JP4960550B2 - Method for generating ultra-high pressure and method for synthesizing substances - Google Patents

Method for generating ultra-high pressure and method for synthesizing substances Download PDF

Info

Publication number
JP4960550B2
JP4960550B2 JP2001115420A JP2001115420A JP4960550B2 JP 4960550 B2 JP4960550 B2 JP 4960550B2 JP 2001115420 A JP2001115420 A JP 2001115420A JP 2001115420 A JP2001115420 A JP 2001115420A JP 4960550 B2 JP4960550 B2 JP 4960550B2
Authority
JP
Japan
Prior art keywords
concave surface
metal
metal plate
explosive
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001115420A
Other languages
Japanese (ja)
Other versions
JP2002306949A (en
Inventor
昌大 藤田
和幸 外本
泰弘 氏本
大吾 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Kimigafuchi Gakuen
Original Assignee
Asahi Kasei Chemicals Corp
Kimigafuchi Gakuen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp, Kimigafuchi Gakuen filed Critical Asahi Kasei Chemicals Corp
Priority to JP2001115420A priority Critical patent/JP4960550B2/en
Publication of JP2002306949A publication Critical patent/JP2002306949A/en
Application granted granted Critical
Publication of JP4960550B2 publication Critical patent/JP4960550B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は爆薬を用いた超高圧の発生方法及びこれにより発生する超高圧を利用した物質の合成方法に関する。
【0002】
【従来の技術】
爆薬の爆轟圧や高速飛翔体の衝突圧等を利用して、試料に衝撃高圧を作用させ、試料物資の化学反応、物理反応を誘起させて、新物質を創製しようとする試みは、既に前世紀の後半から各種試みられ、人工ダイアモンドの合成等、数々の成果を収めてきた。
超高圧を発生するために様々な方法が提案されている。
例えば、プランジャー方式やベルト方式などの静的な方法が考えられているが、装置を構成する材料の強度に限界があるために、ある限界以上の超高圧は静的な方法では実現が難しい。
そこで動的な方法が各種試みられているが、いずれも以下に述べるような欠点があり、到達できる超高圧には限界がある。
【0003】
(1)飛翔体を発射させ、それを粉体に衝突させる方法
飛翔体に高速度を与えるためにライトガス銃等を用いる方法である。当該方法では、到達できる飛翔体の速度はヘリウムガス使用時に毎秒5km、水素ガス使用時にせいぜい毎秒10kmであり、そのため、数百GPa以上の飛翔速度を得ることは非常に困難である。
【0004】
(2)ジャイアントパルスレーザーを試料面に照射する方法
高出力のジャイアントパルスレーザーを試料面に瞬間的に照射することによって、その背面に超高圧を発生させる方法が知られている。当該方法では、照射の初期に試料面が極めて高温になって蒸気を発生するために、以後のレーザー照射のエネルギーが蒸気に吸収されて、試料面に到達するエネルギーは減衰する。従って、そのため、数百GPa以上の超高圧を得ることは非常に困難である。
【0005】
(3)円筒衝撃波集束法
円筒状に爆薬を配置し、起爆後に発生した爆轟波を中心に向かって集束させ、超高圧を得る方法である。当該方法では、爆薬の爆轟圧に限界があり、集束させた場合にも爆轟波の背後から稀薄波が追いついて来るために、集束爆轟波による爆轟圧の上昇は、元の爆轟圧のせいぜい2倍である。
また、当該方法を改良して、例えば爆薬の内部に円筒管を配置し、これを爆轟圧によって半径方向に飛翔させる方法もあるが、爆轟圧の作用によって飛び出す金属管の速度は、せいぜい毎秒3kmである。従って、数百GPa以上の超高圧を得ることは非常に困難である。
【0006】
(4)水中衝撃波の集束による方法
爆轟圧によって誘起される水中衝撃波を円錐状の容器の中で集束させて超高圧を得る方法である。当該方法でも、稀薄波が背後から追いついて来るために、爆轟圧のせいぜい2〜3倍が最大到達圧力であり、数百GPa以上の超高圧を得ることは非常に困難である。
【0007】
【発明が解決しようとする課題】
物質の合成は、しばしば極限的な環境下に物質を置くことによって化学的、物理的反応を誘起して行われる。その極限の限度を少しでも高めることが新しい物質創製の条件となることが多い。本発明は、超高圧の圧力をこれまでの方法で到達できなかった、1TPa程度の超高圧のレベルに原理的に引き上げることを課題とする。
【0008】
【課題を解決するための手段】
本発明者等は、前記超高圧を発生するために鋭意研究した結果、爆薬を用いた金属板の圧着において、衝突点に生じる高速度の金属ジェットを利用することができることに想到した。
二枚の金属板を重ね合わせて爆発圧着を行う場合、一方の金属板は他方の金属板に対して衝突する。その時、爆発の圧力によって一方の金属板が高速で移動することを飛翔と呼んでいる。
飛翔の結果、衝突点から発射される金属ジェットは、衝突する物質の移動速度の約2倍の速度を持つことが知られている。これを両側から対向させ、衝突させて集束すれば、衝突速度は更にその2倍になる。本発明は、この現象を利用して衝撃超高圧を発生させようとするものである。
【0009】
即ち、本発明は、爆薬を用いて金属板の一面と回転対称な錐形の凹面を有する金属部材の凹面とを高速度で衝突させることにより、衝突点から発生する毎秒10kmを超える速度の金属ジェットを前記凹面の回転対称軸に集束させて1TPaを超える圧力を発生させることを特徴とする超高圧の発生方法である。
【0010】
また、本発明の物質の合成方法は、爆薬を用いて金属板の一面と回転対称な錐形の凹面を有する金属部材の凹面とを高速度で衝突させることにより、衝突点から発生する毎秒10kmを超える速度の金属ジェットを前記凹面の回転対称軸に集束させて1TPaを超える圧力を発生するにあたり、予め前記金属板の一面と前記金属部材の凹面の少なくとも一方に化学反応物質又は物理反応物質を付着させておくことによって、高速衝突に伴うジェット形成時の剪断作用とジェット集束衝突時の超高圧作用とにより、前記反応物質の化学反応又は物理反応を誘起して行うことを特徴とする物質の合成方法である。
【0011】
更に、本発明の物質の合成方法は、爆薬を用いて金属板の一面と回転対称な錐形の凹面を有する金属部材の凹面とを高速度で衝突させることにより、衝突点から発生する毎秒10kmを超える速度の金属ジェットを前記凹面の回転対称軸に集束させて超高圧を発生させ、高速衝突に伴うジェット形成時の剪断作用とジェット集束衝突時の1TPaを超える圧力の作用とにより、前記金属板の材料と前記金属部材の材料との化学反応又は物理反応を誘起させることを特徴とする物質の合成方法である。
【0012】
本発明の物質の合成方法によって、多大の種類の物質の合成を行うことが可能となる。例えば、金属系超伝導物質、形状記憶合金、水素吸蔵合金等の各種金属間化合物の生成を行うことができる。また、凹面を有する金属部材と金属円板との間の空間にアルゴン等の不活性ガスを封入しておけば、不活性ガスを金属格子間に侵入させることが可能となる。
前記金属板と前記金属部材を反応性の低い材料で製作し、いずれかの表面に炭素微粉末を塗布しておくことにより、ダイアモンドを合成することが可能である。また、SiとCとを反応させることでSiCを生成することが可能である。
また、前記金属板と前記金属部材の少なくとも一方の物質と他の物質とを反応させることも可能である。例えば、前記金属板と前記金属部材をTiで製作し、そのいずれか一方の表面にC微粉末を塗布しておき、TiとCとを反応させてTiCを生成することが可能である。
【0013】
本発明において、金属板と凹面を有する金属部材の一方は、通常の爆発圧着に用いられる金属板のように、飛翔し得る薄さを持つ必要がある。また、他方は、大きな質量を有し、又は、大きな質量を有する土台等の上に置かれることが望ましい。
例えば、前記金属板を飛翔するものとし、他方の凹面を有する金属部材は大きな質量を有するブロック部材とすることが実用的である。
【0014】
爆薬としては、例えば、通常爆発圧着等に使用される程度の爆速を有する爆薬が用いられ、爆速が2,000m毎秒以上の爆薬を用いることが望ましく、4,000m毎秒以上の爆薬を用いることが更に望ましく、6,000m毎秒以上の爆薬を用いることが更に望ましい。
金属板を飛翔させる場合、爆薬の量は、飛翔させる金属板の質量のおよそ0.5倍以上であれば金属板は飛翔し、他の金属に衝突したとき金属ジェットも発生することが知られている。本発明において、金属板を飛翔させる場合には、金属板の質量と同程度以上の量の爆薬を用いることが望ましい。また、爆薬は、前記凹面に対して、前記金属板を介して、全面を覆って配置することが望ましい。
【0015】
金属板を飛翔させる時、その厚さは、少なくとも2mmであることが望ましい。2mmよりも薄い場合は飛翔速度が内部圧力によって低下する恐れがある。特に、飛翔させる金属板が箔のように薄い金属板よりなる場合には、例えばその上に爆薬を配するとき、爆薬の質量負荷に耐えることができない。しかし、その場合にも、金属箔を補強板に接着しておき、その補強板で爆薬の質量負荷に耐えるものとすることができる。
前記金属ジェットを効率良く集束させるには、前記凹面を例えば直円錐凹面とすることが実用的である。また、円錐の回転軸方向に緩やかな曲面を形成したものとしてもよい。
【0016】
この時、爆薬は、前記回転軸上に回転対称に配することが望ましく、この時、発生する金属ジェットは、円錐凹面内の空間の回転中心軸上に集束される。
前記円錐凹面の底角は、爆薬の種類、量、金属円板の材質、厚さ等によっても異なるが、およそ好ましくは5〜60°、更に好ましくは10〜45°、更に好ましくは15〜35°である。
前記円錐凹面の開口直径は、50mmの実験室レベルのものから大量のジェットを発生させるための1m程度のものもあり得る。
【0017】
前記金属板の材料と前記凹面をなす金属部材の材料は、音速の高い材料よりなることが望ましい。また、他の化学反応物質又は物理反応物質に対して、それ自体反応性の低い物質よりなることが望ましい。例えば、銅以上の高い音速を有し、銅以下の低い反応性を有する材料であることが望ましい。
また、本発明においては、化学反応物質又は物理反応物質と金属板の材料物質或いは凹面を有する金属部材の物質との間で反応を起こさせることも可能である。更に、これらの構成する金属材料の間のみで反応を起こさせることも可能である。
【0018】
[作用]
本発明の作用を図1に基づいて説明する。
図1は、本発明の作用を説明するための、金属板及び直円錐凹面を有する金属部材等を表す概念図である。図1において、金属板1及び凹面を有する金属ブロック部材2は、中心軸を通る断面図によって表されている。
【0019】
本発明においては、高性能爆薬の爆轟圧によって、金属板1を高速度で飛翔させ、それを金属ブロック部材2の円錐凹面に衝突させる。図1の(a)は、金属板1の上に配された爆薬(図示せず)が起爆し、金属板1がまさに円形に窪んで変形し始めた瞬間を表す。図1の(b)は、金属板1が金属ブロック部材2の直円錐凹面に衝突しつつある過度的な状態を表す。図1の(b)に示されるように、金属板1の衝突は先ず直円錐凹面の円形開口の全円周から始まる。そして、金属板1は、円周上で円錐凹面と衝突し、時間と共に円錐深部へと進む。
【0020】
爆薬として、爆速が5,000m毎秒を超える高性能爆薬を用いる場合、衝突点から金属ジェットが通常毎秒10kmを超える高速度で中心軸に向かって発射される。この金属ジェットを太い矢印3で示す。図1の(b)に示すように、中心軸上では発射された高速の金属ジェットが対向的に激しく衝突して集束する。
この衝突は必ずしも正面衝突ではないが、両側から対向的に発射されて衝突するので、相対的な衝突速度は毎秒15km以上に達する。このとき、衝撃波の圧力は、(物質の密度)×(物質の速度)2よりはるかに高い。例えば、銅の密度は9,000kg/m3であるので、金属ジェットの衝突によって発生する圧力は1TPaを遙かに超える。
【0021】
また、金属円板1と円錐凹面の衝突は円錐凹面の外周部から円錐の深部へと進行するが、その間にジェットの発射が連続的に継続するので、超高圧の持続時間が長く維持できるという点でも、本発明の方法は他に類を見ないものである。
本発明の方法では、円板が円錐面に衝突してジェットが発生する時、巨大な圧縮力と剪断力の複合作用が生じる。したがって、円錐面上に例えば異種物質の混合粉末が存在していると、ジェット発射時に粉末同士等が激しく混合し、高温となって活性化される。本発明の方法では、更に、それを中心軸上で集束衝突させることができるので、超高圧を負荷して物理反応及び化学反応を誘起することが可能である。
【0022】
【発明の実施の形態】
本発明について、更に他の図面を参照して説明する。
図2は、本発明に関わる超高圧発生装置の一例の概略断面模式図である。
図2に示す通り、アルミニウムよりなる円形の金属板1(厚さ2mm)を、チタンよりなり、直円錐凹面を有するブロック部材2(円錐底角4は25°、円錐開口直径70mm)の上に円形開口部を覆って載せた。円形の金属板1の回転軸線とブロック部材2の円錐軸線とを一致させた。
円形の金属板1の直径は、図2に示すように、円錐凹面の開口直径を覆うのに十分な寸法であることが望ましい。但し、円形の金属板1の直径は、原理的には円錐凹面の開口直径と同一であってもよく、又、円錐凹面の開口直径より小さくても本発明の実施は可能である。
【0023】
主爆薬5として可塑性爆薬(旭化成株式会社製SEP爆薬;密度1,200kg/m3、爆速6,900m/s)を円板状に厚さ7mmに成形し、金属板1上に密着して載せた。主爆薬5の起爆のために、円錐状に作った副爆薬6をその底面が主爆薬の外周に一致するように設けた。これに電気***7を副爆薬6の頂上部に備えて爆轟圧発生部とした。
円錐凹面の最深の中央部即ち最下部となる頂角部には直径10mm、深さ18mmの孔8を設け、孔の更に最下部には蓋9を設けた。この孔8を反応物質回収部とした。
この状態で、起爆実験を行った結果、TiAlという化合物が生成したことが確認された。この生成物は孔8より回収された。
【0024】
また、前記と同寸法の金属板及び金属ブロック部材を銅で製作し、銅ブロック部材の凹面にBN(窒化ほう素)微粉末とC(炭素)微粉末とを混合したものを薄く塗布し、前記と同様の爆薬を同量用いて起爆実験を行った。その結果、BCNが生成したことが確認された。この生成物は孔8より回収された。
【0025】
【発明の効果】
本発明の方法を用いることによって次の効果が得られる。
(1)1TPa程度の超高圧を得ることができる。
(2)超高圧の持続時間を原理的に長く持続できる。
(3)化学反応又は物理反応を起こすべき物質が高速衝突に伴うジェット形成時の激しい剪断作用により混合されて活性化され、更に超高圧作用により化学反応、物理反応が誘起されやすい。
【図面の簡単な説明】
【図1】本発明の作用を説明するために金属板及び例として円錐凹面を有する金属部材等を表す概念図である。
【図2】本発明に関わる超高圧発生装置の一例の概略断面模式図である。
【符号の説明】
1 金属板
2 金属ブロック部材
3 金属ジェット(概念図示)
4 円錐底角
5 主爆薬
6 副爆薬
7 電気***
8 孔
9 蓋
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for generating an ultra-high pressure using an explosive and a method for synthesizing a substance using the ultra-high pressure generated thereby.
[0002]
[Prior art]
There are already attempts to create new substances by using the explosive detonation pressure or the impact pressure of high-speed flying objects to induce a high-impact high pressure on the sample to induce chemical and physical reactions of the sample material. Various attempts have been made since the second half of the last century, and many achievements have been achieved, including the synthesis of artificial diamonds.
Various methods have been proposed to generate ultra-high pressure.
For example, a static method such as a plunger method or a belt method has been considered. However, since the strength of the material constituting the device is limited, it is difficult to realize an ultrahigh pressure exceeding a certain limit by a static method. .
Therefore, various dynamic methods have been tried, but all have the following drawbacks, and there is a limit to the ultrahigh pressure that can be reached.
[0003]
(1) Method of launching a flying object and causing it to collide with powder This is a method of using a light gas gun or the like to give a high speed to the flying object. In this method, the speed of the flying object that can be reached is 5 km per second when helium gas is used and 10 km per second when hydrogen gas is used. Therefore, it is very difficult to obtain a flying speed of several hundred GPa or more.
[0004]
(2) Method of irradiating a sample surface with a giant pulse laser There is known a method of generating ultrahigh pressure on the back surface of a sample surface by instantaneously irradiating the sample surface with a high output giant pulse laser. In this method, since the sample surface becomes extremely hot at the initial stage of irradiation and vapor is generated, the energy of the subsequent laser irradiation is absorbed by the vapor, and the energy reaching the sample surface is attenuated. Therefore, it is very difficult to obtain an ultra high pressure of several hundred GPa or more.
[0005]
(3) Cylindrical shock wave focusing method In this method, explosives are arranged in a cylindrical shape, and detonation waves generated after initiation are focused toward the center to obtain ultrahigh pressure. In this method, there is a limit to the detonation pressure of the explosive, and even when focused, a rare wave catches up from behind the detonation wave. It is at most twice the overpressure.
In addition, there is a method of improving the method, for example, arranging a cylindrical tube inside the explosive and causing it to fly in the radial direction by detonation pressure, but the speed of the metal tube popping out by the action of detonation pressure is at most. 3 km per second. Therefore, it is very difficult to obtain an ultra high pressure of several hundred GPa or more.
[0006]
(4) Method by focusing underwater shock wave This is a method in which an underwater shock wave induced by detonation pressure is focused in a conical container to obtain an ultrahigh pressure. Even in this method, since the rare wave catches up from behind, the maximum pressure is at most 2 to 3 times the detonation pressure, and it is very difficult to obtain an ultra high pressure of several hundred GPa or more.
[0007]
[Problems to be solved by the invention]
The synthesis of substances is often performed by inducing chemical and physical reactions by placing the substance in an extreme environment. Increasing the limit as much as possible is often a condition for creating new substances. An object of the present invention is to raise the pressure of ultrahigh pressure in principle to an ultrahigh pressure level of about 1 TPa, which could not be reached by the conventional methods.
[0008]
[Means for Solving the Problems]
As a result of diligent research to generate the ultra-high pressure, the present inventors have come up with the idea that a high-speed metal jet generated at a collision point can be used in crimping a metal plate using an explosive.
When performing explosive pressure bonding by superimposing two metal plates, one metal plate collides with the other metal plate. At that time, the movement of one metal plate at a high speed due to the explosion pressure is called flying.
As a result of the flight, it is known that the metal jet launched from the collision point has a speed approximately twice the moving speed of the colliding substance. If these are opposed from both sides and collide and converge, the collision speed is doubled. The present invention uses this phenomenon to generate an impact ultra-high pressure.
[0009]
That is, the present invention uses explosives to collide a surface of a metal plate and a concave surface of a metal member having a rotationally symmetric conical concave surface at a high speed, thereby generating a metal having a speed exceeding 10 km per second generated from the collision point. An ultra-high pressure generation method characterized in that a jet is focused on the concave rotational symmetry axis to generate a pressure exceeding 1 TPa .
[0010]
Further, the method for synthesizing the substance of the present invention uses an explosive to collide one surface of a metal plate and a concave surface of a metal member having a rotationally symmetric conical concave surface at a high speed, thereby generating 10 km per second generated from the collision point. When a pressure exceeding 1 TPa is generated by converging a metal jet having a velocity exceeding 1 centimeter on the rotational symmetry axis of the concave surface, a chemical reactive material or a physical reactive material is previously applied to at least one of the one surface of the metal plate and the concave surface of the metal member. By adhering, a chemical reaction or physical reaction of the reactant is induced by a shearing action at the time of jet formation accompanying high-speed collision and an ultra-high pressure action at the time of jet focusing collision. It is a synthesis method.
[0011]
Furthermore, the method for synthesizing a substance of the present invention uses an explosive to collide one surface of a metal plate with a concave surface of a metal member having a rotationally symmetric conical concave surface at a high speed, thereby generating 10 km per second generated from the collision point. A metal jet having a speed exceeding 1 is focused on the rotationally symmetrical axis of the concave surface to generate an ultra-high pressure, and the metal action is caused by a shearing action at the time of jet formation accompanying high-speed collision and an action of a pressure exceeding 1 TPa at the time of jet focusing collision. It is a method for synthesizing a substance characterized by inducing a chemical reaction or a physical reaction between a plate material and the metal member material.
[0012]
By the method for synthesizing a substance of the present invention, it is possible to synthesize many kinds of substances. For example, various intermetallic compounds such as a metal-based superconducting material, a shape memory alloy, and a hydrogen storage alloy can be generated. Further, if an inert gas such as argon is sealed in a space between the metal member having a concave surface and the metal disk, the inert gas can be allowed to enter between the metal lattices.
It is possible to synthesize diamond by manufacturing the metal plate and the metal member with a material having low reactivity and applying carbon fine powder on any surface. Moreover, it is possible to produce SiC by reacting Si and C.
It is also possible to react at least one substance of the metal plate and the metal member with another substance. For example, it is possible to produce TiC by manufacturing the metal plate and the metal member with Ti, applying C fine powder on one of the surfaces, and reacting Ti and C.
[0013]
In the present invention, one of the metal plate and the metal member having a concave surface needs to be thin enough to fly like a metal plate used for normal explosion pressure bonding. Moreover, it is desirable that the other has a large mass or is placed on a base or the like having a large mass.
For example, it is practical to fly the metal plate, and the metal member having the other concave surface is a block member having a large mass.
[0014]
As the explosive, for example, an explosive having an explosive speed that is normally used for explosive pressure bonding is used. It is desirable to use an explosive having an explosive speed of 2,000 m / second or more, and to use an explosive having a explosive speed of 4,000 m / second or more. More desirably, it is more desirable to use an explosive of 6,000 m / s or more.
When flying a metal plate, the amount of explosive is known to be about 0.5 times the mass of the metal plate to fly, the metal plate will fly, and it is known that a metal jet will also be generated when it collides with other metals. ing. In the present invention, when the metal plate is allowed to fly, it is desirable to use an amount of explosive that is equal to or greater than the mass of the metal plate. Moreover, it is desirable that the explosive is disposed so as to cover the entire surface of the concave surface through the metal plate.
[0015]
When the metal plate is allowed to fly, the thickness is preferably at least 2 mm. If it is thinner than 2 mm, the flight speed may be reduced by the internal pressure. In particular, when the metal plate to fly is made of a thin metal plate such as a foil, for example, when an explosive is placed on the metal plate, it cannot withstand the mass load of the explosive. However, even in that case, the metal foil can be adhered to the reinforcing plate, and the reinforcing plate can withstand the mass load of the explosive.
In order to efficiently focus the metal jet, it is practical that the concave surface is, for example, a conical concave surface. Further, a gentle curved surface may be formed in the direction of the rotational axis of the cone.
[0016]
At this time, the explosive is preferably disposed rotationally symmetrically on the rotation axis, and at this time, the generated metal jet is focused on the rotation center axis of the space in the conical concave surface.
The base angle of the concave conical surface varies depending on the type and amount of explosive, the material of the metal disc, the thickness, etc., but is preferably 5 to 60 °, more preferably 10 to 45 °, and still more preferably 15 to 35. °.
The conical concave surface may have an opening diameter of about 1 m for generating a large amount of jet from a laboratory level of 50 mm.
[0017]
The material of the metal plate and the material of the metal member forming the concave surface are preferably made of a material having a high sound velocity. In addition, it is desirable to be made of a substance that itself has low reactivity with respect to other chemical reaction substances or physical reaction substances. For example, it is desirable that the material has a high sound velocity higher than that of copper and a low reactivity lower than that of copper.
In the present invention, it is also possible to cause a reaction between a chemical reactant or physical reactant and a metal plate material or a metal member having a concave surface. Furthermore, it is possible to cause a reaction only between these constituent metal materials.
[0018]
[Action]
The operation of the present invention will be described with reference to FIG.
FIG. 1 is a conceptual diagram showing a metal plate and a metal member having a conical concave surface for explaining the operation of the present invention. In FIG. 1, a metal block 1 and a metal block member 2 having a concave surface are represented by a cross-sectional view passing through a central axis.
[0019]
In the present invention, the metal plate 1 is caused to fly at a high speed by the detonation pressure of the high-performance explosive and collides with the conical concave surface of the metal block member 2. (A) of FIG. 1 represents the moment when the explosive (not shown) arranged on the metal plate 1 detonates, and the metal plate 1 starts to be deformed in a very circular shape. FIG. 1B shows an excessive state in which the metal plate 1 is colliding with the right conical concave surface of the metal block member 2. As shown in FIG. 1 (b), the collision of the metal plate 1 first starts from the entire circumference of the circular opening of the conical concave surface. And the metal plate 1 collides with a conical concave surface on the circumference, and advances to a cone deep part with time.
[0020]
When a high-performance explosive with an explosive speed exceeding 5,000 m / s is used as the explosive, a metal jet is normally emitted from the collision point toward the central axis at a high speed exceeding 10 km / sec. This metal jet is indicated by a thick arrow 3. As shown in FIG. 1B, on the central axis, a high-speed metal jet that has been launched collides violently and converges.
Although this collision is not necessarily a frontal collision, since it collides by being launched from both sides, the relative collision speed reaches 15 km or more per second. At this time, the pressure of the shock wave is much higher than (material density) × (material velocity) 2 . For example, since the density of copper is 9,000 kg / m 3 , the pressure generated by the collision of the metal jet far exceeds 1 TPa.
[0021]
In addition, the collision between the metal disc 1 and the concave conical surface proceeds from the outer peripheral part of the conical concave surface to the deep part of the conical surface, and during that time, the jet is continuously fired, so that the duration of the ultrahigh pressure can be maintained for a long time. In that respect, the method of the present invention is unique.
In the method of the present invention, when the disk collides with the conical surface and a jet is generated, a huge combined action of compressive force and shearing force is generated. Therefore, for example, if mixed powders of different substances are present on the conical surface, the powders and the like are vigorously mixed at the time of jet firing, and are activated at a high temperature. Furthermore, in the method of the present invention, it can be collided on the central axis, so that it is possible to induce a physical reaction and a chemical reaction by applying an ultrahigh pressure.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described with reference to other drawings.
FIG. 2 is a schematic cross-sectional schematic diagram of an example of an ultrahigh pressure generator according to the present invention.
As shown in FIG. 2, a circular metal plate 1 (thickness 2 mm) made of aluminum is placed on a block member 2 (conical bottom angle 4 is 25 °, cone opening diameter 70 mm) made of titanium and having a conical concave surface. The circular opening was covered. The rotational axis of the circular metal plate 1 and the conical axis of the block member 2 were matched.
As shown in FIG. 2, the diameter of the circular metal plate 1 is desirably a dimension sufficient to cover the opening diameter of the conical concave surface. However, the diameter of the circular metal plate 1 may in principle be the same as the opening diameter of the conical concave surface, and the present invention can be implemented even if it is smaller than the opening diameter of the conical concave surface.
[0023]
A plastic explosive (SEP explosive manufactured by Asahi Kasei Co., Ltd .; density 1,200 kg / m 3 , explosion speed 6,900 m / s) is formed into a disc shape with a thickness of 7 mm as the main explosive 5 and is placed in close contact with the metal plate 1. It was. For the initiation of the main explosive 5, a conical auxiliary explosive 6 was provided so that the bottom surface coincided with the outer periphery of the main explosive. An electric detonator 7 was provided on the top of the secondary explosive 6 to form a detonation pressure generating part.
A hole 8 having a diameter of 10 mm and a depth of 18 mm was provided at the deepest central portion of the conical concave surface, that is, the lowest corner, and a lid 9 was provided at the lowermost portion of the hole. This hole 8 was used as a reactant collection unit.
As a result of the detonation experiment in this state, it was confirmed that a compound called TiAl 3 was produced. This product was recovered from hole 8.
[0024]
Further, a metal plate and a metal block member having the same dimensions as described above are made of copper, and a thin mixture of a mixture of BN (boron nitride) fine powder and C (carbon) fine powder is formed on the concave surface of the copper block member. An initiation experiment was performed using the same amount of explosive as described above. As a result, it was confirmed that BCN was generated. This product was recovered from hole 8.
[0025]
【Effect of the invention】
The following effects can be obtained by using the method of the present invention.
(1) An ultra-high pressure of about 1 TPa can be obtained.
(2) The ultra-high pressure duration can be long in principle.
(3) Substances that are to undergo chemical reaction or physical reaction are mixed and activated by vigorous shearing action during jet formation accompanying high-speed collision, and chemical reaction and physical reaction are likely to be induced by ultrahigh pressure action.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram illustrating a metal plate and, for example, a metal member having a conical concave surface in order to explain the operation of the present invention.
FIG. 2 is a schematic cross-sectional schematic diagram of an example of an ultrahigh pressure generator according to the present invention.
[Explanation of symbols]
1 Metal plate 2 Metal block member 3 Metal jet (conceptual illustration)
4 Conical bottom angle 5 Main explosive 6 Secondary explosive 7 Electric detonator 8 Hole 9 Lid

Claims (3)

爆薬を用いて金属板の一面と回転対称な錐形の凹面を有する金属部材の凹面とを高速度で衝突させることにより、衝突点から発生する毎秒10kmを超える速度の金属ジェットを前記凹面の回転対称軸に集束させて1TPaを超える圧力を発生させることを特徴とする超高圧の発生方法。By using an explosive to collide one surface of a metal plate with a concave surface of a metal member having a conical concave surface that is rotationally symmetric, a metal jet generated at a speed exceeding 10 km / second from the collision point is rotated on the concave surface. A method for generating an ultra-high pressure, characterized in that a pressure exceeding 1 TPa is generated by focusing on a symmetry axis. 爆薬を用いて金属板の一面と回転対称な錐形の凹面を有する金属部材の凹面とを高速度で衝突させることにより、衝突点から発生する毎秒10kmを超える速度の金属ジェットを前記凹面の回転対称軸に集束させて1TPaを超える圧力を発生するにあたり、予め前記金属板の一面と前記金属部材の凹面の少なくとも一方に化学反応物質又は物理反応物質を付着させておくことによって、高速衝突に伴うジェット形成時の剪断作用とジェット集束衝突時の超高圧作用とにより、前記反応物質の化学反応又は物理反応を誘起させることを特徴とする物質の合成方法。By using an explosive to collide one surface of a metal plate with a concave surface of a metal member having a conical concave surface that is rotationally symmetric, a metal jet generated at a speed exceeding 10 km / second from the collision point is rotated on the concave surface. When a pressure exceeding 1 TPa is generated by focusing on the symmetry axis, a chemical reaction material or a physical reaction material is attached to at least one of the one surface of the metal plate and the concave surface of the metal member in advance, thereby causing a high-speed collision. A method for synthesizing a substance, wherein a chemical reaction or a physical reaction of the reactant is induced by a shearing action during jet formation and an ultrahigh pressure action during jet focusing collision. 爆薬を用いて金属板の一面と回転対称な錐形の凹面を有する金属部材の凹面とを高速度で衝突させることにより、衝突点から発生する毎秒10kmを超える速度の金属ジェットを前記凹面の回転対称軸に集束させて超高圧を発生させ、高速衝突に伴うジェット形成時の剪断作用とジェット集束衝突時の1TPaを超える圧力の作用とにより、前記金属板の材料と前記金属部材の材料との化学反応又は物理反応を誘起させることを特徴とする物質の合成方法。By using an explosive to collide one surface of a metal plate with a concave surface of a metal member having a conical concave surface that is rotationally symmetric, a metal jet generated at a speed exceeding 10 km / second from the collision point is rotated on the concave surface. A super-high pressure is generated by focusing on the symmetry axis, and a shearing action during jet formation accompanying high-speed collision and an action of pressure exceeding 1 TPa at the time of jet focusing collision between the metal plate material and the metal member material. A method for synthesizing a substance characterized by inducing a chemical reaction or a physical reaction.
JP2001115420A 2001-04-13 2001-04-13 Method for generating ultra-high pressure and method for synthesizing substances Expired - Fee Related JP4960550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001115420A JP4960550B2 (en) 2001-04-13 2001-04-13 Method for generating ultra-high pressure and method for synthesizing substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001115420A JP4960550B2 (en) 2001-04-13 2001-04-13 Method for generating ultra-high pressure and method for synthesizing substances

Publications (2)

Publication Number Publication Date
JP2002306949A JP2002306949A (en) 2002-10-22
JP4960550B2 true JP4960550B2 (en) 2012-06-27

Family

ID=18966325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001115420A Expired - Fee Related JP4960550B2 (en) 2001-04-13 2001-04-13 Method for generating ultra-high pressure and method for synthesizing substances

Country Status (1)

Country Link
JP (1) JP4960550B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5114250B2 (en) * 2008-03-05 2013-01-09 旭化成ケミカルズ株式会社 Method for producing metal fine powder
WO2021193969A1 (en) * 2020-03-27 2021-09-30 旭化成株式会社 Method for producing suboxide particles, composite particles, and particle production device
WO2021193968A1 (en) * 2020-03-27 2021-09-30 旭化成株式会社 Method for producing particles and apparatus for producing particles

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS498486A (en) * 1972-05-24 1974-01-25
JPS4939595A (en) * 1972-08-22 1974-04-13
JPS5329673B2 (en) * 1973-05-09 1978-08-22
JPS5114994A (en) * 1974-07-30 1976-02-05 Eidai Co Ltd RIGUNINN FUENOORUSETSUCHAKUZAINO SEIZOHO
JPS58139735A (en) * 1982-02-16 1983-08-19 Agency Of Ind Science & Technol Treatment of condensible materials by impulsive compression
JPS5922648A (en) * 1982-06-25 1984-02-04 Agency Of Ind Science & Technol Method and device for impact compression of condensable material
JP3220212B2 (en) * 1992-03-18 2001-10-22 旭化成株式会社 Method and apparatus for impact hardening of powder using underwater shock wave
JPH11322454A (en) * 1998-05-20 1999-11-24 Sumitomo Coal Mining Co Ltd Diamond-containing composite sintered compact and its production

Also Published As

Publication number Publication date
JP2002306949A (en) 2002-10-22

Similar Documents

Publication Publication Date Title
US3608014A (en) Method of explosively shocking solid materials
EP1671013B1 (en) Improvements in and relating to oil well perforators
US20090255432A1 (en) Super compressed detonation method and device to effect such detonation
US3135205A (en) Coruscative ballistic device
JP4960550B2 (en) Method for generating ultra-high pressure and method for synthesizing substances
Thadhani Shock compression processing of powders
Adadurov et al. Transformations of condensed substances under shock-wave compression in controlled thermodynamic conditions
US20100290979A1 (en) Carbon nanotubes production process
US3154014A (en) Method of and apparatus for accelerating gases and solids
WO2012085695A1 (en) Reactive armour
US5271726A (en) Apparatus for explosive shocking of materials
JP3220212B2 (en) Method and apparatus for impact hardening of powder using underwater shock wave
US3249046A (en) Apparatus for accelerating plates to high velocity
RU2221210C2 (en) Multi-stage explosive body accelerator
JPH02237634A (en) Method and device for impact-compressing solid material
JPS6248529B2 (en)
Balaganskii et al. Generation of hypervelocity particle flows by explosive compression of ceramic tubes
JP4415085B2 (en) Method and apparatus for impact pressure treatment of porous material
Burritt et al. The effect of surface area and density on the volumetric shock initiation of PETN
Frost et al. Effect of scale on the blast wave from a metalized explosive
Voitenko et al. Influence of the Striker Material on the Results of High-Speed Impact at a Barrier
RU185845U1 (en) DEVICE FOR PRODUCING DIAMONDS AND DIAMOND-LIKE MATERIALS
EP1574813A2 (en) Super compressed detonation method and device to effect such detonation
JPS597433A (en) Forming method of amorphous forming body
Ma et al. Defence Technology

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20010501

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031006

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120301

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120323

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4960550

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees