JPS597433A - Forming method of amorphous forming body - Google Patents

Forming method of amorphous forming body

Info

Publication number
JPS597433A
JPS597433A JP57116930A JP11693082A JPS597433A JP S597433 A JPS597433 A JP S597433A JP 57116930 A JP57116930 A JP 57116930A JP 11693082 A JP11693082 A JP 11693082A JP S597433 A JPS597433 A JP S597433A
Authority
JP
Japan
Prior art keywords
explosive
amorphous
vessel
metallic
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57116930A
Other languages
Japanese (ja)
Inventor
Hisao Tago
多胡 久男
Teruyuki Ahano
照幸 阿波野
Kazunori Katsuki
香月 和則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP57116930A priority Critical patent/JPS597433A/en
Publication of JPS597433A publication Critical patent/JPS597433A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/006Amorphous articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/08Compacting only by explosive forces

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a forming body having a fine and uniform layer without damaging its atomic arrangement, by packing a cylindrical metallic vessel with amorphous powder, and compressing coaxially by an explosive of a specified explosion speed. CONSTITUTION:A metallic bottom plug 2 to which a hole is worked is welded to the lower part of a cylindrical metallic vessel 1, and a conduit 6 is connected. Subsequently, a vacuum discharging filter 3 to which metallic powder is pressed is placed and is packed with a semiconductor and a semi-metallic or metallic amorphous powder. Subsequently, the joint part of an upper plug 5 for forming an enclosed vessel is covered with a vacuum compound 15. After the vacuum discharge, the conduit 6 is crushed, stuck closely and cut, also conical clay 8 is placed in order to prevent an impulse wave from the upper part, and also an auxiliary vessel 7 is attached in order to give uniform pressure to the whole vessel. subsequently, said vessel 1 is set by placing a metal center fixing material 9 in the center of an explosive holding cylinder 11. Subsequently, an explosive whose explosion speed is 2,000-5,000m/sec at the time of detonation is loaded, and the explosion is initiated coaxially by an electric detonator 14.

Description

【発明の詳細な説明】 本発明は半導体、半金属、金属のアモルファス粉末の爆
発圧搾九より、アモルファス成形体を成形する方法に関
するものである。半導体、半金属、金属、及び合金のア
モルファスは、結晶性物質に比して、その耐摩耗性、耐
食性、強じん性、高透磁率、インバー・レンバー特性、
耐放射線損傷などの優れた機能を有することから、最近
その広範囲な普及が期待され、太陽電池、トランス材料
、磁気ヘッド材料等への応用研究が注目されている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming an amorphous compact by explosive compression of amorphous powders of semiconductors, semimetals, and metals. Amorphous semiconductors, semimetals, metals, and alloys have superior wear resistance, corrosion resistance, toughness, high magnetic permeability, Invar-Lember properties, and
Since it has excellent functions such as resistance to radiation damage, its widespread use is expected recently, and research into its application to solar cells, transformer materials, magnetic head materials, etc. is attracting attention.

半金属、金属アモルファスはスパッター法、気相化学反
応法、メッキ法、溶融物質の超急冷法により製造しうる
。製法技術上粉末、フィラメント又はリボン状の材料形
態に限られている。
Metalloids and amorphous metals can be produced by sputtering, vapor phase chemical reaction, plating, and ultra-quenching of molten materials. Due to manufacturing technology, the material form is limited to powder, filament, or ribbon.

現在、これらの方法の中で、最も一般的に用いられ、し
かも大きなアモルファス成形体を得る方法は、液体急冷
法である。しかし、その方法においても、長さは数百m
のアモルファス体が得られるが、厚さはせいぜい数百ミ
クロン、巾は1001111程度のリボン状のアモルフ
ァス成形体しか製造できない。このような現状から半金
属、金属アモルファスはその優れた特性の用途が期待さ
れてはいるものの任意形状サイズを有する形態の拐料が
得られないため、ご(限られた小部品への応用に限られ
ている。
Currently, among these methods, the most commonly used method for obtaining large amorphous molded bodies is the liquid quenching method. However, even with that method, the length is several hundred meters.
However, only a ribbon-shaped amorphous molded body with a thickness of several hundred microns and a width of about 1001111 mm can be produced. Due to this current situation, semimetallic and metallic amorphous materials are expected to be used for their excellent properties, but because it is not possible to obtain particles in the form of arbitrary shapes and sizes, they are not suitable for limited applications in small parts. limited.

粉末乃至リボン状の、アモルファスを用い℃の更に大き
なアモルファス成形体の成形技術の開発の期待される理
由はここにあるといえる。通常の焼結法や溶接法は、ア
モルファスの特性であるランダムな原子配列を、熱によ
って結晶化させてしまうために好ましくない。
This can be said to be the reason why the development of molding technology for amorphous compacts with even higher temperatures using amorphous materials in the form of powders or ribbons is expected. Ordinary sintering and welding methods are unfavorable because heat crystallizes the random atomic arrangement that is characteristic of amorphous materials.

本発明者等は爆発圧搾法の適用により半金属、金属アモ
ルファス成形体の成形に着目し種々検討を重ねた。
The present inventors focused on forming semimetallic and metallic amorphous compacts by applying the explosive compression method, and conducted various studies.

爆薬の爆轟エネルギーの利用により粉体を圧搾し成形体
を得る方法は公知であり、半金属又は金属アモルファス
粉末に適用した例も僅か乍も知られている。
A method of compressing powder to obtain a molded body by utilizing the detonation energy of an explosive is known, and there are also a few examples of application to semimetal or metal amorphous powder.

本発明者等は半金属又は金属アモルファス粉末の爆発圧
搾による成形体の製造研究を種々試みたところ、爆発圧
搾成形体において成形体内部に割れ等のない均一な緻密
一体化層を形成させかつ原料アモルファスの原子配列が
損なわれていない成形体が得られる特定東件が存在する
ことを知り本発明に到達した。
The present inventors have conducted various studies on the production of compacts by explosive compression of semimetal or metal amorphous powders, and have found that in explosive compression compacts, a uniform dense integrated layer with no cracks or the like is formed inside the compact, and the raw material The present invention was achieved by finding out that there is a specific condition by which a molded article with an intact amorphous atomic arrangement can be obtained.

すなわち、本発明は筒状金属容器に半金属、半導体、金
属、合金のアモルファス(以下単にアモルファスという
)粉末を充填し、その容器の周囲を爆轟時において爆速
2,0007すじ\5.000ル気を有する爆薬によっ
て均一に覆い同軸的に爆薬を爆発させ、圧搾により前記
アモルファスを一体に成形することを特徴とするアモル
ファス成形体の成形方法である。
That is, in the present invention, a cylindrical metal container is filled with amorphous (hereinafter simply referred to as amorphous) powder of semimetal, semiconductor, metal, or alloy, and when the container is detonated, the detonation velocity is 2,0007 lines\5,000 l. This is a method for forming an amorphous molded body, which is characterized in that the amorphous body is uniformly covered with an explosive having air, the explosive is detonated coaxially, and the amorphous is integrally molded by compression.

以下に、矛1図を参照して本発明による爆発圧搾法によ
るアモルファス成形体の成形方法を説明する。g・1図
はアモルファス粉末から棒体を成形する一態様を示し、
原料であるアモルファス粉末4を容器l内に充填し、容
器外周な四んで配置される爆薬の層13の爆発エネルギ
ーにより外側から中、L?軸方向に圧搾され締め固め固
化され成形体が得られる。
The method for forming an amorphous molded body by the explosive compression method according to the present invention will be described below with reference to Figure 1. Figure g.1 shows one mode of molding a rod from amorphous powder,
Amorphous powder 4, which is a raw material, is filled into a container L, and the explosive energy of the explosive layer 13 arranged in four circles around the container causes explosions from the outside to the inside L? It is compressed in the axial direction, compacted and solidified to obtain a molded body.

金属容器lは 下部が密閉され又いない場合は、金属底
栓2が溶接される。なお、この際、金属栓2には、後の
真空処理のために、穴加工を行なっており、真空引き用
導管6が接続される。アモルファス粉体装填前に、真空
排気用のフィルター3を、金属粉をプレスしてつくる。
The metal container 1 is sealed at the bottom or, if not, a metal bottom plug 2 is welded to it. At this time, a hole is formed in the metal stopper 2 for later vacuum processing, and a vacuum conduit 6 is connected thereto. Before loading the amorphous powder, a filter 3 for evacuation is made by pressing metal powder.

かかる容器に アモルファス粉末4を装填する。The amorphous powder 4 is loaded into such a container.

上部枠5は、真空排気のための密閉容器にするためであ
り、更に真空コンパウンド15によって、接合部は覆わ
れる。
The upper frame 5 is intended to be a closed container for evacuation, and the joint portion is further covered with a vacuum compound 15.

真空併気後、導管6は、口径乞つぶす事によって密着さ
せて、真空度を保持した後、切断される。
After the vacuum is applied, the conduit 6 is brought into close contact by reducing its diameter, maintaining the degree of vacuum, and then cut.

爆発圧搾時には、上部からの衝撃波防止のために、円錐
状の粘土8が置かれ、また、容器全体に渡って、均一な
圧力を与えるために、補助容器7が付けられる。
During explosive compression, a conical clay 8 is placed to prevent shock waves from above, and an auxiliary container 7 is attached to apply uniform pressure throughout the container.

金属中心固定材9は、爆薬保持筒11の中心に、容器が
配置されるようにするもので、かかるセットを行なった
後、爆薬13を装填して、電気***14により、同軸的
に起爆する。
The metal center fixing member 9 allows the container to be placed in the center of the explosive holding cylinder 11. After this setting, the explosive 13 is loaded and detonated coaxially by the electric detonator 14. .

なお、支持@】0及び支持筒12は、上記に説明した装
置の架台である。
Note that the support@]0 and the support cylinder 12 are the pedestals of the apparatus described above.

筒状金属容器は円形、楕円乃至多角形の横断面の容積空
間を有する容器であり通常は光填時にアモルファス粉末
の漏れ防止の目的で底部に当て根を設ける。種々の検討
の結果底栓は金属容器を溶接等他の接合法により予め固
矩しておく方が好ましい。また、金楓板をプレス加工体
あるいはロンドのくり切削体により得られる有底金属容
器の一体型を用いることもできる。
A cylindrical metal container has a volume space with a circular, elliptical or polygonal cross section, and is usually provided with a stopper at the bottom to prevent leakage of amorphous powder when filled with light. As a result of various studies, it is preferable that the bottom plug is made of a metal container that is solidified in advance by another joining method such as welding. Further, it is also possible to use an integrated type of a bottomed metal container obtained by pressing a gold maple plate or cutting a rondo.

底部を金属栓の溶接により、強固にするのは、爆薬によ
って得られた成形圧力を、保持するためであり、また内
部粉末の金属器より外への、飛散を防止するためである
。アモルファス粉末は、結晶性(主として金属粉末の場
合)に比して、剛直であり、塑性変形態が小さいために
、大きな成形圧力を必要とするが、過剰な成形圧力はア
モルファス状態特有の性質の消失を促し、また得られる
アモルファス成形体に割れなどの欠陥を促す。このため
に、爆薬によって得られる成形圧力を有効に利用し、ま
た金属容器の収縮によって内部のアモルファスの容器底
部からの飛散な防ぐために底部を有する金属容器を用い
る方が好ましい。
The reason why the bottom part is made stronger by welding a metal stopper is to maintain the molding pressure obtained by the explosive, and also to prevent the internal powder from scattering outside the metal container. Amorphous powders are more rigid than crystalline powders (mainly metal powders), and their plastic deformation is small, so they require a large amount of compacting pressure. It promotes disappearance and also promotes defects such as cracks in the obtained amorphous molded product. For this purpose, it is preferable to use a metal container having a bottom to effectively utilize the molding pressure obtained by the explosive and to prevent the internal amorphous material from scattering from the bottom of the container due to contraction of the metal container.

アモルファス粉末を装填する容器は金属材料を用いるの
が好ましい。
Preferably, the container into which the amorphous powder is loaded is made of a metal material.

これは 前記した理由と同様、成形圧力を有効に利用す
るため爆薬によって得られる成形圧力を、圧力媒体とし
ての容器を破壊させることがなく、内部のアモルファス
粉に作用させるためであり、また爆発による高圧発生後
の 二次現象として生じる希薄波より、内部のアモルフ
ァス体を保護し、かつ成形圧力の持続を得るためである
This is for the same reasons as mentioned above, in order to make effective use of the molding pressure, the molding pressure obtained by the explosive is applied to the amorphous powder inside without destroying the container as a pressure medium, and also to prevent the explosion. This is to protect the internal amorphous body from dilution waves that occur as a secondary phenomenon after high pressure is generated, and to maintain the molding pressure.

ここに示す金属容器とは、充分な延性を有する鋼、銅、
アルミ等の金属材料一般を さしている。
The metal container shown here is made of steel, copper, or steel with sufficient ductility.
Refers to general metal materials such as aluminum.

また金属容器の肉厚は、爆薬によって得られる成形圧力
に耐え得る厚さを、持たなければならない事は当然であ
る。特に鋼容器類におい又は、耐力値が低(、かつ延性
、強度を有する材料が好ましい0 かかる粉末の装填を行なった後、上部に金属栓をして密
閉容器とする。この際に溶接などの多大な入熱を要する
接合法は好ましくない。なぜならば、内部アモルファス
の特性が損なわれる。すなわち結晶化を生じるからであ
る。
It goes without saying that the metal container must have a wall thickness that can withstand the molding pressure produced by the explosive. In particular, for steel containers, materials with low yield strength (and ductility and strength are preferable). After loading such powder, a metal stopper is attached to the top to make the container airtight. At this time, welding, etc. Bonding methods that require large heat inputs are undesirable because the internal amorphous properties are impaired, ie crystallization occurs.

本発明者らは、市販されている接着材を用いて接合させ
たが、内部アモルファスが結晶化しない温度域の接合法
で有れば、他の方法で行なっても良い。
Although the present inventors used a commercially available adhesive for bonding, other bonding methods may be used as long as the bonding method is within a temperature range in which the internal amorphous does not crystallize.

またこの場合、上部栓は単純に金属容器上面に接するだ
けでなく、金属容器の内部にはめ込むようにする。はめ
込む深さは小口径の管では、内径と同じ程はめ込むのが
好ましい。爆発圧搾時には金属容器周囲より体幅して来
た衝撃圧縮波が、粉体中心部において衝撃反射波となり
、この反射波は一度緻密成形されたアモルファス成形体
を 容器上方に飛散させようとする作用なする。これに
対して、爆発圧搾時の初期の段階で、金属容器により上
部金属栓をかしめて上部を強化し、内部のアモルファス
の飛散を防止するのである。
Further, in this case, the upper stopper is not simply in contact with the upper surface of the metal container, but is fitted into the inside of the metal container. For small-diameter pipes, it is preferable to fit the tube to the same depth as the inner diameter. During explosive compression, the impact compression wave that spreads from the periphery of the metal container becomes an impact reflected wave at the center of the powder, and this reflected wave has the effect of scattering the amorphous compact, which has been compacted once, upwards into the container. Do it. In contrast, at the initial stage of explosive compression, the upper metal stopper is caulked with a metal container to strengthen the upper part and prevent the amorphous inside from scattering.

この際、あらかじめ栓の挿入部及び金属容器にネジ加工
を行なった状態でも良い。以上の後爆発圧搾を行なうが
その前に真空排気を行なうのが好ましい。この場合の真
空排気はアモルファス粉体間に存在する。空気成分の断
熱圧縮による温度上昇を押さえ、アモルファスの結晶化
を防止するためである。また内部空気成分成形圧力の伝
達を損なうことな(有効に利用することにより小爆薬量
で成形体を得る事を可能にするためで′ある。高い硬さ
と強さを有する金属系アモルファスなどの場合には特に
好ましい。
At this time, the insertion portion of the stopper and the metal container may be threaded in advance. After the above, explosive compression is performed, but it is preferable to perform vacuum evacuation before that. The vacuum in this case exists between the amorphous powders. This is to suppress the temperature rise due to adiabatic compression of air components and to prevent crystallization of amorphous. In addition, it is possible to obtain a molded body with a small amount of explosive by effectively utilizing the internal air component without impairing the transmission of the molding pressure.In the case of metallic amorphous materials with high hardness and strength, etc. It is particularly preferable for

爆発圧搾前のかかる真空排気処理において、金属容器の
内部の真空度は、高真空であるほど前述した効果が期待
できる。しかし、本発明者らが鋭意に研究を重ねた結果
、少なくとも真空度I X 101Torrの状態にす
れは、前述した断熱圧縮による温度上昇、及び成形圧力
の有効利用に対して、充分なる効果を示すことがわかっ
た。なお、この真空排気処理において、目的とする真空
度を容易に得、かつ、爆発圧搾時まで保持するためには
例えば上部栓と金属容器の接合部を 真空用コンパウン
ドなとで覆ってやるとよい。
In such a vacuum evacuation process before explosive compression, the higher the degree of vacuum inside the metal container, the more the above-mentioned effects can be expected. However, as a result of extensive research by the present inventors, it has been found that at least a vacuum degree of I x 101 Torr has a sufficient effect on the temperature rise due to the above-mentioned adiabatic compression and the effective use of molding pressure. I understand. In addition, in this evacuation process, in order to easily obtain the desired degree of vacuum and maintain it until explosive squeezing, it is recommended to cover the joint between the top stopper and the metal container with a vacuum compound, for example. .

目的とする真空度に到達したならば、真空ポンプと接続
しである、排気用金属パイプの口径をつぶす事によって
密着させて、真空度を保持した後切断する。この場合、
爆発圧搾までに真空度を保持するために切断口を溶接す
るか、あるいは真空コンパウンドで覆ってやると良い。
When the desired degree of vacuum is reached, the diameter of the metal pipe for exhaust that is connected to the vacuum pump is flattened to bring it into close contact with the pipe, and the degree of vacuum is maintained before cutting. in this case,
It is a good idea to weld the cut end or cover it with vacuum compound to maintain the vacuum level before explosive squeezing.

かかる前処理を行なった後、爆発圧搾における装置の設
定を行ない、爆発圧搾を行なう。
After performing such pretreatment, the apparatus for explosive compression is set and explosive compression is performed.

爆発圧搾の際、成形を行な°うアモルファス粉末の装填
された金属容器の上部には、粘土などの不活性物質を、
金属容器と同じ口径の円錐形にして置き、爆発時に生じ
る上部からの衝撃波を防ぐ事が好ましい。また1部には
、金属容器が全体にわたって均一な成形圧力を得るため
の筒状補助容器を置く。これらの補助容器は、上部の成
形用金属管と、同−径及び同一形状を持つ材質は他の金
属パイプあるいは金属以外の物でも良いが、金属容器と
同じものを使用する方が作業し易い。しかし、この補助
容器は、下部における衝撃の反射を防ぐ効果も有してお
り、そのためには成形容器と同種の材質、あるいは衝撃
波の通過し易い材質が好ましい。補助容器と金属容器の
接合は、本発明者は粘着テープによって行なったが、ア
モルファス粉末の特性を損なわないなら、溶接などの方
法で固定しても良い。
During explosive compression, an inert substance such as clay is placed on top of the metal container loaded with the amorphous powder to be shaped.
It is preferable to place it in a conical shape with the same diameter as the metal container to prevent the shock wave from the top generated during an explosion. Also, in one part, a cylindrical auxiliary container is placed to obtain uniform molding pressure over the entire metal container. These auxiliary containers may be made of other metal pipes or materials other than metal that have the same diameter and shape as the upper molding metal tube, but it is easier to work if the same material as the metal container is used. . However, this auxiliary container also has the effect of preventing impact reflection at the lower part, and for this purpose, it is preferably made of the same material as the molded container or a material through which shock waves can easily pass. The auxiliary container and the metal container were joined by adhesive tape by the present inventor, but they may be fixed by a method such as welding as long as the characteristics of the amorphous powder are not impaired.

次に、爆薬保持筒内に成形する金属容器を設置する。こ
の場合、爆薬の中心に金属容器を設置することが重要で
ある。そのためには、爆薬保持筒の内径と同一径を持つ
物質の中心に、金属容器と同−の外径及び形状を有する
孔を設け、その中にはめ込むとよい。本発明者は厚さi
omiの発泡スチロールを用いたが、加工性の良い他の
物質でも良い。
Next, a metal container to be formed into the explosive holding cylinder is installed. In this case, it is important to place a metal container in the center of the explosive. For this purpose, it is preferable to provide a hole having the same outer diameter and shape as the metal container in the center of a material having the same diameter as the inner diameter of the explosive holding cylinder, and fit the material into the hole. The inventor has determined the thickness i
Although omi Styrofoam was used, other materials with good processability may be used.

かかる方法で設置を行なった後、爆薬を爆薬保持筒内に
装填し上部より電気***にて起爆する。
After installation in this manner, the explosive is loaded into the explosive holding cylinder and detonated from the top with an electric detonator.

本発明においては、爆轟時に爆速2,000〜5.00
07i/或好ましくは2,000m/5ec−4,00
0V式を有する爆薬を用いる。5 + 000%/se
cを越えるとアモルファスが過剰な成形圧力、熱によっ
て結晶形に変化したり、また得られた成形体の内部に割
れなどの欠陥を生じる傾向が著しい。
In the present invention, the detonation speed during detonation is 2,000 to 5.00.
07i/or preferably 2,000m/5ec-4,00
Use explosives with 0V type. 5 + 000%/se
If it exceeds c, there is a marked tendency for the amorphous to change into a crystalline form due to excessive molding pressure and heat, and for defects such as cracks to occur inside the obtained molded body.

爆発圧搾後、金属容器は切削ILどの機械力ロエあるい
は薬品による溶解によって取り除かれるが、目的に応じ
てはそのままでも良い。
After explosive squeezing, the metal container is removed by cutting, IL, mechanical force, or melting with chemicals, but it may be left as is depending on the purpose.

また、金属容器として内部アモルファスの結晶化温度よ
りも低(・融点を持つ羽料を用(・たならば、加熱によ
って融解させても良い。
In addition, if the metal container is made of feather material that has a melting point lower than the crystallization temperature of the internal amorphous material, it may be melted by heating.

以上、本願発明の詳細につい又記載してきたが、本発明
において成形体全体にアモルファスの特性を保持し、か
ついかに割れなどの欠陥のない緻密な一体の成形体を得
るかが解決すべき問題点であった。
The details of the present invention have been described above, but the problem to be solved in the present invention is how to maintain amorphous characteristics in the entire molded product and obtain a dense integral molded product without defects such as cracks. Met.

本発明者らは、それらを克服すべくために多大な研究を
重ね、アモルファス特有の性質を有し内部に割れのない
均一な緻密一体化したアモルファス成形体を得ることが
できた。
The present inventors have conducted extensive research to overcome these problems, and were able to obtain a uniform, densely integrated amorphous molded body that has properties unique to amorphous and has no internal cracks.

以下、実施例によって本発明ケ説明する。The present invention will be explained below with reference to Examples.

実施例1 牙1図に示す方法を用いての圧搾成形を行った。Example 1 Compression molding was performed using the method shown in Fig. 1.

長さ150I、外径31.5111+、肉厚1.451
fiの鋼管に、厚さ51111の円板状の床鋼板を溶接
して、底部にφ2m+の穴加工を行ない、同径を有する
真空排気用の薄肉銅パイプをさし込み固着して容器を製
作した。
Length 150I, outer diameter 31.5111+, wall thickness 1.451
Weld a disc-shaped floor steel plate with a thickness of 51111 mm to the fi steel pipe, drill a φ2m+ hole in the bottom, and insert and secure a thin-walled copper pipe for vacuum exhaust with the same diameter to create a container. did.

この容器内に少量の金属アルミ粉を入れ、鋼容器内に押
治具を差込んでアルミラプレスで加圧して、底部の穴を
金属粉の成形体でぶ、さいた。これは後の真空排気にお
いて、アモルファス粉末が吸引されないための金属フィ
ルターとして作用する。
A small amount of metal aluminum powder was placed in this container, a pushing jig was inserted into the steel container, and pressure was applied with an almirah press to make a hole in the bottom of the container filled with a metal powder compact. This acts as a metal filter to prevent amorphous powder from being sucked in during subsequent evacuation.

内部をアルコールで洗浄した後、Fe−8i−B系より
なるアモルファス粉末を、容器周囲をたたきながら均一
に充填した。容器上部の金属栓は上部外径28.5φ、
1部外径28φ、長さ30I111のもので上端面より
深さ20m+111程入れて、瞬間接着剤(商品名アロ
ンアルファ)で固定、周囲を真空コンノくランドで覆い
、真空度I X 101torrになるまで排気した。
After cleaning the inside with alcohol, an amorphous powder made of Fe-8i-B was uniformly filled around the container by tapping. The metal stopper at the top of the container has an upper outer diameter of 28.5φ.
One part has an outer diameter of 28φ and a length of 30I111, and it is inserted to a depth of about 20m + 111 from the upper end surface, fixed with instant adhesive (product name Aron Alpha), and the surrounding area is covered with a vacuum conduit land until the degree of vacuum reaches I x 101torr. Exhausted.

次に、管下端に接続した真空引き用導管の銅ノ々イブ内
部をベンチ等でつぶして真空度を保持させた状態で切断
し、更にその切断口を真空コンノくランドで真空保持の
ために覆った。真空排気を行った金属管容器上部には、
円錐状の粘土をのせ、下部には同種の鋼管長さ50−を
補助管として、同軸的に配置し粘着テープにより連結固
定させた。
Next, the inside of the copper nob of the vacuum conduit connected to the lower end of the tube is crushed with a bench etc. to maintain the vacuum level, and then cut, and the cut end is placed in a vacuum conduit land to maintain the vacuum. Covered. At the top of the evacuated metal tube container,
A cone-shaped clay was placed, and a 50-length steel pipe of the same type was placed coaxially at the bottom as an auxiliary pipe, and connected and fixed with adhesive tape.

爆薬保持筒としては紙筒を用いたが、紙筒の内部には、
金属容器の管部軸心が紙筒の中心になるように、中心に
金属部と同じ径の穴を持つ、厚さ101111mのスタ
イロフオムがはめこまれている。この穴に上記金属管を
設置する。この紙筒上部より爆速2100??7Sec
、2500m/secを有する粉状爆薬を装填した。こ
の際、紙筒の高さは粘土の頂点より50fi程高くした
。これは、爆速の安定領域で成形加工を行なうための、
爆薬の誘導部である。かかる設置の後、上部の中心にセ
ットされた電気***より起爆し成形を行なった。
A paper tube was used as the explosive holding tube, but inside the paper tube,
A styrofoam with a thickness of 101111 m and a hole with the same diameter as the metal part in the center is fitted so that the axis of the tube part of the metal container is at the center of the paper tube. Install the metal tube mentioned above into this hole. 2100 speed from the top of this paper cylinder? ? 7Sec
, 2500 m/sec. At this time, the height of the paper tube was set to be about 50 fi higher than the top of the clay. This is to perform molding in a stable region of explosive speed.
This is the guiding part of the explosive. After this installation, the detonator was detonated using an electric detonator set in the center of the upper part.

爆発圧搾後の容器は、全体に渡って均一に収縮されてお
り、内部粉末の飛散も認められない。
After the explosive compression, the entire container was uniformly shrunk, and no scattering of internal powder was observed.

金属容器の管部の横断面を切断し、ノくフ研磨後の断面
を観察した結果、いづれの成形試料ともに金属光沢の鏡
面をもち肉眼的も割れのない緻密な成形体が得られた。
As a result of cutting a cross section of the tube part of the metal container and observing the cross section after polishing, it was found that all molded samples had a mirror surface with metallic luster and were dense molded bodies with no cracks to the naked eye.

X線検査の結果成形体はアモルスの層の均一層であるこ
とが判明した。
X-ray examination revealed that the molded body was a homogeneous layer of amorth.

実施例2 真空新気処理を省いた外は実施例1と同条件で海神し棒
状圧搾成形体を得た。横断面をパフ研磨したところ断面
穴に斑点状に金属光沢を欠くところが若干存在するがX
g的にi$全全体してボイドのないアモルファス緻密成
形体が得られていることをたしかめた。
Example 2 A rod-shaped pressed product was obtained under the same conditions as in Example 1 except that the vacuum fresh air treatment was omitted. When I puff-polished the cross section, there were some spots in the cross-sectional hole that lacked metallic luster.
It was confirmed that an amorphous dense molded body without voids was obtained throughout the entire process.

実施例3 実施例1の爆薬を爆速4800rn/secの爆薬に変
えてFe−8i−B系のアモルファス粉末を爆発圧搾し
”CX線的にアモルファスとみとめられる成形体を得た
Example 3 The explosive of Example 1 was replaced with an explosive having a detonation speed of 4800 rn/sec, and Fe-8i-B-based amorphous powder was explosively compressed to obtain a compact that was recognized as amorphous by CX-ray.

この成形体の断面をパフ研磨した後肉眼では認められ1
よいがミクロ観察では中心部に微細なりラックが数ケ所
認められた。
After puff-polishing the cross-section of this molded body, 1 was observed with the naked eye.
It was good, but microscopic observation revealed several fine racks in the center.

実施例4 実施例1の条件を用いて、Co−8i−B系のアモルフ
ァス合金について行なった結果、パフ研磨径断面を観察
した結果断面においてむらのない金属光沢を有した、割
れのない緻密な成形体となっていた。
Example 4 Using the conditions of Example 1, a Co-8i-B based amorphous alloy was examined. As a result, the cross section of the puff polishing diameter was observed. It had become a molded body.

X線試験の結果アモルファス状態であることを確認した
As a result of an X-ray test, it was confirmed that it was in an amorphous state.

実施例5 爆速4000m/S6Cを有する粉状爆薬を用いて、C
o−MO系アモルファス粉末を、同様に圧搾を行なった
結果、バス研磨断面が均一な金属面光沢を有し完全に一
体化されたアモルファスの緻密な成形体を得た。
Example 5 C
The o-MO amorphous powder was similarly pressed to obtain a dense amorphous molded body whose bath-polished cross section had uniform metallic luster and was completely integrated.

実施例10 上記について、爆速7000m/secを有するシート
爆薬を用いて行なった結果、断面観察したところ成形体
は中心にボイドが生じており、割itも認められた。
Example 10 The above was carried out using a sheet explosive having a detonation speed of 7000 m/sec. When the cross section was observed, a void was formed in the center of the molded product, and cracking was also observed.

比較例l Fe−8i−B系のアモルファス粉末な、実施例1と同
様な前処理を行ない、爆速7 Q Q Qm/Secを
有するシート状の爆薬を用いて、爆発圧搾を行なった。
Comparative Example 1 Fe-8i-B amorphous powder was pretreated in the same manner as in Example 1, and explosive compression was performed using a sheet-like explosive having an explosion velocity of 7 Q Q Qm/Sec.

この際爆薬は紙筒を用いずに、直接金属管に巻きつけて
電気***より起爆させた。得られた成形体を1中心に穴
が生じかつ周囲に無数の割れが認められた。
At this time, the explosives were wrapped directly around a metal tube and detonated using an electric detonator, without using a paper tube. A hole was formed at one center of the obtained molded body, and numerous cracks were observed around the circumference.

比較例2 長さl Q Q a 、外径1611m+、肉厚111
II+を有するポリエチ管に、Fe−8i−B系アモル
ファス粉末を装填した。なおこの際、上部及び1部に1
は外径14m、長さ101111+の栓をはめ込んだ。
Comparative example 2 Length l Q Q a, outer diameter 1611 m+, wall thickness 111
A polyethylene tube with II+ was loaded with Fe-8i-B based amorphous powder. At this time, add 1 part to the top and 1 part.
A stopper with an outer diameter of 14 m and a length of 101111+ was fitted.

接合を工瞬間接着材によって行ない、その後真空排気を
行なって、実施例1に従って爆発圧搾を実施した。その
結果、ポリエチ管は破壊され、内部粉末は飛散した。
Bonding was performed using an instant adhesive, followed by vacuum evacuation and explosive compression according to Example 1. As a result, the polyethylene tube was destroyed and the powder inside was scattered.

比較例3 実施例3において、爆速530Qm/secを有するシ
ート爆薬を用いて、爆発圧搾した結果、パフ研磨した成
形体断面は金属光沢を有しているか断面には肉眼でみら
れる小さな割れが認められた。
Comparative Example 3 In Example 3, as a result of exploding and squeezing using a sheet explosive having an explosion velocity of 530 Qm/sec, the cross section of the puff-polished molded product had a metallic luster or small cracks that were visible to the naked eye were observed on the cross section. It was done.

実施例5 金属管容器の底栓を、浴接ぜずに実施例10条件で爆発
圧搾した結果、金属管中央部より下の成形体は飛散して
残っていなかった。
Example 5 As a result of explosive squeezing of the bottom stopper of a metal tube container under the conditions of Example 10 without bath contact, the molded body below the center of the metal tube was scattered and did not remain.

実施例8 爆速1100t′n/sec以下を有する粉状爆薬を用
いて、Ni−Zr系アモルファス粉末を爆発圧搾した。
Example 8 Ni-Zr amorphous powder was detonated and compressed using a powdered explosive having a detonation velocity of 1100 t'n/sec or less.

その他の条件は実施例1と同じである。その結果、得ら
れた成形体のパフ研磨断面は金属光沢が1工(、手ハン
マー偽撃でこわれる程度の粗なアモルファス成形体であ
った。
Other conditions are the same as in Example 1. As a result, the puff-polished cross-section of the molded product obtained was an amorphous molded product with a rough metallic luster (one level) that could be broken by a false blow with a hand hammer.

【図面の簡単な説明】[Brief explanation of the drawing]

牙1図は、アモルファス粉末の爆発圧搾成形方法の一態
様を示す。 1:金属容器    9:金属管中)0固定材2:底栓
      lO:支持板 3:金属フィルター 11;爆薬保持筒4:アモルファ
ス粉体 12:支持筒 5:上部栓     13:爆薬 6:真空引き用導管 14: %気***7:補助容器 8:粘土 特許田麩 旭化成工業株式会社
Figure 1 shows one embodiment of a method for explosive compression molding of amorphous powder. 1: Metal container 9: In metal tube) 0 Fixing material 2: Bottom plug 1O: Support plate 3: Metal filter 11; Explosive holding cylinder 4: Amorphous powder 12: Support cylinder 5: Top plug 13: Explosive 6: Vacuuming Conduit 14: % air detonator 7: Auxiliary container 8: Clay patented wheat Asahi Kasei Corporation

Claims (1)

【特許請求の範囲】[Claims] 半導体、半金属、金属のアモルファス 粉末を筒状の金
属容器に充填し、爆鋒時において爆速2.000〜5 
、01)0m7setを爆薬を用いて、前記容器内にお
いて同軸的に圧搾、固形化することを特徴とするアモル
ファス、成形体の成形方法
Semiconductor, metalloid, and metal amorphous powders are filled into a cylindrical metal container, and when exploded, the explosion speed is 2.000 to 5.
, 01) A method for forming an amorphous molded body, characterized by compressing and solidifying 0 m7 set coaxially in the container using explosives.
JP57116930A 1982-07-07 1982-07-07 Forming method of amorphous forming body Pending JPS597433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57116930A JPS597433A (en) 1982-07-07 1982-07-07 Forming method of amorphous forming body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57116930A JPS597433A (en) 1982-07-07 1982-07-07 Forming method of amorphous forming body

Publications (1)

Publication Number Publication Date
JPS597433A true JPS597433A (en) 1984-01-14

Family

ID=14699207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57116930A Pending JPS597433A (en) 1982-07-07 1982-07-07 Forming method of amorphous forming body

Country Status (1)

Country Link
JP (1) JPS597433A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194001A (en) * 1984-03-14 1985-10-02 Nippon Denso Co Ltd Manufacture of shaped amorphous metallic body
JPS61195905A (en) * 1985-02-25 1986-08-30 Nippon Denso Co Ltd Amorphous coated body and its production
US4711795A (en) * 1984-03-14 1987-12-08 Nippondenso Co., Ltd. Method of manufacturing an amorphous-metal-coated structure
US4906306A (en) * 1987-06-29 1990-03-06 Nippon Oil And Fats Co., Ltd. Amorphous metal-metal composite article, a method for producing the same, and a torque sensor using the same
JPH073469A (en) * 1993-10-01 1995-01-06 Nippondenso Co Ltd Amorphous coating body and formation thereof
WO2014003603A1 (en) * 2012-06-29 2014-01-03 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Московский Государственный Технический Университет Имени Н.Э.Баумана" (Мгту Им. Н.Э. Баумана) Device for the explosive compaction of materials

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194001A (en) * 1984-03-14 1985-10-02 Nippon Denso Co Ltd Manufacture of shaped amorphous metallic body
US4711795A (en) * 1984-03-14 1987-12-08 Nippondenso Co., Ltd. Method of manufacturing an amorphous-metal-coated structure
JPS61195905A (en) * 1985-02-25 1986-08-30 Nippon Denso Co Ltd Amorphous coated body and its production
US4906306A (en) * 1987-06-29 1990-03-06 Nippon Oil And Fats Co., Ltd. Amorphous metal-metal composite article, a method for producing the same, and a torque sensor using the same
JPH073469A (en) * 1993-10-01 1995-01-06 Nippondenso Co Ltd Amorphous coating body and formation thereof
WO2014003603A1 (en) * 2012-06-29 2014-01-03 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Московский Государственный Технический Университет Имени Н.Э.Баумана" (Мгту Им. Н.Э. Баумана) Device for the explosive compaction of materials
EA025856B1 (en) * 2012-06-29 2017-02-28 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технический университет имени Н.Э. Баумана" (МГТУ им. Н.Э. Баумана) Device for the explosive compaction of materials

Similar Documents

Publication Publication Date Title
US3220103A (en) Method of explosively compacting powders to form a dense body
CN111085769B (en) Manufacturing process of explosive composite pipe with negative pressure cavity based on liquid explosive
EP0997925A1 (en) Manufacture of X-ray tube targets
US3024526A (en) Explosive welding
UA61996C2 (en) Method of fabricating an enclosure, method of fabricating a container, enclosure, container and storage method
US3383208A (en) Compacting method and means
US4790735A (en) Materials processing using chemically driven spherically symmetric implosions
JPS597433A (en) Forming method of amorphous forming body
NO129807B (en)
US3276867A (en) Cermet materials and process of making
US4820141A (en) Method for the manufacture of formed products from powders, foils, or fine wires
US3022544A (en) Explosive compaction of powders
US3340053A (en) Gas-pressure bonding
US3112166A (en) Formation of hollow bodies from powdered materials
EP0187476B1 (en) Method for producing amorphous alloy shaped articles
JPS61502A (en) Molding method of powdery body
US4552742A (en) Materials processing using chemically driven spherically symmetric implosions
US20050281702A1 (en) Method of consolidating a powder
JP4415085B2 (en) Method and apparatus for impact pressure treatment of porous material
US3568248A (en) Plug closure in a container for subjecting sample to shock wave
RU2710828C1 (en) Method of producing composite materials from steel and mixtures of powders of nickel and tungsten boride
RU2320455C2 (en) Method for producing articles of amorphous magnetic alloys
US4809902A (en) Method of welding using particle acceleration
RU2077377C1 (en) Method of synthesis of diamond phases in graphite
Williams et al. Production of Tungsten—Iron—Nickel Alloys by Mechanical Alloying Technique