JP2002151051A - Sealed battery structure, sealed battery, manufacturing method of sealed battery and manufacturing equipment of sealed battery - Google Patents

Sealed battery structure, sealed battery, manufacturing method of sealed battery and manufacturing equipment of sealed battery

Info

Publication number
JP2002151051A
JP2002151051A JP2000342498A JP2000342498A JP2002151051A JP 2002151051 A JP2002151051 A JP 2002151051A JP 2000342498 A JP2000342498 A JP 2000342498A JP 2000342498 A JP2000342498 A JP 2000342498A JP 2002151051 A JP2002151051 A JP 2002151051A
Authority
JP
Japan
Prior art keywords
electrolyte
sealed battery
fusion
injection port
bag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000342498A
Other languages
Japanese (ja)
Other versions
JP4200411B2 (en
Inventor
Kenji Yamauchi
健治 山内
Shinichi Egami
新市 江上
Toshiyuki Onda
敏之 温田
Kenji Kono
健次 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP2000342498A priority Critical patent/JP4200411B2/en
Publication of JP2002151051A publication Critical patent/JP2002151051A/en
Application granted granted Critical
Publication of JP4200411B2 publication Critical patent/JP4200411B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Filling, Topping-Up Batteries (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sealed battery structure, a sealed battery, and a manufacturing equipment of the sealed battery and a manufacturing method of the sealed battery, which enables to fill normal electrolytic liquid to power generation element certainty and quickly according to a simplified mechanism and process, in filling the electrolytic liquid to the power generation element. SOLUTION: The sealed battery 10 forms welding margins 24A, 24B, and 24C and a liquid pouring opening 20 along outer frame of a power generation element 11 in a package 16 for the sealed battery. After filling with the electrolytic liquid 36 in the package 16 for the sealed battery from the liquid pouring opening 20, it forms welding margin 20A of the liquid pouring opening by weld- sealing the liquid pouring opening 20. The electrolytic liquid 36 is stored in an electrolytic liquid bag 22, which is formed integrally with the package 16 for the sealed battery, and the electrolytic liquid 36 is moved so as to close the liquid pouring opening 20 in a decompression state, and subsequently it is opened to the air to let the electrolytic liquid 36 flow into the package 16 for the sealed battery.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は密閉形電池構造,密
閉形電池,密閉形電池の製造方法および密閉形電池の製
造装置に係り、特に密閉形電池用パッケージ内に発電要
素を仮収容した後、発電要素に電解液を充填させてから
発電要素を収容封止する密閉形電池構造,密閉形電池,
密閉形電池の製造方法および密閉形電池の製造装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed battery structure, a sealed battery, a method of manufacturing a sealed battery, and an apparatus for manufacturing a sealed battery, and more particularly to a method of temporarily housing a power generating element in a sealed battery package. , A sealed battery structure in which a power generating element is filled with an electrolyte and then houses and seals the power generating element, a sealed battery,
The present invention relates to a sealed battery manufacturing method and a sealed battery manufacturing apparatus.

【0002】[0002]

【従来の技術】一般に、密閉形電池は、電解質層を介し
て正極および負極が積層された発電要素と、正極および
負極にそれぞれ連結された正極端子および負極端子と、
電解質層の外部漏洩や外気の内部侵入を防ぐために、正
極端子の開放端部および負極端子の開放端部が外部露出
するように発電要素を収容封止する金属樹脂複合フィル
ム製の密閉形電池用パッケージとを含んで構成されてい
る。
2. Description of the Related Art In general, a sealed battery comprises a power generating element in which a positive electrode and a negative electrode are laminated via an electrolyte layer, a positive electrode terminal and a negative electrode terminal respectively connected to the positive electrode and the negative electrode,
For sealed batteries made of metal-resin composite film that houses and seals power generation elements so that the open end of the positive electrode terminal and the open end of the negative electrode terminal are exposed outside in order to prevent external leakage of the electrolyte layer and intrusion of outside air. It is configured to include a package.

【0003】密閉形電池用パッケージにより発電要素を
収容封止する際には、矩形状に形成された一対の金属樹
脂複合フイルムのうちの一方に発電要素の形状に対応し
た窪みをあらかじめ形成しておき、この窪みに発電要素
を配置した後、一対の金属樹脂複合フイルムを重ね合わ
せて発電要素を挟み込む。次に、重ね合わせた金属樹脂
複合フイルムの四辺を加熱しながら融着性樹脂層同士を
融着させて融着代を形成するとともに、特定の辺の一部
を融着せずに、注液口を形成する。
When the power generating element is housed and sealed by the sealed battery package, a recess corresponding to the shape of the power generating element is formed in advance in one of a pair of rectangular metal resin composite films. After the power generating element is disposed in the depression, the pair of metal-resin composite films is overlapped to sandwich the power generating element. Next, while heating the four sides of the superposed metal-resin composite film, the fusible resin layers are fused together to form a fusion allowance, and a part of a specific side is not fused, and To form

【0004】そして、あらかじめ所定のタンクに電解液
を貯溜しておくとともにタンクに接続されたノズルを注
液口に差し込み、注液口から電解液を少しずつ滴下し、
自然に発電要素内に電解液を充填させた後、注液口を封
口して密閉形電池を得る(従来例1)。ところが、この
従来例1では、電解液の充填完了まで長時間を要すると
ともに、特定の密閉形電池がタンク,ノズルを占有する
ため、多数の密閉形電池に電解液を充填するためには装
置を大型化せざるを得ないという問題があり、改善が求
められていた。
[0004] Then, the electrolyte is stored in a predetermined tank in advance, and a nozzle connected to the tank is inserted into the injection port, and the electrolyte is dripped little by little from the injection port.
After the electrolyte is naturally filled in the power generation element, the injection port is sealed to obtain a sealed battery (conventional example 1). However, in the conventional example 1, since it takes a long time to complete the filling of the electrolyte, and a specific sealed battery occupies the tank and the nozzle, an apparatus is required to fill a large number of sealed batteries with the electrolyte. There was a problem that the size had to be increased, and improvement was required.

【0005】[0005]

【発明が解決しようとする課題】ところで、硬質の密閉
形電池用パッケージを有する密閉形電池の場合、あらか
じめ有底筒状に形成された密閉形電池用パッケージの開
口を所定の蓋部材により閉鎖するとともに、蓋部材に設
けられた減圧孔から密閉形電池用パッケージ内を減圧
し、次いで蓋部材に設けられた注液口から密閉形電池用
パッケージ内に電解液を注液する方法が知られている
(従来例2)。
Incidentally, in the case of a sealed battery having a hard sealed battery package, the opening of the sealed battery package formed in a cylindrical shape with a bottom in advance is closed with a predetermined lid member. In addition, a method is known in which the inside of the sealed battery package is depressurized through a pressure reducing hole provided in the lid member, and then the electrolyte is injected into the sealed battery package from a liquid inlet provided in the lid member. (Conventional example 2).

【0006】しかしながら、従来例2は、蓋部材により
密閉形電池用パッケージの開口を閉鎖するために、換言
すれば密閉形電池用パッケージの開口縁部と蓋部材とが
気密性を保って接触するために、密閉形電池用パッケー
ジが硬質である必要があり、前述したように密閉形電池
用パッケージが軟質の金属樹脂複合フィルム製である密
閉形電池には適用できない。また、この従来例2は、密
閉形電池用パッケージの開口縁部と蓋部材との間の気密
性が不充分であると、気圧差の影響から当該間や周囲に
電解液が付着するという問題もある。
However, in the prior art 2, since the lid member closes the opening of the sealed battery package, in other words, the opening edge of the sealed battery package and the lid member are in contact with each other while maintaining airtightness. Therefore, the sealed battery package needs to be hard, and thus cannot be applied to the sealed battery in which the sealed battery package is made of a soft metal-resin composite film as described above. Further, the conventional example 2 has a problem that if the airtightness between the opening edge of the sealed battery package and the lid member is insufficient, the electrolytic solution adheres to the space and around due to the influence of the pressure difference. There is also.

【0007】本発明は、前述した問題点に鑑みてなされ
たものであり、その目的は、発電要素に対する電解液の
充填にあたって、簡略化された機構,工程により発電要
素に対して電解液を確実、かつ、迅速に充填できる密閉
形電池構造,密閉形電池,密閉形電池の製造装置および
密閉形電池の製造方法を提供することにある。
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to ensure that an electrolyte is reliably supplied to a power generation element by a simplified mechanism and process when filling the power generation element with an electrolyte. Another object of the present invention is to provide a sealed battery structure, a sealed battery, a device for manufacturing a sealed battery, and a method for manufacturing a sealed battery, which can be filled quickly.

【0008】[0008]

【課題を解決するための手段】前述した目的を達成する
ために、本発明の密閉形電池構造は、請求項1に記載し
たように、セパレータを介して正極および負極を具備し
た発電要素を密閉形電池用パッケージにより挟み込み、
前記密閉形電池用パッケージにおける対向する内面同士
を前記発電要素の外枠に沿って融着することにより融着
代を形成するとともに、前記内面同士の一部を非融着の
状態で残して注液口を形成し、かつ、前記注液口に臨ん
で前記密閉形電池用パッケージに電解液袋が一体成形さ
れたことを特徴としている。
In order to achieve the above-mentioned object, a sealed battery structure according to the present invention is characterized in that a power generation element having a positive electrode and a negative electrode is sealed with a separator interposed therebetween. Sandwiched by the battery package,
A fusion margin is formed by fusing opposing inner surfaces of the sealed battery package along the outer frame of the power generating element, while leaving a part of the inner surfaces in a non-fused state. A liquid port is formed, and an electrolyte bag is integrally formed with the sealed battery package facing the liquid injection port.

【0009】ここで、電解液袋としては、少なくとも注
液口が形成された融着代に隣接していればよく、この融
着代に対する電解液袋の開口は交差あるいは平行であれ
ばよい。このように構成された密閉形電池構造において
は、注液口に臨んで電解液袋が一体成形されているた
め、この電解液袋に電解液を一時的に貯溜させ、次いで
注液口から電解液を少しずつ滴下させて、自然に発電要
素内に電解液を充填させれば、従来のようにタンク,ノ
ズル等を占有する必要性や、タンク,ノズル等を準備す
る必要性を解消でき、これにより前述した目的を達成で
きる。
Here, the electrolyte bag may be at least adjacent to the fusion allowance at which the liquid inlet is formed, and the opening of the electrolyte bag with respect to the fusion allowance may be intersecting or parallel. In the sealed battery structure configured as described above, since the electrolyte bag is integrally formed facing the injection port, the electrolyte is temporarily stored in the electrolyte bag, and then the electrolyte is injected from the injection port. If the liquid is dropped little by little and the electrolyte is naturally filled in the power generating element, the necessity of occupying the tank and the nozzle as in the conventional case and the necessity of preparing the tank and the nozzle can be eliminated. Thereby, the above-mentioned object can be achieved.

【0010】そして、本発明の密閉形電池構造は、請求
項2に記載したように、前記密閉形電池用パッケージ内
を減圧状態にした後、前記減圧状態を解除することによ
り前記注液口から前記密閉形電池用パッケージ内に充填
して電解質層を形成するにあたって、前記電解液袋が、
前記減圧状態前に前記電解液を貯溜するとともに、前記
減圧状態時に前記注液口を閉鎖するように前記電解液を
移動させ、かつ、前記減圧状態が解除されたときに前記
注液口を介して前記電解液を前記密閉形電池用パッケー
ジ内に流し込み、次いで前記注液口を融着封口して注液
口融着代を形成することを特徴としている。
In the sealed battery structure of the present invention, as described in claim 2, after the inside of the sealed battery package is depressurized, the depressurized state is released, and the sealed battery structure is released from the liquid inlet. Upon filling in the sealed battery package to form an electrolyte layer, the electrolyte bag,
The electrolyte solution is stored before the decompression state, and the electrolyte solution is moved so as to close the injection port during the decompression state, and through the injection port when the decompression state is released. Then, the electrolyte is poured into the package for a sealed battery, and then the injection port is fusion-sealed to form an injection port fusion margin.

【0011】また、本発明の密閉形電池の製造方法は、
請求項10に記載したように、セパレータを介して正極お
よび負極を具備した発電要素を密閉形電池用パッケージ
により挟み込み、前記密閉形電池用パッケージにおける
対向する内面同士を前記発電要素の外枠に沿って融着す
ることにより融着代を形成するとともに、前記内面同士
の一部を非融着の状態で残して注液口を形成し、前記注
液口から電解液を前記密閉形電池用パッケージ内に充填
して電解質層を形成し、次いで前記注液口を融着封口す
る密閉形電池の製造方法であって、あらかじめ前記注液
口に臨む電解液袋を前記密閉形電池用パッケージに一体
成形しておき、前記電解液袋に前記電解液を貯溜すると
ともに、前記密閉形電池用パッケージ内を減圧状態にし
た後、前記注液口を閉鎖するように前記電解液を移動さ
せ、次いで前記減圧状態を解除することにより前記電解
液を密閉形電池用パッケージ内に流し込んで前記発電要
素内に前記電解液を充填することを特徴としている。
[0011] The method for producing a sealed battery according to the present invention comprises:
As described in claim 10, a power generating element including a positive electrode and a negative electrode is sandwiched by a sealed battery package via a separator, and opposing inner surfaces of the sealed battery package are arranged along an outer frame of the power generating element. Forming a filling allowance by fusing together, forming a filling port while leaving a part of the inner surfaces in a non-fused state, and passing the electrolyte from the filling port to the sealed battery package. To form an electrolyte layer, and then to seal the injection port by fusing and sealing, wherein an electrolyte bag facing the injection port is integrated with the package for the sealed battery in advance. After forming, and storing the electrolyte in the electrolyte bag, and after reducing the pressure inside the sealed battery package, the electrolyte is moved so as to close the injection port, and then the Decrease It is characterized by filling the electrolyte into the power generating element the electrolyte by releasing the state poured into sealed battery package.

【0012】さらに、本発明の密閉形電池の製造装置
は、請求項14に記載したように、セパレータを介して正
極および負極を具備した発電要素を密閉形電池用パッケ
ージにより挟み込み、前記密閉形電池用パッケージにお
ける対向する内面同士を前記発電要素の外枠に沿って融
着することにより融着代を形成するとともに、前記内面
同士の一部を非融着の状態で残して注液口を形成し、か
つ、前記注液口に臨む電解液袋を一体成形し、次いで前
記注液口から前記電解液を注入した後、前記注液口を融
着封口する融着手段と、前記電解液袋に前記電解液を貯
溜させる電解液供給手段と、前記密閉形電池用パッケー
ジ内の圧力状態を開放状態と減圧状態とから選択可能な
圧力変動手段と、前記注液口を閉鎖するように前記電解
液袋から前記電解液を移動させる電解液移動手段とを有
することを特徴としている。
Further, according to the present invention, in the sealed battery manufacturing apparatus, the power generating element having a positive electrode and a negative electrode is sandwiched by a sealed battery package with a separator interposed therebetween. A fusion margin is formed by fusing opposing inner surfaces of the package along the outer frame of the power generation element, and a liquid injection port is formed while leaving a part of the inner surfaces in a non-fused state. And an integrally formed electrolyte bag facing the liquid inlet, and then injecting the electrolyte from the liquid inlet, and then fusing means for sealing the liquid inlet, and the electrolyte bag. An electrolyte supply means for storing the electrolyte solution, a pressure variation means capable of selecting a pressure state in the sealed battery package from an open state and a reduced pressure state, and the electrolysis so as to close the liquid inlet. The electrolyte from the liquid bag It is characterized by having an electrolyte solution moving means for moving the.

【0013】これらの発明において、電解液袋に電解液
を貯溜させるにあたっては、例えば電解液袋が略矩形状
に形成され、かつ、注液口が形成された融着代に対して
電解液袋の開口が平行である場合、注液口が真上を向く
ように電解液袋を配置した初期状態から、厚み方向に沿
った線を中心として電解液袋を所定角度回動させた傾斜
状態とし、注液口が形成された融着代と、電解液袋の襠
とが交差する隅部をポケット部として電解液を貯溜すれ
ばよい。
In these inventions, when storing the electrolytic solution in the electrolytic solution bag, for example, the electrolytic solution bag is formed in a substantially rectangular shape, and the electrolytic solution bag is formed with respect to the fusion allowance in which the injection port is formed. When the openings are parallel, from the initial state where the electrolyte bag is arranged so that the injection port faces directly above, from the initial state where the electrolyte bag is rotated by a predetermined angle about the line along the thickness direction, the inclined state is set. Then, the electrolyte may be stored using the corner where the fusion margin in which the liquid injection port is formed and the gore of the electrolyte bag intersect as a pocket.

【0014】あるいは、これらの発明においては、直線
状に形成された一対の挟持部材を用いて注液口の貫通方
向に沿うように電解液袋を厚み方向に挟持することによ
り前述した隅部と注液口とを隔離し、注液口が真上を向
くように電解液袋を配置した初期状態において電解液を
貯溜してもよい。さらに、これらの発明においては、略
U字状に形成された一対の挟持部材を用いて電解液袋を
厚み方向に挟持することにより、電解液袋内に形成され
たポケット部に電解液を貯溜してもよい。
Alternatively, in these inventions, the above-mentioned corner portion is formed by sandwiching the electrolyte bag in the thickness direction along a penetrating direction of the injection port by using a pair of sandwiching members formed linearly. The electrolyte solution may be stored in an initial state in which the electrolyte solution bag is arranged so that the solution injection port is separated from the solution injection port so that the solution injection port faces right above. Furthermore, in these inventions, the electrolytic solution bag is sandwiched in the thickness direction by using a pair of holding members formed in a substantially U-shape, so that the electrolytic solution is stored in the pocket formed in the electrolytic solution bag. May be.

【0015】なお、これらの発明においては、電解液袋
に電解液を貯溜させる工程と、密閉形電池用パッケージ
内を減圧状態にする工程とを順次行ってもよく、あるい
は同時に行ってもよい。そして、これらの発明におい
て、減圧状態時に注液口を閉鎖するように電解液袋から
電解液を移動させるにあたっては、例えば電解液袋を前
述した傾斜状態から初期状態に復帰させたり、あるいは
挟持部材を離反させればよい。
In these inventions, the step of storing the electrolyte in the electrolyte bag and the step of reducing the pressure inside the sealed battery package may be performed sequentially or simultaneously. In these inventions, when the electrolyte is moved from the electrolyte bag so as to close the injection port during the depressurized state, for example, the electrolyte bag is returned from the above-mentioned inclined state to the initial state, or a holding member. Should be separated.

【0016】以上のような本発明においては、減圧状態
時、電解液袋に貯溜させた電解液により注液口を閉鎖
し、次いで減圧状態を解除して大気圧により電解液を密
閉形電池用パッケージに流し込むため、飛散した電解液
が周囲を汚染する虞れや気泡が混入することなく、電解
液を発電要素に充填できることになる。すなわち、これ
らの本発明においては、開放状態における密閉形電池用
パッケージ内の空気を確実に電解液に置換できるため、
規定量の電解液を確実に発電要素に充填できることにな
る。
In the present invention as described above, when the pressure is reduced, the injection port is closed by the electrolyte stored in the electrolyte bag, and then the pressure is released to release the electrolyte at atmospheric pressure for the sealed battery. Since the electrolytic solution is poured into the package, the electrolytic solution can be filled in the power generating element without the risk that the scattered electrolytic solution contaminates the surroundings or bubbles are mixed. That is, in the present invention, since the air in the sealed battery package in the open state can be reliably replaced with the electrolyte,
The specified amount of electrolyte can be reliably filled in the power generating element.

【0017】また、本発明の密閉形電池においては、請
求項3に記載したように、前記融着代および前記注液口
融着代に沿って前記電解液袋が前記密閉形電池用パッケ
ージから切除されているため、電解液袋を切除しない場
合に比較して容積効率を向上できることになる。
Further, in the sealed battery according to the present invention, as described in claim 3, the electrolyte bag is moved from the sealed battery package along the fusion allowance and the injection port fusion allowance. Since it has been cut, the volume efficiency can be improved as compared with the case where the electrolyte bag is not cut.

【0018】さらに、本発明の密閉形電池においては、
請求項4に記載したように、前記注液口融着代を形成す
るにあたって、前記融着代のうちの前記注液口に隣り合
う個所を再び融着させて再融着代を形成することによ
り、前記再融着代の融着部と前記注液口融着代の融着部
との間に境界面を備えている。
Further, in the sealed battery of the present invention,
As described in claim 4, in forming the injection port fusion allowance, a portion of the fusion allowance adjacent to the liquid injection port is again fused to form a refusion allowance. Accordingly, a boundary surface is provided between the fusion portion of the re-fusion margin and the fusion portion of the injection port fusion margin.

【0019】また、本発明の密閉形電池は、請求項5に
記載したように、前記注液口融着代の内面が前記電解液
と相溶しない樹脂であることを特徴としている。ここ
で、注液口融着代における内面の樹脂としては、電解液
に対する良好な濡れ性が得られる例えばポリエチレンや
ポリプロピレンあるいはそれらの共重合体等のポリオレ
フィン系樹脂製の融着性樹脂等を例示できる。
Further, the sealed battery of the present invention is characterized in that, as set forth in claim 5, the inner surface of the injection port fusion margin is made of a resin that is incompatible with the electrolyte. Here, as the resin on the inner surface in the injection port fusion margin, for example, a fusion-bondable resin made of a polyolefin-based resin such as polyethylene or polypropylene or a copolymer thereof, which can obtain good wettability to an electrolyte solution, is exemplified. it can.

【0020】このような密閉形電池においては、注液口
融着代の内面が電解液と相溶しない樹脂であるため、注
液口融着代を形成するにあたって、注液口融着代の内面
に電解液が付着し難い。
In such a sealed battery, since the inner surface of the injection port fusion margin is made of a resin that is not compatible with the electrolytic solution, in forming the injection port fusion margin, the injection port fusion margin is not included. The electrolyte does not easily adhere to the inner surface.

【0021】ところで、本発明の密閉形電池において、
注液口から電解液を流し込むにあたって、電解液が過不
足なく流入するために注液口の開口寸法を適切に設定す
る必要がある。そして、本発明者は、注液口融着代が形
成された融着代全体の長手方向寸法に対して、注液口融
着代の融着代長さ寸法が二分の一以下、かつ、50mm以下
であれば所望の効果が得られることを見出した。このた
め、本発明の密閉形電池は、請求項6に記載したよう
に、前記注液口融着代の融着代長さ寸法が前記融着代の
長手方向寸法に対して二分の一以下、かつ、50mm以下で
あることを特徴としている。
By the way, in the sealed battery of the present invention,
When pouring the electrolyte from the injection port, it is necessary to appropriately set the opening size of the injection port so that the electrolyte flows in just enough. Then, the inventor has determined that the length of the fusion allowance of the injection port fusion allowance is not more than half of the longitudinal dimension of the entire fusion allowance where the injection port fusion allowance has been formed, and It has been found that a desired effect can be obtained if the thickness is 50 mm or less. Therefore, in the sealed battery of the present invention, as described in claim 6, the length of the fusion allowance at the injection port fusion allowance is not more than half of the longitudinal dimension of the fusion allowance. And is not more than 50 mm.

【0022】また、本発明の密閉形電池においては、請
求項7に記載したように、前記注液口融着代を形成する
にあたって、前記融着代のうちの前記注液口に隣り合う
個所を再び融着させた再融着代から前記発電要素側に向
かって前記融着代が搾出された形状を有しているため、
密閉形電池用パッケージ内の空間を小さくでき、これに
より密閉形電池の容積効率を向上できるとともに、密閉
形電池用パッケージ内の電解液を発電要素の内部に対し
て強制的、かつ、確実に電解液を充填できることにな
る。
Further, in the sealed battery according to the present invention, as described in claim 7, in forming the injection port fusion allowance, a portion of the fusion allowance adjacent to the injection port. Has a shape in which the fusion allowance is squeezed toward the power generating element side from the re-fusion allowance that is again fused.
The space inside the sealed battery package can be reduced, thereby improving the volumetric efficiency of the sealed battery, and forcing the electrolyte in the sealed battery package to the inside of the power-generating element in a forced and reliable manner. The liquid can be filled.

【0023】また、本発明の密閉形電池は、請求項8に
記載したように、前記再融着代から前記発電要素側に搾
出された前記融着代の突出寸法が、前記注液口融着代か
ら前記発電要素側に搾出された前記融着代の突出寸法よ
りも大きいことを特徴としている。一方、本発明の密閉
形電池は、請求項9に記載したように、前記再融着代か
ら前記発電要素側に搾出された前記融着代の突出寸法
が、他の前記融着代から前記発電要素側に搾出された前
記融着代の突出寸法よりも大きいことを特徴としてい
る。
In the sealed battery according to the present invention, the projecting dimension of the fusion allowance squeezed from the re-fusion allowance to the power generation element side may be equal to the filling port. It is characterized in that it is larger than the projection size of the fusion allowance squeezed from the fusion allowance to the power generating element side. On the other hand, in the sealed battery according to the present invention, as described in claim 9, the protrusion dimension of the fusion allowance squeezed toward the power generation element side from the refusion allowance is different from that of the other fusion allowances. It is characterized in that it is larger than the protrusion size of the fusion allowance squeezed out to the power generation element side.

【0024】次に、本発明の密閉形電池の製造方法は、
請求項11に記載したように、前記電解液袋に前記電解液
を貯溜させるために、前記電解液袋を傾斜させることを
特徴とし、請求項12に記載したように、前記電解液袋か
ら前記電解液を移動させるために、前記電解液袋を傾斜
させることを特徴としている。ここで、電解液袋の傾斜
形態としては、例えば当該電解液袋の厚み方向に沿った
線を中心として回動させてもよく、あるいは電解液袋を
構成する金属樹脂複合フイルムの適宜な個所にあらかじ
め適宜窪み等を形成しておけば、当該電解液袋の面方向
に沿った線を中心として回動させてもよい。
Next, the method for manufacturing a sealed battery according to the present invention is as follows.
As described in claim 11, in order to store the electrolyte in the electrolyte bag, the electrolyte bag is characterized by being inclined, as described in claim 12, from the electrolyte bag the In order to move the electrolyte, the electrolyte bag is inclined. Here, as the inclined form of the electrolyte bag, for example, the electrolyte bag may be rotated around a line along the thickness direction of the electrolyte bag, or at an appropriate position of the metal-resin composite film constituting the electrolyte bag. If a dent or the like is appropriately formed in advance, it may be rotated about a line along the surface direction of the electrolytic solution bag.

【0025】なお、本発明において、電解液袋を傾斜さ
せる工程は、電解液袋内における電解液の貯溜時および
移動時に合計二回行う必要はなく、注液口の位置や電解
液袋の構造等を適宜選択することにより電解液の貯溜時
あるいは移動時に一回だけ行ってもよい。
In the present invention, the step of inclining the electrolyte bag does not need to be performed twice in total when storing and moving the electrolyte in the electrolyte bag, and the position of the injection port and the structure of the electrolyte bag are not required. It may be performed only once at the time of storing or moving the electrolytic solution by appropriately selecting the above.

【0026】以上のように構成された密閉形電池の製造
方法においては、電解液袋を所定の回動軸線を中心とし
て回動させて傾斜させるという極めて簡単な工程によ
り、電解液袋内における電解液の貯溜あるいは移動が実
現でき、これにより従来のような複雑なバルブ機構やバ
ルブ操作等を不要にできるとともに、気泡の混入を伴う
ことなく規定量の電解液を確実に発電要素に充填できる
ことになる。
In the method for manufacturing a sealed battery constructed as described above, the electrolytic bag inside the electrolytic bag is formed by a very simple process of rotating and tilting the electrolytic bag around a predetermined rotation axis. Liquid storage or movement can be realized, which eliminates the need for complicated valve mechanisms and valve operations as in the past, and ensures that the power generation element can be reliably filled with a specified amount of electrolyte without introducing bubbles. Become.

【0027】次に、本発明の密閉形電池の製造方法は、
請求項13に記載したように、前記電解液袋に前記電解液
を貯溜させるために、一対の挟持部材により前記電解液
袋を厚み方向に挟持してポケット部を形成することを特
徴としている。ここで、挟持部材としては、例えば電解
液袋の表面に対して直線状,略C字状,略U字状,略V
字状,略コ字状等に接触して挟持することにより、電解
液袋の内部に電解液を貯溜可能なポケット部を形成可能
であればよい。従って、これらの挟持部材としては、電
解液袋の内部にポケット部を形成可能であれば、電解液
袋の表面に対する接触形態が同じである必要はなく、例
えば一方が略U字状に接触するとともに他方が矩形状に
接触してもよい。
Next, the method for producing a sealed battery of the present invention is as follows.
According to a thirteenth aspect, in order to store the electrolytic solution in the electrolytic solution bag, a pocket portion is formed by sandwiching the electrolytic solution bag in a thickness direction by a pair of sandwiching members. Here, as the holding member, for example, a linear shape, a substantially C shape, a substantially U shape, a substantially V shape with respect to the surface of the electrolyte bag.
It is only necessary that a pocket portion capable of storing an electrolytic solution can be formed inside the electrolytic solution bag by being sandwiched in contact with a letter shape, a substantially U shape, or the like. Therefore, these holding members do not need to have the same form of contact with the surface of the electrolyte bag, as long as a pocket portion can be formed inside the electrolyte bag, for example, one of them contacts in a substantially U-shape. At the same time, the other may contact in a rectangular shape.

【0028】このような密閉形電池の製造方法において
は、一対の挟持部材により電解液袋の内部にポケット部
を形成するため、減圧状態時に各挟持部材を離反させれ
ば、ポケット部に貯溜された電解液が注液口を閉鎖する
ように移動することになる。従って、この密閉形電池の
製造方法においては、電解液袋内における電解液の貯溜
あるいは移動にあたって、電解液袋を所定の回動軸線を
中心として回動させて傾斜させる必要がなく、製造装置
および製造工程を簡略化できることになる。
In such a method of manufacturing a sealed battery, since a pocket portion is formed inside the electrolyte bag by a pair of holding members, if the holding members are separated from each other in a depressurized state, the battery is stored in the pocket portion. The electrolyte solution moves so as to close the injection port. Therefore, in this method of manufacturing a sealed battery, it is not necessary to rotate and tilt the electrolyte bag around a predetermined rotation axis when storing or moving the electrolyte in the electrolyte bag, and the manufacturing apparatus and The manufacturing process can be simplified.

【0029】[0029]

【発明の実施の形態】以下、本発明に係る実施形態を図
面に基づいて詳細に説明する。図1に示すように、本発
明に係る第1実施形態である密閉形電池10は、電解質層
を介して正極および負極が積層された発電要素11と、正
極および負極にそれぞれ連結された正極端子12および負
極端子14と、電解質層の外部漏洩や外気の内部侵入を防
ぐために、正極端子12の開放端部12Aおよび負極端子14
の開放端部14Aが外部露出するように発電要素12を収容
封止する密閉形電池用パッケージ16とを有している。
Embodiments of the present invention will be described below in detail with reference to the drawings. As shown in FIG. 1, a sealed battery 10 according to a first embodiment of the present invention includes a power generating element 11 in which a positive electrode and a negative electrode are stacked via an electrolyte layer, and a positive electrode terminal connected to the positive electrode and the negative electrode, respectively. 12 and the negative electrode terminal 14 and the open end 12A of the positive electrode terminal 12 and the negative electrode
And a sealed battery package 16 for accommodating and sealing the power generation element 12 so that the open end 14A of the battery pack is exposed to the outside.

【0030】発電要素11は、セパレータを介して積層さ
れた正極および負極を巻回した後、径方向にプレスした
り、あるいはセパレータ,正極および負極を扁平な巻回
芯材に巻回することにより楕円柱状に形成されている。
密閉形電池用パッケージ16は、アルミニウム箔製の金属
箔芯材と、金属箔芯材の表面に沿うポリエチレンテレフ
タレート(PET)等のポリエステル樹脂やナイロン等の
ポリアミド樹脂、あるいはポリイミド樹脂製の保護層
と、金属箔芯材の裏面に沿うポロプロピレン(PP)ある
いはポリエチレン(PE)等のポリオレフィン系樹脂製の
金属接着性を有する融着性樹脂層とを積層させた金属樹
脂複合フイルムが多用される。融着性樹脂層は、電解液
と相溶しない樹脂とされている。
The power generating element 11 is formed by winding the positive electrode and the negative electrode laminated with a separator therebetween and then pressing in a radial direction, or by winding the separator, the positive electrode and the negative electrode around a flat wound core material. It is formed in an elliptical column shape.
The sealed battery package 16 is made of a metal foil core made of aluminum foil and a protective layer made of a polyamide resin such as a polyester resin such as polyethylene terephthalate (PET) or nylon or a nylon resin along the surface of the metal foil core, or a polyimide resin. A metal-resin composite film in which a metal-adhesive fusible resin layer made of a polyolefin-based resin such as polypropylene (PP) or polyethylene (PE) is laminated along the back surface of a metal foil core material is often used. The fusible resin layer is a resin that is incompatible with the electrolytic solution.

【0031】このような密閉形電池10の製造装置および
製造方法を図2〜図9に基づいて説明する。まず、図2
(A)に示すように、セパレータを介して正極および負
極が積層された発電要素11を準備するとともに、発電要
素11を収容可能な窪み17を備えた金属樹脂複合フイルム
18を準備する。金属樹脂複合フイルム18は、密閉形電池
用パッケージ16を形成する前の部材であり、発電要素11
の平面投影面積に対して略四倍の面積を有する矩形状と
され、窪み17は金属樹脂複合フイルム18の隅部に形成さ
れている。次に、発電要素11を金属樹脂複合フイルム18
の窪み17に配置した後、中央19を境界として金属樹脂複
合フイルム18を図中矢印に示すように折り曲げることに
より、発電要素11を金属樹脂複合フイルム18内に挟み込
む。
A manufacturing apparatus and a manufacturing method of such a sealed battery 10 will be described with reference to FIGS. First, FIG.
As shown in (A), a power generation element 11 in which a positive electrode and a negative electrode are stacked via a separator is prepared, and a metal-resin composite film having a recess 17 capable of accommodating the power generation element 11 is provided.
Prepare 18 The metal-resin composite film 18 is a member before forming the sealed battery package 16 and includes the power generation element 11.
Is formed in a rectangular shape having an area approximately four times as large as the area projected on the plane, and the depression 17 is formed at a corner of the metal-resin composite film 18. Next, the power generation element 11 is connected to the metal-resin composite film 18.
After being disposed in the recess 17, the metal-resin composite film 18 is bent at the center 19 as shown by the arrow in the figure, whereby the power generation element 11 is sandwiched in the metal-resin composite film 18.

【0032】図2(B)に示すように、対向する金属樹
脂複合フイルム18の内面同士を発電要素11の外枠に沿っ
た三辺を融着することにより融着代24A,24B,24Cを
形成して密閉形電池用パッケージ16を得る。この際、発
電要素11の外枠に沿った中央19側に金属樹脂複合フイル
ム18の内面同士を非融着の状態で残して注液口20を形成
する。また、融着代24Bは、金属樹脂複合フイルム18の
両端縁に沿って延長しておく。注液口20は、融着代24A
の長手方向寸法と注液口20の幅寸法との合算値に対し
て、二分の一以下、かつ、50mm以下とされている。特
に、電解液の粘性,作業性等を考慮すると、5mm以下と
することが好ましい。
As shown in FIG. 2B, the inner surfaces of the opposing metal-resin composite films 18 are welded to three sides along the outer frame of the power generating element 11 so that the allowances 24A, 24B and 24C are reduced. Thus, a sealed battery package 16 is obtained. At this time, the liquid injection port 20 is formed on the center 19 side along the outer frame of the power generation element 11 while leaving the inner surfaces of the metal-resin composite film 18 in a non-fused state. Further, the fusion allowance 24B is extended along both end edges of the metal-resin composite film 18. Injection port 20 is 24A for fusion
The length is set to 1/2 or less and 50 mm or less of the sum of the length in the longitudinal direction and the width of the liquid inlet 20. In particular, the thickness is preferably 5 mm or less in consideration of the viscosity of the electrolytic solution, workability, and the like.

【0033】従って、密閉形電池用パッケージ16は、注
液口20に臨んで電解液袋22が一体成形される。この電解
液袋22は、電解液袋が略矩形状に形成され、融着代24A
に対して平行な開口部22Aを有している。
Therefore, in the sealed battery package 16, the electrolyte bag 22 is integrally formed facing the inlet 20. The electrolyte bag 22 has an electrolyte bag formed in a substantially rectangular shape.
The opening 22A is parallel to the opening 22A.

【0034】融着代24A,24B,24Cは、図3(A)〜
図3(C)に示すように、製造装置を構成する融着手段
25により形成される。まず、図3(A)に示すように、
融着手段25の上下のプレス部材26,27を開いておき、各
プレス部材26,27間に金属樹脂複合フイルム18の未融着
代18A,18Bを配置する。次に、図3(B)に示すよう
に、各プレス部材26,27を近接させることによりパッケ
ージ素材18の未融着代18A,18Bを挟持するとともに加
熱し、未融着代18A,18Bを相互融着して融着代24A,
24B,24Cを形成する。この際、未融着代18A,18Bの
溶融部が発電要素11側に一部搾出して突出部23を形成す
る。次いで、図3(C)に示すように、各プレス部材2
6,27を離反させて、融着手段25から密閉形電池用パッ
ケージ16を取り外す。
The fusion allowances 24A, 24B and 24C are shown in FIGS.
As shown in FIG. 3 (C), a fusing unit constituting the manufacturing apparatus
Formed by 25. First, as shown in FIG.
The upper and lower press members 26 and 27 of the fusing means 25 are opened, and unfused margins 18A and 18B of the metal-resin composite film 18 are arranged between the press members 26 and 27. Next, as shown in FIG. 3B, the unfused margins 18A and 18B of the package material 18 are clamped and heated by bringing the press members 26 and 27 close to each other, and the unfused margins 18A and 18B are removed. 24A for fusion
24B and 24C are formed. At this time, the fused portions of the unfused margins 18A and 18B are partially squeezed toward the power generation element 11 to form the projecting portions 23. Next, as shown in FIG.
6 and 27 are separated from each other, and the sealed battery package 16 is removed from the fusing means 25.

【0035】融着代24A,24B,24Cを形成した後、図
4(A)および図4(B)に示すように、平行、かつ、
隣接する一対のピン30,31を電解液袋22の開口22Aに差
し込んだ後、電解液袋22の面方向に沿って各ピン30,31
を互いに離れる方向に移動させることにより(矢印参
照)、金属樹脂複合フイルム18の内面同士を離反させて
電解液袋22の開口22Aを大きく開く。なお、これらのピ
ン30,31は、電解液袋22の厚み方向に沿って離れる方向
に移動させてもよい。
After forming the welding margins 24A, 24B and 24C, as shown in FIGS. 4 (A) and 4 (B), they are parallel and
After inserting a pair of adjacent pins 30 and 31 into the opening 22 </ b> A of the electrolyte bag 22, the pins 30 and 31 extend along the surface direction of the electrolyte bag 22.
Are moved away from each other (see arrows), the inner surfaces of the metal-resin composite film 18 are separated from each other, and the opening 22A of the electrolyte bag 22 is greatly opened. Note that these pins 30 and 31 may be moved in a direction away from each other along the thickness direction of the electrolyte bag 22.

【0036】次に、電解液袋22に電解液36を貯溜するた
めに、製造装置を構成する電解液供給手段26の作用を図
5に示す。図5(A)に示すように、電解液供給手段26
は、注液口20の貫通方向が略垂直な初期状態から電解液
袋22の厚み方向に沿った線を中心として図中反時計回り
に密閉形電池用パッケージ16を約30度回動させて傾斜さ
せる(図中矢印参照)。この際、電解液袋22は、融着代
24A,24Bが交差する隅部がポケット部27となる。次
に、図5(B)に示すように、注液口20を大気に開放さ
せた状態でポケット部27にノズル35から電解液36を供給
して貯溜させる。
Next, the operation of the electrolyte supply means 26 constituting the manufacturing apparatus for storing the electrolyte 36 in the electrolyte bag 22 is shown in FIG. As shown in FIG.
The sealed battery package 16 is rotated about 30 degrees counterclockwise in the figure from the initial state in which the direction of penetration of the liquid inlet 20 is substantially perpendicular to a line along the thickness direction of the electrolyte bag 22 in the figure. Incline (see arrow in the figure). At this time, the electrolyte bag 22 is
The corner where 24A and 24B intersect becomes the pocket 27. Next, as shown in FIG. 5 (B), the electrolyte solution 36 is supplied from the nozzle 35 to the pocket portion 27 and stored in a state where the liquid inlet 20 is opened to the atmosphere.

【0037】続いて、図6(A)および図6(B)に示
すように、密閉形電池用パッケージ16を傾斜させるため
に用いた受入部材42とともに、密閉形電池用パッケージ
16を傾斜させた状態で真空チャンバ41内に配置する。そ
して、製造装置を構成する圧力変動手段である真空チャ
ンバ41内を減圧状態にすることにより、融着代24A,24
B,24C(融着代24Cは図示せず)に囲まれた部分を注
液口20から脱気して発電要素11内を減圧状態にする。こ
の際、ポケット部27に貯溜された電解液36が飛散する虞
れはない。
Next, as shown in FIGS. 6A and 6B, the receiving member 42 used to incline the sealed battery package 16 and the sealed battery package 16 are used.
16 is placed in the vacuum chamber 41 in an inclined state. Then, the inside of the vacuum chamber 41, which is a pressure fluctuation means constituting the manufacturing apparatus, is brought into a reduced pressure state, so that the fusion allowances 24A, 24A are obtained.
The portion surrounded by B, 24C (the fusion allowance 24C is not shown) is degassed from the liquid inlet 20 to reduce the pressure inside the power generating element 11. At this time, there is no possibility that the electrolyte solution 36 stored in the pocket portion 27 is scattered.

【0038】次に、製造装置を構成する電解液移動手段
の作用を図7に示す。図7(A)および図7(B)に示
すように、電解液移動手段は、受入部材42の軸43を中心
として、密閉形電池用パッケージ16を初期状態から時計
回りに約15度回動した状態まで傾斜させることにより、
ポケット部27に貯溜した電解液36が注液口20を閉鎖する
ように移動させる。すなわち、密閉形電池用パッケージ
16は、図5に示す状態から図中時計回りに約45度回動す
る。そして、圧力変動手段である真空チャンバ41内の減
圧状態を解除して大気圧を真空チャンバ41内に導入す
る。従って、電解液36に大気圧がかかり、電解液36が注
液口20を介して密閉形電池用パッケージ16内に流れ込
む。
Next, the operation of the electrolyte moving means constituting the production apparatus is shown in FIG. As shown in FIGS. 7A and 7B, the electrolyte moving means rotates the sealed battery package 16 clockwise about 15 degrees from the initial state about the shaft 43 of the receiving member 42. By tilting to the state where
The electrolyte solution 36 stored in the pocket 27 is moved so as to close the injection port 20. That is, package for sealed battery
16 rotates approximately 45 degrees clockwise in the figure from the state shown in FIG. Then, the depressurized state in the vacuum chamber 41 which is a pressure fluctuation unit is released, and the atmospheric pressure is introduced into the vacuum chamber 41. Therefore, the atmospheric pressure is applied to the electrolytic solution 36, and the electrolytic solution 36 flows into the sealed battery package 16 through the injection port 20.

【0039】図8に示すように、注液口20を介して密閉
形電池用パッケージ16内に流れ込んだ電解液36は、発電
要素11の両端部11A,11Bから発電要素11内に浸入す
る。この際、発電要素11の内部は減圧状態であるため、
発電要素11の両端部11A,11Bから浸入した電解液36
は、発電要素11の内部に引っ張り込まれる。これによ
り、電解液36を発電要素11の内部に確実に充填できる。
As shown in FIG. 8, the electrolyte 36 flowing into the sealed battery package 16 through the liquid inlet 20 enters the power generating element 11 from both ends 11A and 11B of the power generating element 11. At this time, since the inside of the power generation element 11 is in a depressurized state,
Electrolyte 36 penetrating from both ends 11A and 11B of power generating element 11
Is pulled inside the power generating element 11. Thus, the electrolyte 36 can be reliably filled in the power generation element 11.

【0040】次に、真空チャンバ41内から密閉形電池用
パッケージ16を取り出し、図9(A)に示すように、注
液口20を融着封口して注液口融着代20Aを形成する。こ
の際、注液口20は、図3と同様に融着手段25の上下のプ
レス部材26,27により融着封口され、融着代24Aが再度
融着される。その後、図9(B)に示すように、密閉形
電池用パッケージ16を融着代24A,24Cに沿って余剰部
18A,18Bを切除することにより、容積効率が極めて高
い密閉形電池10(図1も参照)を得る。
Next, the sealed battery package 16 is taken out of the vacuum chamber 41, and as shown in FIG. 9A, the injection port 20 is fused and sealed to form an injection port fusion margin 20A. . At this time, the injection port 20 is sealed by the upper and lower press members 26 and 27 of the fusion means 25 in the same manner as in FIG. 3, and the fusion margin 24A is fused again. Thereafter, as shown in FIG. 9 (B), the sealed battery package 16 is moved along the margins 24A and 24C for the excess portion.
By removing 18A and 18B, a sealed battery 10 (see also FIG. 1) having extremely high volumetric efficiency is obtained.

【0041】このような実施形態によれば、注液口20に
臨んで電解液袋22が一体成形されているため、この電解
液袋22に電解液36を一時的に貯溜させ、次いで注液口20
から電解液36を密閉形電池用パッケージ16に充填させる
ことにより、従来のようにタンク,ノズル等を占有する
必要性や、タンク,ノズル等を準備する必要性を解消で
きる。
According to this embodiment, since the electrolyte bag 22 is integrally formed facing the injection port 20, the electrolyte 36 is temporarily stored in the electrolyte bag 22, Mouth 20
By filling the sealed battery package 16 with the electrolyte 36, the necessity of occupying the tanks and nozzles and the like and the necessity of preparing the tanks and nozzles as in the related art can be eliminated.

【0042】さらに、注液口融着代20Aの内面が電解液
36と相溶しない樹脂であるため、注液口融着代20Aを形
成するにあたって、注液口融着代20Aの内面に電解液36
が付着し難く、かつ、注液口融着代20Aの内面に電解液
36が付着しても、樹脂が電解液36を包み込むことによ
り、注液口融着代20Aの融着強度に悪影響を与えず、こ
れにより密閉形電池用パッケージ16の気密性を阻害する
虞れがない。
Further, the inner surface of the injection port 20A for the injection port is an electrolyte.
Since it is a resin that is incompatible with 36, when forming the injection port fusion allowance 20A, the electrolyte 36 is formed on the inner surface of the injection port fusion allowance 20A.
Is difficult to adhere, and the electrolyte is
Even if 36 adheres, the resin wraps around the electrolytic solution 36 and does not adversely affect the fusion strength of the injection port fusion margin 20A, which may hinder the hermeticity of the sealed battery package 16. There is no.

【0043】注液口融着代20Aが形成された融着代24A
全体の長手方向寸法に対して、注液口融着代20Aの融着
代長さ寸法が二分の一以下、かつ、50mm以下であるた
め、注液口20から電解液36を流し込むにあたって、電解
液36が過不足なく流入する。
A fusion allowance 24A having a liquid inlet fusion allowance 20A formed
With respect to the entire longitudinal dimension, the length of the fusion allowance of the injection port fusion allowance 20A is one half or less and 50 mm or less. The liquid 36 flows in just enough.

【0044】また、このような実施形態によれば、電解
液袋22のポケット部に電解液36を貯溜してから真空チャ
ンバ41内を減圧状態にした後、密閉形電池用パッケージ
を回動させることにより注液口を閉鎖するように電解液
袋22から電解液36を移動させ、次いで真空チャンバ41内
の減圧状態を解除して大気圧により電解液36を密閉形電
池用パッケージに流し込むため、電解液36は注液口20が
前記電解液36によって閉鎖された状態のまま略全量が前
記密閉形電池用パッケージ16内に流れ込むので、気泡が
混入することがなく、従って電解液36が飛散する虞れが
ないので、従来のように飛散した電解液が周囲を汚染す
る虞れがなく、規定量の電解液を確実、かつ、容易に発
電要素に充填できる。そして、この実施形態によれば、
電解液の貯溜および移動にあたって、従来のようなバル
ブ機構やバルブ操作等が必要ないため、製造装置および
製造工程を格段に簡略化できる。
According to such an embodiment, after the electrolyte 36 is stored in the pocket portion of the electrolyte bag 22 and the inside of the vacuum chamber 41 is evacuated, the sealed battery package is rotated. By moving the electrolyte 36 from the electrolyte bag 22 so as to close the injection port, and then release the reduced pressure state in the vacuum chamber 41 and flow the electrolyte 36 into the sealed battery package at atmospheric pressure, Almost the entire amount of the electrolyte 36 flows into the sealed battery package 16 while the injection port 20 is closed by the electrolyte 36, so that no bubbles are mixed, and the electrolyte 36 is scattered. Since there is no danger, there is no danger that the scattered electrolyte will contaminate the surroundings as in the prior art, and the specified amount of the electrolyte can be reliably and easily filled into the power generation element. And according to this embodiment,
Since the storage and movement of the electrolyte do not require a conventional valve mechanism or valve operation, the manufacturing apparatus and manufacturing process can be significantly simplified.

【0045】また、前述した実施形態の密閉形電池10
は、図10(A)に示すように、注液口20を融着封口して
注液口融着代20Aを形成するにあたって、融着代24A
(網目の領域E1)が再融着されるため、注液口融着代20
A(斜線で示す領域E2)と、融着代24Aとの境目に境界
面24Dを備えている。
Further, the sealed battery 10 of the above-described embodiment is used.
As shown in FIG. 10 (A), when the injection port 20 is fused and sealed to form the injection port fusion allowance 20A, the fusion allowance 24A is used.
(Area E1 of the mesh) is re-fused, so that
A (an area E2 indicated by oblique lines) and a fusion margin 24A are provided with a boundary surface 24D.

【0046】また、図10(B)に示すように、密閉形電
池10は、注液口融着代20Aに電解液36を挟持している。
よって、注液口20に電解液36を逃がすことができるの
で、例えば密閉形電池用パッケージ16内に規定量以上の
電解液36が供給された場合にも、密閉形電池用パッケー
ジ16内の電解液36を規定量に調整できる。
As shown in FIG. 10 (B), the sealed battery 10 has an electrolyte 36 sandwiched between the injection port welding margin 20A.
Therefore, the electrolyte 36 can be discharged to the injection port 20, so that, for example, even when a predetermined amount or more of the electrolyte 36 is supplied into the sealed battery package 16, the electrolytic solution in the sealed battery package 16 is removed. The liquid 36 can be adjusted to a specified amount.

【0047】また、図10(C)に示すように、密閉形電
池10は、注液口20を融着封口して注液口融着代20Aを形
成するにあたって、融着代24A(網目の領域E1)が再融
着されるため、融着代24Aから発電要素11側に搾出する
突出部23Aの突出寸法が、注液口融着代20Aから発電要
素11側に搾出する突出部23Bの突出寸法より大きくなっ
ている。さらに、図10(D)に示すように、密閉形電池
10は、密閉形電池10は、注液口20を融着封口して注液口
融着代20Aを形成するにあたって、融着代24A(網目の
領域E1)が再融着されるため、融着代24Aから発電要素
11側に搾出する突出部23Aの突出寸法が、融着代24Cか
ら発電要素11側に搾出する突出部23Cの突出寸法より大
きくなっている。すなわち、この密閉形電池10によれ
ば、突出部23A,23Cにより密閉形電池用パッケージ16
内の余剰空間を小さくできるため、密閉形電池用パッケ
ージ16内の電解液36を発電要素11の内部に強制的に浸入
させて電解液36をより確実に充填できるとともに、容積
効率を向上できる。
As shown in FIG. 10 (C), in the sealed battery 10, when the injection port 20 is fusion-sealed to form the injection port fusion allowance 20A, the fusion allowance 24A (mesh mesh). Since the region E1) is re-fused, the protrusion dimension of the protrusion 23A squeezed from the fusion allowance 24A to the power generation element 11 side is equal to the protrusion squeezed from the injection port fusion allowance 20A to the power generation element 11 side. It is larger than the protrusion size of 23B. Further, as shown in FIG.
Reference numeral 10 indicates that the sealed battery 10 is melt-sealed when the injection port 20 is fused and sealed to form the injection port fusion allowance 20A, and the fusion allowance 24A (the mesh area E1) is re-fused. Power generation element from arrival 24A
The projecting dimension of the projecting portion 23A squeezed to the 11 side is larger than the projecting size of the projecting portion 23C squeezed from the fusion allowance 24C to the power generation element 11 side. In other words, according to the sealed battery 10, the sealed battery package 16 is formed by the projections 23A and 23C.
Since the excess space in the inside can be made small, the electrolyte 36 in the sealed battery package 16 can be forcibly penetrated into the inside of the power generation element 11 so that the electrolyte 36 can be more reliably filled and the volume efficiency can be improved.

【0048】次に、本発明に係る第2実施形態および第
3実施形態について説明する。なお、以下に説明する第
2実施形態および第3実施形態において、第1実施形態
において示した部材と同一部材あるいは類似部材につい
ては、第1実施形態において用いた符号と同一符号ある
いは相当符号を付して説明を省略する。
Next, a second embodiment and a third embodiment according to the present invention will be described. In the second embodiment and the third embodiment described below, the same or similar members as the members shown in the first embodiment are denoted by the same reference numerals or the same reference numerals as those used in the first embodiment. And the description is omitted.

【0049】前述した第1実施形態では、厚み方向に沿
った線を中心として電解液袋22を回動させることによ
り、電解液袋22内に形成したポケット部27に電解液36を
貯溜していたが、図11(A)および図11(B)に示す第
2実施形態は、注液口20近傍の電解液袋22を一対の挟持
部材51,52により電解液袋22内にポケット部27Aを形成
している。挟持部材51,52は、それぞれ直線状に形成さ
れていて、注液口20の貫通方向に沿うように電解液袋22
を厚み方向に挟持することにより、注液口22と融着代24
A,24Bの交差部分と隔離してポケット部27Aを形成す
る。そして、この第2実施形態では、ポケット部27Aに
電解液36を貯溜した後、減圧状態を維持したまま、挟持
部材51,52を離反させることにより、注液口20を閉鎖す
るように電解液36を移動させ、次いで減圧状態を解除し
て大気圧により注液口20を介して電解液36を密閉形電池
用パッケージ16内に流し込む。
In the first embodiment, the electrolytic solution bag 22 is rotated around the line along the thickness direction, so that the electrolytic solution 36 is stored in the pocket portion 27 formed in the electrolytic solution bag 22. However, in the second embodiment shown in FIGS. 11 (A) and 11 (B), the pocket 27A is inserted into the electrolyte bag 22 by the pair of sandwiching members 51, 52. Is formed. The holding members 51 and 52 are formed in a linear shape, respectively, so that the electrolyte bag 22 extends along the direction in which the liquid inlet 20 penetrates.
Is held in the thickness direction, so that the injection port 22 and the fusion allowance 24
A pocket portion 27A is formed separately from the intersection of A and 24B. In the second embodiment, after the electrolytic solution 36 is stored in the pocket portion 27A, the holding members 51 and 52 are separated from each other while maintaining the reduced pressure state, so that the liquid inlet 20 is closed. Then, the pressure-reduced state is released, and the electrolytic solution 36 flows into the sealed battery package 16 through the liquid inlet 20 by the atmospheric pressure.

【0050】このような第2実施形態によれば、電解液
袋22を介して挟持部材51,52を近接離反させることによ
り、電解液袋22における電解液36の貯溜および移動が実
現できるため、第1実施形態のように電解液袋22を反復
傾斜させる必要がなく、第1実施形態に比較して製造装
置および製造工程を簡略化できる。
According to the second embodiment, the storage and movement of the electrolyte 36 in the electrolyte bag 22 can be realized by moving the holding members 51 and 52 toward and away from each other via the electrolyte bag 22. It is not necessary to repeatedly incline the electrolyte bag 22 as in the first embodiment, and the manufacturing apparatus and manufacturing steps can be simplified as compared with the first embodiment.

【0051】また、図12(A)および図12(B)に示す
第3実施形態は、密閉形電池用パッケージ18における融
着代24A,24Bの交差部に略三角形の傾斜融着代24Eが
設けられている。傾斜融着代24Eは、注液口20に向かう
下り勾配とされ、挟持部材51,52を離反させると、ポケ
ット部27Bに貯溜された電解液36が確実に注液口20を閉
鎖するように移動する。従って、電解液20の注入時間を
短くして生産性をより高めることができる。
In the third embodiment shown in FIGS. 12A and 12B, a substantially triangular inclined fusion allowance 24E is provided at the intersection of the fusion allowances 24A and 24B in the sealed battery package 18. Is provided. The inclined fusion allowance 24E has a downward slope toward the liquid inlet 20. When the holding members 51 and 52 are separated from each other, the electrolyte 36 stored in the pocket portion 27B surely closes the liquid inlet 20. Moving. Therefore, the productivity can be further improved by shortening the injection time of the electrolytic solution 20.

【0052】なお、本発明は、前述した各実施形態に限
定されるものでなく、適宜な変形,改良等が可能であ
り、前述した各実施形態において例示した発電要素、パ
ッケージ等の材質、形状、寸法、形態、数、配置個所、
厚さ寸法等は本発明を達成できるものであれば任意であ
り、限定されない。例えば、前述した各実施形態では、
1枚のパッケージを折り畳むことで発電要素を収容する
例について説明したが、2枚のパッケージを重ね合わせ
ることにより発電要素を収容することも可能である。
The present invention is not limited to the above-described embodiments, but can be appropriately modified and improved. The materials and shapes of the power generating elements and packages exemplified in the above-described embodiments are also applicable. , Dimensions, form, number, location,
The thickness and the like are not limited as long as the present invention can be achieved. For example, in each of the embodiments described above,
Although an example in which one package is folded to accommodate the power generating element has been described, it is also possible to accommodate the power generating element by stacking two packages.

【0053】[0053]

【発明の効果】以上、説明したように、本発明によれ
ば、請求項1に記載したように、注液口に臨んで電解液
袋が一体成形されているため、この電解液袋に電解液を
一時的に貯溜させ、次いで注液口から電解液を少しずつ
滴下させて、自然に発電要素内に電解液を充填させれ
ば、従来のようにタンク,ノズル等を占有する必要性
や、タンク,ノズル等を準備する必要性を解消できる。
As described above, according to the present invention, as described in the first aspect, the electrolyte bag is integrally formed facing the injection port. If the solution is temporarily stored, and then the electrolyte is dripped little by little from the injection port, and the electrolyte is naturally filled in the power generating element, it is necessary to occupy the tank, nozzle, etc. as in the conventional case. , Tanks, nozzles and the like can be eliminated.

【0054】また、本発明によれば、請求項2,請求項
10および請求項14に記載したように、電解液袋に電解液
を貯溜してから減圧状態にした後、注液口を閉鎖するよ
うに電解液を移動させ、次いで減圧状態を解除して大気
圧により電解液を密閉形電池用パッケージに流し込むた
め、従来のように飛散した電解液が周囲を汚染する虞れ
や気泡が混入することなく、規定量の電解液を確実、か
つ、容易に発電要素に充填できる。そして、これらの本
発明によれば、電解液の貯溜および移動にあたって、従
来のようなバルブ機構やバルブ操作等が必要ないため、
製造装置および製造工程を格段に簡略化できる。
According to the present invention, claims 2 and 3 are also provided.
As described in (10) and (14), after storing the electrolyte in the electrolyte bag and reducing the pressure, the electrolyte is moved so that the injection port is closed, and then the reduced pressure is released to release the pressure. Since the electrolyte is poured into the sealed battery package by the atmospheric pressure, the specified amount of electrolyte can be reliably and easily generated without the risk that the scattered electrolyte will contaminate the surroundings and bubbles will be introduced. Elements can be filled. According to the present invention, since the storage and movement of the electrolyte do not require a conventional valve mechanism or valve operation, etc.,
The manufacturing apparatus and the manufacturing process can be significantly simplified.

【0055】また、本発明の密閉形電池によれば、請求
項3に記載したように、融着代および注液口融着代に沿
って電解液袋が密閉形電池用パッケージから切除されて
いるため、電解液袋を切除しない場合に比較して容積効
率を向上できる。
According to the sealed battery of the present invention, as described in claim 3, the electrolyte bag is cut off from the sealed battery package along the fusion allowance and the injection port fusion allowance. Therefore, the volumetric efficiency can be improved as compared with the case where the electrolyte bag is not cut off.

【0056】さらに、本発明の密閉形電池によれば、請
求項4に記載したように、注液口融着代を形成するにあ
たって、融着代の一部を再び融着させて再融着代を形成
することにより、前記再融着代の融着代と前記注液口融
着代の融着代との間に境界面を備えている。
Further, according to the sealed battery of the present invention, in forming the injection port fusion allowance, a part of the fusion allowance is fused again to form a fusion splice. By forming a margin, a boundary surface is provided between the fusion margin of the re-fusion margin and the fusion margin of the injection port fusion margin.

【0057】そして、本発明の密閉形電池によれば、請
求項5に記載したように、前記注液口融着代の内面が前
記電解液と相溶しない樹脂であるため、注液口融着代の
内面に電解液が付着し難く、かつ、注液口融着代の内面
に電解液が付着しても、電解液が樹脂に対して混合され
ず、樹脂が電解液を包み込むことにより注液口融着代の
融着強度に悪影響を与えず、これにより密閉形電池用パ
ッケージの気密性を阻害する虞れがない。
According to the sealed battery of the present invention, as described in claim 5, since the inner surface of the injection port fusion margin is made of a resin that is not compatible with the electrolytic solution, the inner surface of the injection port is not melted. The electrolyte does not easily adhere to the inner surface of the charging allowance, and even if the electrolyte adheres to the inner surface of the injection port, the electrolyte does not mix with the resin, and the resin wraps around the electrolyte. It does not adversely affect the fusion strength of the injection port fusion margin, so that there is no risk of impairing the airtightness of the sealed battery package.

【0058】また、本発明の密閉形電池によれば、請求
項6に記載したように、注液口融着代の融着代長さ寸法
が前記融着代の長手方向寸法に対して二分の一以下、か
つ、50mm以下であるため、注液口から電解液を流し込む
にあたって、電解液が過不足なく流入することになる。
Further, according to the sealed battery of the present invention, as set forth in claim 6, the length of the fusion allowance at the injection port fusion allowance is two times the longitudinal dimension of the fusion allowance. Since it is not more than 1 and not more than 50 mm, the electrolytic solution flows without excess or shortage when the electrolytic solution is poured from the injection port.

【0059】さらに、本発明の密閉形電池によれば、請
求項7に記載したように、前記注液口融着代を形成する
にあたって、前記融着代のうちの前記注液口に隣り合う
個所を再び融着させた再融着代から前記発電要素側に向
かって前記融着代が搾出された形状を有しているため、
密閉形電池用パッケージ内の空間を小さくでき、これに
より密閉形電池の容積効率を向上できるとともに、密閉
形電池用パッケージ内の電解液を発電要素の内部に対し
て強制的、かつ、確実に電解液を充填できる。
Further, according to the sealed battery of the present invention, as described in claim 7, in forming the injection port fusion allowance, it is adjacent to the liquid injection port of the fusion allowance. Since the fusion margin has a shape in which the fusion margin is squeezed toward the power generating element side from the re-fusion margin where the parts are fused again,
The space inside the sealed battery package can be reduced, thereby improving the volumetric efficiency of the sealed battery, and forcing the electrolyte in the sealed battery package to the inside of the power-generating element in a forced and reliable manner. Liquid can be filled.

【0060】また、本発明の密閉形電池によれば、請求
項8に記載したように、前記再融着代から前記発電要素
側に搾出された前記融着代の突出寸法が、前記注液口融
着代から前記発電要素側に搾出された前記融着代の突出
寸法よりも大きいくてもよく、あるいは請求項9に記載
したように、前記再融着代から前記発電要素側に搾出さ
れた前記融着代の突出寸法が、他の前記融着代から前記
発電要素側に搾出された前記融着代の突出寸法よりも大
きくてもよい。
[0060] According to the sealed battery of the present invention, as set forth in claim 8, the projecting dimension of the fusion allowance squeezed toward the power generation element side from the refusion allowance is equal to the size of the note. The projecting dimension of the fusion allowance squeezed toward the power generation element side from the liquid port fusion allowance may be larger than the projection size of the fusion allowance, or as described in claim 9, from the re-fusion allowance to the power generation element side. The projecting dimension of the fusion allowance squeezed out to the power generation element side may be larger than the projection dimension of the fusion allowance squeezed out to the power generating element side from another fusion allowance.

【0061】さらに、本発明の密閉形電池の製造方法に
よれば、請求項11に記載したように、電解液袋に電解液
を貯溜させるために電解液袋を傾斜させ、請求項12に記
載したように、電解液袋から電解液を移動させるために
電解液袋を傾斜させるため、電解液袋を所定の回動軸線
を中心として回動させて傾斜させるという極めて簡単な
工程により、電解液袋内における電解液の貯溜あるいは
移動が実現でき、これにより従来のような複雑なバルブ
機構やバルブ操作等を不要にできるとともに、気泡の混
入を伴うことなく規定量の電解液を確実に発電要素に充
填できる。
Further, according to the method for manufacturing a sealed battery of the present invention, as described in claim 11, the electrolyte bag is inclined so as to store the electrolyte in the electrolyte bag. As described above, in order to move the electrolytic solution bag from the electrolytic solution bag, the electrolytic solution bag is tilted. The storage or movement of the electrolyte in the bag can be realized, which eliminates the need for complicated valve mechanisms and valve operations as in the past, and ensures the generation of a specified amount of electrolyte without entrainment of air bubbles. Can be filled.

【0062】次に、本発明の密閉形電池の製造方法は、
請求項13に記載したように、電解液袋に電解液を貯溜さ
せるために、一対の挟持部材により電解液袋を厚み方向
に挟持してポケット部を形成するため、電解液袋を所定
の回動軸線を中心として回動させて傾斜させる必要がな
く、製造装置および製造工程を簡略化できる。
Next, the manufacturing method of the sealed battery of the present invention is as follows.
As described in claim 13, in order to store the electrolyte solution in the electrolyte bag, the electrolyte bag is sandwiched in a thickness direction by a pair of sandwiching members to form a pocket portion. There is no need to rotate and tilt about the dynamic axis, and the manufacturing apparatus and manufacturing process can be simplified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る密閉形電池の斜視図である。FIG. 1 is a perspective view of a sealed battery according to the present invention.

【図2】本発明に係る第1実施形態の製造方法を示す第
1説明図である。
FIG. 2 is a first explanatory view showing the manufacturing method according to the first embodiment of the present invention.

【図3】本発明に係る第1実施形態の製造方法を示す第
2説明図である。
FIG. 3 is a second explanatory view illustrating the manufacturing method according to the first embodiment of the present invention.

【図4】本発明に係る第1実施形態の製造方法を示す第
3説明図である。
FIG. 4 is a third explanatory view showing the manufacturing method according to the first embodiment of the present invention.

【図5】本発明に係る第1実施形態の製造方法を示す第
4説明図である。
FIG. 5 is a fourth explanatory view showing the manufacturing method according to the first embodiment of the present invention.

【図6】本発明に係る第1実施形態の製造方法を示す第
5説明図である。
FIG. 6 is a fifth explanatory view showing the manufacturing method of the first embodiment according to the present invention.

【図7】本発明に係る第1実施形態の製造方法を示す第
6説明図である。
FIG. 7 is a sixth explanatory view showing the manufacturing method according to the first embodiment of the present invention.

【図8】本発明に係る第1実施形態の製造方法を示す第
7説明図である。
FIG. 8 is a seventh explanatory view showing the manufacturing method according to the first embodiment of the present invention.

【図9】本発明に係る第1実施形態の製造方法を示す第
8説明図である。
FIG. 9 is an eighth explanatory view showing the manufacturing method according to the first embodiment of the present invention.

【図10】本発明に係る密閉形電池の構造を示す説明図
であり、(A)は密閉形電池の平面図、(B)は(A)
のB−B線断面図、(C)は(A)のC−C線断面図、
(D)は(A)のD−D線断面図である。
FIG. 10 is an explanatory view showing the structure of a sealed battery according to the present invention, wherein (A) is a plan view of the sealed battery, and (B) is (A).
(C) is a cross-sectional view taken along the line CC of (A),
(D) is a sectional view taken along line DD of (A).

【図11】本発明に係る第2実施形態の製造方法を示す
説明図である。
FIG. 11 is an explanatory diagram illustrating a manufacturing method according to a second embodiment of the present invention.

【図12】本発明に係る第3実施形態の製造方法を示す
説明図である。
FIG. 12 is an explanatory view showing a manufacturing method according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 密閉形電池 11 発電要素 16 密閉形電池用パッケージ 20 注液口 20A 注液口融着代 22 電解液袋 23,23C,23D 突出部 24A,24B,24C 融着代 24D 境界面 25 融着手段 26 電解液供給手段 27,27A,27B ポケット部 36 電解液 41 真空チャンバ(圧力変動手段) 51,52 挟持部材 10 Sealed battery 11 Power generation element 16 Package for sealed battery 20 Injection port 20A Injection port fusion allowance 22 Electrolyte bag 23, 23C, 23D Projection 24A, 24B, 24C Fusion allowance 24D Boundary surface 25 Fusing means 26 Electrolyte supply means 27, 27A, 27B Pocket portion 36 Electrolyte 41 Vacuum chamber (pressure fluctuation means) 51, 52 Holding member

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河野 健次 大阪府高槻市古曽部町二丁目3番21号 株 式会社ユアサコーポレーション内 Fターム(参考) 5H011 AA17 EE04 FF02 FF04 GG09 5H023 AS01 BB05 BB07 CC05 CC14 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kenji Kono 2-3-1, Kosobe-cho, Takatsuki-shi, Osaka F-term in Yuasa Corporation 5H011 AA17 EE04 FF02 FF04 GG09 5H023 AS01 BB05 BB07 CC05 CC14

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 セパレータを介して正極および負極を具
備した発電要素を密閉形電池用パッケージにより挟み込
み、前記密閉形電池用パッケージにおける対向する内面
同士を前記発電要素の外枠に沿って融着することにより
融着代を形成するとともに、前記内面同士の一部を非融
着の状態で残して注液口を形成し、かつ、前記注液口に
臨んで前記密閉形電池用パッケージに電解液袋が一体成
形されたことを特徴とする密閉形電池構造。
1. A power generating element having a positive electrode and a negative electrode is sandwiched by a sealed battery package via a separator, and opposing inner surfaces of the sealed battery package are fused together along an outer frame of the power generating element. By forming a fusion allowance, a part of the inner surfaces is left in a non-fused state to form a liquid injection port, and the electrolyte solution is provided in the sealed battery package facing the liquid injection port. A sealed battery structure in which a bag is integrally formed.
【請求項2】 前記密閉形電池用パッケージ内を減圧状
態にした後、前記減圧状態を解除することにより前記注
液口から前記密閉形電池用パッケージ内に充填して電解
質層を形成するにあたって、 前記電解液袋が、前記減圧状態前に前記電解液を貯溜す
るとともに、前記減圧状態時に前記注液口を閉鎖するよ
うに前記電解液を移動させ、かつ、前記減圧状態が解除
されたときに前記注液口を介して前記電解液を前記密閉
形電池用パッケージ内に流し込み、次いで前記注液口を
融着封口して注液口融着代を形成することを特徴とする
請求項1に記載した密閉形電池構造。
2. After the inside of the sealed battery package is depressurized, the pressure is released to fill the sealed battery package from the liquid inlet to form an electrolyte layer. The electrolyte bag stores the electrolyte before the decompression state, moves the electrolyte so as to close the injection port during the decompression state, and when the decompression state is released. 2. The method according to claim 1, wherein the electrolyte is poured into the sealed battery package through the liquid inlet, and then the liquid inlet is fused and sealed to form a liquid margin for the liquid inlet. The enclosed battery structure described.
【請求項3】 前記融着代および前記注液口融着代に沿
って前記電解液袋が前記密閉形電池用パッケージから切
除されていることを特徴とする請求項2に記載した密閉
形電池。
3. The sealed battery according to claim 2, wherein the electrolyte bag is cut off from the sealed battery package along the fusion allowance and the liquid inlet fusion allowance. .
【請求項4】 前記注液口融着代を形成するにあたっ
て、前記融着代のうちの前記注液口に隣り合う個所を再
び融着させて再融着代を形成することにより、前記再融
着代の融着部と前記注液口融着代の融着部との間に境界
面を備えていることを特徴とする請求項2に記載した密
閉形電池。
4. A method for forming a refilling margin by forming a refusion margin by forming a portion of the fusion margin adjacent to the refilling hole again. 3. The sealed battery according to claim 2, wherein a boundary surface is provided between a fusion portion of a fusion allowance and a fusion portion of the injection port fusion allowance.
【請求項5】 前記注液口融着代の内面が前記電解液と
相溶しない樹脂であることを特徴とする請求項2に記載
した密閉形電池。
5. The sealed battery according to claim 2, wherein an inner surface of the injection port fusion margin is made of a resin that is incompatible with the electrolytic solution.
【請求項6】 前記注液口融着代の融着代長さ寸法が前
記融着代の長手方向寸法に対して二分の一以下、かつ、
50mm以下であることを特徴とする請求項2に記載した密
閉形電池。
6. A length of a length of a fusion allowance at the injection port fusion allowance is not more than half of a longitudinal dimension of the fusion allowance, and
3. The sealed battery according to claim 2, wherein the size is 50 mm or less.
【請求項7】 前記注液口融着代を形成するにあたっ
て、前記融着代のうちの前記注液口に隣り合う個所を再
び融着させた再融着代から前記発電要素側に向かって前
記融着代が搾出された形状を有していることを特徴とす
る請求項2に記載した密閉形電池。
7. In forming the injection port fusion allowance, a portion of the fusion allowance adjacent to the liquid injection port is re-fused from the re-fusion allowance toward the power generation element. The sealed battery according to claim 2, wherein the fusion margin has a squeezed shape.
【請求項8】 前記再融着代から前記発電要素側に搾出
された前記融着代の突出寸法が、前記注液口融着代から
前記発電要素側に搾出された前記融着代の突出寸法より
も大きいことを特徴とする請求項7に記載した密閉形電
池。
8. The projection of the fusion allowance squeezed out to the power generating element side from the re-fusion allowance is equal to the fusion allowance squeezed out to the power generation element side from the injection port fusion allowance. 8. The sealed battery according to claim 7, wherein the size of the sealed battery is larger than a protrusion size of the sealed battery.
【請求項9】 前記再融着代から前記発電要素側に搾出
された前記融着代の突出寸法が、他の前記融着代から前
記発電要素側に搾出された前記融着代の突出寸法よりも
大きいことを特徴とする請求項7に記載した密閉形電
池。
9. The projecting dimension of the fusion allowance squeezed out to the power generation element side from the re-fusion allowance is the same as that of the fusion allowance squeezed out to the power generation element side from another of the fusion allowances. The sealed battery according to claim 7, wherein the battery is larger than a protrusion size.
【請求項10】 セパレータを介して正極および負極を
具備した発電要素を密閉形電池用パッケージにより挟み
込み、前記密閉形電池用パッケージにおける対向する内
面同士を前記発電要素の外枠に沿って融着することによ
り融着代を形成するとともに、前記内面同士の一部を非
融着の状態で残して注液口を形成し、 前記注液口から電解液を前記密閉形電池用パッケージ内
に充填して電解質層を形成し、次いで前記注液口を融着
封口する密閉形電池の製造方法であって、 あらかじめ前記注液口に臨む電解液袋を前記密閉形電池
用パッケージに一体成形しておき、前記電解液袋に前記
電解液を貯溜するとともに、前記密閉形電池用パッケー
ジ内を減圧状態にした後、前記注液口を閉鎖するように
前記電解液を移動させ、次いで前記減圧状態を解除する
ことにより前記電解液を密閉形電池用パッケージ内に流
し込んで前記発電要素内に前記電解液を充填することを
特徴とする密閉形電池の製造方法。
10. A power generating element having a positive electrode and a negative electrode sandwiched by a sealed battery package via a separator, and opposing inner surfaces of the sealed battery package are fused together along an outer frame of the power generating element. In addition to forming a fusion allowance, a part of the inner surfaces is left in a non-fused state to form a liquid inlet, and an electrolyte is filled into the sealed battery package from the liquid inlet. Forming an electrolyte layer, and then fusing and sealing the liquid inlet, wherein an electrolyte bag facing the liquid inlet is integrally formed in advance with the sealed battery package. Storing the electrolyte in the electrolyte bag, reducing the pressure inside the sealed battery package, moving the electrolyte so as to close the injection port, and then releasing the reduced pressure. Hermetic method for producing a battery, characterized by filling the electrolyte into the power generating element is poured into the package sealed batteries the electrolyte by.
【請求項11】 前記電解液袋に前記電解液を貯溜させ
るために、前記電解液袋を傾斜させることを特徴とする
請求項10に記載した密閉形電池の製造方法。
11. The method for manufacturing a sealed battery according to claim 10, wherein the electrolyte bag is inclined to store the electrolyte in the electrolyte bag.
【請求項12】 前記電解液袋から前記電解液を移動さ
せるために、前記電解液袋を傾斜させることを特徴とす
る請求項10に記載した密閉形電池の製造方法。
12. The method for manufacturing a sealed battery according to claim 10, wherein the electrolytic solution bag is inclined to move the electrolytic solution from the electrolytic solution bag.
【請求項13】 前記電解液袋に前記電解液を貯溜させ
るために、一対の挟持部材により前記電解液袋を厚み方
向に挟持してポケット部を形成することを特徴とする請
求項10に記載した密閉形電池の製造方法。
13. The pocket according to claim 10, wherein the electrolyte bag is sandwiched in a thickness direction by a pair of sandwiching members so as to store the electrolyte in the electrolyte bag. Manufacturing method of sealed battery.
【請求項14】 セパレータを介して正極および負極を
具備した発電要素を密閉形電池用パッケージにより挟み
込み、前記密閉形電池用パッケージにおける対向する内
面同士を前記発電要素の外枠に沿って融着することによ
り融着代を形成するとともに、前記内面同士の一部を非
融着の状態で残して注液口を形成し、かつ、前記注液口
に臨む電解液袋を一体成形し、次いで前記注液口から前
記電解液を注入した後、前記注液口を融着封口する融着
手段と、 前記電解液袋に前記電解液を貯溜させる電解液供給手段
と、 前記密閉形電池用パッケージ内の圧力状態を開放状態と
減圧状態とから選択可能な圧力変動手段と、 前記注液口を閉鎖するように前記電解液袋から前記電解
液を移動させる電解液移動手段とを有することを特徴と
する密閉形電池の製造装置。
14. A power generating element including a positive electrode and a negative electrode is sandwiched by a sealed battery package via a separator, and opposing inner surfaces of the sealed battery package are fused together along an outer frame of the power generating element. By forming a fusion allowance by forming a liquid injection port while leaving a part of the inner surfaces in a non-fused state, and integrally forming an electrolyte bag facing the liquid injection port, After injecting the electrolyte from the injection port, a fusing means for fusing and sealing the injection port, an electrolyte supply means for storing the electrolyte in the electrolyte bag, and inside the sealed battery package Pressure change means capable of selecting the pressure state from an open state and a reduced pressure state, and an electrolyte moving means for moving the electrolyte from the electrolyte bag so as to close the injection port. Sealed batteries Manufacturing equipment.
JP2000342498A 2000-11-09 2000-11-09 Sealed battery manufacturing method and sealed battery manufacturing apparatus Expired - Fee Related JP4200411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000342498A JP4200411B2 (en) 2000-11-09 2000-11-09 Sealed battery manufacturing method and sealed battery manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000342498A JP4200411B2 (en) 2000-11-09 2000-11-09 Sealed battery manufacturing method and sealed battery manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2002151051A true JP2002151051A (en) 2002-05-24
JP4200411B2 JP4200411B2 (en) 2008-12-24

Family

ID=18817040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000342498A Expired - Fee Related JP4200411B2 (en) 2000-11-09 2000-11-09 Sealed battery manufacturing method and sealed battery manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP4200411B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022502A (en) * 2002-06-20 2004-01-22 Kyushu Electric Power Co Inc Liquid injection method of battery, liquid injection apparatus for battery, and battery
JP2012064468A (en) * 2010-09-16 2012-03-29 Nissan Motor Co Ltd Electrolyte injection method and electrolyte injection device
JP2012064469A (en) * 2010-09-16 2012-03-29 Nissan Motor Co Ltd Method and device for electrolytic solution injection
CN103828086A (en) * 2011-11-10 2014-05-28 株式会社Lg化学 Battery cell having a novel structure
CN105633473A (en) * 2015-12-31 2016-06-01 天津市捷威动力工业有限公司 Method for controlling liquid preserving capability consistency of soft package lithium titanate lithium-ion battery
JP2016122495A (en) * 2014-12-24 2016-07-07 昭和電工パッケージング株式会社 Battery manufacturing method
JP2020098675A (en) * 2018-12-17 2020-06-25 大日本印刷株式会社 Manufacturing method of power storage device and quality management method for power storage device
CN112331964A (en) * 2020-11-09 2021-02-05 湖南宝特瑞能新能源有限责任公司 Cylindrical packaging and sealing shell structure for lithium battery
CN112736377A (en) * 2021-02-05 2021-04-30 宁波久鼎新能源科技有限公司 Soft package lithium battery liquid injection port sealing structure and manufacturing method thereof
CN114497677A (en) * 2022-01-18 2022-05-13 中山市众旺德新能源科技有限公司 Manufacturing method of double-pit soft-packaged battery cell
KR20230045122A (en) 2021-09-28 2023-04-04 주식회사 엘지에너지솔루션 Holding device, apparatus for packing battery roll and method thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4625232B2 (en) * 2002-06-20 2011-02-02 九州電力株式会社 Battery pouring method, battery pouring device, and battery
JP2004022502A (en) * 2002-06-20 2004-01-22 Kyushu Electric Power Co Inc Liquid injection method of battery, liquid injection apparatus for battery, and battery
JP2012064468A (en) * 2010-09-16 2012-03-29 Nissan Motor Co Ltd Electrolyte injection method and electrolyte injection device
JP2012064469A (en) * 2010-09-16 2012-03-29 Nissan Motor Co Ltd Method and device for electrolytic solution injection
US10056577B2 (en) 2011-11-10 2018-08-21 Lg Chem, Ltd. Battery cell of novel structure
CN103828086A (en) * 2011-11-10 2014-05-28 株式会社Lg化学 Battery cell having a novel structure
JP2014532262A (en) * 2011-11-10 2014-12-04 エルジー・ケム・リミテッド Battery cell with new structure
JP2016122495A (en) * 2014-12-24 2016-07-07 昭和電工パッケージング株式会社 Battery manufacturing method
CN105633473A (en) * 2015-12-31 2016-06-01 天津市捷威动力工业有限公司 Method for controlling liquid preserving capability consistency of soft package lithium titanate lithium-ion battery
JP2020098675A (en) * 2018-12-17 2020-06-25 大日本印刷株式会社 Manufacturing method of power storage device and quality management method for power storage device
JP7225760B2 (en) 2018-12-17 2023-02-21 大日本印刷株式会社 Electric storage device manufacturing method and electric storage device quality control method
CN112331964A (en) * 2020-11-09 2021-02-05 湖南宝特瑞能新能源有限责任公司 Cylindrical packaging and sealing shell structure for lithium battery
CN112736377A (en) * 2021-02-05 2021-04-30 宁波久鼎新能源科技有限公司 Soft package lithium battery liquid injection port sealing structure and manufacturing method thereof
KR20230045122A (en) 2021-09-28 2023-04-04 주식회사 엘지에너지솔루션 Holding device, apparatus for packing battery roll and method thereof
CN114497677A (en) * 2022-01-18 2022-05-13 中山市众旺德新能源科技有限公司 Manufacturing method of double-pit soft-packaged battery cell

Also Published As

Publication number Publication date
JP4200411B2 (en) 2008-12-24

Similar Documents

Publication Publication Date Title
US6379838B1 (en) Cell package
JP4232038B2 (en) Film-clad electrical device and method for manufacturing the same
JP2002151051A (en) Sealed battery structure, sealed battery, manufacturing method of sealed battery and manufacturing equipment of sealed battery
CN110116843B (en) Laminated peeling container
JP4900339B2 (en) Film-clad electrical device and method for manufacturing the same
JP2011222221A (en) Electrolyte injecting method and electrolyte injecting device
JP5287255B2 (en) Bag separator, electrode separator assembly, and method of manufacturing electrode separator assembly
JP2004521450A (en) Apparatus and method for assembling an electrolyte sealed flexible battery
JP2007055649A (en) Self-standing bag and its manufacturing method
JP3787942B2 (en) Method for producing non-aqueous electrolyte secondary battery
KR100362552B1 (en) Manufacturing method of batteries
JP2019061850A (en) Power storge module and method for manufacturing the same
US20080070101A1 (en) Foil cell fill port
JP2005093261A (en) Method for manufacturing battery wrapped with laminated film
JP2009238508A (en) Electrochemical device, and manufacturing method of electrochemical device
KR20080019313A (en) Process for preparation of pouch-typed secondary battery having excellent sealing property
JP2006134604A (en) Manufacturing method of power storage device
JP2001273884A (en) Sealed type battery and manufacturing method thereof
KR20130052524A (en) Manufacturing method of electric device, manufacturing apparatus thereof and electric device
CN109802059A (en) Battery
JP4016217B2 (en) Battery manufacturing method
JP4403375B2 (en) Thin pack battery
JP2006114406A (en) Manufacturing method of sheet type battery, sheet type battery, and battery pack cimbined with sheet type unit cell
JP4019229B2 (en) Battery manufacturing method
US11749837B2 (en) Battery pack and production method for battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041110

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080924

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees