JP4960645B2 - Wavelength converter and light emitting device - Google Patents

Wavelength converter and light emitting device Download PDF

Info

Publication number
JP4960645B2
JP4960645B2 JP2006093202A JP2006093202A JP4960645B2 JP 4960645 B2 JP4960645 B2 JP 4960645B2 JP 2006093202 A JP2006093202 A JP 2006093202A JP 2006093202 A JP2006093202 A JP 2006093202A JP 4960645 B2 JP4960645 B2 JP 4960645B2
Authority
JP
Japan
Prior art keywords
liquid
semiconductor phosphor
semiconductor
light emitting
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006093202A
Other languages
Japanese (ja)
Other versions
JP2007262375A (en
Inventor
修吾 鬼塚
俊昭 重岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006093202A priority Critical patent/JP4960645B2/en
Publication of JP2007262375A publication Critical patent/JP2007262375A/en
Application granted granted Critical
Publication of JP4960645B2 publication Critical patent/JP4960645B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Description

本発明は、例えば、電子ディスプレイ用のバックライト電源、蛍光ランプ等に好適に用いられる発光装置とこれに用いる波長変換器とに関し、より詳しくは、発光素子から発せられる光を波長変換して外部に取り出すために用いられる波長変換器およびこれを用いた発光装置に関する。   The present invention relates to a light emitting device suitably used for, for example, a backlight power source for electronic displays, a fluorescent lamp, and the like, and a wavelength converter used therefor, and more specifically, converts the light emitted from the light emitting element to an external wavelength. The present invention relates to a wavelength converter used for extraction and a light emitting device using the same.

半導体材料からなる発光素子(以後、LEDチップと言うこともある)は、小型で電力効率が良く、鮮やかな色の発光を生じる。LEDチップは、製品寿命が長い、オン・オフ点灯の繰り返しに強い、消費電力が低い、という優れた特長を有するため、液晶などのバックライト光源や蛍光ランプ等の照明用光源への応用が期待されている。   A light-emitting element made of a semiconductor material (hereinafter sometimes referred to as an LED chip) is small in size, has high power efficiency, and emits brightly colored light. LED chips have excellent features such as long product life, strong on / off lighting repeatability, and low power consumption, so they are expected to be applied to backlight sources such as liquid crystals and lighting sources such as fluorescent lamps. Has been.

近年では、例えば、紫外発光素子(発光波長400nm以下)上に3種類の蛍光体を含有する波長変換部を形成することにより、幅広い範囲で発光波長をカバーし、演色性の向上した白色の発光装置を得る試みがなされている。この試みの中で、平均粒子径が10nm以下の半導体蛍光体を用いる技術が検討されており(非特許文献1参照)、次のような知見が報告されている。つまり、半導体蛍光体の平均粒子径を10nm程度の適切な値に設定すれば、半導体粒子のエネルギー準位が離散的となり、半導体粒子のバンドギャップエネルギーは半導体粒子の粒子径に合わせて変化することになる。したがって、半導体蛍光体の粒子径を変えることで、赤(長波長)から青(短波長)まで様々な発光を得ることができる。例えば、セレン化カドミウムは、平均粒子径を2nmから10nmの範囲で変化させることにより、その粒子径に応じて赤(波長700nm)から青(波長450nm)の蛍光を発する。この技術は、演色性が高く効率のよい発光装置の作製を可能にするものとして期待されている。   In recent years, for example, by forming a wavelength conversion part containing three kinds of phosphors on an ultraviolet light emitting element (emission wavelength of 400 nm or less), white light emission that covers a wide range of emission wavelengths and has improved color rendering properties. Attempts have been made to obtain the device. In this trial, a technique using a semiconductor phosphor having an average particle size of 10 nm or less has been studied (see Non-Patent Document 1), and the following knowledge has been reported. That is, if the average particle diameter of the semiconductor phosphor is set to an appropriate value of about 10 nm, the energy level of the semiconductor particles becomes discrete, and the band gap energy of the semiconductor particles changes according to the particle diameter of the semiconductor particles. become. Therefore, by changing the particle diameter of the semiconductor phosphor, various light emission from red (long wavelength) to blue (short wavelength) can be obtained. For example, cadmium selenide emits red (wavelength 700 nm) to blue (wavelength 450 nm) fluorescence depending on the particle diameter by changing the average particle diameter in the range of 2 nm to 10 nm. This technique is expected to enable the production of a highly efficient light-emitting device with high color rendering properties.

一般に、LEDチップと蛍光体とを組み合わせて発光装置とするには、蛍光体を樹脂(例えば、エポキシ樹脂、アクリル樹脂、シリコーン樹脂など)に混合、分散させた後、これをLEDチップ上で固めて波長変換器を形成する方法が採られている。平均粒子径が10nm以下の半導体蛍光体をLEDチップと組み合わせる場合においても同様であり、半導体蛍光体を樹脂に混合、分散させ、これをLEDチップ上で固めて波長変換器を形成する方法で発光装置の開発が進められている。   Generally, in order to combine a LED chip and a phosphor to form a light emitting device, the phosphor is mixed and dispersed in a resin (for example, epoxy resin, acrylic resin, silicone resin, etc.), and then this is solidified on the LED chip. Thus, a method of forming a wavelength converter is employed. The same applies when a semiconductor phosphor having an average particle size of 10 nm or less is combined with an LED chip, and the semiconductor phosphor is mixed and dispersed in a resin, which is solidified on the LED chip to form a wavelength converter. Development of equipment is underway.

アール エヌ バルガバ(R.N.Bhargava)、ディー ガラガー(D.Gallagher)、エックス ホン(X.Hong)、エー ヌルミッコー(A.Nurmikko)著、フィジカル レビュー レターズ(Phys.Rev.Lett) 72巻 3号 1994年 (米国)By RNBhargava, D.Gallagher, X.Hong, A.Nurmikko, Physical Review Letters (Phys.Rev.Lett) 72 3 1994 USA)

しかしながら、平均粒子径が10nm以下といった超微粒子の半導体蛍光体を樹脂に混合、分散させたのち固めることにより波長変換器を形成した場合、製造上の不具合や、長期間使用の際の熱応力もしくは樹脂劣化などが起因して、半導体蛍光体と樹脂との間に隙間ができやすく、この隙間となった部分で光の反射がおこるため光の伝達効率が悪くなり、充分な波長変換効率を得ることができないという問題があった。
他方、半導体材料に光が照射されるとき、照射される光が酸素および水分存在下で励起可能なエネルギーを持つ光であると、そのエネルギーにより半導体材料は表面から酸化(光溶解)されて蛍光を示さなくなり、その結果、波長変換効率が損なわれることになる。特に、半導体蛍光体がナノサイズの超微粒子である場合には、半導体蛍光体の体積に比べて比表面積が格段に大きいため、蛍光体の劣化は著しい。この蛍光体劣化の問題を回避するには、半導体蛍光体の超微粒子を分散させた液体を、酸素および水分を遮断できるガラスや樹脂等で封止すればよいと考えられる。しかし、その場合、小型化が困難になると同時に、製造コストが高騰するといった問題を招くことになる。
However, when a wavelength converter is formed by mixing and dispersing an ultrafine semiconductor phosphor having an average particle size of 10 nm or less in a resin and then solidifying it, there is a manufacturing defect, thermal stress during long-term use, or Due to resin degradation, etc., a gap is easily formed between the semiconductor phosphor and the resin, and light is reflected at the gap, resulting in poor light transmission efficiency and sufficient wavelength conversion efficiency. There was a problem that I could not.
On the other hand, when the semiconductor material is irradiated with light, if the irradiated light is light having energy that can be excited in the presence of oxygen and moisture, the semiconductor material is oxidized (photodissolved) from the surface by the energy and fluorescent. As a result, the wavelength conversion efficiency is impaired. In particular, when the semiconductor phosphor is nano-sized ultrafine particles, the specific surface area is much larger than the volume of the semiconductor phosphor, so that the phosphor is significantly deteriorated. In order to avoid this problem of phosphor degradation, it is considered that the liquid in which the ultrafine particles of the semiconductor phosphor are dispersed may be sealed with glass or resin that can block oxygen and moisture. However, in that case, downsizing becomes difficult, and at the same time, the manufacturing cost increases.

従って、本発明の課題は、平均粒子径10nm以下の半導体蛍光体をLEDチップと組み合わせてなる発光装置において良好な波長変換効率を発揮するとともに、安価で小型化も可能である波長変換器、およびこれを用いた発光装置を提供することである。   Accordingly, an object of the present invention is to provide a wavelength converter that exhibits good wavelength conversion efficiency in a light-emitting device in which a semiconductor phosphor having an average particle diameter of 10 nm or less is combined with an LED chip, and that is inexpensive and can be downsized. It is providing the light-emitting device using this.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、以下の構成からなる解決手段を見出し、本発明を完成するに至った。
(1)0.05〜100μmサイズの液滴を含んだ高分子によって形成されており、前記液滴は、含水率0.1質量%以下の液体と該液体中に分散した状態で存在する平均粒子径0.5〜10nmの半導体蛍光体とからなり、前記高分子の酸素透過度は10×106cm3(STP)・cm/(cm2・s・cmHg)以下であり、前記半導体蛍光体は、CdSeまたはZnSからなり、前記液体は、変性シリコーンオイル、ジメチルシリコーンオイル、ドデシルアミン、またはオレイルアミンからなり、前記高分子は、ポリビニルアルコールからなる、波長変換器。
(2)前記高分子の分子量は10,000〜100,000である、前記(1)記載の波長変換器。
)発光素子と、該発光素子からの光を波長変換する前記(1)または(2)に記載の波長変換器とを具備する、発光装置。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found a solution means having the following constitution and have completed the present invention.
(1) formed of a polymer containing droplets having a size of 0.05 to 100 μm, and the droplets are a liquid having a water content of 0.1% by mass or less and an average existing in a dispersed state in the liquid It consists of a semiconductor phosphor particle size 0.5 to 10 nm, the oxygen permeability of the polymer 10 × 10 6 cm 3 (STP ) · cm / (cm 2 · s · cmHg) Ri der hereinafter, the semiconductor The phosphor is made of CdSe or ZnS, the liquid is made of modified silicone oil, dimethyl silicone oil, dodecylamine, or oleylamine, and the polymer is made of polyvinyl alcohol .
(2) The wavelength converter according to (1), wherein the polymer has a molecular weight of 10,000 to 100,000.
(3) a light emitting element comprises a wavelength converter according to the to the wavelength converting the light from the light emitting element (1) or (2), - emitting device.

