite, or amorphous carbon can be used. A carbonaceous material that is an intercalating material that can be occluded / released electrochemically without causing precipitation of dendritic lithium that causes lithium to be short-circuited or the like is more preferable. Since the carbonaceous material has a relatively large specific surface area and a high rate of occlusion / release of lithium ions, it has the effect of improving the output / regeneration density particularly at room temperature.

負極活物質は、BET比表面積が3.5m2/g以下であることが好ましい。負極活物質のBET比表面積は、3.0m2/g以下であることがより好ましい。負極活物質の比表面積を3.5m2/g以下とすることで、負極活物質と電解液による副反応を抑制することができる。この結果、リチウム二次電池の長寿命化が可能となる。 The negative electrode active material preferably has a BET specific surface area of 3.5 m 2 / g or less. The BET specific surface area of the negative electrode active material is more preferably 3.0 m 2 / g or less. By setting the specific surface area of the negative electrode active material to 3.5 m 2 / g or less, side reactions caused by the negative electrode active material and the electrolytic solution can be suppressed. As a result, the life of the lithium secondary battery can be extended.

負極活物質の製造方法は、特に制限されるものではない。比表面積は原材料の比表面積に大きく影響をうけるため、所定の条件で原材料を粉砕及び/又は分級した後に焼成することが好ましい。また、焼成した後に粉砕および/又は分級してもよい。   The method for producing the negative electrode active material is not particularly limited. Since the specific surface area greatly affects the specific surface area of the raw material, the raw material is preferably fired after being pulverized and / or classified under predetermined conditions. Moreover, you may grind | pulverize and / or classify | categorize after baking.

(リチウム二次電池)
本発明のリチウム二次電池は、上記リチウム電池用電極を正極に用いたリチウム二次電池である。
(Lithium secondary battery)
The lithium secondary battery of the present invention is a lithium secondary battery using the above lithium battery electrode as a positive electrode.

本発明のリチウム二次電池は、リチウムイオンを吸蔵・放出できる活物質と、電気二重層容量を有する少なくとも一種の材料と、を含有した合剤層を有するリチウム二次電池用正極を用いたリチウム二次電池であって、電気二重層容量を有する材料は、細孔径が20Å 以上の細孔容積が0.418cc/g以上の細孔を有する。
The lithium secondary battery of the present invention, was used and an active material capable of intercalating and deintercalating lithium ions, and at least one material having an electric double layer capacity, a positive electrode for a lithium secondary battery having a mixture layer containing a lithium secondary battery, materials having an electric double layer capacity is a pore size is more than the pore volume 20Å having pores greater than 0.418cc / g.

本発明のリチウム二次電池は、活物質と充放電時の高速応答性に優れる電気二重層材料を正極が有しているため、エネルギー密度を低下させずに低温出力特性を大きく向上した。   In the lithium secondary battery of the present invention, since the positive electrode has an active material and an electric double layer material excellent in high-speed response during charge and discharge, the low-temperature output characteristics are greatly improved without reducing the energy density.

電気二重層材料の比表面積が1200m2/g以上である。比表面積が1200m2/g未満では、電解質イオンの吸着量が小さくなり、十分な電池特性が得られなくなる。BET比表面積が1200〜3000m2/gであることがより好ましい。3000m2/gを超えると、かさ密度が低下することから電極の作製が難しくなる。 The specific surface area of the electric double layer material is Ru der 1200m 2 / g or more. If the specific surface area is less than 1200 m 2 / g, the adsorption amount of the electrolyte ions becomes small, and sufficient battery characteristics cannot be obtained. More preferably, the BET specific surface area is 1200 to 3000 m 2 / g. If it exceeds 3000 m 2 / g, the bulk density will decrease, making it difficult to produce the electrode.

電気二重層材料は、合剤層全体を100wt%としたときに、12.3wt%以下で含まれる。大きな電気二重層容量を有する材料は一般に比表面積が高く、12.3wt%を超えると、電極の結着力低下による剥離や密度低下を招くようになる。 Electric double layer material, the whole mixture layer is taken as 100 wt%, Ru contained in the following 12.3wt%. A material having a large electric double layer capacity generally has a high specific surface area, and when it exceeds 12.3 wt%, peeling and density decrease due to a decrease in the binding force of the electrode.

電気二重層材料は、−30℃における静電容量が93F/g以上である。電気二重層材料が−30℃で93F/g以上の静電容量を有することで、低温下で高い出力特性を有するようになる。 Electric double layer materials, Ru der capacitance 93F / g or more at -30 ° C.. Since the electric double layer material has a capacitance of 93 F / g or more at −30 ° C., it has high output characteristics at low temperatures.

電気二重層材料としては、活性炭、発泡炭素、ハードカーボン等の炭素質材料、金属酸化物等を用いることができる。電気二重層材料は、容易かつ低コストで高比表面積な細孔構造を得る事のできる活性炭が好ましい。   As the electric double layer material, carbonaceous materials such as activated carbon, foamed carbon and hard carbon, metal oxides and the like can be used. The electric double layer material is preferably activated carbon capable of easily obtaining a pore structure having a high specific surface area at low cost.

本発明のリチウム二次電池は、上記リチウム二次電池用電極を正極として使用した電池であり、それ以外の要素たとえば負極、電解液およびセパレータには、従来公知のものを用いることができる。また、本発明のリチウム二次電池は、その形状には特に制限を受けず、コイン型、円筒型、角型等、種々の形状の電池とすることができる。   The lithium secondary battery of the present invention is a battery using the above lithium secondary battery electrode as a positive electrode, and conventionally known ones can be used for other elements such as the negative electrode, the electrolytic solution and the separator. Further, the lithium secondary battery of the present invention is not particularly limited in its shape, and can be batteries having various shapes such as a coin shape, a cylindrical shape, and a square shape.

負極は、リチウムイオンを吸蔵・放出することができる負極活物質を有することが好ましく、電解液は、支持塩を溶媒に溶解させてなることが好ましい。   The negative electrode preferably has a negative electrode active material capable of inserting and extracting lithium ions, and the electrolytic solution is preferably formed by dissolving a supporting salt in a solvent.

負極活物質は、リチウムイオンを吸蔵・放出することができる材料であれば特に限定されるものではない。例えば、リチウム金属、グラファイト又は非晶質炭素等の炭素質材料等をあげることができる。そして、リチウムをショート不良等の発生原因となるデンドライト状リチウムの析出を生じさせることなく、電気化学的に吸蔵・放出し得るインターカレート材料である炭素質材料がより好ましい。炭素質材料は比表面積が比較的大きく、リチウムイオンの吸蔵・放出速度が速いため、特に室温での出力・回生密度を向上させる効果を示す。   The negative electrode active material is not particularly limited as long as it is a material that can occlude and release lithium ions. For example, a carbonaceous material such as lithium metal, graphite, or amorphous carbon can be used. A carbonaceous material that is an intercalating material that can be occluded / released electrochemically without causing precipitation of dendritic lithium that causes lithium to be short-circuited or the like is more preferable. Since the carbonaceous material has a relatively large specific surface area and a high rate of occlusion / release of lithium ions, it has the effect of improving the output / regeneration density particularly at room temperature.

電解液としては、例えば、1,2−ジメトキシエタン、1,2−ジエトキシエタン、プロピレンカーボネート、エチレンカーボネート、γ−ブチロラクトン、テトラヒドロフラン、1,3−ジオキソラン、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネートなどの単独または2種以上の混合溶媒に、例えば、LiCF3SO3、LiC49SO3、LiClO4、LiPF6、LiBF4、LiN(CF3SO2)(CF3SO2)、LiN(C49SO2)(CF3SO2)、LiN(C25SO2)(C25SO2)などの支持塩を単独または2種以上を溶解させて調整した有機溶媒系の電解液を用いることができる。 Examples of the electrolyte include 1,2-dimethoxyethane, 1,2-diethoxyethane, propylene carbonate, ethylene carbonate, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, diethyl carbonate, dimethyl carbonate, and ethyl methyl carbonate. For example, LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiClO 4 , LiPF 6 , LiBF 4 , LiN (CF 3 SO 2 ) (CF 3 SO 2 ), LiN ( Organic solvent system prepared by dissolving supporting salts such as C 4 F 9 SO 2 ) (CF 3 SO 2 ), LiN (C 2 F 5 SO 2 ) (C 2 F 5 SO 2 ) singly or in combination of two or more. The electrolyte solution can be used.

すなわち、炭素質材料よりなる負極活物質を有する負極と、少なくともエチレンカーボネートにLiPF6が溶解した有機系電解液を主成分とする電解液と、を有することが好ましい。ここで、電解液中に占めるエチレンカーボネートにLiPF6が溶解した電解液量は、全体を100wt%としたときに50wt%以上であることが好ましい。 That is, it is preferable to have a negative electrode having a negative electrode active material made of a carbonaceous material and an electrolytic solution mainly composed of an organic electrolytic solution in which LiPF 6 is dissolved in at least ethylene carbonate. Here, the amount of the electrolytic solution in which LiPF 6 is dissolved in ethylene carbonate in the electrolytic solution is preferably 50 wt% or more when the whole is 100 wt%.

負極は、電気二重層材料を有することが好ましい。正極だけでなく、負極にも電気二重層材料を有することで、負極においても活物質と充放電時の高速応答性に優れることとなる。この結果、本発明のリチウム二次電池の低温出力特性を大きく向上した。   The negative electrode preferably has an electric double layer material. By having the electric double layer material not only in the positive electrode but also in the negative electrode, the active material and the high-speed response at the time of charge / discharge are excellent also in the negative electrode. As a result, the low temperature output characteristics of the lithium secondary battery of the present invention were greatly improved.

電気二重層材料としては、Liイオンがインターカレートする活性炭等では、不可逆容量が大きくなる傾向があるため、インターカレートせず、負極電位で還元されない、擬似電気二重層容量をもつ導電性高分子が好ましい。特に還元され難いn型導電性高分子であるポリチオフェン、ポリアセチレン、ポリ(2,5−ピリジンジイル)、ポリ−p−フェニレン等が好ましい。   As the electric double layer material, activated carbon or the like in which Li ions intercalate tends to increase the irreversible capacity. Therefore, it does not intercalate and is not reduced at the negative electrode potential. Molecules are preferred. In particular, polythiophene, polyacetylene, poly (2,5-pyridinediyl), poly-p-phenylene and the like, which are n-type conductive polymers that are not easily reduced, are preferable.

本発明のリチウム二次電池に用いられるセパレータとして、例えば、厚さ10〜50(μm)で、開孔率30〜70%の微多孔性ポリプロピレンフィルム、微多孔性ポリエチレンフィルムまたはポリメチルペンテン不織布セパレータなどを用いることができる。   As a separator used for the lithium secondary battery of the present invention, for example, a microporous polypropylene film, a microporous polyethylene film or a polymethylpentene nonwoven fabric separator having a thickness of 10 to 50 (μm) and a porosity of 30 to 70% Etc. can be used.

本発明のリチウム二次電池の1つの形態として、円筒型のリチウム二次電池の構成をあげる。   As one form of the lithium secondary battery of the present invention, a configuration of a cylindrical lithium secondary battery is given.

円筒型のリチウム二次電池は、正極および負極をシート形状として両者をセパレータを介して積層し渦巻き型に多数回巻き回した巻回体と空隙を満たす電解液とともに所定の円筒状ケース内に収納したものである。また、正極とケースの正極端子部とについて、そして負極とケースの負極端子部とについては、それぞれ電気的に接合されている。   Cylindrical lithium secondary batteries are housed in a predetermined cylindrical case together with a wound body in which a positive electrode and a negative electrode are formed into a sheet shape, stacked together via a separator and wound in a spiral shape, and an electrolyte filling the gap. It is a thing. Further, the positive electrode and the positive electrode terminal portion of the case, and the negative electrode and the negative electrode terminal portion of the case are electrically joined to each other.

また、本発明のリチウム二次電池の製造方法は、特に限定されない。たとえば、上記円筒形リチウム二次電池においては、正極活物質と、電気二重層材料とを含有した正極活物質ペーストを調製し、この活物質ペーストを正極集電体に塗布して、乾燥させてシート状の正極を製造する。また、負極活物質と、電気二重層材料とを含有した負極活物質ペーストを調製し、負極集電体に塗布して、乾燥させてシート状の負極を製造する。正極および負極をセパレータを介した状態で巻回して電極体を製造し、あらかじめ調製しておいた電解液とともにケース内に封入する。このような手順により円筒形リチウム二次電池を製造することができる。   Moreover, the manufacturing method of the lithium secondary battery of this invention is not specifically limited. For example, in the cylindrical lithium secondary battery, a positive electrode active material paste containing a positive electrode active material and an electric double layer material is prepared, and this active material paste is applied to a positive electrode current collector and dried. A sheet-like positive electrode is produced. Also, a negative electrode active material paste containing a negative electrode active material and an electric double layer material is prepared, applied to a negative electrode current collector, and dried to produce a sheet-like negative electrode. An electrode body is manufactured by winding a positive electrode and a negative electrode with a separator interposed therebetween, and enclosed in a case together with an electrolyte prepared in advance. A cylindrical lithium secondary battery can be manufactured by such a procedure.

本発明のリチウム二次電池は、時定数増加に伴う電池電圧の降下スピードが鈍くなっており、本発明のリチウム二次電池用電極を用いたリチウム二次電池は、低温下での短時間出力が向上したリチウム二次電池となる効果を示す。   The lithium secondary battery of the present invention has a slow battery voltage drop speed with an increase in time constant, and the lithium secondary battery using the lithium secondary battery electrode of the present invention has a short-time output at a low temperature. Shows the effect of obtaining an improved lithium secondary battery.

本発明のリチウム電池は、低温出力特性にすぐれたリチウム二次電池であり、車載用電源として用いることができる。   The lithium battery of the present invention is a lithium secondary battery having excellent low-temperature output characteristics, and can be used as an in-vehicle power source.

以下、実施例を用いて本発明を説明する。   Hereinafter, the present invention will be described using examples.

本発明の実施例として、リチウム二次電池用正極およびリチウム二次電池を作製した。   As an example of the present invention, a positive electrode for a lithium secondary battery and a lithium secondary battery were produced.

なお、リチウム二次電池の正極において電気二重層材料として用いられた活性炭の静電容量、粒径、比表面積、および細孔分布の測定は、以下に示した手順により行われた。   The capacitance, particle size, specific surface area, and pore distribution of the activated carbon used as the electric double layer material in the positive electrode of the lithium secondary battery were measured by the following procedure.

《静電容量測定》
EDLC(Electric Double Layer Capacitor)を作製し、作製されたEDLCを−30℃の一定温度中で、ポテンショ・ガルバノスタット(北斗電工株式会社製HA−501G)を用いて印加電圧2.0Vで5分間充電、2分間の休止時間の後、0.3mAにて放電した。静電容量は充電電圧から1.0Vにおいて、図1に示す放電カーブの電圧と時間の関係から図中に示す傾きdV/dtを最小二乗法によって求め、下記式数1より単極の活性炭重量当たりの静電容量を求めた。
<Capacitance measurement>
An EDLC (Electric Double Layer Capacitor) was produced, and the produced EDLC was used at a constant temperature of −30 ° C. using a potentio galvanostat (HA-501G, manufactured by Hokuto Denko Corporation) at an applied voltage of 2.0 V for 5 minutes. After 2 minutes rest time, the battery was discharged at 0.3 mA. The capacitance is 1.0 V from the charging voltage, and the slope dV / dt shown in the figure is obtained by the least square method from the relationship between the voltage and time of the discharge curve shown in FIG. The electrostatic capacity per unit was determined.

Figure 0004964404
Figure 0004964404

ここで、Cは活性炭重量当たりの静電容量、Iは電流、dV/dtは図1中の傾き、Wは単極当たりの活性炭重量である。   Here, C is the capacitance per activated carbon weight, I is the current, dV / dt is the slope in FIG. 1, and W is the activated carbon weight per single electrode.

《粒径の測定》
日機装株式会社製「HRA9320−X100型マイクロトラック」を用いて、粒度分布を測定し、平均粒径D50を求めた。
<Measurement of particle size>
The particle size distribution was measured using “HRA9320-X100 type microtrack” manufactured by Nikkiso Co., Ltd., and the average particle size D50 was determined.

《比表面積の測定》
カンタークローム社製「NOVA2000型BET比表面積測定装置」を用いて窒素吸着BET法による比表面積を測定した。
<< Measurement of specific surface area >>
The specific surface area by nitrogen adsorption BET method was measured using “NOVA2000 type BET specific surface area measuring device” manufactured by Canterchrome.

《細孔分布測定》
日本ベル株式会社製「BELSORP 36 高精度全自動ガス吸着装置」を用いて、下記条件にて測定した。吸着ガス:N2、死容積:He、吸着温度:液体窒素温度(77K)、測定前処理:150℃真空脱気、測定モード:等温での吸着・脱離、測定範囲:相対圧(P/P0)=0.00〜0.99、平衡時間:各平衡相対圧につき180sec、解析法:BJH法、細孔径範囲:20.0Å〜400Å(P/P0の最小変化巾0.05のため下限20.0Åは19.2Å或は21.6Åとなるためより近い19.2Åとした)。
<< Measurement of pore distribution >>
The measurement was performed under the following conditions using a “BELSORP 36 high-accuracy fully automatic gas adsorption device” manufactured by Nippon Bell Co., Ltd. Adsorption gas: N2, dead volume: He, adsorption temperature: liquid nitrogen temperature (77K), pretreatment for measurement: vacuum degassing at 150 ° C, measurement mode: adsorption / desorption at isothermal, measurement range: relative pressure (P / P0) ) = 0.00 to 0.99, Equilibrium time: 180 sec for each equilibrium relative pressure, Analytical method: BJH method, Pore diameter range: 20.0 mm to 400 mm (Minimum change width of P / P0 is 0.05, so the lower limit is 20) .0Å was 19.2Å or 21.6Å, so it was closer to 19.2Å).

(実施例1)
(活性炭)
まず、電気二重層容量を有する材料である活性炭を、木屑原料を炭化した後に薬品賦活を施すことによって製造した。得られた活性炭のBJH法による細孔径20Å以上の細孔容量は1.464cc/g、BET比表面積は1800m2/gであった。
Example 1
(Activated carbon)
First, activated carbon, which is a material having an electric double layer capacity, was produced by carbonizing a wood chip material and then performing chemical activation. The activated carbon obtained had a pore capacity of 1.464 cc / g and a BET specific surface area of 1800 m 2 / g by a BJH method.

製造された活性炭を35重量部、導電材として比表面積40m2/gのアセチレンブラック(品番:HS−100)50重量部、バインダとしてポリフッ化ビニリデン15重量部からなる混合物にN−メチル−2−ピロリドンを加えて混練し、15μmのアルミ箔上に塗布した後、60℃にて3時間大気中で乾燥した。乾燥後、このシートを直径15mmに打ち抜き、打ち抜いたシートをプレスし、アルミ箔を除いた厚さが50μm(アルミ箔を含むシート全体の厚さが65μm)、アルミ箔を除いた重量が2.0mgの分極性電極2枚を得た。 A mixture of 35 parts by weight of the activated carbon, 50 parts by weight of acetylene black (product number: HS-100) having a specific surface area of 40 m 2 / g as a conductive material, and 15 parts by weight of polyvinylidene fluoride as a binder was added to N-methyl-2- Pyrrolidone was added and kneaded, coated on a 15 μm aluminum foil, and then dried in the air at 60 ° C. for 3 hours. After drying, the sheet is punched to a diameter of 15 mm, the punched sheet is pressed, the thickness excluding the aluminum foil is 50 μm (the total thickness of the sheet including the aluminum foil is 65 μm), and the weight excluding the aluminum foil is 2. Two sheets of 0 mg polarizable electrodes were obtained.

これら分極性電極を120℃で真空乾燥した後、アルゴン雰囲気のグローブボックス中に移し、微多孔性セパレータ(商品名:UP3025、宇部興産製)を介して対向させて素子を形成し、1モル/リットルのLiPF6を含むエチレンカーボネート30重量部、エチルメチルカーボネート30重量部、及びジメチルカーボネート40重量部からなる混合溶液を含浸させてセルを作製した。これをステンレス(SUS316)とポリプロピレン製絶縁ガスケットからなるコイン型ケースの中に上記セルを挿入し、上記コイン型ケースをかしめ封口し、コイン型EDLCを得た。得られたEDLCの−30℃における静電容量を測定したところ、108F/gであった。すなわち、製造された活性炭の−30℃における静電容量は108F/gであった。 These polarizable electrodes were vacuum-dried at 120 ° C., then transferred into a glove box in an argon atmosphere, and faced with a microporous separator (trade name: UP3025, manufactured by Ube Industries) to form an element. A cell was prepared by impregnating a mixed solution consisting of 30 parts by weight of ethylene carbonate, 30 parts by weight of ethyl methyl carbonate and 40 parts by weight of dimethyl carbonate containing 1 liter of LiPF 6 . The cell was inserted into a coin type case made of stainless steel (SUS316) and an insulating gasket made of polypropylene, and the coin type case was caulked and sealed to obtain a coin type EDLC. It was 108 F / g when the electrostatic capacity in -30 degreeC of obtained EDLC was measured. That is, the manufactured activated carbon had a capacitance at −30 ° C. of 108 F / g.

この電気二重層容量を有する材料を用いてリチウム二次電池を、以下の手順で作製した。   A lithium secondary battery was produced by the following procedure using the material having the electric double layer capacity.

(正極の製造)
正極活物質としてリチウムニッケル酸化物87重量部、導電材としてアセチレンブラック(品番:HS−100)7重量部、上記活性炭3重量部に、2重量部濃度のカルボキシメチルセルロースナトリウム塩水溶液を親水性結着材としてのカルボキシメチルセルロースナトリウムの固形分が1重量部となるように混合し、さらに親電解液性結着材としてのポリエチレンオキサイド粉末1重量部と所定量の水を混合し、二軸攪拌機にて1時間攪拌する。その後、その他の結着材としての固形分比率約50%のPTFE水性ディスパージョンをPTFEの固形分が1重量部となるように添加し、真空乳化攪拌装置を使い30分間攪拌する。尚、上記電気二重層材料を3重量部追加添加しているため固形分の合計は103重量部である。このようにして得られたペーストをコンマコータにてアルミ箔上に片面あたり目付量6.51(mg/cm2)で両面塗布する。次にこの電極をロールプレス機を通し、電極密度を2.10(g/cm3)まで上げる。次にこの電極を幅5.4(cm)、長さ90(cm)にカットし、電流取り出し用のリードタブ溶接部として長さ2.5(cm)分の電極合剤を掻き取った。この電極の有効反応面積は5.4(cm)×87.5(cm)×2=945(cm2)である。
(Manufacture of positive electrode)
Hydrophobic binding of carboxymethylcellulose sodium salt aqueous solution having a concentration of 2 parts by weight to 87 parts by weight of lithium nickel oxide as a positive electrode active material, 7 parts by weight of acetylene black (product number: HS-100) as a conductive material, and 3 parts by weight of the activated carbon. Mix so that the solid content of sodium carboxymethylcellulose as a material is 1 part by weight, and further mix 1 part by weight of polyethylene oxide powder as a parent electrolyte binder and a predetermined amount of water, using a biaxial stirrer Stir for 1 hour. Thereafter, an aqueous PTFE dispersion having a solid content ratio of about 50% as another binder is added so that the solid content of PTFE is 1 part by weight, and the mixture is stirred for 30 minutes using a vacuum emulsification stirrer. In addition, since 3 parts by weight of the electric double layer material is added, the total solid content is 103 parts by weight. The paste thus obtained is coated on both sides with a comma coater on an aluminum foil with a basis weight of 6.51 (mg / cm 2 ) per side. Next, this electrode is passed through a roll press and the electrode density is increased to 2.10 (g / cm 3 ). Next, this electrode was cut into a width of 5.4 (cm) and a length of 90 (cm), and an electrode mixture for a length of 2.5 (cm) was scraped off as a lead tab weld for taking out current. The effective reaction area of this electrode is 5.4 (cm) × 87.5 (cm) × 2 = 945 (cm 2 ).

(負極の製造)
負極としては負極活物質として鱗片状グラファイト98重量部、2重量部濃度のカルボキシメチルセルロースナトリウム塩水溶液を親水性結着材としてのカルボキシメチルセルロースナトリウムの固形分が1重量部となるように混合し、さらに親電解液性結着材としてSBR1重量部と所定量の水と混合し、グラファイトを分散させたペーストを同様にコンマコータを使い銅箔上に片面あたりの目付量3.74(mg/cm2)で両面塗布し、その後ロールプレス機を通し、電極密度を1.28(g/cm3)まで上げた電極を作製した。次にこの電極を幅5.6(cm)、長さ94(cm)にカットし、電極取り出し用のリードタブ溶接部として長さ0.5(cm)分の電極合剤を掻き取った。この電極の有効反応面積は、5.6(cm)×93.5(cm)×2=1047.2(cm2)である。
(Manufacture of negative electrode)
As the negative electrode, 98 parts by weight of flaky graphite as a negative electrode active material, 2 parts by weight of carboxymethylcellulose sodium salt aqueous solution are mixed so that the solid content of sodium carboxymethylcellulose as a hydrophilic binder is 1 part by weight, As a lyophilic binder, 1 part by weight of SBR and a predetermined amount of water are mixed, and a paste in which graphite is dispersed is similarly used on a copper foil on a copper foil with a basis weight of 3.74 (mg / cm 2 ). Then, both sides of the electrode were applied and then passed through a roll press to produce an electrode having an electrode density increased to 1.28 (g / cm 3 ). Next, this electrode was cut into a width of 5.6 (cm) and a length of 94 (cm), and an electrode mixture corresponding to a length of 0.5 (cm) was scraped off as a lead tab weld for taking out the electrode. The effective reaction area of this electrode is 5.6 (cm) × 93.5 (cm) × 2 = 1047.2 (cm 2 ).

(電池の組立)
以上で得られたシート状正極およびシート状負極を、セパレータを介した状態で巻回させて、巻回型電極体を形成した。セパレ−タにはポリエチレン製厚み25μmのものを用いた。得られた巻回型電極体は、ケースの内部に挿入され、ケース内に保持された。このとき、シート状正極およびシート状負極のリードタブ溶接部に一端が溶接された集電リードは、ケースの正極端子あるいは負極端子に接合された。その後、巻回型電極体が保持されたケース内に電解液を注入した後に、ケースを密閉、封止した。
(Battery assembly)
The sheet-like positive electrode and sheet-like negative electrode obtained above were wound with a separator interposed therebetween to form a wound electrode body. A separator made of polyethylene having a thickness of 25 μm was used. The obtained wound electrode body was inserted into the case and held in the case. At this time, the current collecting lead having one end welded to the lead tab weld portion of the sheet-like positive electrode and the sheet-like negative electrode was joined to the positive electrode terminal or the negative electrode terminal of the case. Then, after inject | pouring electrolyte solution in the case where the winding type electrode body was hold | maintained, the case was sealed and sealed.

以上の手順により、φ18mm、軸方向の長さ65mmの本実施例の円筒形リチウム二次電池が製造できた。   By the above procedure, a cylindrical lithium secondary battery of this example having a diameter of 18 mm and an axial length of 65 mm could be manufactured.

(比較例1)
電気二重層容量を有する材料である活性炭を添加しない以外は、実施例1と同様にリチウム二次電池を製造した。
(Comparative Example 1)
A lithium secondary battery was produced in the same manner as in Example 1 except that activated carbon, which is a material having an electric double layer capacity, was not added.

(実施例2)
電気二重層容量を有する材料として、ヤシ殻を原料としてアルカリ溶液を含ませて炭化した後、水蒸気賦活法によって得られた活性炭を用いた以外は、実施例1と同様なリチウム二次電池である。
(Example 2)
The lithium secondary battery is the same as that of Example 1 except that activated carbon obtained by the water vapor activation method is used after carbonizing an alkali solution using coconut shell as a raw material as a material having an electric double layer capacity. .

なお、本実施例において用いられたヤシ殻より製造された活性炭の細孔径20Å以上の細孔容量は0.985cc/g、BET比表面積は1900m2/gであった。また、実施例1と同様に静電容量を測定したところ、−30℃における静電容量は97F/gであった。 The activated carbon produced from the coconut shell used in this example had a pore capacity of 0.985 cc / g and a BET specific surface area of 1900 m 2 / g with a pore diameter of 20 mm or more. Further, when the electrostatic capacity was measured in the same manner as in Example 1, the electrostatic capacity at −30 ° C. was 97 F / g.

(実施例3)
電気二重層容量を有する材料として、木屑を原料として水蒸気賦活法によって得られた活性炭を用いた以外は、実施例1と同様なリチウム二次電池である。
(Example 3)
The lithium secondary battery is the same as that of Example 1, except that activated carbon obtained by a steam activation method using wood chips as a raw material was used as the material having an electric double layer capacity.

なお、本実施例において用いられた活性炭の細孔径20Å以上の細孔容量は0.418cc/g、BET比表面積は1200m2/gであった。また、実施例1と同様に静電容量を測定したところ、−30℃における静電容量は93F/gであった。 The activated carbon used in this example had a pore capacity of 2018 or more and a pore volume of 0.418 cc / g, and a BET specific surface area of 1200 m 2 / g. Moreover, when the electrostatic capacitance was measured in the same manner as in Example 1, the capacitance at −30 ° C. was 93 F / g.

(実施例4)
電気二重層容量を有する材料として、発泡炭素の一種であるカーボンエアロジェル(製品名 Carbon Nanofoam、MarkeTech International Inc.製)をさらに比表面積を得るために水蒸気賦活法して得られた発泡炭素を用いた以外は、実施例1と同様なリチウム二次電池である。
Example 4
As a material having an electric double layer capacity, a carbon aerogel (product name: Carbon Nanofoam, manufactured by Marketetech International Inc.), which is a type of foamed carbon, is used to obtain a specific surface area using foamed carbon obtained by steam activation. The lithium secondary battery is the same as in Example 1 except for the above.

なお、本実施例において用いられた活性炭の細孔径20Å以上の細孔容量は1.650cc/g、BET比表面積は1200m2/gであった。また、実施例
1と同様に静電容量を測定したところ、−30℃における静電容量は105F/gであった。
The activated carbon used in this example had a pore capacity of 1.650 cc / g and a BET specific surface area of 1200 m 2 / g with a pore diameter of 20 mm or more. Further, when the electrostatic capacity was measured in the same manner as in Example 1, the electrostatic capacity at −30 ° C. was 105 F / g.

(実施例5)
電気二重層容量を有する材料として、発泡炭素の一種であるケッチェンブラック(品番:ECP−600JD)を用い、ケッチェンブラックは導電材としても機能するためアセチレンブラックを使用しない以外は、実施例1と同様なリチウム二次電池である。なお、正極の製造時の固形分の合計は93重量部である。
(Example 5)
Example 1 except that ketjen black (product number: ECP-600JD), which is a kind of foamed carbon, is used as a material having an electric double layer capacity, and ketjen black also functions as a conductive material, so that acetylene black is not used. It is the same lithium secondary battery. In addition, the total of solid content at the time of manufacture of a positive electrode is 93 weight part.

なお、本実施例において用いられた発泡炭素の細孔径20Å以上の細孔容量は2.250cc/g、BET比表面積は1430m2/gであった。また、実施例
1と同様に静電容量を測定したところ、−30℃における静電容量は95F/gであった。
The foamed carbon used in this example had a pore capacity of 2.250 cc / g and a BET specific surface area of 1430 m 2 / g with a pore diameter of 20 mm or more. Moreover, when the electrostatic capacity was measured in the same manner as in Example 1, the electrostatic capacity at −30 ° C. was 95 F / g.

(比較例2)
電気二重層容量を有する材料として、フェノールを原料として水蒸気賦活法によって得られた活性炭を用いた以外は、実施例1と同様なリチウム二次電池である。
(Comparative Example 2)
The lithium secondary battery is the same as that of Example 1, except that activated carbon obtained by a steam activation method using phenol as a raw material was used as the material having an electric double layer capacity.

なお、本実施例において用いられた活性炭の細孔径20Å以上の細孔容量は0.153cc/g、BET比表面積は2000m2/gであった。また、実施例1と同様に静電容量を測定したところ、−30℃における静電容量は63F/gであった。 The activated carbon used in this example had a pore volume of 0.153 cc / g and a BET specific surface area of 2000 m 2 / g with a pore diameter of 20 mm or more. Further, when the electrostatic capacity was measured in the same manner as in Example 1, the electrostatic capacity at −30 ° C. was 63 F / g.

(比較例3)
電気二重層容量を有する材料として、フェノールを原料としてアルカリ賦活法によって得られた活性炭を用いた以外は、実施例1と同様なリチウム二次電池である。
(Comparative Example 3)
The lithium secondary battery is the same as that of Example 1, except that activated carbon obtained by an alkali activation method using phenol as a raw material was used as the material having an electric double layer capacity.

なお、本実施例において用いられた活性炭の細孔径20Å以上の細孔容量は0.167cc/g、BET比表面積は2300m2/gであった。また、実施例1と同様に静電容量を測定したところ、−30℃における静電容量は80F/gであった。 The activated carbon used in this example had a pore capacity of 0.167 cc / g and a BET specific surface area of 2300 m 2 / g with a pore diameter of 20 mm or more. Moreover, when the electrostatic capacity was measured in the same manner as in Example 1, the electrostatic capacity at −30 ° C. was 80 F / g.

(実施例6)
電気二重層容量を有する材料活性炭を5重量部にし、剥離強度を向上するためPTFEの固形分が3重量部となるように添加した以外は実施例1と同様に製造されたリチウム二次電池である。なお、正極の製造時の固形分の合計は107重量部であった。
(Example 6)
A lithium secondary battery manufactured in the same manner as in Example 1 except that the activated carbon material having electric double layer capacity was 5 parts by weight and that the solid content of PTFE was 3 parts by weight in order to improve the peel strength. is there. The total solid content at the time of manufacturing the positive electrode was 107 parts by weight.

(実施例7)
電気二重層容量を有する活性炭を10重量部にし、剥離強度を向上するためPTFEの固形分が5重量部となるように添加した以外は実施例1と同様に製造されたリチウム二次電池である。なお、正極の製造時の固形分の合計は114重量部である。
(Example 7)
The lithium secondary battery manufactured in the same manner as in Example 1 except that the activated carbon having an electric double layer capacity is 10 parts by weight and that the solid content of PTFE is 5 parts by weight in order to improve the peel strength. . The total solid content at the time of manufacturing the positive electrode is 114 parts by weight.

(実施例8)
電気二重層容量を有する活性炭を15重量部にし、剥離強度を向上するためPTFEの固形分が8重量部となるように添加した以外は実施例1と同様に製造されたリチウム二次電池である。なお、正極の製造時の固形分の合計は122重量部である。
(Example 8)
The lithium secondary battery manufactured in the same manner as in Example 1 except that the activated carbon having an electric double layer capacity is 15 parts by weight and that the solid content of PTFE is 8 parts by weight in order to improve the peel strength. . In addition, the sum total of the solid content at the time of manufacture of a positive electrode is 122 weight part.

(実施例9)
電気二重層容量を有する活性炭を20重量部にし、剥離強度を向上するためPTFEの固形分が11重量部となるように添加した以外は実施例1と同様に製造されたリチウム二次電池である。なお、正極の製造時の固形分の合計は130重量部である。
Example 9
The lithium secondary battery manufactured in the same manner as in Example 1 except that the activated carbon having an electric double layer capacity is 20 parts by weight and that the solid content of PTFE is 11 parts by weight in order to improve the peel strength. . The total solid content at the time of manufacturing the positive electrode is 130 parts by weight.

(実施例10)
実施例1で使用した電気二重層容量を有する活性炭を4重量部、実施例5で使用した電気二重層容量を有する発泡炭素としてのケッチェンブラック(品番:ECP−600JD)2.6重量部にし、剥離強度を向上するためPTFEの固形分が2重量部となるように添加し、ケッチェンブラックは導電材としても機能するためアセチレンブラックを使用しない以外は実施例1と同様に製造されたリチウム二次電池である。なお、正極の製造時の固形分の合計は97.6重量部、電気二重層材料の合計は6.6重量部であった。このようにして得られたペーストをコンマコータにてアルミ箔上に片面あたり目付量4.92(mg/cm2)で両面塗布した。
(Example 10)
4 parts by weight of activated carbon having the electric double layer capacity used in Example 1 and 2.6 parts by weight of ketjen black (product number: ECP-600JD) as expanded carbon having the electric double layer capacity used in Example 5 In order to improve the peel strength, PTFE was added so that the solid content of PTFE was 2 parts by weight, and Ketjen Black also functions as a conductive material. Therefore, lithium produced in the same manner as in Example 1 except that acetylene black was not used. It is a secondary battery. In addition, the total of the solid content at the time of manufacture of a positive electrode was 97.6 weight part, and the total of the electric double layer material was 6.6 weight part. The paste thus obtained was applied onto both sides of an aluminum foil with a comma coater at a basis weight of 4.92 (mg / cm 2 ) per side.

(実施例11)
実施例11は、以下に示した正極を用いた以外は、実施例1と同様に製造されたリチウム二次電池である。
(Example 11)
Example 11 is a lithium secondary battery manufactured in the same manner as in Example 1 except that the positive electrode shown below was used.

正極活物質としてリチウムニッケル酸化物86.9重量部、実施例5で使用した電気二重層容量を有する発泡炭素としてのケッチェンブラック(品番:ECP−600JD)4.1重量部を用いて、正極活物質に導電剤を被覆した。活物質に導電剤を被覆する方法として、図2に示すメカノケミカル反応を利用する皮膜形成装置を用いて行った。この皮膜形成装置は、内部空間10をもつ回転ドラム1を有し、その内部空間10に、押圧剪断ヘッド3と固定軸2と第1アーム4と爪5と第2アーム6とが内設されている。   Using 66.9 parts by weight of lithium nickel oxide as the positive electrode active material and 4.1 parts by weight of Ketjen black (product number: ECP-600JD) as foamed carbon having the electric double layer capacity used in Example 5, The active material was coated with a conductive agent. As a method for coating the active material with the conductive agent, a film forming apparatus using a mechanochemical reaction shown in FIG. 2 was used. This film forming apparatus has a rotating drum 1 having an internal space 10, and a press shear head 3, a fixed shaft 2, a first arm 4, a claw 5, and a second arm 6 are provided in the internal space 10. ing.

押圧剪断ヘッド3は回転ドラム1の内周面に対して僅かな隙間を介して設けられている。押圧剪断ヘッド3は、回転ドラム1の半径方向外方に向けて設けられ且つ回転ドラム1の内周面よりも曲率の大きい面をもち、その面と反対側が第1アーム4の先端部に固定されている。第1アーム4の他端部は回転ドラム1内部の固定軸2に固定されている。   The pressing shear head 3 is provided with a slight gap with respect to the inner peripheral surface of the rotary drum 1. The pressure shearing head 3 has a surface that is provided outwardly in the radial direction of the rotating drum 1 and has a larger curvature than the inner peripheral surface of the rotating drum 1, and the side opposite to the surface is fixed to the tip of the first arm 4. Has been. The other end of the first arm 4 is fixed to a fixed shaft 2 inside the rotary drum 1.

固定軸2は、回転ドラム1を回転したときの第1アーム4の回転後方(回転ドラム1は図2上で時計回りに回転している)に、所定角度を隔てて第2アーム6の一端部が固定されている。第2アーム6の他端部には回転ドラム1の内周面近くにまで延びる爪5が固定されている。   The fixed shaft 2 is connected to one end of the second arm 6 at a predetermined angle behind the first arm 4 when the rotating drum 1 is rotated (the rotating drum 1 rotates clockwise in FIG. 2). The part is fixed. A claw 5 extending to the vicinity of the inner peripheral surface of the rotary drum 1 is fixed to the other end of the second arm 6.

この皮膜形成装置の内部空間10に、上記混合粉を入れ、回転ドラム1を所定回転数で所定時間(処理時間)回転させた。回転ドラム1内では押圧剪断ヘッド3と回転ドラム1の内周面との間の押圧剪断力により混合粉にメカノケミカル作用が生じてリチウムニッケル酸化物の各粒子の表面にケッチェンブラックを被覆することができた。回転ドラム1内部では爪5により混合粉を適宜描き落としているので、混合粉は全体的に被覆作用が進行した。なお、本実施例において被覆されたケッチェンブラックは強固に被覆されているため導電材としては機能しない。   The mixed powder was put into the internal space 10 of the film forming apparatus, and the rotary drum 1 was rotated at a predetermined rotation speed for a predetermined time (processing time). In the rotary drum 1, a mechanochemical action is produced on the mixed powder by the press shear force between the press shear head 3 and the inner peripheral surface of the rotary drum 1, and the surface of each particle of lithium nickel oxide is coated with ketjen black. I was able to. Since the mixed powder was appropriately drawn off by the claw 5 inside the rotating drum 1, the coating action of the mixed powder proceeded as a whole. In addition, since the ketjen black coated in this embodiment is firmly coated, it does not function as a conductive material.

以上のケッチェンブラックで被覆された活物質に、3重量部の活性炭(実施例2使用と同じ)、6重量部の導電剤として比表面積40m2/gの電気化学製アセチレンブラック(HS-100)、2重量部濃度のカルボキシメチルセルロースナトリウム塩水溶液をアニオン性の水溶性有機化合物としてのカルボキシメチルセルロースナトリウムの固形分が1重量部となるように混合し、さらにノニオン性の水溶性有機化合物としてのポリエチレンオキサイド粉末1重量部と所定量の水を混合し、循環型攪拌機にて30分間攪拌する。その後、水性ディスパージョン樹脂としての固形分比率約50%のPTFEをPTFEの固形分が1重量部となるように添加し、循環型撹拌機を使い10分間攪拌する。尚、正極の製造時の固形分の合計は103重量部である。このようにして得られたペーストをコンマコータにてアルミ箔上に片面あたり目付量5.15(mg/cm2)で両面塗布した。 To the active material coated with the above ketjen black, 3 parts by weight of activated carbon (same as that used in Example 2), 6 parts by weight of electroconductive acetylene black having a specific surface area of 40 m 2 / g (HS-100) ) A carboxymethylcellulose sodium salt aqueous solution having a concentration of 2 parts by weight is mixed so that the solid content of sodium carboxymethylcellulose as an anionic water-soluble organic compound is 1 part by weight, and further polyethylene as a nonionic water-soluble organic compound 1 part by weight of oxide powder and a predetermined amount of water are mixed and stirred for 30 minutes with a circulating stirrer. Thereafter, PTFE having a solid content ratio of about 50% as an aqueous dispersion resin is added so that the solid content of PTFE is 1 part by weight, and the mixture is stirred for 10 minutes using a circulation type stirrer. In addition, the total of the solid content at the time of manufacture of a positive electrode is 103 weight part. The paste thus obtained was applied on both sides with a comma coater on an aluminum foil with a basis weight of 5.15 (mg / cm 2 ) per side.

(実施例12)
実施例12は、以下に示した負極を用いた以外は、実施例1と同様に製造されたリチウム二次電池である。
(Example 12)
Example 12 is a lithium secondary battery manufactured in the same manner as in Example 1 except that the negative electrode shown below was used.

(負極の製造)
まず、負極活物質として鱗片状グラファイト98重量部、擬似電気二重層を有する材料として1.3重量%のポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸水溶液を固形分が2重量部となるように混合した。つづいて、2重量%のカルボキシメチルセルロースナトリウム塩水溶液を親水性結着材としてのカルボキシメチルセルロースナトリウムの固形分が1重量部となるように混合し、さらに親電解液性結着材としてSBR1重量部を所定量の水と混合して、グラファイトを分散させたペーストを調製した。調製されたペーストをコンマコータを使い銅箔上に片面あたりの目付量3.81(mg/cm2)で両面塗布し、その後ロールプレス機を通し、電極密度を1.28(g/cm3)まで上げた電極を作製した。なお、負極の製造時の固形分の合計は102重量部である。
(Manufacture of negative electrode)
First, 98 parts by weight of scaly graphite as a negative electrode active material, and 1.3 parts by weight of a poly (3,4-ethylenedioxythiophene) / polystyrenesulfonic acid aqueous solution as a material having a pseudo electric double layer with a solid content of 2 parts by weight. It mixed so that it might become. Subsequently, a 2% by weight aqueous solution of sodium carboxymethylcellulose was mixed so that the solid content of sodium carboxymethylcellulose as the hydrophilic binder was 1 part by weight, and 1 part by weight of SBR was further added as the electrolyte binder. A paste in which graphite was dispersed was prepared by mixing with a predetermined amount of water. The prepared paste was coated on a copper foil with a basis weight of 3.81 (mg / cm 2 ) on a copper foil using a comma coater, and then passed through a roll press machine, and the electrode density was 1.28 (g / cm 3 ). An electrode raised up to 2 mm was produced. In addition, the total of solid content at the time of manufacture of a negative electrode is 102 weight part.

(評価)
実施例および比較例の各電池の評価として、電池初期容量、室温出力および低温出力を測定した。測定結果を表1および2に示した。それぞれの容量および出力の測定は、以下に示した測定手順により行われた。
(Evaluation)
As evaluation of each battery of the examples and comparative examples, the initial battery capacity, room temperature output and low temperature output were measured. The measurement results are shown in Tables 1 and 2. Each capacity and output were measured by the following measurement procedure.

《電池初期容量》
初回は充電電流250(mA)で4.1(V)までCC−CV充電し、放電電流333(mA)で3.0(V)までCC放電を行った。次に充電電流1000(mA)で4.1(V)までCC−CV充電、放電電流1000(mA)で3.0(V)までCC放電を4回行った後、充電電流1000(mA)で4.1(V)までCC−CV充電、放電電流333(mA)で3.0(V)までCC放電し、この時の放電容量を電池初期容量とした。なお、測定は25℃の雰囲気で行った。
《Battery initial capacity》
The first time, CC-CV charge was performed to 4.1 (V) with a charge current of 250 (mA), and CC discharge was performed to 3.0 (V) with a discharge current of 333 (mA). Next, CC-CV charge is performed to 4.1 (V) at a charge current of 1000 (mA), and CC discharge is performed four times to 3.0 (V) at a discharge current of 1000 (mA), and then a charge current of 1000 (mA). CC-CV charge up to 4.1 (V) and CC discharge to 3.0 (V) at a discharge current 333 (mA), and the discharge capacity at this time was defined as the battery initial capacity. The measurement was performed in an atmosphere at 25 ° C.

《室温出力》
初期放電容量測定後、25℃に保ち、充電電流1000mAで3.750V(SOC60%)までCC−CV充電した。
その後、300mA、900mA、2.7A、5.4A、8.1Aの順にそれぞれ10秒間放電、10秒間充電を繰り返し、それぞれの電流値及び閉回路電池電圧を直線近似し、その直線が3.0Vと交差する点の電流値を読み取り、その電流値に3Vを乗ずることにより出力を求めた。なお、測定はすべて25℃で行った。
《Room temperature output》
After the initial discharge capacity measurement, it was kept at 25 ° C., and was charged with CC-CV to 3.750 V (SOC 60%) at a charging current of 1000 mA.
After that, 300 mA, 900 mA, 2.7 A, 5.4 A, and 8.1 A were each discharged for 10 seconds and charged for 10 seconds in order, and each current value and closed circuit battery voltage were approximated to a straight line, and the straight line was 3.0 V. The output was obtained by reading the current value at the point of crossing and multiplying the current value by 3V. All measurements were performed at 25 ° C.

《低温出力》
初期放電容量測定後、25℃に保ち、充電電流1000mAで3.618V(SOC40%)までCC−CV充電した。
<Low temperature output>
After the initial discharge capacity measurement, the temperature was kept at 25 ° C., and the battery was CC-CV charged to 3.618 V (SOC 40%) at a charging current of 1000 mA.

その後、100mA、200mA、300mA、400mA、600mA、1000mAの順に2点をそれぞれ2秒間放電、2秒間充電を繰り返し、それぞれの点の電流値、閉回路電池電圧を測定し、3.0V前後の2点を結んだ直線が3.0Vと交差する点の電流値を読み取り、その電流値に3Vを乗ずることにより出力を求めた。なお、測定はすべて−30℃で行った。   Thereafter, discharging the two points in the order of 100 mA, 200 mA, 300 mA, 400 mA, 600 mA, and 1000 mA for 2 seconds each, repeating the charging for 2 seconds, measuring the current value and the closed circuit battery voltage at each point, The current value at the point where the straight line connecting the points crossed 3.0V was read, and the output was obtained by multiplying the current value by 3V. All measurements were performed at -30 ° C.

Figure 0004964404
Figure 0004964404

Figure 0004964404
Figure 0004964404

表1および表2より、各実施例の電池は、電池容量、低温および室温での出力にすぐれた電池であることがわかる。特に、各比較例は、−30℃での低温出力が大きく低下していることがわかる。   From Table 1 and Table 2, it can be seen that the batteries of each example are excellent in battery capacity, output at low temperature and room temperature. In particular, it can be seen that in each comparative example, the low-temperature output at −30 ° C. is greatly reduced.

各実施例のリチウム二次電池は、−30℃の低温においても十分な出力特性を有することから、電気自動車などの車載用の二次電池として用いることが可能となっている。   Since the lithium secondary battery of each Example has sufficient output characteristics even at a low temperature of −30 ° C., it can be used as an in-vehicle secondary battery such as an electric vehicle.

静電容量の測定における放電カーブの電圧と時間の関係を示した図である。It is the figure which showed the relationship between the voltage of the discharge curve in time of an electrostatic capacitance, and time. 実施例11で用いた皮膜形成装置の構成の概略を示した断面図である。It is sectional drawing which showed the outline of the structure of the film forming apparatus used in Example 11.

符号の説明Explanation of symbols

1…回転ドラム 10…内部空間
2…固定軸
3…押圧剪断ヘッド
4…第1アーム
5…爪
6…第2アーム
DESCRIPTION OF SYMBOLS 1 ... Rotary drum 10 ... Internal space 2 ... Fixed axis | shaft 3 ... Pressing shear head 4 ... 1st arm 5 ... Claw 6 ... 2nd arm

Claims (6)

リチウムイオンを吸蔵・放出できる活物質と、電気二重層容量を有する少なくとも一種の材料と、を含有した合剤層を有するリチウム二次電池用極であって、
該電気二重層容量を有する材料は炭素質材料であって
細孔径が20Å以上の細孔容積が0.418cc/g以上の細孔を有し、
比表面積が1200m2/g以上、
−30℃における静電容量が93F/g以上であり、
該合剤層全体を100wt%としたときに、12.3wt%以下で含まれることを特徴とするリチウム二次電池用極。
And active material capable of intercalating and deintercalating lithium ions, a lithium secondary battery positive electrode having at least a one material, a mixture layer containing having an electric double layer capacity,
Materials with the electrical double layer capacity is a carbonaceous material,
Having pores with a pore diameter of 20 mm or more and a pore volume of 0.418 cc / g or more,
Specific surface area of 1200 m 2 / g or more,
Ri der capacitance 93F / g or more at -30 ° C.,
A positive electrode for a lithium secondary battery, which is contained in an amount of 12.3 wt% or less when the entire mixture layer is 100 wt% .
前記活物質は前記電気二重層容量を有する材料で被覆されている請求項1記載のリチウム二次電池用極。 The active material is a positive electrode for a lithium secondary battery according to claim 1 which is coated with a material having the electric double layer capacity. リチウムイオンを吸蔵・放出できる活物質と、電気二重層容量を有する少なくとも一種の材料と、を含有した合剤層を有するリチウム二次電池用正極を用いたリチウム二次電池であって、
該電気二重層容量を有する材料は炭素質材料であって
細孔径が20Å以上の細孔容積が0.418cc/g以上の細孔を有し、
比表面積が1200m2/g以上、
−30℃における静電容量が93F/g以上であり
合剤層全体を100wt%としたときに、12.3wt%以下で含まれることを特徴とするリチウム二次電池。
And active material capable of intercalating and deintercalating lithium ions, a lithium secondary battery using the positive electrode for a lithium secondary battery having at least a one material, a mixture layer containing having an electric double layer capacity,
Materials with the electrical double layer capacity is a carbonaceous material,
Having pores with a pore diameter of 20 mm or more and a pore volume of 0.418 cc / g or more,
Specific surface area of 1200 m 2 / g or more,
Capacitance at -30 ° C. is at 93F / g or more,
The entire said mixture layer is taken as 100 wt%, a lithium secondary battery, characterized by contained in the following 12.3wt%.
炭素質材料よりなる負極活物質を有する負極と、少なくともエチレンカーボネートにLiPF6が溶解した有機系電解液を主成分とする電解液と、を有する請求項記載のリチウム二次電池。 The lithium secondary battery according to claim 3 , comprising a negative electrode having a negative electrode active material made of a carbonaceous material, and an electrolytic solution mainly composed of an organic electrolytic solution in which LiPF 6 is dissolved in at least ethylene carbonate. 前記負極は、擬似電気二重層容量を有する導電性高分子材料を有する請求項記載のリチウム二次電池。 The negative electrode, the lithium secondary battery according to claim 3, further comprising a pseudo-conductive polymer material having an electric double layer capacitor. 前記活物質は前記電気二重層容量または前記擬似電気二重層容量を有する材料で被覆されている請求項のいずれかに記載のリチウム二次電池。 The lithium secondary battery according to any one of claims 3 to 5 , wherein the active material is coated with a material having the electric double layer capacity or the pseudo electric double layer capacity.
JP2004048550A 2003-03-07 2004-02-24 Positive electrode for lithium ion secondary battery and lithium ion secondary battery Expired - Fee Related JP4964404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004048550A JP4964404B2 (en) 2003-03-07 2004-02-24 Positive electrode for lithium ion secondary battery and lithium ion secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003061378 2003-03-07
JP2003061378 2003-03-07
JP2004048550A JP4964404B2 (en) 2003-03-07 2004-02-24 Positive electrode for lithium ion secondary battery and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2004296431A JP2004296431A (en) 2004-10-21
JP4964404B2 true JP4964404B2 (en) 2012-06-27

Family

ID=33421415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004048550A Expired - Fee Related JP4964404B2 (en) 2003-03-07 2004-02-24 Positive electrode for lithium ion secondary battery and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP4964404B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021221129A1 (en) 2020-04-30 2021-11-04 株式会社クラレ Additive for positive electrode of electrochemical device, composition for positive electrode of electrochemical device, positive electrode for electrochemical device, and electrochemical device including same
WO2022255359A1 (en) 2021-06-01 2022-12-08 株式会社クラレ Porous carbon for positive electrode additive for non-aqueous electrolyte secondary battery, positive electrode additive for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and production method for porous carbon

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4876515B2 (en) * 2005-09-30 2012-02-15 株式会社デンソー ELECTRODE FOR LITHIUM SECONDARY BATTERY, ITS MANUFACTURING METHOD, AND LITHIUM SECONDARY BATTERY
KR101479881B1 (en) * 2010-07-23 2015-01-06 도요타지도샤가부시키가이샤 Lithium ion secondary battery
JP5660539B2 (en) * 2011-08-12 2015-01-28 独立行政法人産業技術総合研究所 Lithium ion secondary battery electrode, lithium ion secondary battery, and electrical equipment
KR101683197B1 (en) * 2012-04-30 2016-12-06 삼성에스디아이 주식회사 Electrolyte and lithium secondary battery including the same
EP2879144A4 (en) * 2012-07-26 2016-05-25 Adeka Corp Electricity storage device
US20140120410A1 (en) * 2012-11-01 2014-05-01 Samsung Sdi Co., Ltd. Positive electrode for rechargeable lithium battery and rechargeable lithium battery including same
KR20140121953A (en) * 2013-04-08 2014-10-17 주식회사 엘지화학 Negative electrode for secondary battery, the preparation method thereof and secondary battery comprising the same
KR20170063233A (en) 2015-11-30 2017-06-08 삼성에스디아이 주식회사 Lithium secondary battery
JP2020057579A (en) * 2017-12-26 2020-04-09 株式会社大阪ソーダ Negative electrode and power storage device
US20230178748A1 (en) 2020-03-17 2023-06-08 Kuraray Co., Ltd. Additive for electrochemical element positive electrode, composition for electrochemical element positive electrode including said additive, and electrochemical element
JPWO2022168847A1 (en) 2021-02-05 2022-08-11

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02262243A (en) * 1989-03-31 1990-10-25 Matsushita Electric Ind Co Ltd Positive electrode for lithium secondary battery and manufacture thereof
JPH04237948A (en) * 1991-01-19 1992-08-26 Sumitomo Electric Ind Ltd Nonaqueous battery electrode and battery
JP2001110418A (en) * 1999-10-13 2001-04-20 Toyota Central Res & Dev Lab Inc Positive electrode for lithium secondary battery and the lithium secondary battery
JP3711015B2 (en) * 2000-11-20 2005-10-26 三洋電機株式会社 Polarized electrode
FR2817387B1 (en) * 2000-11-27 2003-03-21 Ceca Sa ENERGY STORAGE CELLS WITH HIGH ELECTRICAL CHEMICAL DOUBLE LAYER AND HIGH POWER DENSITY
JP2002260634A (en) * 2001-02-28 2002-09-13 Toyota Central Res & Dev Lab Inc Lithium secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021221129A1 (en) 2020-04-30 2021-11-04 株式会社クラレ Additive for positive electrode of electrochemical device, composition for positive electrode of electrochemical device, positive electrode for electrochemical device, and electrochemical device including same
KR20230002495A (en) 2020-04-30 2023-01-05 주식회사 쿠라레 Positive electrode additive for electrochemical device, composition for electrochemical device positive electrode, electrochemical device positive electrode, and electrochemical device including the same
WO2022255359A1 (en) 2021-06-01 2022-12-08 株式会社クラレ Porous carbon for positive electrode additive for non-aqueous electrolyte secondary battery, positive electrode additive for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and production method for porous carbon
KR20240015621A (en) 2021-06-01 2024-02-05 주식회사 쿠라레 Porous carbon for positive electrode additive for non-aqueous electrolyte secondary battery, positive electrode additive for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing porous carbon.

Also Published As

Publication number Publication date
JP2004296431A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
KR101342601B1 (en) Negative active material, manufacturing method thereof, and lithium battery containing the material
JP5182477B2 (en) Non-aqueous secondary battery
JP2008277232A (en) Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
JP5043344B2 (en) Anode for non-aqueous electrolyte secondary battery
JP2009076372A (en) Non-aqueous secondary battery
JP2007165079A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using it
JP3794553B2 (en) Lithium secondary battery electrode and lithium secondary battery
JP2005044775A (en) Negative electrode for lithium secondary battery, manufacturing method of the same, and lithium secondary battery using the same
JP2008277231A (en) Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
JP4964404B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP2007266064A (en) Electric double layer capacitor
JP2017520892A (en) Positive electrode for lithium battery
JP2021108305A (en) Positive electrode and lithium battery containing positive electrode
JP2018125077A (en) Negative electrode for lithium ion secondary battery
JP4876515B2 (en) ELECTRODE FOR LITHIUM SECONDARY BATTERY, ITS MANUFACTURING METHOD, AND LITHIUM SECONDARY BATTERY
JP5534010B2 (en) Method for manufacturing negative electrode material, negative electrode material, method for manufacturing lithium secondary battery, lithium secondary battery
JP2008282550A (en) Anode for lithium secondary battery and lithium secondary cell using the same
JP4779327B2 (en) ELECTRODE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY USING THE ELECTRODE
JP2010282858A (en) Lithium ion battery
JP4406832B2 (en) Lithium secondary battery electrode and lithium secondary battery
US10038191B2 (en) Carbonous anode material, method for producing the same, and lithium-ion battery containing the anode material
JP4870419B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, lithium ion secondary battery negative electrode and lithium ion secondary battery
JP2005327489A (en) Positive electrode for power storage element
JP2011181387A (en) Manufacturing method of electrode mixture for electrochemical element
US10256049B2 (en) Positive electrode for a lithium ion capacitor and lithium ion capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees