JP4947458B2 - Composite film and manufacturing method thereof - Google Patents

Composite film and manufacturing method thereof Download PDF

Info

Publication number
JP4947458B2
JP4947458B2 JP2006050543A JP2006050543A JP4947458B2 JP 4947458 B2 JP4947458 B2 JP 4947458B2 JP 2006050543 A JP2006050543 A JP 2006050543A JP 2006050543 A JP2006050543 A JP 2006050543A JP 4947458 B2 JP4947458 B2 JP 4947458B2
Authority
JP
Japan
Prior art keywords
boron nitride
polyaniline
composite film
nitride nanotubes
nanotubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006050543A
Other languages
Japanese (ja)
Other versions
JP2007231031A (en
Inventor
義雄 板東
チュンイ・ズィ
デミトリー・ゴルバーグ
チェンチュン・タン
勧 本多
広明 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Teijin Ltd
Original Assignee
National Institute for Materials Science
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science, Teijin Ltd filed Critical National Institute for Materials Science
Priority to JP2006050543A priority Critical patent/JP4947458B2/en
Publication of JP2007231031A publication Critical patent/JP2007231031A/en
Application granted granted Critical
Publication of JP4947458B2 publication Critical patent/JP4947458B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ポリアニリンフィルム中に窒化ホウ素ナノチューブが均一に分散されてなる複合フィルムとその製造方法に関する。   The present invention relates to a composite film in which boron nitride nanotubes are uniformly dispersed in a polyaniline film and a method for producing the same.

異なる2種類以上の物質を組み合わせて構成された複合材料は、セラミックス、プラスチック、金属材料などの材料のマトリックス相(連続相とも呼ばれている。)が持つ弱点を補うために、不連続な強化材を分散させて作られた材料である。
ナノチューブを高分子複合材料(ポリマーコンポジット)の強化材に最初に使用した例として、カーボンナノチューブを無溶剤形の液状エポキシ樹脂に添加して硬化させた複合材料が知られている(たとえば、非特許文献1参照)。
ナノチューブをコンポジット化することによって、新規な電気的性質、光学的性質を発現させたり、機械的強度や熱伝導性を向上させたりすることが期待されている(たとえば、非特許文献2参照)。
一方、代表的な導電性ポリマーであるポリアニリンフィルムをマトリックスとし、カーボンナノチューブを強化材としたコンポジットも知られている。このカーボンナノチューブ/ポリアニリンのコンボジットの大部分は、カーボンナノチューブを溶媒に分散させた分散液中でポリアニリンの重合を行ういわゆるin-situ 重合により製造されている(たとえば、非特許文献3〜7参照)。
Composite materials composed of two or more different types of substances are discontinuously strengthened to compensate for the weaknesses of the matrix phase (also called the continuous phase) of materials such as ceramics, plastics, and metal materials. It is a material made by dispersing materials.
As an example of the first use of nanotubes as a reinforcing material for polymer composites (polymer composites), composite materials in which carbon nanotubes are added to a solvent-free liquid epoxy resin and cured are known (for example, non-patented) Reference 1).
It is expected that by making nanotubes composite, new electrical properties and optical properties are expressed, and mechanical strength and thermal conductivity are improved (for example, see Non-Patent Document 2).
On the other hand, a composite using a polyaniline film, which is a typical conductive polymer, as a matrix and carbon nanotubes as a reinforcing material is also known. Most of the carbon nanotube / polyaniline composite is manufactured by so-called in-situ polymerization in which polyaniline is polymerized in a dispersion in which carbon nanotubes are dispersed in a solvent (see, for example, Non-Patent Documents 3 to 7). ).

P.M.Ajayan他、Science 265 巻、1212頁、1994年P.M.Ajayan et al., Science 265, 1212, 1994 P.J.F.Harris、International Materials Reviews 49巻、31頁、2004年P.J.F.Harris, International Materials Reviews 49, 31, 2004 R.Sainz 他、Adv.Mater.17巻、278 頁、2005年R.Sainz et al., Adv.Mater.17, 278, 2005 Murielle Cochet 他、Chem.Commun. 2001年、1450頁Murielle Cochet et al., Chem. Commun. 2001, 1450 H.Zengin他、Adv.Mater.14巻、1480頁、2002年H. Zengin et al., Adv. Mater. 14, 1480, 2002 H.J.Choi他、Diam.Relat.Mater. 14巻、766 頁、2005年H.J.Choi et al., Diam.Relat.Mater.14, 766, 2005 X.Zhang 他、Appl.Phys.A 80 巻、1813頁、2005年X.Zhang et al., Appl.Phys.A 80, 1813, 2005

しかしながら、カーボンナノチューブと構造が類似している窒化ホウ素ナノチューブを強化材とし、ポリマーをマトリックスとした複合フィルムは、いまだ知られていない。   However, a composite film using boron nitride nanotubes having a structure similar to that of carbon nanotubes as a reinforcing material and a polymer as a matrix has not been known yet.

本発明は、上記の現状に鑑み、窒化ホウ素ナノチューブを強化材として、ポリアニリンをマトリックスとする新規な複合フィルムとその製造方法を提供することを目的としている。   In view of the above situation, the present invention has an object to provide a novel composite film using boron nitride nanotubes as a reinforcing material and polyaniline as a matrix, and a method for producing the same.

上記目的を達成するために、本発明の複合フィルムは、窒化ホウ素ナノチューブ(官能基化され可溶性にされたものを除く)を強化材とし、ポリアニリンをマトリックスとして、窒化ホウ素ナノチューブが分散されていることを特徴とする。
上記構成において、窒化ホウ素ナノチューブとポリアニリンとの重量比は、好ましくは、窒化ホウ素ナノチューブ1 重量部に対してポリアニリンが0.5〜100重量部の範囲である。上記ポリアニリンは、好ましくは、エメラルディン形である。
この構成によれば、窒化ホウ素ナノチューブを強化材とし、ポリアニリンをマトリックスとし、窒化ホウ素ナノチューブが均一に分散されたポリアニリンフィルムからなる、複合フィルムを提供することができる。
In order to achieve the above object, the composite film of the present invention has boron nitride nanotubes dispersed using boron nitride nanotubes (excluding those functionalized and solubilized) as a reinforcing material and polyaniline as a matrix. It is characterized by.
In the above configuration, the weight ratio of boron nitride nanotubes to polyaniline is preferably in the range of 0.5 to 100 parts by weight of polyaniline with respect to 1 part by weight of boron nitride nanotubes. The polyaniline is preferably in the emeraldine form.
According to this configuration, it is possible to provide a composite film including a polyaniline film in which boron nitride nanotubes are used as a reinforcing material, polyaniline is used as a matrix, and boron nitride nanotubes are uniformly dispersed.

本発明の複合フィルムの製造方法は、窒化ホウ素ナノチューブおよびエメラルディン形ポリアニリンを有機溶媒に添加し、超音波処理を施す工程を含むことにより、窒化ホウ素ナノチューブが分散されたポリアニリンフィルムを形成することを特徴とする。
上記構成において、窒化ホウ素ナノチューブは、好ましくは、酸化マグネシウム、酸化鉄(II)およびホウ素を1100〜1700℃に加熱した状態で、アンモニアガスを作用させて得る。
この構成によれば、窒化ホウ素ナノチューブおよびエメラルディン形ポリアニリンを容器内のN,N−ジメチルホルムアミドなどの有機溶媒に分散させて混合液とし、この混合液を超音波処理した後、静置することにより、容器の底に窒化ホウ素ナノチューブが均一に分散されたポリアニリンフィルムが形成される。その際、窒化ホウ素ナノチューブとして純度の高いものを用いることが好ましく、酸化マグネシウム、酸化鉄(II)およびホウ素を1100〜1700℃に加熱して、酸化ホウ素の蒸気を発生させ、ここで発生した蒸気にアンモニアガスを作用させることにより得ることができる。一方、ポリアニリンは有機溶媒に可溶タイプのエメラルディン形を使用することができる。
The method for producing a composite film of the present invention includes forming a polyaniline film in which boron nitride nanotubes are dispersed by adding a boron nitride nanotube and emeraldine-type polyaniline to an organic solvent and subjecting the resultant to ultrasonic treatment. Features.
In the above configuration, the boron nitride nanotubes are preferably obtained by allowing ammonia gas to act in a state where magnesium oxide, iron (II) oxide and boron are heated to 1100 to 1700 ° C.
According to this configuration, boron nitride nanotubes and emeraldine-type polyaniline are dispersed in an organic solvent such as N, N-dimethylformamide in a container to form a mixed solution, and this mixed solution is subjected to ultrasonic treatment and then allowed to stand. As a result, a polyaniline film in which boron nitride nanotubes are uniformly dispersed at the bottom of the container is formed. At that time, it is preferable to use a boron nitride nanotube having a high purity, and magnesium oxide, iron (II) oxide and boron are heated to 1100 to 1700 ° C. to generate a vapor of boron oxide. It can be obtained by allowing ammonia gas to act on. On the other hand, polyaniline can be used in the form of emeraldine soluble in organic solvents.

本発明により、窒化ホウ素ナノチューブを含有した複合フィルムを提供することができる。よって、弾性率、熱伝導性、耐熱性、寸法安定性等の物性の向上が期待される。   According to the present invention, a composite film containing boron nitride nanotubes can be provided. Therefore, improvement in physical properties such as elastic modulus, thermal conductivity, heat resistance, and dimensional stability is expected.

先ず、本発明の複合フィルムについて説明する。
本発明の複合フィルムは、窒化ホウ素ナノチューブを強化材としポリアニリンをマトリックスとして構成され、窒化ホウ素ナノチューブが均一に分散されたポリアニリンフィルムからなる。ここで、窒化ホウ素ナノチューブとポリアニリンとの重量比は、窒化ホウ素ナノチューブ1重量部に対し、ポリアニリンは0. 5〜100重量部を含有していることが好ましい。ポリアニリンの重量部が100重量部よりも多い場合には、窒化ホウ素ナノチューブの量が少なすぎて、複合フィルムにおける強化材としての作用が十分に発揮されない。逆に、ポリアニリンの重量部が0. 5重量部よりも少ないと、生成した複合フィルムの強度が脆く、自己支持性に乏しく、実用的な複合フィルムが得られないので好ましくない。
First, the composite film of the present invention will be described.
The composite film of the present invention is composed of a polyaniline film in which boron nitride nanotubes are used as a reinforcing material and polyaniline is used as a matrix, and boron nitride nanotubes are uniformly dispersed. Here, the weight ratio of the boron nitride nanotube to the polyaniline is preferably such that the polyaniline contains 0.5 to 100 parts by weight with respect to 1 part by weight of the boron nitride nanotubes. When the weight part of polyaniline is more than 100 parts by weight, the amount of boron nitride nanotubes is too small and the function as a reinforcing material in the composite film is not sufficiently exhibited. On the contrary, when the weight part of polyaniline is less than 0.5 part by weight, the strength of the resulting composite film is brittle, the self-supporting property is poor, and a practical composite film cannot be obtained.

次に、この複合フィルムの製造方法について説明する。
複合フィルムは、窒化ホウ素ナノチューブとエメラルディン形ポリアニリンと、N,N−ジメチルホルムアミド等の有機溶媒とからなる混合物を容器に入れ超音波処理を行う。その後、静置することにより、容器の底に窒化ホウ素ナノチューブが均一に分散されたフィルムが形成される。
ここで、窒化ホウ素ナノチューブとして、種々の製法により作製されたものを用いることができるが、酸化マグネシウム、酸化鉄(II)およびホウ素を1100〜1700℃に加熱して酸化ホウ素の蒸気を発生させ、この発生した蒸気にアンモニアガスを作用させて得たものを用いるのが、収量および高純度の点から好ましい。この際、1900℃以上の加熱温度では、収量は増加するが純度は低下するので、好ましくない。
一方、ポリアニリンとして、有機溶媒に可溶な非導電性のエメラルディンタイプを用いるのが好ましい。その際、市販品を使用すれば、わざわざ製造する手間を省くことが出来て都合がよい。
Next, the manufacturing method of this composite film is demonstrated.
The composite film is subjected to ultrasonic treatment by putting a mixture of boron nitride nanotubes, emeraldine-type polyaniline, and an organic solvent such as N, N-dimethylformamide into a container. Then, by allowing to stand, a film in which boron nitride nanotubes are uniformly dispersed is formed on the bottom of the container.
Here, as the boron nitride nanotubes, those produced by various production methods can be used. Magnesium oxide, iron (II) oxide and boron are heated to 1100 to 1700 ° C. to generate boron oxide vapor, It is preferable to use a product obtained by allowing ammonia gas to act on the generated steam from the viewpoint of yield and high purity. At this time, a heating temperature of 1900 ° C. or higher is not preferable because the yield increases but the purity decreases.
On the other hand, it is preferable to use a non-conductive emeraldine type soluble in an organic solvent as polyaniline. At that time, if a commercially available product is used, it is possible to save the trouble of producing the product.

次に、実施例を示してさらに具体的に本発明を説明する。
先ず、窒化ホウ素ナノチューブを以下の手順に従って製造した。
ホウ素粉末2g、酸化鉄(II)(FeO)粉末1g及び酸化マグネシウム(MgO)粉末1gの混合物を窒化ホウ素製るつぼに入れ、このるつぼを縦型高周波誘導加熱炉の中に配置した。加熱炉中の混合物を1400℃に加熱し、酸化ホウ素の蒸気を生成した。この生成した蒸気に反応させるようにアンモニアガスを流しながら、1400℃に2時間加熱を継続することにより、加熱炉中の反応管の管壁近傍に窒化ホウ素ナノチューブを生成した。
この生成した窒化ホウ素ナノチューブは、直径20〜50nm、チューブ壁の厚さ6〜18nm、長さはおよそ10μmであった。
Next, the present invention will be described more specifically with reference to examples.
First, boron nitride nanotubes were produced according to the following procedure.
A mixture of 2 g of boron powder, 1 g of iron oxide (II) (FeO) powder and 1 g of magnesium oxide (MgO) powder was placed in a boron nitride crucible, and this crucible was placed in a vertical high-frequency induction heating furnace. The mixture in the heating furnace was heated to 1400 ° C. to generate boron oxide vapor. While flowing ammonia gas so as to react with the generated vapor, heating was continued at 1400 ° C. for 2 hours to generate boron nitride nanotubes near the wall of the reaction tube in the heating furnace.
The produced boron nitride nanotubes had a diameter of 20 to 50 nm, a tube wall thickness of 6 to 18 nm, and a length of about 10 μm.

次に、上記のようにして製造した窒化ホウ素ナノチューブ0.2gとエメラルディンベースのポリアニリン(アルドリッチ社製)0.2gとをN,N−ジメチルホルムアミド10cm3 中に添加し、室温で1.5時間超音波処理した。
その後、この混合液を12時間静置することにより、ガラス瓶の底にフィルムが形成された。
Next, 0.2 g of boron nitride nanotubes produced as described above and 0.2 g of emeraldine-based polyaniline (manufactured by Aldrich) were added to 10 cm 3 of N, N-dimethylformamide, and 1.5 g at room temperature. Sonicated for hours.
Then, the film was formed in the bottom of the glass bottle by leaving this liquid mixture still for 12 hours.

図1は、実施例で形成した複合フィルムの走査型電子顕微鏡像を示す図である。図1から、実施例で形成した複合フィルムは、窒化ホウ素ナノチューブがポリアニリンのマトリックスに分散されて埋め込まれている複合フィルムであることが分かる。ここで、マトリックスから窒化ホウ素ナノチューブの一部が出現しているが、これは、複合フィルムをシリコンウエハに搭載する際に複合フィルムが損傷したためである。   FIG. 1 is a view showing a scanning electron microscope image of the composite film formed in the example. 1 that the composite film formed in the example is a composite film in which boron nitride nanotubes are dispersed and embedded in a matrix of polyaniline. Here, some of the boron nitride nanotubes appeared from the matrix because the composite film was damaged when the composite film was mounted on a silicon wafer.

走査型電子顕微鏡の中で、実施例で形成した複合フィルムに電子ビームを照射した。図2は、実施例で形成した複合フィルムに電子ビームを照射した後の生成物の像を示す図である。図2から、電子ビームを照射したことにより、ポリアニリンが分解して消失し、窒化ホウ素ナノチューブが出現したことを確認することができる。複合フィルム中の窒化ホウ素ナノチューブのモルフォロジーは、純粋な窒化ホウ素ナノチューブと同様であった。   In the scanning electron microscope, the composite film formed in the example was irradiated with an electron beam. FIG. 2 is a diagram showing an image of the product after irradiating the composite film formed in the example with an electron beam. From FIG. 2, it can be confirmed that by irradiating the electron beam, polyaniline is decomposed and disappears, and boron nitride nanotubes appear. The morphology of boron nitride nanotubes in the composite film was similar to that of pure boron nitride nanotubes.

図3は上記実施例で形成した複合フィルムの高分解能透過型電子顕微鏡像を示す図である。図3から、窒化ホウ素ナノチューブがポリアニリンで覆われていることが分かった。さらに、窒化ホウ素は完全に結晶構造を維持していることが分かった。   FIG. 3 is a view showing a high-resolution transmission electron microscope image of the composite film formed in the above example. From FIG. 3, it was found that the boron nitride nanotubes were covered with polyaniline. Furthermore, it has been found that boron nitride maintains a completely crystalline structure.

図4は、上記実施例で形成した複合フィルム(EB/BNNT)、窒化ホウ素ナノチューブ単独(BNNT)およびエメラルディンベースポリアニリン単独(EB)の各X線回折のパターンを示す図である。図の縦軸はX線回折強度(任意目盛)、横軸は角度(°)、すなわちX線の原子面への入射角θの2倍に相当する角度(°)である。
図4から分かるように、窒化ホウ素ナノチューブ単独(BNNT)のX線回折パターンは、2θ=26°、41°、43°及び54°にピークを有する。エメラルディンベースポリアニリン単独(EB)のX線回折パターンは、2θ=19°を中心とするブロードなピークを有する。それに対し、実施例で形成した複合フィルム(EB/BNNT)のX線回折パターンでは、エメラルディンベースポリアニリンおよび窒化ホウ素ナノチューブのそれぞれ単独の材料に由来するピークを有している。エメラルディンベースポリアニリンに関連するピークの半値幅が10°から3°まで減少してシャープとなった。
以上のことから、ポリアニリン中に窒化ホウ素ナノチューブが分散されてなる複合フィルムが形成できていることが裏付けられる。
FIG. 4 is a diagram showing X-ray diffraction patterns of the composite film (EB / BNNT), boron nitride nanotubes alone (BNNT) and emeraldine base polyaniline alone (EB) formed in the above example. The vertical axis in the figure is the X-ray diffraction intensity (arbitrary scale), and the horizontal axis is the angle (°), that is, the angle (°) corresponding to twice the incident angle θ of the X-ray to the atomic plane.
As can be seen from FIG. 4, the X-ray diffraction pattern of boron nitride nanotubes alone (BNNT) has peaks at 2θ = 26 °, 41 °, 43 ° and 54 °. The X-ray diffraction pattern of emeraldine base polyaniline alone (EB) has a broad peak centered at 2θ = 19 °. On the other hand, in the X-ray diffraction pattern of the composite film (EB / BNNT) formed in the example, there are peaks derived from single materials of emeraldine base polyaniline and boron nitride nanotube. The half-width of the peak related to emeraldine base polyaniline decreased from 10 ° to 3 ° and became sharp.
From the above, it is confirmed that a composite film in which boron nitride nanotubes are dispersed in polyaniline can be formed.

(比較例)
次に比較例を示す。
強化材として窒化ホウ素ナノチューブの代わりにカーボンナノチューブを用い、実施例と同様、カーボンナノチューブとエメラルディンベースのポリアニリンとをN,N−ジメチルホルムアミド中に添加し超音波処理を行った。
その結果、ガラス瓶の底にはフィルムは形成されなかった。
(Comparative example)
Next, a comparative example is shown.
Carbon nanotubes were used in place of boron nitride nanotubes as the reinforcing material, and carbon nanotubes and emeraldine-based polyaniline were added to N, N-dimethylformamide and sonicated in the same manner as in the examples.
As a result, no film was formed on the bottom of the glass bottle.

ここで、窒化ホウ素ナノチューブの代わりにカーボンナノチューブを用いて、同様な操作を施しても、フィルムは形成されなかったという事実は、注目すべきことである。   Here, it is noteworthy that the film was not formed even when the same operation was performed using carbon nanotubes instead of boron nitride nanotubes.

本発明により、窒化ホウ素ナノチューブが均一に分散されたポリアニリン複合フィルムを提供することが可能となったので、高強度、高弾性率、高熱伝導性等が要求される製品への応用が期待される。   According to the present invention, it is possible to provide a polyaniline composite film in which boron nitride nanotubes are uniformly dispersed. Therefore, application to products requiring high strength, high elastic modulus, high thermal conductivity, etc. is expected. .

実施例で形成した複合フィルムの走査型電子顕微鏡像を示す図である。It is a figure which shows the scanning electron microscope image of the composite film formed in the Example. 実施例で形成した複合フィルムに電子ビームを照射した後の生成物の像を示す図である。It is a figure which shows the image of the product after irradiating an electron beam to the composite film formed in the Example. 実施例で形成した複合フィルムの高分解能透過型電子顕微鏡像を示す図である。It is a figure which shows the high-resolution transmission electron microscope image of the composite film formed in the Example. 実施例で形成した複合フィルム、窒化ホウ素ナノチューブ単独およびエメラルディンベースポリアニリン単独の各X線回折のパターンを示す図である。It is a figure which shows each X-ray-diffraction pattern of the composite film formed in the Example, boron nitride nanotube alone, and emeraldine base polyaniline alone.

Claims (5)

窒化ホウ素ナノチューブ(官能基化され可溶性にされたものを除く)を強化材とし、ポリアニリンをマトリックスとして、上記窒化ホウ素ナノチューブが分散されていることを特徴とする、複合フィルム。
Boron nitride nanotubes (excluding those soluble functionalized) and reinforcement, the polyaniline as the matrix, characterized in that the boron nitride nanotubes are dispersed, the composite film.
前記窒化ホウ素ナノチューブと前記ポリアニリンとの重量比が、窒化ホウ素ナノチューブ1重量部に対してポリアニリンが0.5〜100重量部の範囲であることを特徴とする、請求項1に記載の複合フィルム。   The composite film according to claim 1, wherein the weight ratio of the boron nitride nanotubes to the polyaniline is in the range of 0.5 to 100 parts by weight of polyaniline with respect to 1 part by weight of the boron nitride nanotubes. 前記ポリアニリンがエメラルディン形であることを特徴とする、請求項1又は2に記載の複合フィルム。   The composite film according to claim 1, wherein the polyaniline has an emeraldine shape. 窒化ホウ素ナノチューブおよびエメラルディン形ポリアニリンを有機溶媒に添加し、超音波処理を施す工程を含むことにより、窒化ホウ素ナノチューブが分散されたポリアニリンフィルムを形成することを特徴とする、複合フィルムの製造方法。   A method for producing a composite film, comprising: adding a boron nitride nanotube and an emeraldine-type polyaniline to an organic solvent and subjecting the resultant to ultrasonic treatment to form a polyaniline film in which the boron nitride nanotubes are dispersed. 前記窒化ホウ素ナノチューブは、酸化マグネシウム、酸化鉄(II)およびホウ素を1100〜1700℃で加熱した状態で、アンモニアガスを作用させて得ることを特徴とする、請求項4に記載の複合フィルムの製造方法。
The composite film according to claim 4, wherein the boron nitride nanotubes are obtained by allowing ammonia gas to act in a state where magnesium oxide, iron (II) oxide and boron are heated at 1100 to 1700 ° C. Method.
JP2006050543A 2006-02-27 2006-02-27 Composite film and manufacturing method thereof Expired - Fee Related JP4947458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006050543A JP4947458B2 (en) 2006-02-27 2006-02-27 Composite film and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006050543A JP4947458B2 (en) 2006-02-27 2006-02-27 Composite film and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007231031A JP2007231031A (en) 2007-09-13
JP4947458B2 true JP4947458B2 (en) 2012-06-06

Family

ID=38551961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006050543A Expired - Fee Related JP4947458B2 (en) 2006-02-27 2006-02-27 Composite film and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4947458B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102753475B (en) 2009-09-21 2016-07-13 迪肯大学 Manufacture method
JP2017095293A (en) * 2015-11-19 2017-06-01 積水化学工業株式会社 Boron nitride nano tube and thermosetting material
CN113336202A (en) * 2021-07-05 2021-09-03 南京大学 High-purity boron nitride nanotube and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7479516B2 (en) * 2003-05-22 2009-01-20 Zyvex Performance Materials, Llc Nanocomposites and methods thereto

Also Published As

Publication number Publication date
JP2007231031A (en) 2007-09-13

Similar Documents

Publication Publication Date Title
Jin et al. Thermal and mechanical interfacial properties of epoxy composites based on functionalized carbon nanotubes
US7244374B2 (en) Composite and method of manufacturing the same
Derradji et al. Mechanical and thermal properties of phthalonitrile resin reinforced with silicon carbide particles
Feng et al. Synthesis of carbon nanotube/epoxy composite films with a high nanotube loading by a mixed-curing-agent assisted layer-by-layer method and their electrical conductivity
Teng et al. Synergetic effect of hybrid boron nitride and multi-walled carbon nanotubes on the thermal conductivity of epoxy composites
JP4991657B2 (en) HEAT CONDUCTIVE SHEET CONTAINING HIGH DENSITY CARBON NANOTUBE ARRAY AND METHOD FOR PRODUCING THE SAME
Derradji et al. High thermal and thermomechanical properties obtained by reinforcing a bisphenol-A based phthalonitrile resin with silicon nitride nanoparticles
Wu et al. Synthesis, characterization, and electrical properties of polypyrrole/multiwalled carbon nanotube composites
US11167991B2 (en) Method for preparing carbon nanotube/polymer composite
CN109874344A (en) The charge of ion beam converts film
JP5477702B2 (en) Boron nitride nanotube derivative, dispersion thereof, and method for producing boron nitride nanotube derivative
Ding et al. Synergistic effect of α‐ZrP and graphene oxide nanofillers on the gas barrier properties of PVA films
Liu et al. Synthesis, characterization and ceramization of a carbon-rich zirconium-containing precursor for ZrC ceramic
JP4947458B2 (en) Composite film and manufacturing method thereof
Tong et al. Effect of nanosilica on the thermal, mechanical, and dielectric properties of polyarylene ether nitriles terminated with phthalonitrile
Morimune-Moriya et al. Development and characterization of strong, heat-resistant and thermally conductive polyimide/nanodiamond nanocomposites
Men et al. Amorphous liquid phase induced synthesis of boron nitride nanospheres for improving sintering property of h-BN/ZrO2 composites
Yu et al. Direct Conversion of Liquid Organic Precursor into 3D Laser‐Induced Graphene Materials
JP4817103B2 (en) Method for producing boron nitride nanotubes
KR101154808B1 (en) Silicon carbide and method for manufacturing the same
Mallakpour et al. Efficient functionalization of multi‐walled carbon nanotubes with p‐aminophenol and their application in the fabrication of poly (amide‐imide)‐matrix composites
Gunasekaran et al. Siloxane core dianhydride modified ether linked cyclohexyl diamine based multi-walled carbon nanotube reinforced polyimide (MWCNT/PI) nanocomposites
Peng et al. Growth and Mechanism of Network‐Like Branched Si3N4 Nanostructures
JP4725890B2 (en) Acylated boron nitride nanotubes, dispersion thereof, and method for producing the boron nitride nanotubes
Ali et al. Facile microwave synthesis of multi‐walled carbon nanotubes for modification of elastomer used as heaters

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees