JP4956854B2 - Sealed battery and method of manufacturing sealed battery - Google Patents

Sealed battery and method of manufacturing sealed battery Download PDF

Info

Publication number
JP4956854B2
JP4956854B2 JP2000179463A JP2000179463A JP4956854B2 JP 4956854 B2 JP4956854 B2 JP 4956854B2 JP 2000179463 A JP2000179463 A JP 2000179463A JP 2000179463 A JP2000179463 A JP 2000179463A JP 4956854 B2 JP4956854 B2 JP 4956854B2
Authority
JP
Japan
Prior art keywords
sealed battery
liquid injection
injection port
fusible resin
sealed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000179463A
Other languages
Japanese (ja)
Other versions
JP2001357826A (en
Inventor
武義 野阪
健次 河野
雄一郎 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2000179463A priority Critical patent/JP4956854B2/en
Publication of JP2001357826A publication Critical patent/JP2001357826A/en
Application granted granted Critical
Publication of JP4956854B2 publication Critical patent/JP4956854B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Filling, Topping-Up Batteries (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は密閉形電池および密閉形電池の製造方法に係り、密閉形電池用パッケージに発電要素を仮収容した後、発電要素に電解液を含浸させてから発電要素を収容封止する密閉形電池および密閉形電池の製造方法に関する。
【0002】
【従来の技術】
図8に示す密閉形電池80は、ゲル状の電解質層を介して正極および負極が積層された発電要素81と、正極および負極にそれぞれ連結された正極端子82および負極端子83と、電解質層の外部漏洩や外気の内部侵入を防ぐために、正極端子82の開放端部および負極端子83の開放端部が外部露出するように発電要素81を収容封止する密閉形電池用パッケージ84とを有している。
【0003】
発電要素81は、セパレータを介して積層された正極および負極を巻回した後、径方向にプレスした楕円柱形状の巻回式とされている。
この発電要素81は、ゲル化した電解液を介して正極,負極およびセパレータを積層させたり、あるいは正極,負極およびセパレータを積層させてから巻回することが難しいため、あらかじめ電解液を吸収するとゲル化するポリマーを当該発電要素に添加しておき、当該発電要素に電解液を含浸させてゲル化させたり、あるいは重合性モノマーを電解液に添加しておき、当該発電要素に含浸させてから適宜な手段により電解液を重合させてゲル化させている。
【0004】
密閉形電池用パッケージ84は、アルミニウム箔製の金属箔芯材と、金属箔芯材の表面に沿うポリエチレンテレフタレート(PET)等のポリエステル樹脂やナイロン等のポリアミド樹脂、あるいはポリイミド樹脂製の保護層と、金属箔芯材の裏面に沿うポリプロピレン(PP)あるいはポリエチレン(PE)等のポリオレフィン系樹脂製の金属接着性を有する融着性樹脂層とを積層させた金属樹脂複合フィルム85が多用される。
【0005】
このような密閉形電池80は、あらかじめ矩形状に形成された一対の金属樹脂複合フィルム85,85のうちの一方に発電要素81の形状に対応した窪み86を形成しておき、これらの金属樹脂複合フィルム85,85により発電要素81を厚み方向に挟み、次いで各金属樹脂複合フィルム85,85の4辺を加熱しながら厚さ方向に加圧することにより融着性樹脂層同士を融着させて所定幅寸法を有する融着代87を形成するとともに、正極端子82および負極端子83の対辺の一部を融着させずに注液口88を形成した後、注液口88から電解液を発電要素81に含浸させる(図8中、矢印参照)。
次に、図9に示すように、注液口88を一対の金型89,89により融着封口して注液口融着代90を形成し、これにより発電要素81を収容封止する。
【0006】
なお、注液口88から電解液を発電要素81に含浸させるにあたっては、あらかじめ注液口88と同様な吸引口を注液口88の対辺に形成しておき、注液口88から電解液を注液するとともに吸引口から吸引することにより、発電要素81に対する電解液の含浸速度を速め、注液口および吸引口を融着封口して発電要素81を収容封止する場合もある。
【0007】
【発明が解決しようとする課題】
ところで、前述した密閉形電池80は、注液口88から電解液を発電要素81に含浸させるにあたって、注液口88の内面に電解液91が飛沫となって付着する可能性がある(図9(A)参照)。
この場合、注液口88を融着封口するにあたって、各融着性樹脂層の界面に電解液91が介在するため、注液口融着代90の融着強度が低くなり、封止不良が生じる虞れがある(図9(B)参照)。
【0008】
本発明は、前述した問題点に鑑みてなされたものであり、その目的は密閉形電池用パッケージ内の発電要素に電解液を含浸させてから注液口を融着封口しても、注液口融着代に封止不良が生じる虞れを低くできる密閉形電池および密閉形電池の製造方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明の密閉形電池は、電解質層を介して正極および負極が積層された発電要素と、前記発電要素を収容する密閉形電池用パッケージとを有し、前記密閉形電池用パッケージは金属箔芯材と融着性樹脂層とを有し、前記密閉形電池用パッケージの融着性樹脂層同士を互いに融着させる融着代により前記発電要素が収容封止された密閉形電池を前提としている。そして、前述した目的を達成するために、本発明の密閉形電池は、請求項1及び請求項2に記載したように、前記融着代の少なくとも一部における幅方向端部から融着性樹脂が搾出していることを特徴としている。ここで、融着性樹脂は、融着代の幅方向一端部あるいは幅方向両端部から搾出していればよく、融着代における厚さ方向の両面が互いに平坦、かつ、平行であってもよい。このような密閉形電池においては、融着代の幅方向端部から融着性樹脂が搾出しているため、例えば融着代の幅方向開放端部から融着性樹脂が搾出していれば注液口の内面を構成する膜部あるいは融着性樹脂層が溶融しながら注液口融着代の幅方向一端部に向かって流動したことが外部から確認でき、融着代の発電要素側端部から融着性樹脂が搾出していれば密閉形電池用パッケージ内の空隙を充塞できることになる。
【0010】
ここで、融着代の一部とは、電解液を密閉形電池用パッケージ内に注液するために、一時的に形成された注液口を融着封口した注液口融着代を含む融着代の任意位置を指す。そして、このような融着代は、幅方向中央部の厚さ寸法が幅方向一端部あるいは幅方向両端部の厚さ寸法よりも小さくなるように、例えば幅方向に沿った断面形状が略凹状となるように形成しておいたり、あるいは幅方向端部に向かう先細り状に形成しておくことが好ましい
【0011】
これらのような断面形状を得るためには、注液口を融着封口するために用いられる一対の金型のうち、一方の金型における型面の中央部を端部よりも突出させておけばよく、具体的な型面形態として凸状の円弧面や互いに近接する方向に対して交差する斜面等を例示できる。
また、融着代の断面形状を所望形状にするためには、一対の金型のうち、一方の金型を注液口の軸方向一端側にのみ接触させ、次いで注液口の外面に接触した状態を維持したまま型面を注液口の軸方向他端部に向かって摺動移動あるいは転動移動させてもよい。
【0012】
この際、融着代は、その最小厚さ寸法を一定以上に確保するために、あらかじめ密閉形電池用パッケージの内面において、注液口の内面に対応する領域の融着性樹脂層を厚膜化しておけばよい。
具体的には、適宜な融着性樹脂製の膜部を塗布あるいは貼付により該当個所に設けておけばよく、注液口を融着封口するにあたって、膜部を融着させながら融着代の幅方向一端部あるいは幅方向両端部に流動させればよい。
なお、注液口の内面に膜部を設ける場合、膜部と密閉形電池用パッケージの内面を構成する融着性樹脂層とが同一材質であればよいが、所望の機能が得られる別の材質でもよい。
【0013】
このように構成された密閉形電池においては、融着代の少なくとも一部における幅方向中央部の厚さ寸法が幅方向端部の厚さ寸法よりも小さいため、一時的に形成された注液口の内面に電解液の飛沫が付着しても、注液口を融着封口するにあたって、密閉形電池用パッケージを構成する融着性樹脂層や注液口の内面に設けられた膜部が溶融しながら電解液の飛沫を押し流すように注液口融着代の幅方向一端部あるいは幅方向両端部に向かって流動することになる。
従って、このような密閉形電池においては、注液口の内面における少なくとも一部が電解液の飛沫に汚染されない界面となって融着封口され、これにより従来に比較して融着代の融着強度が高くなり、封止不良が生じる虞れを低減できることになる。
【0014】
また、本発明の密閉形電池は、前記融着代の幅方向に沿った断面形状が略凹状であることが好ましい。ここで、融着代の断面形状としては、融着代における厚さ方向の片面あるいは両面に例えば凹状の円弧面や、あるいは凹状の円弧面を介して一対の平坦面が交差配置されたV字面を形成すればよく、融着代における厚さ方向の両面が対称形状であるか否かは任意である。
【0015】
このような密閉形電池においては、融着代の幅方向に沿った断面形状が略凹状であるため、密閉形電池用パッケージを構成する融着性樹脂層や注液口の内面に設けられた膜部が溶融しながら注液口融着代の幅方向両端部に向かって流動したことが外部から確認できることになる。
【0016】
さらに、本発明の密閉形電池は、前記融着代の幅方向に沿った断面形状が幅方向一端部に向かう先細り状であることが好ましい。ここで、幅方向一端部とは、融着代の幅方向開放端部と、発電要素側端部とのうちの一方である。
【0017】
このような密閉形電池においては、融着代の幅方向に沿った断面形状が幅方向一端部に向かう先細り状であるため、密閉形電池用パッケージを構成する融着性樹脂層や注液口の内面に設けられた膜部が溶融しながら注液口融着代の幅方向一端部に向かって流動したことが外部から確認できることになる。
【0020】
次に、本発明の密閉形電池の製造方法は、電解質層を介して正極および負極が積層された発電要素を金属箔芯材と融着性樹脂層とを有する密閉形電池用パッケージ内に収容した後、前記密閉形電池用パッケージの融着性樹脂層同士を互いに融着させて融着代を形成するとともに前記融着性樹脂層同士を互いに融着させずに注液口を形成し、次いで前記注液口から前記発電要素に電解液を含浸させてから、一対の金型により前記注液口を厚み方向に挟持して融着封口する注液口融着代により前記発電要素を収容封止する密閉形電池の製造方法を前提としている。
【0021】
そして、本発明の密閉形電池の製造方法は、請求項4に記載したように、前記注液口を融着封口するにあたって、前記一対の金型のうち、一方の金型における型面が互いに近接する方向に対して交差する斜面を有する金型で挟持することによって前記密閉形電池用パッケージを構成する融着性樹脂層の融着性樹脂を溶融させながら前記注液口融着代の幅方向端部に向かって流動させることを特徴とし、また請求項5に記載したように、あらかじめ前記密閉形電池用パッケージにおける前記注液口の内面に対応する一対の領域のうちの少なくとも一方に融着性樹脂製の膜部を別途設けておき、前記注液口を融着封口するにあたって、前記一対の金型のうち、一方の金型における型面が互いに近接する方向に対して交差する斜面を有する金型で挟持することによって前記膜部を溶融させながら前記注液口融着代の幅方向端部に向かって流動させることを特徴としている。
【0022】
このような密閉形電池の製造方法においては、密閉形電池用パッケージを構成する融着性樹脂層あるいは膜部の融着性樹脂を溶融させながら注液口融着代の幅方向端部に向かって流動させるため、注液口の内面の融着性樹脂の表面に電解液の飛沫が付着しても、融着性樹脂が溶融しながら注液口融着代の幅方向端部に向かって流動することにより、電解液が押し流されることになる。従って、このような密閉形電池の製造方法においては、注液口の内面における少なくとも一部が電解液の飛沫に汚染されない界面となって注液口が融着封口されるため、これにより従来に比較して注液口融着代の融着強度が高くなり、封止不良が生じる虞れを低減できることになる。
【0023】
また、本発明の密閉形電池の製造方法は、請求項6および7に記載したように、あらかじめ前記各金型のうち、少なくとも一方の型面における中央部を突出させておくことにより、前記注液口融着代における幅方向中央部の厚さ寸法を幅方向一端部の厚さ寸法よりも小さくさせることを特徴としている。ここで、本発明は、一対の金型のうちの一方の型面のみ中央部を突出させておいてもよく、各金型の双方の型面の中央部を突出させておいてもよい。また、各金型の型面の中央部を突出させておく場合、各型面は互いに同一形態である必要はなく、互いに異なる型面を有していてもよい。
【0024】
このような密閉形電池の製造方法においては、金型の型面として例えば凸状の円弧面や、あるいはシール方向に対して交差する斜面等を採用することにより、注液口融着代における幅方向中央部の厚さ寸法を幅方向一端部の厚さ寸法よりも小さくさせるため、注液口を融着封口するにあたって、融着性樹脂が確実に注液口融着代の幅方向端部に向かって流動することになる。
【0025】
そして、本発明の密閉形電池の製造方法においては、請求項に記載したように、前記型面が凸状の円弧面であるため、型面がシール方向に対して交差する斜面である場合に比較して、注液口融着代の特定個所にシール力が集中し難く、これにより注液口融着代を破損させる虞れを少なくできる。
【0026】
さらに、本発明の密閉形電池の製造方法は、請求項9および10に記載したように、前記注液口を融着封口するにあたって、前記各金型のうちの一方の型面を前記注液口の軸方向一端側にのみ接触させ、次いで前記注液口の外面に接触した状態を維持したまま前記型面を前記注液口の軸方向他端部に向かって移動させることを特徴としている。このような密閉形電池の製造方法においては、一方の金型を摺動移動あるいは転動移動させるため、電解液を略全量排除できるとともに、注液口融着代における厚さ方向の両面を平坦、かつ、互いに平行にできる。
【0027】
また、本発明の密閉形電池の製造方法においては、請求項11及び12に記載したように、前記注液口融着代の幅方向端部に融着性樹脂を搾出させるため、注液口の内面に付着した電解液の飛沫が確実に注液口融着代の外部に排出されることになる。
【0028】
さらに、本発明の密閉形電池の製造方法においては、前記注液口の内面に対応する一対の領域にそれぞれ前記膜部を設けておくことが好ましく、これらの膜部をそれぞれ同一方向に流動させることにより、注液口融着代の融着界面における少なくとも一部から確実に電解液の飛沫を除去でき、これにより注液口融着代に良好な封止性が得られることになる。
【0029】
【発明の実施の形態】
以下、本発明に係る実施形態を図面に基づいて詳細に説明する。なお、以下に説明する各実施形態において、既に図8および図9において説明した部材等については、図中に同一符号あるいは相当符号を付すことにより説明を簡略化あるいは省略する。
【0030】
図1に示すように、本発明に係る第1実施形態である密閉形電池10は、セパレータを介して積層された正極および負極を巻回した後、径方向にプレスして略楕円柱状に形成した巻回式の発電要素81と、電解質層の外部漏洩や外気の内部侵入を防ぐために、発電要素81の正極および負極にそれぞれ連結された正極端子82および負極端子83の各開放端部が外部露出するように発電要素81を収容封止する密閉形電池用パッケージ14とを有している。
【0031】
密閉形電池用パッケージ14を構成する金属樹脂複合フィルム15は、アルミニウム箔製の金属箔芯材と、金属箔芯材の表面に沿うポリエチレンテレフタレート(PET)等のポリエステル樹脂やナイロン等のポリアミド樹脂、あるいはポリイミド樹脂製の保護層と、金属箔芯材の裏面に沿うポリプロピレン(PP)あるいはポリエチレン(PE)等のポリオレフィン系樹脂製の金属接着性を有する融着性樹脂層とを積層させている。
【0032】
この密閉形電池10は、矩形状の金属樹脂複合フィルム15,15のうちの一方に発電要素81の形状に対応した窪み16を形成しておき、これらの金属樹脂複合フィルム15,15により発電要素81を厚み方向に挟み、次いで各金属樹脂複合フィルム15,15の4辺を加熱しながら厚さ方向に加圧することにより融着性樹脂層同士を融着させて所定幅寸法を有する融着代17A,17B,17C,17Dを形成するとともに、正極端子82および負極端子83の対辺である融着代17Dの一部を融着させずに注液口18を形成した後、注液口18から電解液を発電要素81に含浸させることにより電解液がゲル化された後、注液口18を一対の金型により封口して注液口融着代19が形成されている。
【0033】
ここで、金属樹脂複合フィルム15,15は、本発明に基づいて、融着性樹脂層の表面における融着代17Dを形成するための領域に膜部20,20が設けられている(図1中、交差ハッチング参照)。
膜部20,20は、融着性樹脂層と同一材質の酸変性ポリプロピレンとされ、膜厚寸法が30μm〜150μmとなるように設けられている。
【0034】
なお、これらの膜部20,20は、融着代17Dの全域にわたって形成しておいてもよく、あるいは注液口18の内面に対応する領域にのみ形成しておいてもよい。さらに、膜部20は、少なくとも注液口18の内面に対応する領域に設けられていればよく、金属樹脂複合フィルム15,15のうちの一方にのみ設けておいてもよい。
これらのような膜部20,20は、融着性樹脂層の表面に塗布することにより設けてもよく、あるいは別途膜状に形成してから融着性樹脂層の表面に貼付することにより設けてもよい。
また、これらの膜部20,20の融点は、融着性樹脂層の融点よりも低いことが好ましい。
【0035】
図2に示すように、この密閉形電池10において、電解液21を注液口18から発電要素81に含浸させるにあたって、飛沫となった電解液21が注液口18の内面に設けられた膜部20,20の表面に付着する(図2(A)参照)。
そして、注液口18を融着封口するために用いられる一対の金型22,23のうち、金型22は、シール方向(図中、上下方向)に対して直交する平坦な型面24を有している。一方、金型23の型面25は、シール方向に対して直交する軸線を有する凸状の円弧面とされ、その中央部が突出している。
【0036】
これらの金型22,23は、図示しないシール装置により互いに近接すると、溶融した膜部20,20同士を密着させ(図2(B)参照)、次いで各膜部20,20を溶融させながら注液口融着代19の幅方向中央部から幅方向両端部に向かって略均等に流動させることにより、その幅方向に沿った断面形状が凹状になるように、換言すれば注液口融着代19における幅方向中央部の厚さ寸法T1が幅方向一端部の厚さ寸法T2よりも小さくなるように注液口融着代19を形成する(図2(C)参照)。
このような注液口融着代19は、溶融した膜部20が幅方向一端部(図2(C)中、右方)から外部に搾出し、かつ、幅方向他端部(図2(C)中、左方)から密閉形電池用パッケージ14内の空隙26を充塞するように搾出している。
【0037】
前述した第1実施形態の密閉形電池10によれば、注液口融着代19における幅方向中央部の厚さ寸法T1が幅方向端部の厚さ寸法T2よりも小さいため、注液口18の内面に電解液21の飛沫が付着しても、膜部20,20が溶融しながら電解液21の飛沫を押し流すように注液口融着代19の幅方向両端部に向かって流動し、これにより従来に比較して注液口融着代19の融着強度が高くなり、封止不良が生じる虞れを低減できる。
【0038】
特に、この密閉形電池10によれば、注液口融着代19の幅方向に沿った断面形状が略凹状であるため、膜部20,20が溶融しながら注液口融着代19の幅方向両端部に向かって流動したことが外部から確認でき、これにより製造工程における不良品を確実に判別できる。
【0039】
また、前述した密閉形電池10によれば、注液口融着代19の幅方向両端部から溶融した膜部20が搾出しているため、膜部20,20の表面に付着した電解液21が注液口融着代19の外部に排出されることになる。すなわち、注液口融着代19は、清浄な界面を介して融着性樹脂層同士が融着することにより確実に融着封口できる。
特に、この密閉形電池10によれば、注液口融着代19の幅方向端部から搾出した膜部20が密閉形電池用パッケージ14内の空隙26を充塞するため、これにより従来に比較して注液口融着代19近傍の耐衝撃性が向上する。
【0040】
さらに、前述した第1実施形態によれば、密閉形電池を製造するにあたって、型面24の中央部が突出した金型22が用いられるため、注液口融着代19における幅方向中央部の厚さ寸法T1を幅方向一端部の厚さ寸法T2よりも容易に小さくでき、これにより注液口18を確実に融着封口できる。
特に、この第1実施形態によれば、型面24が凸状の円弧面であるため、型面がシール方向に対して交差する斜面である場合に比較して、注液口融着代19の特定個所にシール力が集中し難く、これにより注液口融着代19を破損させる虞れが少ない。
【0041】
また、このような密閉形電池10の製造方法によれば、注液口18の内面に対応する一対の領域にそれぞれ膜部20,20を設けておくため、これらの膜部20,20をそれぞれ同一方向に流動させることにより、注液口融着代19の融着界面における少なくとも一部から確実に電解液21の飛沫を除去でき、これにより注液口融着代に良好な封止性が得られる。
【0042】
図3には、本発明に係る第2実施形態の密閉形電池30が示されている。なお、以下に説明する各実施形態において、既に図1および図2において説明した部材等については、図中に同一符号あるいは相当符号を付すことにより説明を簡略化あるいは省略する。
【0043】
図3に示す第2実施形態において、密閉形電池30の注液口を融着封口するための金型33は、シール方向に対して交差する平坦な型面35を有している。この密閉形電池30は、注液口の内面に設けられた膜部20が注液口融着代39の幅方向一端部(図3中、右方)からのみ外部に搾出され、注液口融着代39の幅方向に沿った断面形状が発電要素81に向かう先細り状となっている。
このような第2実施形態においても、前述した第1実施形態と同様な効果が得られる。
【0044】
図4に示すように、本発明に係る第3実施形態において、密閉形電池40の注液口を融着封口するための金型43は、凹状の円弧面を介して一対の平坦面が交差配置されたV字状の型面45を有している。この密閉形電池40は、注液口の内面に設けられた膜部20が注液口融着代39の幅方向両端部から略均等に外部に搾出され、注液口融着代49の幅方向に沿った断面形状が凹状となっている。
このような第3実施形態においても、前述した第1実施形態および第2実施形態と同様な効果が得られる。
【0045】
図5に示すように、本発明に係る第4実施形態において、密閉形電池50の注液口は、前述した第1実施形態において例示した金型23を一対用いて融着封口される。この密閉形電池50は、注液口の内面に設けられた膜部20が注液口融着代59の幅方向両端部から略均等に外部に搾出され、注液口融着代59の幅方向に沿った断面形状が略鼓状となっている。
このような第4実施形態においても、前述した第1実施形態ないし第3実施形態と同様な効果が得られる。
【0046】
図6に示すように、本発明に係る第5実施形態において、密閉形電池60の注液口68は、前述した第1実施形態において例示した金型23と、スクレーパ状の金型63とを用いて融着封口される。金型63は、注液口融着代69の幅寸法よりも小さな厚さ寸法T3を有するとともに、型面65が凸状の円弧面とされている。
そして、この第5実施形態においては、金型63の型面65が注液口68の外面における軸方向一端側(図6中、左方)にのみ接触するように、金型23,63により注液口68を挟持し、次いで注液口68の外面に接触した状態を維持したまま型面65を注液口68の軸方向他端部(図6中、右方)に向かって移動させることにより、注液口68を融着封口して注液口融着代69を形成する。
従って、注液口融着代69は、幅方向一端部から溶融した膜部20が搾出されているとともに、厚さ方向の両面が平坦、かつ、互いに平行とされている。
【0047】
このような第5実施形態によれば、注液口68を融着封口するために、注液口68の外面に接触した状態を維持したまま型面65を注液口68の軸方向他端部に向かって移動させることにより、注液口融着代69の幅方向一端部から膜部20を搾出させるため、注液口68の内面に飛沫となって付着した電解液21を略全量排除できるとともに、注液口融着代69における厚さ方向の両面を平坦、かつ、互いに平行にできる。
また、この第5実施形態によれば、型面65を注液口68の軸方向他端部に向かって移動させることにより、注液口融着代69の幅方向一端部から膜部20を搾出させるため、金型63の移動寸法を適宜選択することにより幅寸法が異なる他の注液口融着代にも対応できる。
【0048】
なお、本発明は、前述した各実施形態に限定されるものでなく、適宜な変形,改良等が可能である。
例えば、前述した各実施形態において、矩形状に形成された一対の金属樹脂複合フィルムにより構成された密閉形電池用パッケージを有する密閉形電池が例示されていたが、図7に示す密閉形電池70も本発明に含まれる。
【0049】
すなわち、密閉形電池70の密閉形電池用パッケージ74は、あらかじめ発電要素81の形状に対応した窪みを金属樹脂複合フィルム75に形成しておき、金属樹脂複合フィルム75を二つ折りにした後、発電要素81を厚さ方向に挟むとともに金属樹脂複合フィルム75の折目75Aが正極端子82および負極端子83の対辺に沿うように配置し、次いで金属樹脂複合フィルム75の3辺を加熱しながら厚さ方向に加圧することにより融着性樹脂層同士を融着させて融着代77A,77B,77Cを形成する。ここで、金属樹脂複合フィルム75は、あらかじめ融着代77Cに対応する融着性樹脂層の表面に膜部20が設けられている。
【0050】
そして、この密閉形電池70は、融着代77Cの一部を融着させずに形成した注液口から発電要素81に電解液を含浸させた後(図7中、矢印参照)、本発明に基づく適宜な手段により注液口を融着封口して注液口融着代が形成される。
【0051】
また、膜部は、一体厚みを有するとともに平坦な表面を有している必要はなく、端部に向かって薄膜化あるいは厚膜化しておいたり、あるいは表面に格子状等のスリットやディンプル等を形成しておいてもよい。
その他、前述した各実施形態において例示した発電要素,密閉形電池用パッケージ,融着代,融着性樹脂,注液口,注液口融着代,膜部,金型,型面等の材質,形状,寸法,形態,数,配置個所,厚さ寸法等は本発明を達成できるものであれば任意であり、限定されない。
【0052】
また、電解液が発電要素内でゲル化している電池について述べたが、一般的なセパレータを用い、電解液が発電要素内で液状で存在する電池にも、全く同様に適用できることはいうまでもない。
【0053】
【発明の効果】
以上、説明したように、本発明の密閉形電池によれば、請求項1に記載したように、密閉形電池用パッケージに形成された融着代の少なくとも一部における幅方向端部から密閉形電池用パッケージを構成する融着性樹脂層の融着性樹脂が搾出しているため、一時的に形成された注液口の内面に飛沫となって付着した電解液を押し流すように、融着性樹脂層等が溶融しながら融着代の幅方向一端部あるいは幅方向両端部に向かって流動し、これにより従来に比較して融着代の融着強度が高くなり、封止不良が生じる虞れを低減でき、融着性樹脂が溶融しながら注液口融着代の幅方向一端部に向かって流動したことが外部から確認できる
【0054】
また、本発明の密閉形電池によれば、請求項2に記載したように、密閉形電池用パッケージに形成された融着代の少なくとも一部における幅方向端部から密閉型電池用パッケージの内面に設けた融着性樹脂製の膜部の融着性樹脂が搾出しているため、一時的に形成された注液口の内面に飛沫となって付着した電解液を押し流すように、融着性樹脂が溶融しながら融着代の幅方向一端部あるいは幅方向両端部に向かって流動し、これにより従来に比較して融着代の融着強度が高くなり、封止不良が生じる虞れを低減でき、融着性樹脂が溶融しながら注液口融着代の幅方向一端部に向かって流動したことが外部から確認できる
【0055】
次に、本発明の密閉形電池の製造方法によれば、請求項4に記載したように、注液口を融着封口するにあたって、一対の金型のうち、一方の金型における型面が互いに近接する方向に対して交差する斜面を有する金型で挟持することによって密閉形電池用パッケージを構成する融着性樹脂層の融着性樹脂を溶融させながら注液口融着代の幅方向端部に向かって流動させるため、注液口の内面に設けた融着性樹脂層の表面に電解液の飛沫が付着しても、融着性樹脂が溶融しながら注液口融着代の幅方向端部に向かって流動することにより、電解液が押し流され、これにより従来に比較して注液口融着代の融着強度が高くなり、封止不良が生じる虞れを低減できる。
【0056】
また、本発明の密閉形電池の製造方法によれば、請求項5に記載したように、あらかじめ密閉形電池用パッケージにおける注液口の内面に対応する一対の領域のうちの少なくとも一方に融着性樹脂製の膜部を別途設けておき、注液口を融着封口するにあたって、一対の金型のうち、一方の金型における型面が互いに近接する方向に対して交差する斜面を有する金型で挟持することによって膜部を溶融させながら注液口融着代の幅方向端部に向かって流動させるため、注液口の内面に設けた膜部の表面に電解液の飛沫が付着しても、膜部が溶融しながら注液口融着代の幅方向端部に向かって流動することにより、電解液が押し流され、これにより従来に比較して注液口融着代の融着強度が高くなり、封止不良が生じる虞れを低減できる。
【0057】
また、本発明の密閉形電池の製造方法によれば、請求項6及び7に記載したように、あらかじめ各金型のうち、少なくとも一方の型面における中央部を突出させておくことにより、前記注液口融着代における幅方向中央部の厚さ寸法を幅方向一端部の厚さ寸法よりも小さくさせるため、注液口を融着封口するにあたって、融着性樹脂が確実に注液口融着代の幅方向端部に向かって流動する。
【0058】
そして、本発明の密閉形電池の製造方法によれば、請求項に記載したように、型面が凸状の円弧面であるため、型面がシール方向に対して交差する斜面である場合に比較して、注液口融着代の特定個所にシール力が集中し難く、これにより注液口融着代を破損させる虞れを少なくできる。
【0059】
さらに、本発明の密閉形電池の製造方法によれば、請求項9及び10に記載したように、注液口を融着封口するにあたって、各金型のうちの一方の型面を注液口の軸方向一端側にのみ接触させ、次いで注液口の外面に接触した状態を維持したまま型面を前記注液口の軸方向他端部に向かって移動させるため、電解液を略全量排除できるとともに、注液口融着代における厚さ方向の両面を平坦、かつ、互いに平行にできる。
【0060】
また、本発明の密閉形電池の製造方法によれば、請求項11及び12に記載したように、注液口融着代の幅方向端部に融着性樹脂を搾出させるため、注液口の内面に付着した電解液の飛沫が確実に注液口融着代の外部に排出されることになる。そして、本発明の密閉形電池の製造方法によれば、注液口の内面に対応する一対の領域にそれぞれ膜部を設けておくことが好ましく、これらの膜部をそれぞれ同一方向に流動させることにより、注液口融着代の融着界面における少なくとも一部から確実に電解液の飛沫を除去でき、これにより注液口融着代に良好な封止性が得られる。
【図面の簡単な説明】
【図1】本発明に係る第1実施形態を示す全体斜視図である。
【図2】第1実施形態の要部を示す部分拡大断面図である。
【図3】第2実施形態の要部を示す部分拡大断面図である。
【図4】第3実施形態の要部を示す部分拡大断面図である。
【図5】第4実施形態の要部を示す部分拡大断面図である。
【図6】第5実施形態の要部を示す部分拡大断面図である。
【図7】本発明の変形例を示す全体斜視図である。
【図8】従来の密閉形電池を示す全体斜視図である。
【図9】従来の注液口融着代を示す部分拡大断面図である。
【符号の説明】
10,30,40,50,60,70 密閉形電池
14 密閉形電池用パッケージ
17A,17B,17C,17D 融着代
18 注液口
19 注液口融着代
20 膜部
21 電解液
22,23,33,43,63 金型
24,25,35,45,65 型面
81 発電要素
T1,T2 厚さ寸法
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sealed battery and a method for manufacturing a sealed battery, and a sealed battery in which a power generating element is temporarily accommodated in a sealed battery package and then the power generating element is impregnated with an electrolytic solution and then the power generating element is accommodated and sealed. And a method of manufacturing a sealed battery.
[0002]
[Prior art]
A sealed battery 80 shown in FIG. 8 includes a power generation element 81 in which a positive electrode and a negative electrode are laminated via a gel electrolyte layer, a positive electrode terminal 82 and a negative electrode terminal 83 connected to the positive electrode and the negative electrode, respectively, and an electrolyte layer. In order to prevent external leakage and internal entry of outside air, it has a sealed battery package 84 that houses and seals the power generation element 81 so that the open end of the positive electrode terminal 82 and the open end of the negative electrode terminal 83 are exposed to the outside. ing.
[0003]
The power generation element 81 is an elliptical column winding type in which a positive electrode and a negative electrode stacked via a separator are wound and then pressed in the radial direction.
Since this power generation element 81 is difficult to roll the positive electrode, the negative electrode and the separator through the gelled electrolytic solution, or to stack the positive electrode, the negative electrode and the separator and then absorb the electrolytic solution in advance, The polymer to be converted is added to the power generation element, and the power generation element is impregnated with an electrolyte solution to be gelled, or a polymerizable monomer is added to the electrolyte solution and the power generation element is impregnated as appropriate. The electrolytic solution is polymerized and gelled by various means.
[0004]
The sealed battery package 84 includes a metal foil core material made of aluminum foil, a polyester resin such as polyethylene terephthalate (PET) along the surface of the metal foil core material, a polyamide resin such as nylon, or a protective layer made of polyimide resin. A metal resin composite film 85 in which a metal-bonding fusible resin layer made of polyolefin resin such as polypropylene (PP) or polyethylene (PE) along the back surface of the metal foil core material is laminated is often used.
[0005]
Such a sealed battery 80 is formed by forming a depression 86 corresponding to the shape of the power generation element 81 in one of a pair of metal resin composite films 85, 85 formed in a rectangular shape in advance. The power generating element 81 is sandwiched between the composite films 85, 85 in the thickness direction, and then the four sides of each metal resin composite film 85, 85 are heated and pressed in the thickness direction to fuse the fusible resin layers together. After forming the fusion allowance 87 having a predetermined width dimension and forming the injection port 88 without fusing part of the opposite sides of the positive electrode terminal 82 and the negative electrode terminal 83, the electrolyte is generated from the injection port 88. The element 81 is impregnated (see arrow in FIG. 8).
Next, as shown in FIG. 9, the liquid injection port 88 is fused and sealed with a pair of molds 89 and 89 to form a liquid injection port fusion allowance 90, thereby accommodating and sealing the power generation element 81.
[0006]
When impregnating the power generation element 81 with the electrolytic solution from the liquid injection port 88, a suction port similar to the liquid injection port 88 is formed in advance on the opposite side of the liquid injection port 88, and the electrolytic solution is supplied from the liquid injection port 88. By injecting and sucking from the suction port, the impregnation rate of the electrolytic solution into the power generation element 81 may be increased, and the power generation element 81 may be accommodated and sealed by fusing and sealing the liquid injection port and the suction port.
[0007]
[Problems to be solved by the invention]
By the way, in the above-described sealed battery 80, when the power generation element 81 is impregnated with the electrolytic solution from the liquid injection port 88, the electrolytic solution 91 may adhere to the inner surface of the liquid injection port 88 as a droplet (FIG. 9). (See (A)).
In this case, when the liquid injection port 88 is fused and sealed, the electrolyte 91 is present at the interface of each fusible resin layer, so that the fusion strength of the liquid injection port 90 is reduced, resulting in poor sealing. There is a risk that this will occur (see FIG. 9B).
[0008]
The present invention has been made in view of the above-mentioned problems, and the purpose thereof is to inject liquid even after the liquid injection port is fused and sealed after the power generation element in the sealed battery package is impregnated with the electrolytic solution. An object of the present invention is to provide a sealed battery and a method for manufacturing the sealed battery, which can reduce the possibility of poor sealing in the mouth fusion allowance.
[0009]
[Means for Solving the Problems]
The sealed battery of the present invention has a power generation element in which a positive electrode and a negative electrode are stacked via an electrolyte layer, and a sealed battery package that houses the power generation element,The sealed battery package has a metal foil core material and a fusible resin layer,Of the sealed battery packageFusible resin layerIt is premised on a sealed battery in which the power generating element is accommodated and sealed by a fusion allowance for fusing together. In order to achieve the above-described object, the sealed battery according to the present invention comprises:And as described in Claim 2, the fusible resin is extracted from the width direction edge part in at least one part of the said fusion allowance. Here, the fusible resin only needs to be squeezed out from one end part in the width direction of the fusion allowance or both end parts in the width direction, even if both surfaces in the thickness direction in the fusion allowance are flat and parallel to each other. Good. In such a sealed battery, since the fusible resin is squeezed from the end portion in the width direction of the fusion allowance, for example, if the fusible resin is squeezed from the end portion in the width direction of the fusion allowance, It can be confirmed from the outside that the film part or the fusible resin layer constituting the inner surface of the liquid inlet flows toward the one end in the width direction of the liquid inlet fusion allowance, and the power generation element side of the fusion allowance If the fusible resin is squeezed out from the end portion, the gap in the sealed battery package can be filled.
[0010]
Here, the part of the fusion allowance includes an injection opening fusion allowance in which a temporarily formed injection inlet is fused in order to inject the electrolyte into the sealed battery package. It refers to any position of the fusion allowance. Such a fusion allowance is such that, for example, the cross-sectional shape along the width direction is substantially concave so that the thickness dimension at the center portion in the width direction is smaller than the thickness dimension at one end portion in the width direction or both end portions in the width direction. Or to taper toward the end in the width directionIt is preferable to leave.
[0011]
In order to obtain such cross-sectional shapes, among the pair of molds used for fusing and sealing the injection port, the center part of the mold surface of one mold should be protruded from the end part. What is necessary is just to show a convex circular arc surface, the slope which cross | intersects the direction which mutually adjoins as a specific type | mold surface form.
Moreover, in order to make the cross-sectional shape of the fusion allowance a desired shape, one of the pair of molds is brought into contact with only one end side in the axial direction of the liquid inlet, and then contacted with the outer surface of the liquid inlet. The mold surface may be slidably moved or rolled toward the other end in the axial direction of the liquid injection port while maintaining this state.
[0012]
At this time, in order to secure a minimum thickness dimension of the fusion allowance, the fusion resin layer in the region corresponding to the inner surface of the liquid inlet is previously thickened in advance on the inner surface of the sealed battery package. You just have to make it.
Specifically, an appropriate fusible resin film part may be provided at an appropriate location by coating or sticking, and when the liquid injection port is fused and sealed, the film part is fused while the film part is fused. What is necessary is just to make it flow to the width direction one end part or the width direction both ends.
When the film part is provided on the inner surface of the liquid injection port, the film part and the fusible resin layer constituting the inner surface of the sealed battery package may be made of the same material. The material may be used.
[0013]
In the sealed battery configured in this way, since the thickness dimension of the center portion in the width direction in at least a part of the fusion allowance is smaller than the thickness dimension of the end portion in the width direction, the liquid injection temporarily formed Even if electrolyte droplets adhere to the inner surface of the mouth, the fusion-bonding resin layer constituting the sealed battery package or the film portion provided on the inner surface of the inlet is not used for fusing and sealing the liquid inlet. The liquid flows toward one end in the width direction or both ends in the width direction of the injection hole so as to push away the splash of the electrolyte while melting.
Therefore, in such a sealed battery, at least a part of the inner surface of the injection port is fused and sealed as an interface that is not contaminated by the droplets of the electrolytic solution, thereby fusing the fusion allowance compared to the conventional case. The strength becomes high, and the possibility of causing a sealing failure can be reduced.
[0014]
The sealed battery of the present invention,in frontThe cross-sectional shape along the width direction of the welding allowance is substantially concave.Is preferred. Here, as the cross-sectional shape of the fusion allowance, for example, a concave arc surface, or a V-shaped surface in which a pair of flat surfaces intersect with each other via a concave arc surface on one surface or both surfaces in the thickness direction at the fusion allowance. Whether or not both surfaces in the thickness direction in the fusion allowance are symmetrical is arbitrary.
[0015]
In such a sealed battery, since the cross-sectional shape along the width direction of the fusion allowance is substantially concave, it is provided on the inner surface of the fusible resin layer or the liquid injection port constituting the sealed battery package. It can be confirmed from the outside that the film portion has flowed toward both ends in the width direction of the injection hole fusion margin while melting.
[0016]
Furthermore, the sealed battery of the present invention is,in frontThe cross-sectional shape along the width direction of the welding allowance is a tapered shape toward one end in the width direction.Is preferred. Here, the width direction one end portion is one of the width direction open end portion of the fusion allowance and the power generation element side end portion.
[0017]
In such a sealed battery, since the cross-sectional shape along the width direction of the fusion allowance is a tapered shape toward one end in the width direction, the fusible resin layer and the liquid injection port constituting the sealed battery package It can be confirmed from the outside that the film portion provided on the inner surface of the liquid flows toward the one end in the width direction of the injection hole fusion margin while melting.
[0020]
Next, the manufacturing method of the sealed battery according to the present invention includes a power generation element in which a positive electrode and a negative electrode are laminated via an electrolyte layer.It has a metal foil core and a fusible resin layerAfter being accommodated in the sealed battery package, the sealed battery packageFusible resin layerWhile fusing together to form a fusion allowance,Fusible resin layerA liquid injection port is formed without fusing each other, and then the power generation element is impregnated with the electrolytic solution from the liquid injection port, and then the liquid injection port is sandwiched in a thickness direction by a pair of molds and melted. It is premised on a manufacturing method of a sealed battery in which the power generation element is accommodated and sealed by a liquid injection hole fusion allowance for sealing.
[0021]
And the manufacturing method of the sealed battery of this invention is the said pair of metal mold | die in melt-sealing the said injection hole as described in Claim 4.Among these, a mold having a slope in which mold surfaces in one mold intersect with each other in a direction close to each otherThe melt-adhesive resin of the fusible resin layer constituting the sealed battery package is melted by being sandwiched between and flowing toward the end in the width direction of the injection hole fusion allowance, Further, as described in claim 5, a film portion made of a fusible resin is separately provided in at least one of a pair of regions corresponding to the inner surface of the liquid injection port in the sealed battery package in advance. In fusing and sealing the liquid injection port, the pair of moldsAmong them, a mold having a slope in which mold surfaces in one mold intersect with each other in a direction close to each otherThe film portion is caused to flow toward the end portion in the width direction of the liquid injection port fusion allowance while being melted.
[0022]
In the manufacturing method of such a sealed battery,A fusible resin layer constituting a sealed battery package orMembraneFusible resinThe inner surface of the liquid inlet is made to flow toward the end in the width direction of the liquid inlet fusion margin while meltingFusible resinEven if droplets of electrolyte adhere to the surface ofFusible resinAs the liquid melts, it flows toward the end in the width direction of the injection hole fusion allowance, so that the electrolytic solution is pushed away. Therefore, in such a sealed battery manufacturing method, at least a part of the inner surface of the injection port becomes an interface that is not contaminated by the droplets of the electrolyte, and the injection port is fusion sealed. In comparison, the fusion strength of the injection hole fusion allowance is increased, and the possibility of occurrence of poor sealing can be reduced.
[0023]
Further, the manufacturing method of the sealed battery of the present invention is as follows.And 7As described in the above, the thickness of the central portion in the width direction in the injection hole fusion margin is made to be one end in the width direction by projecting the central portion in at least one of the mold surfaces in advance. It is characterized by being made smaller than the thickness dimension of the part. Here, according to the present invention, the central portion of only one mold surface of the pair of molds may be protruded, or the central portions of both mold surfaces of each mold may be protruded. Further, when the central portion of the mold surface of each mold is projected, the mold surfaces do not have to have the same form, and may have different mold surfaces.
[0024]
In such a sealed battery manufacturing method, by adopting, for example, a convex arc surface or an inclined surface intersecting the sealing direction as the mold surface of the mold, the width in the injection hole fusion allowance is obtained. In order to make the thickness dimension of the central part in the direction smaller than the thickness dimension of one end part in the width direction,Fusible resinWill surely flow toward the width direction end of the injection hole fusion allowance.
[0025]
And in the manufacturing method of the sealed battery of the present invention, the claim8As described above, since the mold surface is a convex arcuate surface, the sealing force is applied to a specific portion of the injection hole fusion allowance as compared to the case where the mold surface is a slope intersecting with the sealing direction. Are less likely to concentrate, and this can reduce the possibility of damaging the injection hole fusion allowance.
[0026]
Further, the manufacturing method of the sealed battery according to the present invention is as follows.9 and 10As described above, when fusing and sealing the liquid injection port, one mold surface of each mold is brought into contact with only one axial end side of the liquid injection port, and then the outer surface of the liquid injection port The mold surface is moved toward the other end portion in the axial direction of the liquid injection port while maintaining the state in contact with the liquid injection port. In such a sealed battery manufacturing method, one mold is slidably moved or rolled, so that substantially the entire amount of the electrolytic solution can be eliminated, and both sides in the thickness direction at the injection hole fusion allowance are flat. And parallel to each other.
[0027]
Further, in the manufacturing method of the sealed battery of the present invention, the claim11 and 12In order to squeeze the fusible resin at the end in the width direction of the injection port fusion allowance, the splash of the electrolyte attached to the inner surface of the injection port is surely injected into the injection port fusion allowance. Will be discharged to the outside.
[0028]
Furthermore, in the manufacturing method of the sealed battery of the present invention,,in frontThe film portions are respectively provided in a pair of regions corresponding to the inner surface of the liquid injection port.PreferablyBy making these membrane parts flow in the same direction, it is possible to reliably remove electrolyte droplets from at least a part of the fusion interface at the injection port fusion allowance. Sealing performance can be obtained.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments according to the present invention will be described below in detail with reference to the drawings. In each embodiment described below, the members and the like already described in FIGS. 8 and 9 are denoted by the same or corresponding reference numerals in the drawings, and the description is simplified or omitted.
[0030]
As shown in FIG. 1, the sealed battery 10 according to the first embodiment of the present invention is formed into a substantially elliptical columnar shape by winding a positive electrode and a negative electrode laminated via a separator and then pressing in a radial direction. In order to prevent external leakage of the electrolyte layer and internal entry of outside air, the open end portions of the positive electrode terminal 82 and the negative electrode terminal 83 connected to the positive electrode and the negative electrode of the power generation element 81 are externally And a sealed battery package 14 for accommodating and sealing the power generation element 81 so as to be exposed.
[0031]
The metal resin composite film 15 constituting the sealed battery package 14 is composed of a metal foil core material made of aluminum foil, a polyester resin such as polyethylene terephthalate (PET) along the surface of the metal foil core material, a polyamide resin such as nylon, Alternatively, a protective layer made of a polyimide resin and a fusible resin layer made of polyolefin resin such as polypropylene (PP) or polyethylene (PE) along the back surface of the metal foil core material are laminated.
[0032]
The sealed battery 10 has a recess 16 corresponding to the shape of the power generation element 81 formed in one of the rectangular metal resin composite films 15 and 15, and the metal resin composite films 15 and 15 form the power generation element. 81 is sandwiched in the thickness direction, and then the four sides of each metal resin composite film 15 and 15 are heated and pressed in the thickness direction, thereby fusing the fusible resin layers together and having a predetermined width dimension. 17A, 17B, 17C, and 17D are formed, and after the injection port 18 is formed without fusing part of the fusion margin 17D that is the opposite side of the positive electrode terminal 82 and the negative electrode terminal 83, the injection port 18 After the electrolytic solution is gelled by impregnating the power generation element 81 with the electrolytic solution, the liquid injection port 18 is sealed with a pair of molds to form the liquid injection port fusion allowance 19.
[0033]
Here, the metal resin composite films 15 and 15 are provided with film portions 20 and 20 in the region for forming the fusion allowance 17D on the surface of the fusible resin layer according to the present invention (FIG. 1). Middle, see cross hatching).
The film parts 20 and 20 are made of acid-modified polypropylene made of the same material as the fusible resin layer, and are provided so that the film thickness dimension is 30 μm to 150 μm.
[0034]
These film portions 20 and 20 may be formed over the entire area of the fusion allowance 17D or may be formed only in a region corresponding to the inner surface of the liquid injection port 18. Furthermore, the film part 20 may be provided at least in a region corresponding to the inner surface of the liquid injection port 18 and may be provided only on one of the metal resin composite films 15 and 15.
These film portions 20, 20 may be provided by applying to the surface of the fusible resin layer, or may be provided by forming the film part separately and then sticking to the surface of the fusible resin layer. May be.
In addition, the melting points of these film portions 20 and 20 are preferably lower than the melting point of the fusible resin layer.
[0035]
As shown in FIG. 2, in this sealed battery 10, when the electrolytic solution 21 is impregnated into the power generation element 81 from the injection port 18, a film is formed on the inner surface of the injection port 18. It adheres to the surface of the parts 20 and 20 (see FIG. 2A).
Of the pair of molds 22 and 23 used for fusing and sealing the liquid injection port 18, the mold 22 has a flat mold surface 24 orthogonal to the sealing direction (vertical direction in the figure). Have. On the other hand, the mold surface 25 of the mold 23 is a convex arcuate surface having an axis perpendicular to the sealing direction, and its central portion protrudes.
[0036]
When these molds 22 and 23 come close to each other by a sealing device (not shown), the melted film parts 20 and 20 are brought into close contact with each other (see FIG. 2B), and then the film parts 20 and 20 are melted while being poured. By flowing substantially evenly from the widthwise center of the liquid inlet fusion allowance 19 toward both ends in the width direction, the cross-sectional shape along the width direction becomes concave, in other words, the liquid inlet fusion. The injection hole fusion allowance 19 is formed so that the thickness dimension T1 of the center portion in the width direction at the margin 19 is smaller than the thickness dimension T2 at one end portion in the width direction (see FIG. 2C).
In such an injection hole fusion allowance 19, the melted film portion 20 is squeezed out from one end in the width direction (right side in FIG. 2C) and the other end in the width direction (FIG. 2 ( C), the left side) is squeezed out to fill the gap 26 in the sealed battery package 14.
[0037]
According to the above-described sealed battery 10 of the first embodiment, since the thickness dimension T1 of the width direction central portion in the injection port fusion allowance 19 is smaller than the thickness dimension T2 of the width direction end portion, Even if droplets of electrolytic solution 21 adhere to the inner surface of 18, it flows toward both ends in the width direction of liquid inlet fusion allowance 19 so that the splashes of electrolytic solution 21 are pushed away while film portions 20 and 20 melt. As a result, the fusion strength of the injection hole fusion allowance 19 is increased as compared with the conventional case, and the possibility of occurrence of poor sealing can be reduced.
[0038]
In particular, according to the sealed battery 10, since the cross-sectional shape along the width direction of the liquid inlet fusion allowance 19 is substantially concave, the film portions 20 and 20 melt while the liquid inlet fusion allowance 19 It can be confirmed from the outside that the fluid has flowed toward both ends in the width direction, whereby a defective product in the manufacturing process can be reliably identified.
[0039]
Further, according to the sealed battery 10 described above, since the melted film part 20 is squeezed out from both ends in the width direction of the injection hole fusion allowance 19, the electrolytic solution 21 adhered to the surfaces of the film parts 20 and 20 Is discharged to the outside of the injection port fusion allowance 19. That is, the injection port fusion allowance 19 can be reliably sealed by fusing the fusible resin layers through a clean interface.
In particular, according to this sealed battery 10, since the film portion 20 squeezed from the end in the width direction of the injection hole fusion allowance 19 fills the gap 26 in the sealed battery package 14, In comparison, the impact resistance in the vicinity of the injection hole fusion allowance 19 is improved.
[0040]
Further, according to the first embodiment described above, since the mold 22 with the center portion of the mold surface 24 protruding is used in manufacturing the sealed battery, the center portion in the width direction in the injection hole fusion allowance 19 is used. The thickness dimension T1 can be easily made smaller than the thickness dimension T2 at one end in the width direction, whereby the liquid injection port 18 can be surely fused and sealed.
In particular, according to the first embodiment, since the mold surface 24 is a convex circular arc surface, compared with the case where the mold surface is a slope intersecting with the sealing direction, the injection port fusion allowance 19 It is difficult for the sealing force to concentrate on a specific portion of the liquid, and thus there is little possibility of damaging the injection hole fusion allowance 19.
[0041]
Further, according to such a manufacturing method of the sealed battery 10, since the film portions 20 and 20 are provided in the pair of regions corresponding to the inner surface of the liquid injection port 18, respectively, these film portions 20 and 20 are respectively provided. By making it flow in the same direction, it is possible to reliably remove splashes of the electrolyte 21 from at least a part of the fusion interface of the injection port fusion allowance 19, thereby providing a good sealing property for the injection port fusion allowance. can get.
[0042]
FIG. 3 shows a sealed battery 30 according to a second embodiment of the present invention. In each embodiment described below, the members and the like already described in FIGS. 1 and 2 are denoted by the same or corresponding reference numerals in the drawings, and the description is simplified or omitted.
[0043]
In the second embodiment shown in FIG. 3, a mold 33 for fusing and sealing the liquid injection port of the sealed battery 30 has a flat mold surface 35 that intersects the sealing direction. In this sealed battery 30, the film part 20 provided on the inner surface of the liquid inlet is squeezed outside only from one end in the width direction (right side in FIG. 3) of the liquid inlet fusion allowance 39. The cross-sectional shape along the width direction of the mouth fusion allowance 39 is tapered toward the power generation element 81.
In the second embodiment, the same effect as that of the first embodiment described above can be obtained.
[0044]
As shown in FIG. 4, in the third embodiment according to the present invention, the mold 43 for fusing and sealing the liquid injection port of the sealed battery 40 has a pair of flat surfaces intersecting via a concave arc surface. It has a V-shaped mold surface 45 arranged. In this sealed battery 40, the film part 20 provided on the inner surface of the injection port is squeezed out almost uniformly from both ends in the width direction of the injection port fusion allowance 39, The cross-sectional shape along the width direction is concave.
Also in the third embodiment, the same effects as those of the first embodiment and the second embodiment described above can be obtained.
[0045]
As shown in FIG. 5, in the fourth embodiment according to the present invention, the liquid injection port of the sealed battery 50 is fusion sealed using a pair of the molds 23 exemplified in the first embodiment described above. In this sealed battery 50, the membrane portion 20 provided on the inner surface of the liquid inlet is squeezed out almost uniformly from both ends in the width direction of the liquid inlet fusion allowance 59, The cross-sectional shape along the width direction is substantially drum-shaped.
In the fourth embodiment, the same effects as those in the first to third embodiments described above can be obtained.
[0046]
As shown in FIG. 6, in the fifth embodiment according to the present invention, the liquid injection port 68 of the sealed battery 60 includes the mold 23 exemplified in the first embodiment and the scraper-shaped mold 63. Used for fusion sealing. The mold 63 has a thickness dimension T3 smaller than the width dimension of the liquid inlet fusion allowance 69, and the mold surface 65 is a convex arc surface.
In the fifth embodiment, the molds 63 and 63 are used so that the mold surface 65 of the mold 63 contacts only one axial end side (the left side in FIG. 6) on the outer surface of the liquid injection port 68. The mold surface 65 is moved toward the other end in the axial direction of the liquid injection port 68 (to the right in FIG. 6) while holding the liquid injection port 68 and then in contact with the outer surface of the liquid injection port 68. Thus, the liquid injection port 68 is fused and sealed to form a liquid injection port fusion allowance 69.
Therefore, in the injection hole fusion allowance 69, the melted film portion 20 is squeezed from one end in the width direction, and both surfaces in the thickness direction are flat and parallel to each other.
[0047]
According to the fifth embodiment, in order to fuse and seal the liquid injection port 68, the mold surface 65 is fixed to the other end in the axial direction of the liquid injection port 68 while maintaining the state in contact with the outer surface of the liquid injection port 68. In order to squeeze out the membrane part 20 from one end in the width direction of the injection port fusion allowance 69 by moving toward the part, the electrolyte solution 21 adhering as a droplet to the inner surface of the injection port 68 is almost entirely In addition, the both sides in the thickness direction of the injection hole fusion allowance 69 can be made flat and parallel to each other.
Further, according to the fifth embodiment, by moving the mold surface 65 toward the other end in the axial direction of the liquid inlet 68, the film portion 20 is moved from one end in the width direction of the liquid inlet fusion allowance 69. In order to squeeze out, by appropriately selecting the movement dimension of the mold 63, it is possible to cope with other injection hole fusion allowances having different width dimensions.
[0048]
In addition, this invention is not limited to each embodiment mentioned above, A suitable deformation | transformation, improvement, etc. are possible.
For example, in each of the above-described embodiments, a sealed battery having a sealed battery package constituted by a pair of rectangular metal resin composite films is illustrated, but the sealed battery 70 shown in FIG. Are also included in the present invention.
[0049]
That is, in the sealed battery package 74 of the sealed battery 70, a recess corresponding to the shape of the power generation element 81 is formed in the metal resin composite film 75 in advance, the metal resin composite film 75 is folded in half, and the power generation The element 81 is sandwiched in the thickness direction, the folds 75A of the metal resin composite film 75 are disposed along the opposite sides of the positive electrode terminal 82 and the negative electrode terminal 83, and then the thickness of the metal resin composite film 75 is heated while heating the three sides. By applying pressure in the direction, the fusible resin layers are fused to form the fusion allowances 77A, 77B, and 77C. Here, the metal resin composite film 75 is provided with the film portion 20 on the surface of the fusible resin layer corresponding to the fusion allowance 77C in advance.
[0050]
In the sealed battery 70, the power generation element 81 is impregnated with an electrolytic solution from a liquid injection port formed without fusing part of the fusion allowance 77C (see an arrow in FIG. 7), and then the present invention. The injection port is fused and sealed by an appropriate means based on the above, and the injection port fusion allowance is formed.
[0051]
In addition, the film portion does not need to have an integral thickness and a flat surface, and is thinned or thickened toward the end portion, or has a lattice-like slit or dimple on the surface. You may form.
In addition, materials such as power generation elements, sealed battery packages, fusion allowances, fusible resins, injection ports, injection port fusion allowances, membranes, molds, mold surfaces, etc., exemplified in the above-described embodiments The shape, size, form, number, location, thickness, etc. are arbitrary as long as the present invention can be achieved, and are not limited.
[0052]
In addition, the battery in which the electrolytic solution is gelled in the power generation element has been described. Needless to say, the present invention can be applied to a battery in which a general separator is used and the electrolytic solution is in a liquid state in the power generation element. Absent.
[0053]
【The invention's effect】
As described above, according to the sealed battery of the present invention, as described in claim 1, in at least a part of the fusion allowance formed in the sealed battery package.The fusible resin of the fusible resin layer constituting the sealed battery package is extracted from the end in the width direction.Therefore, one end part in the width direction of the fusion allowance or both end parts in the width direction while the fusible resin layer is melted so that the electrolytic solution adhering in the form of droplets is swept away on the inner surface of the injection hole formed temporarily As a result, the fusion strength of the fusion allowance is increased compared to the conventional case, which can reduce the possibility of sealing failure.It can be confirmed from the outside that the fusible resin has flowed toward the one end in the width direction of the injection hole fusion margin while melting..
[0054]
According to the sealed battery of the present invention, as described in claim 2,The fusible resin of the film portion made of the fusible resin provided on the inner surface of the sealed battery package is squeezed out from the end in the width direction in at least a part of the fusion allowance formed in the sealed battery package. For this reason, the meltable resin melts toward the one end in the width direction or both ends in the width direction so that the electrolytic solution adhering in the form of droplets is swept away from the inner surface of the temporarily formed liquid injection port. As a result, the fusion strength of the fusion allowance increases compared to the conventional case, and the possibility of poor sealing is reduced. It can be confirmed from the outside that it has flowed toward one end..
[0055]
Next, according to the method for manufacturing a sealed battery of the present invention, as described in claim 4, when fusing and sealing the liquid injection port, a pair of moldsAmong these, a mold having a slope in which mold surfaces in one mold intersect with each other in a direction close to each otherThe inner surface of the liquid inlet is made to flow toward the width direction end of the liquid inlet fusion margin while melting the fusible resin of the fusible resin layer constituting the sealed battery package. Even if droplets of the electrolytic solution adhere to the surface of the fusible resin layer provided on the liquid crystal, the fusible resin flows toward the end in the width direction of the injection port fusion allowance while melting, so that the electrolytic solution As a result, the fusion strength of the injection hole fusion allowance is increased as compared with the conventional case, and the possibility of occurrence of poor sealing can be reduced.
[0056]
In addition, according to the method for manufacturing a sealed battery of the present invention, as described in claim 5, it is fused in advance to at least one of a pair of regions corresponding to the inner surface of the liquid inlet in the sealed battery package. A pair of molds is used when the liquid injection port is fused and sealed by separately providing a film portion made of a functional resin.Among these, a mold having a slope in which mold surfaces in one mold intersect with each other in a direction close to each otherIn order to make it flow toward the end in the width direction of the injection hole fusion margin while melting the film part by sandwiching with, the droplets of the electrolyte adhere to the surface of the film part provided on the inner surface of the injection hole However, as the membrane melts, it flows toward the end in the width direction of the injection port fusion allowance, so that the electrolyte is washed away. This increases the possibility that a sealing failure may occur.
[0057]
Moreover, according to the manufacturing method of the sealed battery of this invention, Claim 6 is provided.And 7As described in the above, by projecting the central portion of at least one of the mold surfaces in advance, the thickness dimension of the central portion in the width direction in the injection port fusion allowance is set to one end in the width direction. In order to make it smaller than the thickness dimension, the fusion-bonding resin surely flows toward the width direction end of the injection hole fusion margin when the injection hole is fused and sealed.
[0058]
And according to the manufacturing method of the sealed battery of the present invention, the claim8As described above, since the mold surface is a convex circular arc surface, the sealing force is higher at a specific portion of the injection hole fusion allowance than when the mold surface is a slope intersecting with the seal direction. It is difficult to concentrate, thereby reducing the possibility of damaging the injection hole fusion allowance.
[0059]
Furthermore, according to the manufacturing method of the sealed battery of the present invention, the claim9 and 10As described in the above, when fusing and sealing the liquid inlet, one mold surface of each mold is brought into contact with only one axial end side of the liquid inlet, and then in contact with the outer surface of the liquid inlet In order to move the mold surface toward the other end in the axial direction of the liquid injection port while maintaining the same, it is possible to eliminate substantially the entire amount of the electrolyte, and to flatten both surfaces in the thickness direction at the injection port fusion allowance, Can be parallel to each other.
[0060]
Moreover, according to the manufacturing method of the sealed battery of the present invention, the claim11 and 12As described above, in order to squeeze the fusible resin at the widthwise end of the injection port fusion allowance, it is ensured that the droplets of the electrolyte adhering to the inner surface of the injection port are free from the injection port fusion allowance. It will be discharged to the outside. And according to the manufacturing method of the sealed battery of this invention, it is preferable to provide a film part in a pair of area | region corresponding to the inner surface of a liquid inlet, respectively, and these film parts are made to flow in the same direction, respectively. Thus, the splash of the electrolyte can be reliably removed from at least a part of the fusion interface at the injection port fusion allowance, and thereby good sealing performance can be obtained at the injection port fusion allowance.
[Brief description of the drawings]
FIG. 1 is an overall perspective view showing a first embodiment according to the present invention.
FIG. 2 is a partial enlarged cross-sectional view showing a main part of the first embodiment.
FIG. 3 is a partially enlarged cross-sectional view showing a main part of a second embodiment.
FIG. 4 is a partial enlarged cross-sectional view showing a main part of a third embodiment.
FIG. 5 is a partially enlarged cross-sectional view showing a main part of a fourth embodiment.
FIG. 6 is a partial enlarged cross-sectional view showing a main part of a fifth embodiment.
FIG. 7 is an overall perspective view showing a modification of the present invention.
FIG. 8 is an overall perspective view showing a conventional sealed battery.
FIG. 9 is a partially enlarged cross-sectional view showing a conventional injection hole fusion allowance.
[Explanation of symbols]
10, 30, 40, 50, 60, 70 Sealed battery
14 Package for sealed batteries
17A, 17B, 17C, 17D Fusion allowance
18 Injection port
19 Injection port fusion allowance
20 Membrane
21 Electrolyte
22, 23, 33, 43, 63 Mold
24, 25, 35, 45, 65 mold surface
81 Power generation elements
T1, T2 thickness dimensions

Claims (12)

電解質層を介して正極および負極が積層された発電要素と、前記発電要素を収容する密閉形電池用パッケージとを有し、
前記密閉形電池用パッケージは金属箔芯材と融着性樹脂層とを有し、
前記密閉形電池用パッケージの融着性樹脂層同士を互いに融着させる融着代により前記発電要素が収容封止された密閉形電池であって、
前記融着代の少なくとも一部における幅方向端部から前記密閉形電池用パッケージを構成する融着性樹脂層の融着性樹脂が搾出していることを特徴とする密閉形電池。
A power generation element in which a positive electrode and a negative electrode are stacked via an electrolyte layer, and a sealed battery package that houses the power generation element,
The sealed battery package has a metal foil core material and a fusible resin layer,
A sealed battery in which the power generating element is housed and sealed by a fusion allowance for fusing the fusible resin layers of the sealed battery package to each other,
A sealed battery, wherein a fusible resin of a fusible resin layer constituting the sealed battery package is squeezed from an end in a width direction in at least a part of the fusion allowance.
電解質層を介して正極および負極が積層された発電要素と、前記発電要素を収容する密閉形電池用パッケージとを有し、
前記密閉形電池用パッケージは金属箔芯材と融着性樹脂層とを有し、
前記密閉形電池用パッケージの融着性樹脂層同士を互いに融着させる融着代により前記発電要素が収容封止された密閉形電池であって、
前記融着代の少なくとも一部における幅方向端部から前記密閉型電池用パッケージの内面に設けた融着性樹脂製の膜部の融着性樹脂が搾出していることを特徴とする密閉形電池。
A power generation element in which a positive electrode and a negative electrode are stacked via an electrolyte layer, and a sealed battery package that houses the power generation element,
The sealed battery package has a metal foil core material and a fusible resin layer,
A sealed battery in which the power generating element is housed and sealed by a fusion allowance for fusing the fusible resin layers of the sealed battery package to each other,
A hermetic form in which the fusible resin of the film part made of the fusible resin provided on the inner surface of the sealed battery package is squeezed out from the end in the width direction in at least a part of the fusion allowance. battery.
前記融着性樹脂製の膜部の融点が、前記密閉形電池用パッケージを構成する融着性樹脂層の融点よりも低いことを特徴とする請求項2に記載の密閉形電池。The sealed battery according to claim 2, wherein the melting point of the film part made of the fusible resin is lower than the melting point of the fusible resin layer constituting the sealed battery package. 電解質層を介して正極および負極が積層された発電要素を金属箔芯材と融着性樹脂層とを有する密閉形電池用パッケージ内に収容した後、前記密閉形電池用パッケージの融着性樹脂層同士を互いに融着させて融着代を形成するとともに前記融着性樹脂層同士を互いに融着させずに注液口を形成し、次いで前記注液口から前記発電要素に電解液を含浸させてから、一対の金型により前記注液口を厚み方向に挟持して融着封口する注液口融着代により前記発電要素を収容封止する密閉形電池の製造方法であって、
前記注液口を融着封口するにあたって、前記一対の金型のうち、一方の金型における型面が互いに近接する方向に対して交差する斜面を有する金型で挟持することによって前記密閉形電池用パッケージを構成する融着性樹脂層の融着性樹脂を溶融させながら前記注液口融着代の幅方向端部に向かって流動させることを特徴とする密閉形電池の製造方法。
A power generating element in which a positive electrode and a negative electrode are laminated via an electrolyte layer is housed in a sealed battery package having a metal foil core and a fusible resin layer, and then the fusible resin of the sealed battery package The layers are fused with each other to form a fusion allowance and the meltable resin layers are not fused together to form a liquid injection port, and then the power generation element is impregnated with the electrolytic solution from the liquid injection port A method of manufacturing a sealed battery that encloses and seals the power generation element by a liquid injection fusion margin in which the liquid injection hole is sandwiched in a thickness direction by a pair of molds and is sealed.
When the liquid injection port is fused and sealed, the sealed battery is sandwiched between the pair of molds by a mold having inclined surfaces that intersect with each other in a direction in which the mold surfaces of the molds are close to each other. A process for producing a sealed battery, characterized in that the fusible resin of the fusible resin layer constituting the package for use is made to flow toward the widthwise end of the injection hole fusion allowance while melting.
電解質層を介して正極および負極が積層された発電要素を金属箔芯材と融着性樹脂層とを有する密閉形電池用パッケージ内に収容した後、前記密閉形電池用パッケージの融着性樹脂層同士を互いに融着させて融着代を形成するとともに前記融着性樹脂層同士を互いに融着させずに注液口を形成し、次いで前記注液口から前記発電要素に電解液を含浸させてから、一対の金型により前記注液口を厚み方向に挟持して融着封口する注液口融着代により前記発電要素を収容封止する密閉形電池の製造方法であって、
あらかじめ前記密閉形電池用パッケージにおける前記注液口の内面に対応する一対の領域のうちの少なくとも一方に融着性樹脂製の膜部を別途設けておき、
前記注液口を融着封口するにあたって、前記一対の金型のうち、一方の金型における型面が互いに近接する方向に対して交差する斜面を有する金型で挟持することによって前記膜部を溶融させながら前記注液口融着代の幅方向端部に向かって流動させることを特徴とする密閉形電池の製造方法。
A power generating element in which a positive electrode and a negative electrode are laminated via an electrolyte layer is housed in a sealed battery package having a metal foil core and a fusible resin layer, and then the fusible resin of the sealed battery package The layers are fused with each other to form a fusion allowance and the meltable resin layers are not fused together to form a liquid injection port, and then the power generation element is impregnated with the electrolytic solution from the liquid injection port A method of manufacturing a sealed battery that encloses and seals the power generation element by a liquid injection fusion margin in which the liquid injection hole is sandwiched in a thickness direction by a pair of molds and is sealed.
A film portion made of a fusible resin is separately provided in at least one of a pair of regions corresponding to the inner surface of the liquid injection port in the sealed battery package in advance,
In fusing and sealing the liquid injection port, the film portion is sandwiched between molds having inclined surfaces that intersect with each other in a direction in which mold surfaces of one mold are close to each other. A manufacturing method of a sealed battery, wherein the liquid is made to flow toward an end in a width direction of the injection hole fusion margin while being melted.
電解質層を介して正極および負極が積層された発電要素を金属箔芯材と融着性樹脂層とを有する密閉形電池用パッケージ内に収容した後、前記密閉形電池用パッケージの融着性樹脂層同士を互いに融着させて融着代を形成するとともに前記融着性樹脂層同士を互いに融着させずに注液口を形成し、次いで前記注液口から前記発電要素に電解液を含浸させてから、一対の金型により前記注液口を厚み方向に挟持して融着封口する注液口融着代により前記発電要素を収容封止する密閉形電池の製造方法であって、
前記注液口を融着封口するにあたって、前記一対の金型のうち、一方の金型における型面の中央部を端部よりも突出させた金型で挟持することによって前記密閉形電池用パッケージを構成する融着性樹脂層の融着性樹脂を溶融させながら前記注液口融着代の幅方向端部に向かって流動させることを特徴とする密閉形電池の製造方法。
A power generating element in which a positive electrode and a negative electrode are laminated via an electrolyte layer is housed in a sealed battery package having a metal foil core and a fusible resin layer, and then the fusible resin of the sealed battery package The layers are fused with each other to form a fusion allowance and the meltable resin layers are not fused together to form a liquid injection port, and then the power generation element is impregnated with the electrolytic solution from the liquid injection port A method of manufacturing a sealed battery that encloses and seals the power generation element by a liquid injection fusion margin in which the liquid injection hole is sandwiched in a thickness direction by a pair of molds and is sealed.
When the liquid injection port is fused and sealed, the sealed battery package is sandwiched between the pair of molds by a mold having a center part of one mold projecting from the end part. A process for producing a hermetic battery, wherein the fusible resin of the fusible resin layer constituting the material is made to flow toward the end in the width direction of the injection hole fusing margin.
電解質層を介して正極および負極が積層された発電要素を金属箔芯材と融着性樹脂層とを有する密閉形電池用パッケージ内に収容した後、前記密閉形電池用パッケージの融着性樹脂層同士を互いに融着させて融着代を形成するとともに前記融着性樹脂層同士を互いに融着させずに注液口を形成し、次いで前記注液口から前記発電要素に電解液を含浸させてから、一対の金型により前記注液口を厚み方向に挟持して融着封口する注液口融着代により前記発電要素を収容封止する密閉形電池の製造方法であって、
あらかじめ前記密閉形電池用パッケージにおける前記注液口の内面に対応する一対の領域のうちの少なくとも一方に融着性樹脂製の膜部を別途設けておき、
前記注液口を融着封口するにあたって、前記一対の金型のうち、一方の金型における型面の中央部を端部よりも突出させた金型で挟持することによって前記膜部を溶融させながら前記注液口融着代の幅方向端部に向かって流動させることを特徴とする密閉形電池の製造方法。
A power generating element in which a positive electrode and a negative electrode are laminated via an electrolyte layer is housed in a sealed battery package having a metal foil core and a fusible resin layer, and then the fusible resin of the sealed battery package The layers are fused with each other to form a fusion allowance and the meltable resin layers are not fused together to form a liquid injection port, and then the power generation element is impregnated with the electrolytic solution from the liquid injection port A method of manufacturing a sealed battery that encloses and seals the power generation element by a liquid injection fusion margin in which the liquid injection hole is sandwiched in a thickness direction by a pair of molds and is sealed.
A film portion made of a fusible resin is separately provided in at least one of a pair of regions corresponding to the inner surface of the liquid injection port in the sealed battery package in advance,
When fusing and sealing the liquid injection port, the film part is melted by sandwiching the center part of the mold surface of one of the pair of molds with a mold protruding from the end part. However, it is made to flow toward the width direction edge part of the said injection hole fusion allowance, The manufacturing method of the sealed battery characterized by the above-mentioned.
前記型面が凸状の円弧面であることを特徴とする請求項6または7に記載した密閉形電池の製造方法。The method for manufacturing a sealed battery according to claim 6 or 7 , wherein the mold surface is a convex arc surface. 電解質層を介して正極および負極が積層された発電要素を金属箔芯材と融着性樹脂層とを有する密閉形電池用パッケージ内に収容した後、前記密閉形電池用パッケージの融着性樹脂層同士を互いに融着させて融着代を形成するとともに前記融着性樹脂層同士を互いに融着させずに注液口を形成し、次いで前記注液口から前記発電要素に電解液を含浸させてから、一対の金型により前記注液口を厚み方向に挟持して融着封口する注液口融着代により前記発電要素を収容封止する密閉形電池の製造方法であって、
前記注液口を融着封口するにあたって、前記各金型のうちの一方の面を前記注液口の軸方向一端側にのみ接触させ、次いで前記注液口の外面に接触した状態を維持したまま前記型面を前記注液口の軸方向他端部に向かって移動させることを特徴とする密閉形電池の製造方法。
A power generating element in which a positive electrode and a negative electrode are laminated via an electrolyte layer is housed in a sealed battery package having a metal foil core and a fusible resin layer, and then the fusible resin of the sealed battery package The layers are fused with each other to form a fusion allowance and the meltable resin layers are not fused together to form a liquid injection port, and then the power generation element is impregnated with the electrolytic solution from the liquid injection port A method of manufacturing a sealed battery that encloses and seals the power generation element by a liquid injection fusion margin in which the liquid injection hole is sandwiched in a thickness direction by a pair of molds and is sealed.
In fusing and sealing the liquid injection port, one surface of each mold was brought into contact only with one end side in the axial direction of the liquid injection port, and then the state in contact with the outer surface of the liquid injection port was maintained. tightly closed form method for producing a battery you and moving the mold surface toward the other axial end portion of the pouring hole remains.
電解質層を介して正極および負極が積層された発電要素を金属箔芯材と融着性樹脂層とを有する密閉形電池用パッケージ内に収容した後、前記密閉形電池用パッケージの融着性樹脂層同士を互いに融着させて融着代を形成するとともに前記融着性樹脂層同士を互いに融着させずに注液口を形成し、次いで前記注液口から前記発電要素に電解液を含浸させてから、一対の金型により前記注液口を厚み方向に挟持して融着封口する注液口融着代により前記発電要素を収容封止する密閉形電池の製造方法であって、
あらかじめ前記密閉形電池用パッケージにおける前記注液口の内面に対応する一対の領域のうちの少なくとも一方に融着性樹脂製の膜部を別途設けておき、
前記注液口を融着封口するにあたって、前記各金型のうちの一方の面を前記注液口の軸方向一端側にのみ接触させ、次いで前記注液口の外面に接触した状態を維持したまま前記型面を前記注液口の軸方向他端部に向かって移動させることを特徴とする密閉形電池の製造方法。
A power generating element in which a positive electrode and a negative electrode are laminated via an electrolyte layer is housed in a sealed battery package having a metal foil core and a fusible resin layer, and then the fusible resin of the sealed battery package The layers are fused with each other to form a fusion allowance and the meltable resin layers are not fused together to form a liquid injection port, and then the power generation element is impregnated with the electrolytic solution from the liquid injection port A method of manufacturing a sealed battery that encloses and seals the power generation element by a liquid injection fusion margin in which the liquid injection hole is sandwiched in a thickness direction by a pair of molds and is sealed.
A film portion made of a fusible resin is separately provided in at least one of a pair of regions corresponding to the inner surface of the liquid injection port in the sealed battery package in advance,
In fusing and sealing the liquid injection port, one surface of each mold was brought into contact only with one end side in the axial direction of the liquid injection port, and then the state in contact with the outer surface of the liquid injection port was maintained. tightly closed form method for producing a battery you and moving the mold surface toward the other axial end portion of the pouring hole remains.
前記注液口融着代の幅方向端部に前記融着性樹脂層の融着性樹脂を搾出させることを特徴とする請求項4、6、9のいずれか1項に記載した電池の製造方法。10. The battery according to claim 4 , wherein the fusible resin of the fusible resin layer is squeezed out to an end in the width direction of the liquid inlet fusion allowance. Production method. 前記注液口融着代の幅方向端部に前記膜部を搾出させることを特徴とする請求項5、7、10のいずれか1項に記載した電池の製造方法。The method for manufacturing a battery according to claim 5 , wherein the film part is squeezed out at an end in a width direction of the injection hole fusion allowance.
JP2000179463A 2000-06-15 2000-06-15 Sealed battery and method of manufacturing sealed battery Expired - Lifetime JP4956854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000179463A JP4956854B2 (en) 2000-06-15 2000-06-15 Sealed battery and method of manufacturing sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000179463A JP4956854B2 (en) 2000-06-15 2000-06-15 Sealed battery and method of manufacturing sealed battery

Publications (2)

Publication Number Publication Date
JP2001357826A JP2001357826A (en) 2001-12-26
JP4956854B2 true JP4956854B2 (en) 2012-06-20

Family

ID=18680737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000179463A Expired - Lifetime JP4956854B2 (en) 2000-06-15 2000-06-15 Sealed battery and method of manufacturing sealed battery

Country Status (1)

Country Link
JP (1) JP4956854B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101106395B1 (en) 2009-10-15 2012-01-17 삼성에스디아이 주식회사 Secondary battery and Manufacturing method for the Same
JP2011216209A (en) * 2010-03-31 2011-10-27 Hitachi Maxell Energy Ltd Laminated battery and its manufacturing method
WO2012073748A1 (en) * 2010-11-30 2012-06-07 三洋電機株式会社 Laminate pack battery and method for manufacturing same
KR101469188B1 (en) * 2013-04-23 2014-12-09 (주)오렌지파워 Pouch type rechargeable battery comprising inclined sealing part, and manufacturing method of the same
JP6036554B2 (en) * 2013-05-28 2016-11-30 株式会社デンソー Laminated secondary battery and manufacturing method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11149910A (en) * 1997-11-18 1999-06-02 Sanyo Electric Co Ltd Sealing method for thin type battery
CN1157808C (en) * 1998-02-05 2004-07-14 大日本印刷株式会社 Sheet for cell case and cell device
JP2000133244A (en) * 1998-10-26 2000-05-12 Japan Storage Battery Co Ltd Battery and its manufacture
JP4432146B2 (en) * 1999-03-29 2010-03-17 株式会社ジーエス・ユアサコーポレーション Nonaqueous electrolyte secondary battery
JP3922826B2 (en) * 1999-02-03 2007-05-30 東洋アルミニウム株式会社 Battery container lid, battery container and package using the same
JP2000285882A (en) * 1999-03-30 2000-10-13 Sanyo Electric Co Ltd Manufacture of thin battery using laminated jacket

Also Published As

Publication number Publication date
JP2001357826A (en) 2001-12-26

Similar Documents

Publication Publication Date Title
JP4485614B2 (en) Non-aqueous electrolyte battery and manufacturing method thereof
JP5034135B2 (en) Battery and manufacturing method thereof
JP5082263B2 (en) Method for manufacturing film-covered electrical device
US20220094000A1 (en) Power storage module
JP5561315B2 (en) Film exterior electrical device
JP4956854B2 (en) Sealed battery and method of manufacturing sealed battery
KR950001259B1 (en) Enclosed type lead battery and method of producing the same
JP3696028B2 (en) Battery having film sealing structure and manufacturing method thereof
JP2002151051A (en) Sealed battery structure, sealed battery, manufacturing method of sealed battery and manufacturing equipment of sealed battery
JP2001357824A (en) Sealed battery
JP2006114406A (en) Manufacturing method of sheet type battery, sheet type battery, and battery pack cimbined with sheet type unit cell
US20220416377A1 (en) Manufacturing method of pouch battery
JP2009032451A (en) Laminate outer packaging battery
JP4686823B2 (en) Sealed battery
JP2017154760A (en) Seal bar, seal bar system, and method of manufacturing bag-like article
JP2001297738A (en) Sealed battery and manufacturing method of sealed battery
JP2007073322A (en) Method of sealing battery
JP4293512B2 (en) Sealed battery
JP7446202B2 (en) Batteries and battery manufacturing methods
CN219267720U (en) Battery cell
CN220065875U (en) Soft package battery
JP2000331666A (en) Separator, assembly for battery and battery provided with the separator
KR20230080589A (en) Sealing tool for pouch type battery
JP4179762B2 (en) Sealed battery provided with film-shaped exterior body and method for manufacturing the same
JPH10270060A (en) Manufacture of battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100323

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150