前記(1)によれば、平均粒子径0.5〜10nmの半導体蛍光体は高分子中に直接分散しているのではなく、液滴内において液体に分散した状態で存在することにより、平均粒子径10nm以下の半導体蛍光体を樹脂に混合、分散させた場合に起こる光の伝達効率の悪化を回避し、良好な波長変換効率を得ることができる。また、前記高分子の酸素透過度が10×106cm3(STP)・cm/(cm2・s・cmHg)以下であり、かつ、前記液滴内の液体の含水率が0.1質量%以下であることにより、半導体蛍光体を酸素および水分から遮断することができ、その結果、半導体蛍光体に励起可能なエネルギーを持つ光が照射されても、そのエネルギーにより半導体蛍光体が酸化されることはなく、良好な波長変換効率を得ることができる。しかも、半導体蛍光体の酸化を防止するために半導体蛍光体を分散させた液体を酸素または水分を遮断できるガラスや樹脂で封止する必要もないので、安価に製造ができ、小型化も可能になる。さらに、平均粒子径0.5〜10nmの半導体蛍光体を0.05〜100μmサイズの液滴内に分散させるので、多数個の半導体蛍光体を存在させることが可能となり、結果として、高分子中には高濃度の半導体蛍光体が含まれ、より効率の良い波長変換を達成することができる。そのうえ、前記液体が変性シリコーンオイルまたはジメチルシリコーンオイルであると、耐熱性の向上をも図ることができる。
According to the above (1), the semiconductor phosphor having an average particle diameter of 0.5 to 10 nm is not directly dispersed in the polymer, but is present in a state of being dispersed in the liquid in the liquid droplets. Deterioration of light transmission efficiency that occurs when a semiconductor phosphor having a particle diameter of 10 nm or less is mixed and dispersed in a resin can be avoided, and good wavelength conversion efficiency can be obtained. Further, the oxygen permeability of the polymer is 10 × 10 6 cm 3 (STP) · cm / (cm 2 · s · cmHg) or less, and the water content of the liquid in the droplet is 0.1 mass. %, The semiconductor phosphor can be shielded from oxygen and moisture. As a result, even if the semiconductor phosphor is irradiated with light having excitable energy, the semiconductor phosphor is oxidized by the energy. And good wavelength conversion efficiency can be obtained. In addition, since it is not necessary to seal the liquid in which the semiconductor phosphor is dispersed with glass or resin that can block oxygen or moisture in order to prevent oxidation of the semiconductor phosphor, it can be manufactured at low cost and can be downsized. Become. Furthermore, since the semiconductor phosphor having an average particle diameter of 0.5 to 10 nm is dispersed in a droplet having a size of 0.05 to 100 μm, a large number of semiconductor phosphors can be present. Contains a high-concentration semiconductor phosphor and can achieve more efficient wavelength conversion. In addition, when the liquid is a modified silicone oil or dimethyl silicone oil, the heat resistance can be improved.

前記(2)によれば、前記高分子の分子量が10,000〜100,000であることにより、高分子溶液の粘度調整が容易であり、高分子内に液滴を形成しやすくなる、という利点が得られる。
前記()によれば、発光素子とともに、上記構成の波長変換器が具備されていることにより、発光素子からの光を効率良く波長変換することができ、しかも安価で小型化も可能な発光装置となる。
According to the above (2), when the molecular weight of the polymer is 10,000 to 100,000, it is easy to adjust the viscosity of the polymer solution and easily form droplets in the polymer. Benefits are gained.
According to the above ( 3 ), since the wavelength converter having the above-described configuration is provided together with the light emitting element, the light emitted from the light emitting element can be efficiently wavelength-converted, and the light emission is inexpensive and can be downsized. It becomes a device.

[波長変換器]
以下、本発明の波長変換器の一実施形態について図面を参照して詳細に説明する。図1(a)は、本実施形態の波長変換装置を示す概略断面図であり、図1(b)は、本実施形態の波長変換装置における液滴を拡大して示す概略断面図である。
[Wavelength converter]
Hereinafter, an embodiment of a wavelength converter of the present invention will be described in detail with reference to the drawings. FIG. 1A is a schematic cross-sectional view showing the wavelength conversion device of the present embodiment, and FIG. 1B is a schematic cross-sectional view showing enlarged droplets in the wavelength conversion device of the present embodiment.

本発明の波長変換器1は、例えば図1(a)に示すように、0.05〜100μmサイズの液滴3を含んだ高分子5によって形成されている。具体的には、高分子5中に0.05〜100μmサイズの液滴3が分散されてなる。そして、この液滴3は、図1(b)に示すように、液体9と該液体9中に分散した状態で存在する半導体蛍光体7とからなっている。このように、波長変換器1における半導体蛍光体7の保持を、従来用いられていた固体の樹脂ではなく、固体に比べ格段に容易に変形可能な液体9を用いて行うようにすることで、半導体蛍光体7と液体9との間に応力が発生せず、半導体蛍光体7と液体9との間に隙間が生じることを回避することができ、その結果、半導体蛍光体7の波長変換効率の低下を抑制することができるのである。さらに、液体9は、何らかの材料で包みこみ漏洩しないよう厳重に保持する必要があるが、その材料としてガラス等の容器を用いると、小型化が難しく、製造過程が複雑になり、取り扱い性やコスト的に不利となることが懸念される。本発明の波長変換器1は、液体9を液滴3として高分子5中に分散させて保持するようにしたことで、前記懸念を払拭し、安価に製造ができ、小型化も可能になる、という利点が得られる。   The wavelength converter 1 of the present invention is formed by a polymer 5 containing droplets 3 having a size of 0.05 to 100 μm, for example, as shown in FIG. Specifically, the droplets 3 having a size of 0.05 to 100 μm are dispersed in the polymer 5. The droplet 3 is composed of a liquid 9 and a semiconductor phosphor 7 present in a dispersed state in the liquid 9 as shown in FIG. In this way, by holding the semiconductor phosphor 7 in the wavelength converter 1 by using the liquid 9 that can be remarkably easily deformed compared to a solid instead of the solid resin conventionally used, No stress is generated between the semiconductor phosphor 7 and the liquid 9, and it is possible to avoid a gap between the semiconductor phosphor 7 and the liquid 9. As a result, the wavelength conversion efficiency of the semiconductor phosphor 7 can be avoided. It is possible to suppress the decrease of the above. Furthermore, the liquid 9 needs to be wrapped with some material and held tightly so that it does not leak. However, if a container such as glass is used as the material, it is difficult to reduce the size, the manufacturing process becomes complicated, and handling and cost are reduced. There is a concern that it will be disadvantageous. The wavelength converter 1 of the present invention disperses and holds the liquid 9 as the droplet 3 in the polymer 5, so that the above concerns can be eliminated, manufacturing can be performed at low cost, and miniaturization is also possible. The advantage is obtained.

本発明の波長変換器1に用いられる半導体蛍光体7は、CdSeまたはZnSからなり、光を波長変換する機能を有する。つまり、CdSeまたはZnSからなる半導体蛍光体7は光源(後述する発光装置における発光素子13)より発せられた光を吸収し、この光の波長を変えて放出する機能を持つものである。
The semiconductor phosphor 7 used in the wavelength converter 1 of the present invention is made of CdSe or ZnS and has a function of converting the wavelength of light. That is, the semiconductor phosphor 7 made of CdSe or ZnS has a function of absorbing light emitted from a light source (a light emitting element 13 in a light emitting device to be described later) and changing the wavelength of the light.

本発明において、半導体蛍光体7の平均粒子径は0.5〜10nmであることが重要である。好ましくは、2〜5nmであるのがよい。半導体蛍光体7の平均粒子径が前記範囲であると、LED等の発光装置または半導体蛍光体7自身から発せられた光の散乱を抑制する事ができ、効率よく外部へ光を取り出すことができる。なお、平均粒子径は、例えば実施例で後述するように、透過型電子顕微鏡(TEM)(JEOL社製「JEM2010F」)により加速電圧200kVで観察して測定するなどの方法にて求めることができる。   In the present invention, it is important that the average particle size of the semiconductor phosphor 7 is 0.5 to 10 nm. Preferably, it is 2-5 nm. When the average particle diameter of the semiconductor phosphor 7 is in the above range, scattering of light emitted from a light emitting device such as an LED or the semiconductor phosphor 7 itself can be suppressed, and light can be efficiently extracted outside. . The average particle diameter can be determined by, for example, a method of observing and measuring at an accelerating voltage of 200 kV with a transmission electron microscope (TEM) (“JEM2010F” manufactured by JEOL Co., Ltd.) as will be described later in Examples. .

また、半導体蛍光体7の表面には、アミノ基、メルカプト基、カルボキシル基等の官能基をもつ有機化合物などを結合させることが好ましい。アミノ基、メルカプト基、カルボキシル基等の官能基をもつ有機化合物には、半導体蛍光体7の表面の欠陥を電気的に補修する効果があるため、半導体蛍光体7の波長変換効率を高めることができるからである。   Moreover, it is preferable that an organic compound having a functional group such as an amino group, a mercapto group, or a carboxyl group is bonded to the surface of the semiconductor phosphor 7. An organic compound having a functional group such as an amino group, a mercapto group, or a carboxyl group has an effect of electrically repairing defects on the surface of the semiconductor phosphor 7, so that the wavelength conversion efficiency of the semiconductor phosphor 7 can be increased. Because it can.

本発明の波長変換器1に用いられる液体9は、半導体蛍光体7の分散媒となるものであり、半導体蛍光体7を水や大気など外部の雰囲気から遮断し、半導体蛍光体7の濃度を適当に調整する働きをなす。   The liquid 9 used in the wavelength converter 1 of the present invention serves as a dispersion medium for the semiconductor phosphor 7. The semiconductor phosphor 7 is shielded from an external atmosphere such as water or the atmosphere, and the concentration of the semiconductor phosphor 7 is adjusted. It works to adjust appropriately.

本発明において、液体9は、含水率0.1質量%以下であることが重要である。液体9の含水率は短期的な波長変換効率の低下に影響するものであり、0.1質量%以下とすることにより、水分の存在下で励起光により生じる半導体蛍光体7の劣化を抑制することができ、結果として、該半導体蛍光体7の劣化によって波長変換効率が低下するのを防ぐことができる。液体9の含水率は、好ましくは0.05質量%以下、より好ましくは0.01質量%以下であるのがよい。液体9の含水率を0.1質量%以下とするには、例えば、液体9中にモレキュラーシーブを適量(通常、液体9の総量に対して10重量%程度)添加して水分を吸着させたり、減圧下で加熱するなどの方法等が挙げられる。なお、含水率は、JIS−K−0068に規定されたカールフィッシャー滴定法(水分気化法)で滴定することなどにより測定することができる。   In the present invention, it is important that the liquid 9 has a moisture content of 0.1% by mass or less. The water content of the liquid 9 influences a short-term decrease in wavelength conversion efficiency. By setting it to 0.1% by mass or less, deterioration of the semiconductor phosphor 7 caused by excitation light in the presence of moisture is suppressed. As a result, it is possible to prevent the wavelength conversion efficiency from being lowered due to the deterioration of the semiconductor phosphor 7. The water content of the liquid 9 is preferably 0.05% by mass or less, more preferably 0.01% by mass or less. In order to reduce the water content of the liquid 9 to 0.1% by mass or less, for example, an appropriate amount of molecular sieve is added to the liquid 9 (usually about 10% by weight with respect to the total amount of the liquid 9) to adsorb moisture. And a method such as heating under reduced pressure. The water content can be measured by titration by the Karl Fischer titration method (moisture vaporization method) defined in JIS-K-0068.

液体9は、ジメチルシリコーンオイル、変性シリコーンオイル、オレイルアミン、またはドデシルアミンからなる。これらの中でも特に、変性シリコーンオイルまたはジメチルシリコーンオイルが好ましい。変性シリコーンオイルやジメチルシリコーンオイルは、比較的沸点が高いため取り扱い性に優れ、変質しにくく、水の溶解度が低く、耐久性に優れているという利点を有するからである。なお、変性シリコーンオイルとは、ジメチルシリコーンオイルやメチルフェニルシリコーンオイルに各種官能基を結合させて機能付与したものであり、変性シリコーンオイルの中でも、とりわけアミノ変性したものやカルボキシル変性したものが好適である。
Liquid 9, di methyl silicone oil, modified silicone oil, consisting of OH Reiruamin or dodecylamine. Among these, modified silicone oil or dimethylsilicone for oil are preferred. This is because modified silicone oil and dimethyl silicone oil have advantages that they have a relatively high boiling point, are excellent in handleability, hardly change in quality, have low water solubility, and are excellent in durability. The modified silicone oil is one obtained by attaching various functional groups to dimethyl silicone oil or methylphenyl silicone oil to give a function, and among the modified silicone oils, amino-modified ones and carboxyl-modified ones are particularly suitable. is there.

また、液体9は、水の溶解度が0.1質量%以下であることが好ましい。より好ましくは0.05質量%以下であるのがよい。液体9の水の溶解度は、長期的な波長変換効率の低下に影響するものであり、0.1質量%以下であることにより、水が液体9を経由して半導体蛍光体7に接触するのを抑制することができる。つまり、波長変換器1を作製する工程で高分子5の水溶液を使用した場合など、仮に雰囲気中に多量の水分があったとしても、液体9の水分含有量を低く抑え、水を確実に遮断することができるのである。この点で液体9としては、変性シリコーンオイルが好ましい。なお、本発明における前記水の溶解度とは、40℃において液体9に溶解する水の質量%を意味する。
The liquid 9 preferably has a water solubility of 0.1% by mass or less. More preferably, it is 0.05 mass% or less. The solubility of water in the liquid 9 affects the long-term decrease in wavelength conversion efficiency. When the solubility is 0.1% by mass or less, the water contacts the semiconductor phosphor 7 via the liquid 9. Can be suppressed. In other words, even if there is a large amount of moisture in the atmosphere, such as when an aqueous solution of polymer 5 is used in the process of manufacturing the wavelength converter 1, the moisture content of the liquid 9 is kept low and the water is reliably shut off. It can be done. As the liquid body 9 in this respect, degeneration silicone oil is preferred. In the present invention, the solubility of water means mass% of water dissolved in the liquid 9 at 40 ° C.

また、液体9として、オレイルアミン、ドデシルアミン、または変性シリコーンオイルは、極性を有する液体であるので好ましい。これにより、液体9が半導体蛍光体7表面の欠陥補修の作用を果たすことができるため、予め半導体蛍光体7の表面の欠陥を有機アミン等により補修しておかなくて済む。しかも、半導体蛍光体7の表面の欠陥補修をしている有機アミン等の化合物がたとえ脱離してしまった場合でも、半導体蛍光体7の周囲に存在する液体9が、該化合物に代わって半導体蛍光体7表面の欠陥を補修できる。このように、液体9として極性を有する液体を用いることで、長期間にわたり半導体蛍光体7表面の欠陥補修効果を維持でき、その結果、長期間にわたり安定して波長変換を行なわせることができるという利点が得られるのである
Further, as the liquid 9, Oh Reiruamin, de decylamine or modified silicone oil, is because it is a liquid having a polarity preferable. Thereby, since the liquid 9 can perform the defect repairing action on the surface of the semiconductor phosphor 7, it is not necessary to repair the defects on the surface of the semiconductor phosphor 7 in advance with an organic amine or the like. In addition, even when a compound such as an organic amine that repairs defects on the surface of the semiconductor phosphor 7 is detached, the liquid 9 present around the semiconductor phosphor 7 is replaced by the semiconductor fluorescence instead of the compound. The defect on the surface of the body 7 can be repaired. Thus, by using a liquid having polarity as the liquid 9, the defect repairing effect on the surface of the semiconductor phosphor 7 can be maintained over a long period of time, and as a result, wavelength conversion can be performed stably over a long period of time. Benefits are gained .

さらに、液体9は、複数の種類の半導体蛍光体7で波長変換器1を構成する場合、あるいは半導体蛍光体7と半導体蛍光体7以外の蛍光体(例えば、屈折率を調整するための機能性材料粒子など)とを組み合わせて波長変換器1を構成する場合に、これらが偏ったり凝集したりすることなく保持できる機能を備えていることが望ましい。また、液体9は、光源(後述する発光装置における発光素子13)が出力した光が半導体蛍光体7まで届く光路、および半導体蛍光体7が波長変換した光が発光装置の外部へ出るまでの光路となるため、これらの光に対して透過率が高いことが望ましい。また、光源(後述する発光装置における発光素子13)が出力した光や半導体蛍光体7が波長変換した光、あるいは光源(後述する発光装置における発光素子13)が発生した熱により変質しないことが望ましい。なお、液体9は、単一の成分からなる必要はなく、複数の成分からなるものでもよい。   Furthermore, the liquid 9 is composed of a plurality of types of semiconductor phosphors 7, or a phosphor other than the semiconductor phosphors 7 and the semiconductor phosphors 7 (for example, functionality for adjusting the refractive index). When the wavelength converter 1 is configured with a combination of material particles and the like, it is desirable to have a function of holding them without being biased or aggregated. The liquid 9 includes an optical path through which light output from a light source (a light emitting element 13 in a light emitting device to be described later) reaches the semiconductor phosphor 7, and an optical path through which light converted in wavelength by the semiconductor phosphor 7 goes out of the light emitting device. Therefore, it is desirable that the transmittance is high for these lights. Further, it is desirable that the light is not deteriorated by light output from the light source (light emitting element 13 in the light emitting device described later), light converted in wavelength by the semiconductor phosphor 7, or heat generated by the light source (light emitting element 13 in the light emitting device described later). . In addition, the liquid 9 does not need to consist of a single component, and may consist of a plurality of components.

半導体蛍光体7と液体9とからなる液滴3は、そのサイズが0.05〜100μmであることが重要である。前述したように、半導体蛍光体7は平均粒子径が0.5〜10nmであり、このような微小な半導体蛍光体7を0.05〜100μmサイズの液滴3内に分散させることで、多数個の半導体蛍光体7を存在させることが可能となり、結果として、高分子5中に高濃度の半導体蛍光体7が含まれ、より効率の良い波長変換を達成することができるようになる。液滴3のサイズが前記範囲となるようにするには、例えば、後述するように、高分子5の溶液に半導体蛍光体7を分散した液体9を加えて攪拌し乳化させるにあたり、攪拌能力を考慮して高分子5の溶液粘度を調整するようにすればよい。なお、液滴3のサイズは、例えば、得られた波長変換器を液体窒素で凍結し、その凍結した波長変換器を破断してその破断面を電子顕微鏡(SEM)で観察することにより測定することができる。   It is important that the droplet 3 composed of the semiconductor phosphor 7 and the liquid 9 has a size of 0.05 to 100 μm. As described above, the semiconductor phosphor 7 has an average particle diameter of 0.5 to 10 nm, and a large number of such semiconductor phosphors 7 are dispersed in the droplet 3 having a size of 0.05 to 100 μm. As a result, a high concentration of the semiconductor phosphor 7 is contained in the polymer 5 and more efficient wavelength conversion can be achieved. In order to make the size of the droplet 3 fall within the above range, for example, as will be described later, when the liquid 9 in which the semiconductor phosphor 7 is dispersed is added to the polymer 5 solution and stirred and emulsified, the stirring ability is increased. In consideration of this, the solution viscosity of the polymer 5 may be adjusted. The size of the droplet 3 is measured, for example, by freezing the obtained wavelength converter with liquid nitrogen, rupturing the frozen wavelength converter, and observing the fracture surface with an electron microscope (SEM). be able to.

液滴3における半導体蛍光体7と液体9との割合は、特に限定されないが、例えば、半導体蛍光体7の濃度(すなわち、液体9に対する半導体蛍光体7の割合)が2〜10質量%、好ましくは4〜6質量%とするのがよい。なお、この両者の割合は、高分子5中の全液滴3に占める半導体蛍光体7の総量と、高分子5中の全液滴3に占める液体9の総量との割合で判断すればよい。
なお、半導体蛍光体7は液体9中に存在しているのであり、その表面は液体9に取り囲まれているのであるが、その際、液体9の含水率が0.1質量%以下でなければならないのと同様の理由から、半導体蛍光体7の表面が水や−0H基を介さずに液体9に取り囲まれていることが望ましい。このように、半導体蛍光体7の表面が水や−0H基を介さずに液体9に取り囲まれるようにするには、半導体蛍光体7として、実質的に水のない環境で製造されたものを用いることが重要となる。また、使用する半導体蛍光体7を予め乾燥機等で乾燥させておくことも好ましい。
The ratio of the semiconductor phosphor 7 and the liquid 9 in the droplet 3 is not particularly limited. For example, the concentration of the semiconductor phosphor 7 (that is, the ratio of the semiconductor phosphor 7 to the liquid 9) is 2 to 10% by mass, preferably Is preferably 4 to 6% by mass. It should be noted that the ratio between the two is determined by the ratio between the total amount of the semiconductor phosphor 7 occupying all the droplets 3 in the polymer 5 and the total amount of the liquid 9 occupying all the droplets 3 in the polymer 5. .
The semiconductor phosphor 7 is present in the liquid 9 and the surface thereof is surrounded by the liquid 9. At that time, the moisture content of the liquid 9 is not less than 0.1% by mass. For the same reason as described above, it is desirable that the surface of the semiconductor phosphor 7 is surrounded by the liquid 9 without water or a -0H group. As described above, in order to make the surface of the semiconductor phosphor 7 surrounded by the liquid 9 without passing through water or the −0H group, the semiconductor phosphor 7 manufactured in an environment substantially free of water is used. It is important to use it. Moreover, it is also preferable that the semiconductor phosphor 7 to be used is previously dried with a dryer or the like.

本発明において、高分子5の酸素透過度は10×106cm3(STP)・cm/(cm2・s・cmHg)以下であることが重要である。これにより、高分子5に分散している液滴3中の半導体蛍光体7を酸素から遮断することができるため、半導体蛍光体7に励起可能なエネルギーを持つ光が照射されても、そのエネルギーにより半導体蛍光体7が酸化して劣化することはなく、半導体蛍光体7の劣化により波長変換器1の波長変換効率が低下することがない。
本発明では、酸素透過度が10×106cm3(STP)・cm/(cm2・s・cmHg)以下の高分子として、ポリビニルアルコールを用いる。なお、酸素透過度は、例えば、JIS K 7126に準じたGTRテック(株)GTR−100GW/30X等の装置で測定することができる。
In the present invention, it is important that the polymer 5 has an oxygen permeability of 10 × 10 6 cm 3 (STP) · cm / (cm 2 · s · cmHg) or less. Accordingly, since the semiconductor phosphor 7 in the droplet 3 dispersed in the polymer 5 can be shielded from oxygen, even if the semiconductor phosphor 7 is irradiated with light having excitable energy, the energy Therefore, the semiconductor phosphor 7 is not oxidized and deteriorated, and the wavelength conversion efficiency of the wavelength converter 1 is not lowered due to the deterioration of the semiconductor phosphor 7.
In the present invention, the oxygen permeability of a 10 × 10 6 cm 3 (STP ) · cm / (cm 2 · s · cmHg) or less of a polymer, using the port polyvinyl alcohol. In addition, oxygen permeability can be measured with apparatuses, such as GTR technical center GTR-100GW / 30X according to JISK7126, for example.

さらに、高分子5の分子量は、10,000〜100,000であることが好ましい。より好ましくは、20,000〜90,000であるのがよい。高分子5の分子量が前記範囲であることにより、高分子5内に液滴3を形成しやすく、高分子5の溶液粘度の調整が容易でフィルム状等にも成形しやすい、という利点が得られる。高分子5の分子量が10,000未満であると、硬化しにくいためフィルム状等に成形できなくなる恐れがある他、加える水分量が少なくなるため、樹脂の水溶液の粘度の調整が難しくなるおそれがある。一方、100,000を超えると、水に溶解しにくいため内部に液滴3を形成できなくなる恐れがある。なお、前記分子量は、重量平均分子量を意味するものであり、例えばゲルパーミエーションクロマトグラフィ(GPC)により測定することができる。
高分子5中に占める液滴3の割合は、特に限定されないが、例えば、高分子5中の全液滴3に含まれる半導体蛍光体7の総量が、高分子5に対して0.1〜0.7質量%、好ましくは0.4〜0.6質量%となる範囲であることが好ましい。
Furthermore, the molecular weight of the polymer 5 is preferably 10,000 to 100,000. More preferably, it is 20,000-90,000. When the molecular weight of the polymer 5 is within the above range, there is an advantage that the droplet 3 can be easily formed in the polymer 5, the solution viscosity of the polymer 5 can be easily adjusted, and it can be easily formed into a film or the like. It is done. If the molecular weight of the polymer 5 is less than 10,000, the polymer 5 may be difficult to be cured and may not be formed into a film or the like. In addition, since the amount of water to be added decreases, it may be difficult to adjust the viscosity of the aqueous resin solution. is there. On the other hand, when it exceeds 100,000, it is difficult to dissolve in water, and thus there is a possibility that the droplet 3 cannot be formed inside. In addition, the said molecular weight means a weight average molecular weight, for example, can be measured by a gel permeation chromatography (GPC).
The proportion of the droplets 3 in the polymer 5 is not particularly limited. For example, the total amount of the semiconductor phosphor 7 included in all the droplets 3 in the polymer 5 is 0.1 to The range is 0.7% by mass, preferably 0.4 to 0.6% by mass.

以下、本発明の波長変換器1の製造方法について、半導体蛍光体7としてセレン化カドミウム(CdSe)を用いた場合を一例として説明する。但し、本発明の波長変換器1を得る際の方法は、勿論、以下の方法に限定されるものではなく、用いる半導体蛍光体7の種類等に応じて、従来公知の方法を適宜採用することができる。   Hereinafter, the manufacturing method of the wavelength converter 1 of the present invention will be described by way of an example in which cadmium selenide (CdSe) is used as the semiconductor phosphor 7. However, the method for obtaining the wavelength converter 1 of the present invention is of course not limited to the following method, and a conventionally known method is appropriately employed depending on the type of the semiconductor phosphor 7 to be used. Can do.

本発明の波長変換器を製造するに際しては、まず、半導体蛍光体7の合成を行なう。具体的には、変性シリコーンオイル、ジメチルシリコーンオイル、ドデシルアミン、またはオレイルアミンの液体9と、トリオクチルフォスフィンおよび酢酸カドミウムとを混合して200〜300℃に加熱し、これにトリオクチルフォスフィンとセレンとの混合物を加え、さらに同じ温度で加熱することにより、平均粒子径0.5〜10nmのセレン化カドミウム粒子を合成することができる。このとき、半導体蛍光体7の粒子径は、合成温度や合成時間によって制御することができ、具体的には、合成温度を高くするか、あるいは合成時間を長くすると、半導体蛍光体7の粒子径は大きくなる。なお、半導体蛍光体7の合成は、実質的に水のない環境で行なうことが望ましく、前記液体9として用いる変性シリコーンオイル、ジメチルシリコーンオイル、ドデシルアミンまたはオレイルアミンは、前述した範囲の含水率となるよう、モレキュラーシーブを適量(通常、液体9の総量に対して10重量%程度)添加して水分を吸着させたり、減圧下で加熱するなどして予め水分を充分に除去しておくことが好ましい。
In manufacturing the wavelength converter of the present invention, first, the semiconductor phosphor 7 is synthesized. Specifically, a modified silicone oil, dimethyl silicone oil, dodecylamine or a Oreiruami down the liquid 9, and mixed with trioctylphosphine and cadmium acetate were heated to 200 to 300 [° C., trioctylphosphine thereto, By adding a mixture of selenium and selenium and heating at the same temperature, cadmium selenide particles having an average particle size of 0.5 to 10 nm can be synthesized. At this time, the particle diameter of the semiconductor phosphor 7 can be controlled by the synthesis temperature and the synthesis time. Specifically, if the synthesis temperature is increased or the synthesis time is increased, the particle diameter of the semiconductor phosphor 7 is increased. Becomes bigger. Incidentally, the synthesis of semiconductor phosphor 7 is desirably carried out in a substantially water free environment, modified silicone oil used as the liquid 9, dimethylsilicone oil, dodecylamine or Oreiruami down has a moisture content of the above-mentioned range The appropriate amount of molecular sieve (usually about 10% by weight with respect to the total amount of the liquid 9) is added to adsorb the water, or the water is sufficiently removed beforehand by heating under reduced pressure. preferable.

前記合成で得られたセレン化カドミウム粒子は、必要に応じて、例えばエタノール等の貧溶媒を加えて遠心分離機にかけ、セレン化カドミウム粒子を沈殿させて、デカンテーションにより精製することができる。このとき用いるエタノール等の貧溶媒は、五酸化りん等により予め充分に脱水したものを用いることが望ましい。なお、セレン化カドミウム粒子をデカンテーションにより精製した場合には、精製したセレン化カドミウム粒子を再び液体9に分散させておく。ここで分散に用いる液体9は、前記合成時に使用した液体と同じものであってもよいし、別のものであってもよい。好ましくは、分散に用いる液体9として、前述した液体9のうち、シリコーンオイル、または変性シリコーンオイルを用いるのがよく、特に、極性を有する変性シリコーンオイルを用いることがより好ましい。
If necessary, the cadmium selenide particles obtained by the synthesis can be purified by decantation by adding a poor solvent such as ethanol and centrifuging to precipitate the cadmium selenide particles. As the poor solvent such as ethanol used at this time, it is desirable to use a solvent which has been sufficiently dehydrated with phosphorus pentoxide or the like. When the cadmium selenide particles are purified by decantation, the purified cadmium selenide particles are dispersed in the liquid 9 again. The liquid 9 used for dispersion here may be the same as the liquid used during the synthesis or may be different. Preferably, the liquid 9 to be used in the dispersion, of the liquid 9 described above, silicone oil or modified silicone for oil well to use, in particular, it is more preferred to use modified silicone oil having a polarity.

次に、このようにして得た半導体蛍光体7が分散した液体9を、液滴3として高分子5中に含有させる。具体的には、例えば、高分子5としてポリビニルアルコールを用い、まず、該ポリビニルアルコールを水と混合したのち加熱攪拌して水溶液にする。この水溶液中に、上記合成もしくは精製で得た分散液(すなわち、セレン化カドミウム粒子が分散した液体9)を加え、メカニカルスターラー等で攪拌することによりポリビニルアルコール水溶液の中に前記分散液の液滴3を形成し、乳化した状態とする。ここで、形成される液滴3のサイズが0.05〜100μmの範囲となるように、ポリビニルアルコール水溶液の粘度を予め攪拌能力に合わせて適度に調整しておくことが重要である。このようにして得た乳化状態の液体を基板上に塗工したのち、真空加熱乾燥を施すことにより、波長変換器1を得ることができる。なお、塗工の際の厚みは、得られる波長変換器1の厚みが0.5〜2mmとなるように適宜設定すればよい。   Next, the liquid 9 in which the semiconductor phosphor 7 thus obtained is dispersed is contained in the polymer 5 as the droplet 3. Specifically, for example, polyvinyl alcohol is used as the polymer 5. First, the polyvinyl alcohol is mixed with water, and then heated and stirred to obtain an aqueous solution. A dispersion obtained by the above synthesis or purification (that is, liquid 9 in which cadmium selenide particles are dispersed) is added to this aqueous solution, and the mixture is stirred with a mechanical stirrer or the like to drop droplets of the dispersion into the aqueous polyvinyl alcohol solution. 3 is formed and emulsified. Here, it is important that the viscosity of the polyvinyl alcohol aqueous solution is appropriately adjusted in advance according to the stirring ability so that the size of the formed droplet 3 is in the range of 0.05 to 100 μm. The wavelength converter 1 can be obtained by applying the emulsified liquid thus obtained on the substrate and then vacuum drying. In addition, what is necessary is just to set the thickness in the case of coating suitably so that the thickness of the wavelength converter 1 obtained may be 0.5-2 mm.

以上、本発明の波長変換器1の製造方法の一例について説明したが、前述したように、特に、半導体蛍光体7の合成工程において、水が実質的にない環境を整えることが重要である。水が存在する環境で作製した半導体蛍光体7は、はじめから波長変換効率が低く、生体マーカーとしては機能しうるものの照明用途には全く適さないものとなる恐れがある。   As mentioned above, although an example of the manufacturing method of the wavelength converter 1 of this invention was demonstrated, as mentioned above, in the synthetic | combination process of the semiconductor fluorescent substance 7, it is important to prepare the environment which does not have water substantially. The semiconductor phosphor 7 produced in an environment where water is present has low wavelength conversion efficiency from the beginning, and although it can function as a biomarker, it may be unsuitable for lighting applications.

[発光装置]
以下、本発明の発光装置の一実施形態について図面を参照して詳細に説明する。図2は、本実施形態の発光装置を示す概略断面図である。なお、図2においては、前述した図1(a)および図1(b)の構成と同一または同等な部分には同一の符号を付して説明は省略する。
[Light emitting device]
Hereinafter, an embodiment of a light emitting device of the present invention will be described in detail with reference to the drawings. FIG. 2 is a schematic cross-sectional view showing the light emitting device of the present embodiment. In FIG. 2, the same or equivalent parts as those in FIGS. 1A and 1B described above are denoted by the same reference numerals and description thereof is omitted.

本発明の発光装置15は、図2に示すように、発光素子13と、この発光素子13からの光を受け、この光を波長変換する本発明の波長変換器1とを具備するものである。具体的には、発光素子13からの光が波長変換器1に照射されるように、発光素子13を搭載した基板(発光素子用配線基板)10に波長変換器1を配設することで本発明の発光装置15となる。詳しくは、基板10には、発光素子13の電力を供給するための電極(配線回路)11が配設され、この電極11と発光素子13の端子(図示せず)とがワイヤ19を介して接続されている。なお、発光素子13は、半田や樹脂などの接着層21により基板10に固定されており、発光素子13を保護するために発光素子13を覆うように被覆樹脂23が形成されている。このような発光装置15においては、発光素子13から発せられる励起光の一部が、波長変換器1を通過する途中で波長変換器1に含まれる半導体蛍光体7に吸収され出力光を発する。なお、所望により、発光素子13の側面には、光を反射する反射体を設け、側面に逃げる光を前方に反射し、出力光の強度を高めることもできる。   As shown in FIG. 2, the light emitting device 15 of the present invention includes a light emitting element 13 and the wavelength converter 1 of the present invention that receives light from the light emitting element 13 and converts the wavelength of the light. . Specifically, the wavelength converter 1 is disposed on the substrate (light emitting element wiring board) 10 on which the light emitting element 13 is mounted so that the light from the light emitting element 13 is irradiated to the wavelength converter 1. It becomes the light-emitting device 15 of invention. Specifically, the substrate 10 is provided with an electrode (wiring circuit) 11 for supplying power of the light emitting element 13, and the electrode 11 and a terminal (not shown) of the light emitting element 13 are connected via a wire 19. It is connected. The light emitting element 13 is fixed to the substrate 10 with an adhesive layer 21 such as solder or resin, and a covering resin 23 is formed so as to cover the light emitting element 13 in order to protect the light emitting element 13. In such a light emitting device 15, a part of the excitation light emitted from the light emitting element 13 is absorbed by the semiconductor phosphor 7 included in the wavelength converter 1 while passing through the wavelength converter 1 and emits output light. If desired, the side surface of the light emitting element 13 may be provided with a reflector that reflects light, and the light escaping to the side surface may be reflected forward to increase the intensity of the output light.

基板10としては、熱伝導性に優れ、全反射率の大きなものが好適であり、例えば、アルミナ、窒素アルミニウム等のセラミック材料や、金属酸化物微粒子を分散させた高分子樹脂等が好ましく挙げられる。
発光素子13は、中心波長が450nm以下、特に370〜420nmの紫外光を発するものであることが好ましい。この範囲の波長域の励起光を用いることにより、蛍光体の励起を効率的に行なうことができ、出力光の強度を高め、より発光強度の高い発光装置を得ることが可能となることに加え、出力光の色合いのコントロールを容易に行うことができる。
As the substrate 10, those having excellent thermal conductivity and high total reflectivity are suitable, and for example, ceramic materials such as alumina and nitrogen aluminum, polymer resins in which metal oxide fine particles are dispersed, and the like are preferable. .
The light emitting element 13 preferably emits ultraviolet light having a center wavelength of 450 nm or less, particularly 370 to 420 nm. By using excitation light in the wavelength range of this range, it is possible to efficiently excite the phosphor, increase the intensity of the output light, and obtain a light emitting device with higher emission intensity. Therefore, it is possible to easily control the hue of the output light.

発光素子13は、前記中心波長を発するものであれば、特に制限されるものではないが、発光素子基板(不図示)の表面に半導体材料からなる発光層(不図示)を備える構造を有していることが、高い外部量子効率を有する点で好ましい。ここで、半導体材料としては、発光波長が前記波長範囲であれば特に限定されないが、例えば、ZnSeや窒化物半導体(GaN等)など種々の半導体を挙げることができる。また、発光素子基板は、発光層との組み合わせを考慮して材料選定をすればよく、例えば、窒化物半導体からなる発光層を表面に形成する場合には、サファイア、スピネル、SiC、Si、ZnO、ZrB2、GaNおよび石英等の材料からなるものが好適である。特に、結晶性の良い窒化物半導体を量産性よく形成させるためにはサファイア基板を用いることが好ましい。例えば、有機金属気相成長法(MOCVD法)や分子線エピタシャル成長法等の結晶成長法を用いて、前記半導体材料からなる発光層を有する積層構造を前記発光素子基板上に形成することにより、発光素子13を得ることができる。 The light emitting element 13 is not particularly limited as long as it emits the central wavelength, but has a structure including a light emitting layer (not shown) made of a semiconductor material on the surface of a light emitting element substrate (not shown). It is preferable that it has a high external quantum efficiency. Here, the semiconductor material is not particularly limited as long as the emission wavelength is in the above-mentioned wavelength range, and examples thereof include various semiconductors such as ZnSe and nitride semiconductors (GaN, etc.). The light emitting element substrate may be selected in consideration of the combination with the light emitting layer. For example, when a light emitting layer made of a nitride semiconductor is formed on the surface, sapphire, spinel, SiC, Si, ZnO Those made of materials such as ZrB 2 , GaN, and quartz are preferred. In particular, it is preferable to use a sapphire substrate in order to form a nitride semiconductor with good crystallinity with high productivity. For example, by using a crystal growth method such as a metal organic chemical vapor deposition method (MOCVD method) or a molecular beam epitaxial growth method to form a stacked structure having a light emitting layer made of the semiconductor material on the light emitting element substrate, The light emitting element 13 can be obtained.

被覆樹脂23としては、波長変換器1を構成する高分子5として前述したものを用いることができるほか、例えば、エポキシ樹脂、シリコーン樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリスチレン、ポリカーボネート、ポリエーテルスルホン、酢酸セルロース、ポリアリレート、さらにこれら材料の誘導体等が挙げられる。これらの中でも、エポキシ樹脂、シリコーン樹脂が、光透過性を有していることに加え、耐熱性にも優れる点で、特に好ましい。   As the coating resin 23, those described above as the polymer 5 constituting the wavelength converter 1 can be used. For example, epoxy resin, silicone resin, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polystyrene, polycarbonate, Examples include polyethersulfone, cellulose acetate, polyarylate, and derivatives of these materials. Among these, an epoxy resin and a silicone resin are particularly preferable in that they are excellent in heat resistance in addition to having optical transparency.

以下、実施例を挙げて本発明についてさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
なお、半導体蛍光体の平均粒子径の測定は下記のようにして行った。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to a following example.
The average particle size of the semiconductor phosphor was measured as follows.

<平均粒子径>
まず、粒子濃度が0.002〜0.02モル/リットルの範囲の半導体蛍光体分散液を調製して確認した。このとき、溶媒としてはイソプロピルアルコール(IPA)やトルエンを用いた。
次に、透過型電子顕微鏡(TEM)観察用マイクログリッドを上記で調製した半導体蛍光体分散液に浸すことにより半導体蛍光体を付着させた後、これを常温でデシケーター中に静置して半導体蛍光体分散液を乾燥させ、半導体蛍光体の粒子が表面に付着したTEM観察用マイクログリッドを作成して測定に供した。
<Average particle size>
First, a semiconductor phosphor dispersion having a particle concentration in the range of 0.002 to 0.02 mol / liter was prepared and confirmed. At this time, isopropyl alcohol (IPA) or toluene was used as a solvent.
Next, the semiconductor phosphor was adhered by immersing the transmission electron microscope (TEM) observation microgrid in the semiconductor phosphor dispersion prepared above, and then this was left in a desiccator at room temperature to obtain the semiconductor fluorescence. The body dispersion liquid was dried, and a microgrid for TEM observation in which particles of the semiconductor phosphor adhered to the surface was used for measurement.

上記で作成したTEM観察用マイクログリッドを透過型電子顕微鏡(TEM)(JEOL社製「JEM2010F」)を用い、加速電圧200kVで観察した。この際、倍率は500000倍から1000000倍で、粒子の格子縞が見えるように焦点を合わせ、得られたTEM像の拡大写真上で200個以上の粒子を試料として、粒子径を測定した。粒子径が大きくて粒子全体が視野に入らない場合は、格子縞が見える高倍率で1次粒子であることを確認した後、粒子全体が視野に入る倍率でTEM像を観察し、粒子径を測定した。ここで、半導体蛍光体粒子は、格子縞が見えている部分のみを対象としており、粒子表面に吸着している有機配位子などの有機物は粒径に換算していない。   The microgrid for TEM observation created above was observed at an acceleration voltage of 200 kV using a transmission electron microscope (TEM) (“JEM2010F” manufactured by JEOL). At this time, the magnification was 500,000 to 1,000,000 times, and focusing was performed so that the lattice fringes of the particles could be seen, and the particle diameter was measured using 200 or more particles as a sample on the enlarged photograph of the obtained TEM image. If the particle size is large and the entire particle does not enter the field of view, after confirming that it is a primary particle at a high magnification at which lattice fringes can be seen, observe the TEM image at a magnification that allows the entire particle to enter the field of view and measure the particle size did. Here, the semiconductor phosphor particles are intended only for the portion where the lattice fringes are visible, and organic substances such as organic ligands adsorbed on the particle surface are not converted into particle sizes.

また、半導体蛍光体粒子に比べて充分に大きいサブミクロン以上の粒子は、樹脂の破断面を走査型電子顕微鏡で観察することで、200個以上の粒子について粒子径を測定した。この際、粒子の直径は、破断面表面に露出している部分の直径に対し、係数1.5を掛けて粒子全体の直径として扱った(インターセプト法、「セラミックスのキャラクタリゼーション技術」pp.7〜8、社団法人窯業協会編、社団法人窯業協会発行)。   Moreover, the particle diameter of 200 micron or more particle | grains was measured for the particle | grains more than submicron sufficiently larger than a semiconductor fluorescent substance particle by observing the fracture surface of resin with a scanning electron microscope. At this time, the diameter of the particle was handled as the diameter of the whole particle by multiplying the diameter of the portion exposed on the surface of the fracture surface by a factor of 1.5 (intercept method, “ceramics characterization technology” pp. 7). ~ 8, published by the Ceramic Industry Association, published by the Ceramic Industry Association).

測定した粒子の直径は、ヒストグラムを書いて統計的に計算することで、長さ平均径を算出した。長さ平均径の算出方法は、粒子径区に属する個数をカウントし、粒子径区の中心値と個数のそれぞれの積の和を、測定した粒子の個数の総数で割るという方法を用いた(平均粒子径の形状とその計算式、「セラミックの製造プロセス」pp.11〜12、窯業協会編集委員会講座小委員会編、社団法人窯業協会発行)。このようにして計算した長さ平均径を平均粒子径として扱った。
なお、TEM観察で得られた像を透明な樹脂フィルムシートに写し取り、画像解析処理装置によって、粒子の平均粒子径を求める方法でも測定は可能であることを確認した。
The diameter of the measured particles was calculated statistically by writing a histogram, thereby calculating the length average diameter. The length average diameter was calculated by counting the number of particles belonging to the particle diameter group and dividing the sum of the product of the center value and the number of particle diameter groups by the total number of particles measured ( Average particle diameter shape and calculation formula, “Ceramic manufacturing process”, pp. 11-12, edited by Ceramic Industry Association Editorial Committee, Lecture Committee, published by Association of Ceramic Industry). The length average diameter thus calculated was treated as the average particle diameter.
The image obtained by TEM observation was copied onto a transparent resin film sheet, and it was confirmed that the measurement was possible by a method of obtaining the average particle diameter of the particles using an image analysis processor.

(半導体蛍光体の合成)
最初に、CdSe半導体蛍光体粒子ならびにZnS半導体蛍光体粒子を水が混入しない方法を用いて非水系で合成した。具体的には、CdSe半導体蛍光体粒子の合成は次のように行なった。まず、五酸化りんで乾燥させた窒素雰囲気のグローブボックス中でフラスコにトリオクチルフォスフィン12.5gとセレン0.395gを加え、これを1時間攪拌した。次に、これにトリオクチルフォスフィン20g、酢酸カドミウム0.266g、ドデシルアミン20mLを予め130℃で混合したものを加えた。これを200℃に加熱し、撹拌しながらそのまま200℃に維持して10分間攪拌し、CdSe半導体蛍光体粒子を合成した。
(Synthesis of semiconductor phosphor)
First, CdSe semiconductor phosphor particles and ZnS semiconductor phosphor particles were synthesized in a non-aqueous system using a method in which water was not mixed. Specifically, CdSe semiconductor phosphor particles were synthesized as follows. First, 12.5 g of trioctylphosphine and 0.395 g of selenium were added to a flask in a glove box in a nitrogen atmosphere dried with phosphorus pentoxide, and the mixture was stirred for 1 hour. Next, 20 g of trioctylphosphine, 0.266 g of cadmium acetate, and 20 mL of dodecylamine previously mixed at 130 ° C. were added thereto. This was heated to 200 ° C., maintained at 200 ° C. while stirring, and stirred for 10 minutes to synthesize CdSe semiconductor phosphor particles.

また、ZnS半導体蛍光体粒子の合成は次のように行なった。まず、五酸化りんで乾燥させた窒素雰囲気のグローブボックス中でフラスコにトリオクチルフォスフィン12.5gと硫黄0.16gを加え、これを1時間攪拌した。次に、これにトリオクチルフォスフィン20g、酢酸亜鉛0.212g、ドデシルアミン20mLを予め130℃で混合したものを加えた。これを200℃に加熱し、撹拌しながらそのまま200℃に維持して10分間攪拌し、ZnS半導体蛍光体粒子を合成した。
なお、上記非水系での合成において溶媒として用いたドデシルアミンは、予め酸化カルシウムを加えて2時間還留した後に蒸留して水を除去したものを用いた。
The synthesis of ZnS semiconductor phosphor particles was performed as follows. First, 12.5 g of trioctylphosphine and 0.16 g of sulfur were added to a flask in a glove box in a nitrogen atmosphere dried with phosphorus pentoxide, and this was stirred for 1 hour. Next, 20 g of trioctylphosphine, 0.212 g of zinc acetate, and 20 mL of dodecylamine previously mixed at 130 ° C. were added thereto. This was heated to 200 ° C., maintained at 200 ° C. while stirring, and stirred for 10 minutes to synthesize ZnS semiconductor phosphor particles.
The dodecylamine used as a solvent in the above non-aqueous synthesis was obtained by adding calcium oxide in advance and returning for 2 hours, followed by distillation to remove water.

次に、比較用の半導体蛍光体として含水系溶媒中でZnS半導体蛍光体粒子を合成した。具体的には、まず、ヘプタン15mLにビス(2−エチルヘキシル)スルホこはく酸ナトリウム1.6gを溶解し、これに水0.518gを添加した。これに硫化ナトリウム1.17gを加えた。また、これとは別にヘプタン15mLにビス(2−エチルヘキシル)スルホこはく酸ナトリウム1.6gを溶解し、これに水0.518gを添加した。これに酢酸亜鉛を5.5g溶解した。次に、これら2つの溶液を混合して24時間攪拌し、ZnS半導体蛍光体粒子を合成した。   Next, ZnS semiconductor phosphor particles were synthesized in a hydrous solvent as a comparative semiconductor phosphor. Specifically, first, 1.6 g of sodium bis (2-ethylhexyl) sulfosuccinate was dissolved in 15 mL of heptane, and 0.518 g of water was added thereto. To this was added 1.17 g of sodium sulfide. Separately, 1.6 g of sodium bis (2-ethylhexyl) sulfosuccinate was dissolved in 15 mL of heptane, and 0.518 g of water was added thereto. In this solution, 5.5 g of zinc acetate was dissolved. Next, these two solutions were mixed and stirred for 24 hours to synthesize ZnS semiconductor phosphor particles.

上記のようにして合成した各半導体蛍光体粒子の平均粒子径を測定したところ、水が混入しない方法を用いて非水系で合成したCdSe半導体蛍光体粒子ならびにZnS半導体蛍光体粒子および含水系溶媒中で合成したZnS半導体蛍光体粒子の平均粒子径は、いずれも3.5nmであった。   When the average particle diameter of each semiconductor phosphor particle synthesized as described above was measured, it was found that CdSe semiconductor phosphor particles synthesized in a non-aqueous system using a method in which water was not mixed, ZnS semiconductor phosphor particles, and water-containing solvents. The average particle diameter of the ZnS semiconductor phosphor particles synthesized in 1 was 3.5 nm.

(半導体蛍光体の分散)
水が混入しない方法を用いて非水系で合成したCdSe半導体蛍光体粒子ならびにZnS半導体蛍光体粒子は、次のようにして液体に分散させた。すなわち、CdSe半導体蛍光体粒子の場合、まず、合成したCdSe半導体蛍光体粒子を精製した。具体的には、CdSe半導体蛍光体粒子の合成で得られた反応液に、モレキュラーシーブ3Aで脱水したエタノールをCdSe半導体蛍光体粒子が凝集体を形成する量まで加え、続いてこれを遠心分離機にかけてCdSe半導体蛍光体粒子を完全に沈殿させたのち、上澄みのエタノール溶液を取り除くことにより、CdSe半導体蛍光体粒子から原料未反応物や副生成物を除去した。次に、沈殿しているCdSe半導体蛍光体粒子に対して、試料No.に応じてそれぞれ表1に示す液体を加え、該液体に分散させた。このとき、加える液体の量は半導体蛍光体粒子の濃度が5質量%となる量とした。ZnS半導体蛍光体粒子の場合も、上記と同様にして表1に示す液体に分散させた。
(Dispersion of semiconductor phosphor)
CdSe semiconductor phosphor particles and ZnS semiconductor phosphor particles synthesized in a non-aqueous method using a method in which water is not mixed were dispersed in a liquid as follows. That is, in the case of CdSe semiconductor phosphor particles, first, the synthesized CdSe semiconductor phosphor particles were purified. Specifically, ethanol dehydrated with molecular sieve 3A is added to the reaction solution obtained by the synthesis of CdSe semiconductor phosphor particles up to the amount that CdSe semiconductor phosphor particles form aggregates, and then this is added to a centrifuge. After the CdSe semiconductor phosphor particles were completely precipitated, the raw ethanol solution was removed to remove unreacted raw materials and by-products from the CdSe semiconductor phosphor particles. Next, with respect to the precipitated CdSe semiconductor phosphor particles, the sample No. Depending on the case, the liquid shown in Table 1 was added and dispersed in the liquid. At this time, the amount of the liquid to be added was such that the concentration of the semiconductor phosphor particles was 5% by mass. In the case of ZnS semiconductor phosphor particles, they were dispersed in the liquid shown in Table 1 in the same manner as described above.

含水系溶媒中で合成したZnS半導体蛍光体粒子は、次のようにして液体に分散させた。すなわち、まず、合成したZnS半導体蛍光体粒子を精製した。具体的には、ZnS半導体蛍光体粒子の合成で得られた反応液に、チオフェノールをZnS半導体蛍光体粒子が凝集体を形成する量まで加え、続いてこれを遠心分離機にかけてZnS半導体蛍光体粒子を完全に沈殿させたのち、上澄み液を取り除くことにより、ZnS半導体蛍光体粒子から原料未反応物や副生成物を除去した。次に、沈殿しているZnS半導体蛍光体粒子に対して、表1に示す液体を加え、該液体に分散させた。このとき加える液体の量は半導体蛍光体粒子の濃度が2.5質量%となる量とした。
なお、上記のようにして得られた半導体蛍光体が分散した液体(以下、「半導体蛍光体分散液」と称することもある)について、それぞれ、含水率をJIS−K−0068に規定されたカールフィッシャー滴定法(水分気化法)により測定したところ、各々表1に示す通りであった。用いた液体の水の溶解度についても各々表1に併せて示す。
ZnS semiconductor phosphor particles synthesized in a hydrous solvent were dispersed in a liquid as follows. That is, first, the synthesized ZnS semiconductor phosphor particles were purified. Specifically, thiophenol is added to the reaction solution obtained by the synthesis of the ZnS semiconductor phosphor particles up to an amount in which the ZnS semiconductor phosphor particles form aggregates, and this is then subjected to a centrifuge to obtain a ZnS semiconductor phosphor. After completely precipitating the particles, the supernatant was removed to remove unreacted raw materials and by-products from the ZnS semiconductor phosphor particles. Next, the liquid shown in Table 1 was added to the precipitated ZnS semiconductor phosphor particles and dispersed in the liquid. The amount of liquid added at this time was such that the concentration of the semiconductor phosphor particles was 2.5% by mass.
In addition, for the liquid in which the semiconductor phosphor obtained as described above is dispersed (hereinafter also referred to as “semiconductor phosphor dispersion liquid”), the water content is the curl specified in JIS-K-0068. When measured by the Fischer titration method (water vaporization method), the results were as shown in Table 1, respectively. Table 1 also shows the solubility of the liquid water used.

(波長変換器の作製)
上記のようにして得た試料No.1〜7の半導体蛍光体分散液を用い、該半導体蛍光体分散液が各々表1に示す高分子中で液滴として存在するように加工し、波長変換器を作製した。
具体的には、高分子として酸素透過度が5.2×106cm3(STP)・cm/(cm2・s・cmHg)であり分子量22,500のポリビニルアルコール(PVA)を用いた場合、まず、このポリビニルアルコール5gを水18gと混合し、90℃に加熱して15時間攪拌し、ポリビニルアルコールを水に溶解させ、粘度およそ5,000csのポリビニルアルコール水溶液とした。このポリビニルアルコール水溶液に、各試料No.の半導体蛍光体分散液を0.33g添加し、メカニカルスターラーを用い600rpmで5時間攪拌混合して、乳化した液体とした。次に、この乳化した液体をドクターブレード法でPETフィルム上に塗工し、加熱して温度30〜80℃で真空乾燥し、フィルムを形成した。このとき、塗工の厚みは、形成したフィルムの厚みが0.7mmとなるように設定した。得られたフィルムを直径7mmの円形に切り取り、波長変換器とした。このようにして得られた波長変換器を液体窒素で凍結して破断し、その破断面を電子顕微鏡(SEM)で観察したところ、いずれも、サイズが1〜50μmの範囲である液滴が分散されて存在していることが確認できた。
液滴のサイズは前述のインターセプト法を用いて算出した。すなわち、樹脂の破断面を走査型電子顕微鏡で破断面表面に露出している液滴の存在した部分200箇所以上を観察し、この部分の直径に対し、係数1.5を掛けて液滴の全体の直径として扱った。また、測定した液滴の直径は、ヒストグラムを描いて統計的に計算することで、長さ平均径を算出し、これを液滴のサイズとした。長さ平均径の算出方法は、粒子径区に属する個数をカウントし、粒子径区の中心値と個数のそれぞれの積の和を、測定した粒子の個数の総数で割るという方法を用いた。
(Production of wavelength converter)
Sample No. obtained as described above was obtained. Using the semiconductor phosphor dispersion liquids 1 to 7, the semiconductor phosphor dispersion liquid was processed so as to be present as droplets in the polymers shown in Table 1 to prepare a wavelength converter.
Specifically, when the polymer has an oxygen permeability of 5.2 × 10 6 cm 3 (STP) · cm / (cm 2 · s · cmHg) and a molecular weight of 2,500, polyvinyl alcohol (PVA) is used. First, 5 g of this polyvinyl alcohol was mixed with 18 g of water, heated to 90 ° C. and stirred for 15 hours to dissolve the polyvinyl alcohol in water to obtain a polyvinyl alcohol aqueous solution having a viscosity of about 5,000 cs. In this polyvinyl alcohol aqueous solution, each sample No. 0.33 g of the semiconductor phosphor dispersion liquid was added, and the mixture was stirred and mixed at 600 rpm for 5 hours using a mechanical stirrer to obtain an emulsified liquid. Next, this emulsified liquid was applied onto a PET film by a doctor blade method, heated and vacuum dried at a temperature of 30 to 80 ° C. to form a film. At this time, the thickness of the coating was set so that the thickness of the formed film was 0.7 mm. The obtained film was cut into a circle having a diameter of 7 mm to obtain a wavelength converter. When the wavelength converter thus obtained was frozen with liquid nitrogen and fractured, and the fracture surface was observed with an electron microscope (SEM), all of the droplets having a size in the range of 1 to 50 μm were dispersed. Has been confirmed to exist.
The droplet size was calculated using the intercept method described above. That is, the surface of the fracture surface of the resin is observed with a scanning electron microscope at 200 or more portions where the droplet is exposed, and the diameter of this portion is multiplied by a factor of 1.5 to determine the size of the droplet. Treated as the overall diameter. Further, the diameter of the measured droplet was statistically calculated by drawing a histogram to calculate an average length diameter, and this was used as the droplet size. The length average diameter was calculated by counting the number of particles belonging to the particle diameter group and dividing the sum of the product of the center value and the number of particle diameter groups by the total number of particles measured.

高分子として酸素透過度が2.010×1010cm3(STP)・cm/(cm2・s・cmHg)であり分子量45,000のポリスチレン(PS)を用いた場合、まず、このポリスチレン5gをトルエン7gと混合し、70℃に加熱して15時間攪拌し、ポリスチレンをトルエンに溶解させ、粘度およそ5,000csのポリスチレンのトルエン溶液とした。このポリスチレンのトルエン溶液に、半導体蛍光体分散液を0.33g添加し、メカニカルスターラーを用い600rpmで5時間攪拌混合した。このとき、液体は乳化しなかった。次に、この乳化していない液体をドクターブレード法でPETフィルム上に塗工し、加熱真空乾燥し、フィルムを形成した。このとき、塗工の厚みは、形成したフィルムの厚みが0.7mmとなるように設定した。得られたフィルムを直径7mmの円形に切り取り、波長変換器とした。このようにして得られた波長変換器を液体窒素で凍結して破断し、その破断面を電子顕微鏡(SEM)で観察したところ、分散状態の液滴は認められなかった。 When polystyrene (PS) having an oxygen permeability of 2.010 × 10 10 cm 3 (STP) · cm / (cm 2 · s · cmHg) and a molecular weight of 45,000 is used as a polymer, Was mixed with 7 g of toluene, heated to 70 ° C. and stirred for 15 hours, and polystyrene was dissolved in toluene to obtain a toluene solution of polystyrene having a viscosity of about 5,000 cs. To this toluene solution of polystyrene, 0.33 g of the semiconductor phosphor dispersion was added and stirred and mixed at 600 rpm for 5 hours using a mechanical stirrer. At this time, the liquid was not emulsified. Next, this non-emulsified liquid was applied onto a PET film by a doctor blade method, and heated and dried under vacuum to form a film. At this time, the thickness of the coating was set so that the thickness of the formed film was 0.7 mm. The obtained film was cut into a circle having a diameter of 7 mm to obtain a wavelength converter. The wavelength converter thus obtained was frozen with liquid nitrogen and fractured. When the fracture surface was observed with an electron microscope (SEM), no dispersed liquid droplets were observed.

(波長変換器の評価)
得られた各試料No.の波長変換器を、それぞれ、波長395nm、出力0.84W、サイズ0.3mm×0.3mmのIn−Ga−N組成LEDチップ上に載せ、Labsphere社製の全光束測定システム(DAS−2100)を用いて波長変換効率を測定した。
(Evaluation of wavelength converter)
Each obtained sample No. Are respectively mounted on an In—Ga—N composition LED chip having a wavelength of 395 nm, an output of 0.84 W, and a size of 0.3 mm × 0.3 mm, and a total luminous flux measurement system (DAS-2100) manufactured by Labsphere. Was used to measure the wavelength conversion efficiency.

具体的には、まず、波長変換器をLEDチップに載せずに、LEDチップの出力エネルギー(a)を求めるとともに、LEDチップの出力波長の最大値を求めた。このLEDチップの出力波長の最大値は430nmであった。次に、波長変換器をLEDチップに載せ、LEDチップを発光させ、波長変換器に光を照射し、波長変換器から出力された220〜1100nmの範囲の光を積分球で回収して、その回収エネルギー(b)を求めた。このエネルギーのうち、LEDチップの出力波長の最大値である430nm以下の波長のエネルギーを未変換のエネルギー(c)とした。そして、得られたLEDチップの出力エネルギー(a)と、回収エネルギー(b)と、未変換のエネルギー(c)とを用い、下記式に基づき波長変換器の波長変換効率(%)を求めた。この値を初期値とする。
波長変換効率(%)=100×((b)−(c))÷((a)−(c))
Specifically, first, the output energy (a) of the LED chip was obtained without placing the wavelength converter on the LED chip, and the maximum value of the output wavelength of the LED chip was obtained. The maximum value of the output wavelength of this LED chip was 430 nm. Next, the wavelength converter is placed on the LED chip, the LED chip is caused to emit light, the light is irradiated to the wavelength converter, and the light in the range of 220 to 1100 nm output from the wavelength converter is collected with an integrating sphere, The recovered energy (b) was determined. Of this energy, the energy of a wavelength of 430 nm or less, which is the maximum value of the output wavelength of the LED chip, was defined as unconverted energy (c). Then, using the output energy (a), recovered energy (b), and unconverted energy (c) of the obtained LED chip, the wavelength conversion efficiency (%) of the wavelength converter was obtained based on the following formula. . This value is the initial value.
Wavelength conversion efficiency (%) = 100 × ((b) − (c)) ÷ ((a) − (c))

次いで、波長変換器を、波長395nm、出力0.84W、サイズ0.3mm×0.3mmのIn−Ga−N組成LEDチップ上に載せ、500時間光を照射し続けた後に、再度、上記と同様にして、500時間後の波長変換効率を測定した。そして、波長変換効率初期値に対する500時間後の波長変換効率の比率を百分率で求め、これを500時間後の波長変換効率の維持率(%)とした。
各試料No.について、波長変換効率の初期値および500時間後の波長変換効率の維持率を表1に示す。なお、表中、*は、そのNo.の試料が本発明の範囲外であることを示すものである。
Next, the wavelength converter was placed on an In—Ga—N composition LED chip having a wavelength of 395 nm, an output of 0.84 W, and a size of 0.3 mm × 0.3 mm, and after continuing to irradiate light for 500 hours, Similarly, the wavelength conversion efficiency after 500 hours was measured. And the ratio of the wavelength conversion efficiency after 500 hours with respect to the wavelength conversion efficiency initial value was calculated | required in percentage, and this was made into the maintenance factor (%) of the wavelength conversion efficiency after 500 hours.
Each sample No. Table 1 shows the initial value of the wavelength conversion efficiency and the maintenance ratio of the wavelength conversion efficiency after 500 hours. In the table, * indicates the No. This sample is outside the scope of the present invention.

Figure 0004960645
Figure 0004960645

表1から明らかなように、請求項1で規定する要件の全てが本発明の範囲である試料No.1〜5ではいずれも、初期の波長変換効率は45%以上と良好であり、しかもこの良好な変換効率を500時間後においても維持率85%以上で維持できる。
これに対して、液体の含水率が本発明の範囲外である試料No.6では、初期の波長変換効率が非常に低く、しかも500時間後の波長変換効率の維持率は55%であり、波長変換効率は経時的にさらに低下していった。また、高分子の酸素透過度が本発明の範囲外である試料No.7では、初期の波長変換効率は29%で試料No.1〜5と比べやや低い程度であるが、500時間後の波長変換効率の維持率は3%と極端に低く、500時間後にはもはや波長変換に使用しうるものではなかった。
As is apparent from Table 1, all of the requirements specified in claim 1 are within the scope of the present invention. In each of 1 to 5, the initial wavelength conversion efficiency is as good as 45% or more, and this good conversion efficiency can be maintained at a maintenance rate of 85% or more even after 500 hours.
In contrast, Sample No. whose liquid moisture content is outside the scope of the present invention. In No. 6, the initial wavelength conversion efficiency was very low, and the maintenance ratio of the wavelength conversion efficiency after 500 hours was 55%, and the wavelength conversion efficiency further decreased with time. In addition, sample No. 2 in which the oxygen permeability of the polymer is outside the scope of the present invention. 7, the initial wavelength conversion efficiency was 29%, and sample No. Although slightly lower than 1 to 5, the maintenance rate of wavelength conversion efficiency after 500 hours was extremely low at 3%, and after 500 hours, it could no longer be used for wavelength conversion.

本発明にかかる波長変換器の一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of the wavelength converter concerning this invention. 本発明にかかる発光装置の一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of the light-emitting device concerning this invention.

符号の説明Explanation of symbols

1・・・波長変換器
3・・・液滴
5・・・高分子
7・・・半導体蛍光体
9・・・液体
10・・・基板
11・・・電極
13・・・発光素子
15・・・発光装置
19・・・ワイヤー
21・・・接着層
23・・・被覆樹脂
DESCRIPTION OF SYMBOLS 1 ... Wavelength converter 3 ... Droplet 5 ... Polymer 7 ... Semiconductor fluorescent substance 9 ... Liquid 10 ... Substrate 11 ... Electrode 13 ... Light emitting element 15 ... -Light emitting device 19 ... wire 21 ... adhesive layer 23 ... coating resin

Claims (3)

0.05〜100μmサイズの液滴を含んだ高分子によって形成されており、前記液滴は、含水率0.1質量%以下の液体と該液体中に分散した状態で存在する平均粒子径0.5〜10nmの半導体蛍光体とからなり、前記高分子の酸素透過度は10×106cm3(STP)・cm/(cm2・s・cmHg)以下であり、前記半導体蛍光体は、CdSeまたはZnSからなり、前記液体は、変性シリコーンオイル、ジメチルシリコーンオイル、ドデシルアミン、またはオレイルアミンからなり、前記高分子は、ポリビニルアルコールからなる、波長変換器。 The droplets are formed of a polymer containing droplets having a size of 0.05 to 100 μm, and the droplets have a liquid having a water content of 0.1% by mass or less and an average particle size of 0 dispersed in the liquid. It consists of a semiconductor phosphor .5~10Nm, oxygen permeability of the polymer Ri der 10 × 10 6 cm 3 (STP ) · cm / (cm 2 · s · cmHg) or less, the semiconductor phosphor , CdSe or ZnS, wherein the liquid is made of modified silicone oil, dimethyl silicone oil, dodecylamine, or oleylamine, and the polymer is made of polyvinyl alcohol . 前記高分子の分子量は10,000〜100,000である、請求項1記載の波長変換器。   The wavelength converter according to claim 1, wherein the polymer has a molecular weight of 10,000 to 100,000. 発光素子と、該発光素子からの光を波長変換する請求項1または2に記載の波長変換器とを具備する、発光装置。 A light emitting element comprises a wavelength converter according to claim 1 or 2, the wavelength conversion light from the light emitting element, light emission device.
JP2006093202A 2006-03-30 2006-03-30 Wavelength converter and light emitting device Expired - Fee Related JP4960645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006093202A JP4960645B2 (en) 2006-03-30 2006-03-30 Wavelength converter and light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006093202A JP4960645B2 (en) 2006-03-30 2006-03-30 Wavelength converter and light emitting device

Publications (2)

Publication Number Publication Date
JP2007262375A JP2007262375A (en) 2007-10-11
JP4960645B2 true JP4960645B2 (en) 2012-06-27

Family

ID=38635660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006093202A Expired - Fee Related JP4960645B2 (en) 2006-03-30 2006-03-30 Wavelength converter and light emitting device

Country Status (1)

Country Link
JP (1) JP4960645B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016126143A1 (en) * 2015-02-06 2016-08-11 주식회사 엘지화학 Photoconversion film, and photoconversion element and display device comprising same
CN110100193A (en) * 2016-12-19 2019-08-06 富士胶片株式会社 Wavelength conversion film and back light unit

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100992778B1 (en) 2008-05-23 2010-11-05 엘지이노텍 주식회사 Light emitting device package and method for manufacturing the same
US20100123386A1 (en) 2008-11-13 2010-05-20 Maven Optronics Corp. Phosphor-Coated Light Extraction Structures for Phosphor-Converted Light Emitting Devices
TWI508331B (en) * 2008-11-13 2015-11-11 Maven Optronics Corp System and method for forming a thin-film phosphor layer for phosphor-converted light emitting devices and a thin-film phosphor layer for phosphor-converted light emitting device
KR20140006831A (en) * 2010-12-21 2014-01-16 코닌클리케 필립스 엔.브이. Lighting device with polymer containing matrices
EP2546320A1 (en) 2011-07-13 2013-01-16 Koninklijke Philips Electronics N.V. Wavelength converting element
WO2015130055A2 (en) * 2014-02-28 2015-09-03 서울반도체 주식회사 Light-emitting diode package
KR102191211B1 (en) 2014-02-28 2020-12-15 서울반도체 주식회사 Light emitting diode package
US10227527B2 (en) * 2015-12-14 2019-03-12 Indizen Optical Technologies of America, LLC Nanoemulsion optical materials
KR102044140B1 (en) * 2016-01-22 2019-11-13 니뽄 도쿠슈 도교 가부시키가이샤 Wavelength converting member and light emitting device
JP2018137320A (en) 2017-02-21 2018-08-30 シャープ株式会社 Light-emitting device and image display device
JPWO2019064586A1 (en) * 2017-09-29 2020-11-05 日立化成株式会社 Wavelength conversion member, backlight unit, and image display device
JPWO2019064588A1 (en) * 2017-09-29 2020-11-05 日立化成株式会社 Manufacturing method of wavelength conversion member, wavelength conversion member, backlight unit, image display device, resin composition for wavelength conversion member and cured resin
KR102487795B1 (en) * 2018-04-24 2023-01-11 엘지디스플레이 주식회사 Light emitting package, backlight unit and display device having the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005105244A (en) * 2003-01-24 2005-04-21 National Institute Of Advanced Industrial & Technology Semiconductor ultrafine particle and fluorescent substance
JP4863745B2 (en) * 2005-11-28 2012-01-25 京セラ株式会社 Phosphor particles, wavelength converter and light emitting device
JP4960644B2 (en) * 2006-03-28 2012-06-27 京セラ株式会社 Phosphor particles, wavelength converter and light emitting device
JP4972976B2 (en) * 2006-03-30 2012-07-11 富士ゼロックス株式会社 Self-scanning light-emitting element array chip, method for manufacturing self-scanning light-emitting element array chip, and optical writing head

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016126143A1 (en) * 2015-02-06 2016-08-11 주식회사 엘지화학 Photoconversion film, and photoconversion element and display device comprising same
US10407614B2 (en) 2015-02-06 2019-09-10 Lg Chem, Ltd. Photoconversion film, and photoconversion element and display device comprising same
CN110100193A (en) * 2016-12-19 2019-08-06 富士胶片株式会社 Wavelength conversion film and back light unit
CN110100193B (en) * 2016-12-19 2021-05-04 富士胶片株式会社 Wavelength conversion film and backlight unit
US11242481B2 (en) 2016-12-19 2022-02-08 Fujifilm Corporation Wavelength conversion film and backlight unit

Also Published As

Publication number Publication date
JP2007262375A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
JP4960645B2 (en) Wavelength converter and light emitting device
JP4771837B2 (en) Wavelength converter and light emitting device
JP4863745B2 (en) Phosphor particles, wavelength converter and light emitting device
US7518160B2 (en) Wavelength converter, lighting system, and lighting system assembly
JP4653662B2 (en) Wavelength converter, light emitting device, method for manufacturing wavelength converter, and method for manufacturing light emitting device
JP4960644B2 (en) Phosphor particles, wavelength converter and light emitting device
JP4838005B2 (en) Light emitting device
JP2007146154A (en) Wavelength converter, lighting system, and lighting system assembly
JP2007157798A (en) Light emitting device
Lafont et al. Increasing the reliability of solid state lighting systems via self-healing approaches: A review
TWI621286B (en) Light emitting device with nanostructured phosphor
TWI597349B (en) Composite wavelength conversion powder, resin composition containing composite wavelength conversion powder, and light-emitting device
JP2007103512A (en) Light emitting device
JP2007103513A (en) Light emitting device
JP2007273498A (en) Wavelength converter and light emitting device
US10347799B2 (en) Stabilized quantum dot composite and method of making a stabilized quantum dot composite
JP5123475B2 (en) Fluorescent structure, composite, light emitting device, and light emitting device assembly
Yin et al. Yellow fluorescent graphene quantum dots as a phosphor for white tunable light-emitting diodes
CN107887490B (en) Light emitting device
WO2006057357A1 (en) Light-emitting device
TW200901502A (en) Light emitting diode device and fabrication method thereof
JP4786886B2 (en) Semiconductor light emitting device
TW201418414A (en) Wavelength converting substance, wavelength converting gel and light emitting device
CN109994592B (en) Quantum dot colloid, light conversion element and light emitting device
US10954439B2 (en) Semiconductor nanoparticles, method of producing the semiconductor nanoparticles, and light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120323

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees