JP4941987B2 - Carbide tool for micro machining - Google Patents

Carbide tool for micro machining Download PDF

Info

Publication number
JP4941987B2
JP4941987B2 JP2007253825A JP2007253825A JP4941987B2 JP 4941987 B2 JP4941987 B2 JP 4941987B2 JP 2007253825 A JP2007253825 A JP 2007253825A JP 2007253825 A JP2007253825 A JP 2007253825A JP 4941987 B2 JP4941987 B2 JP 4941987B2
Authority
JP
Japan
Prior art keywords
tool
cemented carbide
tungsten oxide
machining
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007253825A
Other languages
Japanese (ja)
Other versions
JP2009082936A (en
Inventor
禅 中野
久人 小木曽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007253825A priority Critical patent/JP4941987B2/en
Priority to KR1020107007143A priority patent/KR20100050571A/en
Priority to PCT/JP2008/067148 priority patent/WO2009041412A1/en
Priority to DE112008002629T priority patent/DE112008002629T5/en
Publication of JP2009082936A publication Critical patent/JP2009082936A/en
Application granted granted Critical
Publication of JP4941987B2 publication Critical patent/JP4941987B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/01Selection of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/347Ionic or cathodic spraying; Electric discharge
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates

Description

この発明は、炭化タングステンを主材料とする超硬工具に関し、特に、表面構造の改良により工具寿命の改善されたに超硬工具に関する。   The present invention relates to a cemented carbide tool mainly composed of tungsten carbide, and more particularly to a cemented carbide tool whose tool life is improved by improving the surface structure.

従来、炭化タングステンを主材料とした超硬材料は各種の工具に用いられている。また、表面をコーティング、浸炭、窒化等の技術により改質し寿命改善を図る技術も多く開発されているが、材料の硬質化を主体としている。   Conventionally, super hard materials mainly composed of tungsten carbide have been used for various tools. In addition, many techniques for improving the life by modifying the surface by techniques such as coating, carburizing, and nitriding have been developed, but the material is mainly hardened.

一方、近年の携帯電話等に代表される小型装置や、プリンター等に用いられるマイクロメートルオーダー寸法を持つ精密部品についても、機械加工や金型加工により加工する要求が増し、金型加工を基本にしたオンデマンド型製造装置が提案されている。   On the other hand, with regard to small devices such as recent mobile phones and precision parts with micrometer order dimensions used for printers, etc., the demand for machining by machining and mold processing has increased, and mold processing is fundamental. An on-demand manufacturing apparatus has been proposed.

なお、各種のプレス作動を行う同一形態のプレス機を多数用意し、製品に合わせて任意に組み合わせて作動させる技術は、すでに、特願2007−039401号として本件出願人等により提案している。また、各種の加工装置を任意に組み合わせマイクロデバイス構造を加工する技術について、特願2007−214759として本件出願人等により提案している。   A technique for preparing a large number of press machines of the same form for performing various press operations and operating them in any combination according to the product has already been proposed by the present applicant as Japanese Patent Application No. 2007-039401. Further, a technique for processing a micro device structure by arbitrarily combining various processing apparatuses has been proposed by the present applicant as Japanese Patent Application No. 2007-214759.

ところで、超硬材料の表面処理としては、イオンプレーティングを用いた窒化処理技術についてすでに提案されている(特許文献1参照)ほか、TiC、TiN、TiCN、Al2O3ダイヤモンドライクカーボン等により耐摩耗性、耐欠損性、を改善した加工工具についての技術が提案されている(特許文献2、3参照)。   By the way, as surface treatment of the super hard material, nitriding treatment technology using ion plating has already been proposed (see Patent Document 1), and wear resistance by TiC, TiN, TiCN, Al2O3 diamond-like carbon, etc. Techniques for machining tools with improved fracture resistance have been proposed (see Patent Documents 2 and 3).

また、酸化タングステンは、光クロミック材料や水素センサー材料として情報機器やセンサー類への応用が提案されている(特許文献4参照)が、工具材料としては利用されていない。   Tungsten oxide has been proposed as an optical chromic material and a hydrogen sensor material for information devices and sensors (see Patent Document 4), but is not used as a tool material.

特開昭51−089841号公報JP-A-51-089841 特開2000−144300号公報JP 2000-144300 A 特開2006−117997号公報JP 2006-117997 A 特開2005−075654号公報Japanese Patent Laying-Open No. 2005-075654

微細金型工具について、その耐久性を向上し、マイクロメートル領域の構造を持つ部品の製造を金型プレス加工により実施できるようにすることが望まれている。   It is desired to improve the durability of a fine mold tool so that parts having a structure in the micrometer region can be manufactured by mold pressing.

しかしながら、微細加工プロセスでは、工具の寸法も非常に小さくなり、加工性の高い材料を加工する場合、また板厚と加工寸法の比が1以下と薄板加工の場合には工具の耐久性もある程度得られるが、バネ材料など加工性の悪い材料をワークとした場合や板厚が厚い場合に工具耐久性が無くなる問題がある。   However, in the micromachining process, the tool size is also very small, and when processing a highly workable material, or when the ratio of the plate thickness to the processing dimension is 1 or less, the tool durability is also somewhat. Although it can be obtained, there is a problem that the tool durability is lost when a work material such as a spring material is used as a workpiece or the plate is thick.

これを解決するため、表面硬化技術や対磨耗性向上のためのコーティングを行った場合でも、十分な効果が得られていない問題がある。   In order to solve this problem, there is a problem that sufficient effects are not obtained even when surface hardening technology or coating for improving wear resistance is performed.

また、工具寿命が非常に短く、生産に耐えられないため最終的にマイクロスケールの構造を持つような部品製造に金型加工を用いることができない問題がある   In addition, since the tool life is very short and it cannot withstand production, there is a problem that mold processing cannot be used for manufacturing parts that finally have a microscale structure.

本発明では、上記従来の問題を解決することを目的とするものであり、過去に用いられることの無かった酸化タングステン材料を利用することによりマイクロメートル領域の形状を持つ金型部品の耐久性を向上し、それを用いた微小部品生産を実現することを課題とする。   The object of the present invention is to solve the above-mentioned conventional problems, and by using a tungsten oxide material that has not been used in the past, the durability of mold parts having a shape in the micrometer region is improved. The objective is to improve and realize the production of micro parts using it.

本発明は上記課題を解決するために、加工工具部の材料が炭化タングステンを主材料とした超硬材料からなり、その表面に20nm以上200nm以下の厚さを持つ酸化タングステンを主材料とした薄膜構造を持たせたことを特徴とする微細加工用超硬材料工具を提供する。   In order to solve the above problems, the present invention provides a thin film mainly composed of tungsten oxide having a thickness of 20 nm or more and 200 nm or less on the surface thereof. Provided is a cemented carbide tool for micromachining characterized by having a structure.

この微細加工用超硬材料工具は、打ち抜き用金型工具、絞り用金型工具、曲げ用金型工具のいずれかとして使用され、その最小加工形状寸法が0.2mm以下であることを特徴とする。   The micromachining carbide material tool is used as a die tool for punching, a die tool for drawing, or a die tool for bending, and has a minimum machining shape dimension of 0.2 mm or less. To do.

前記酸化タングステンを主材料とした薄膜構造は、単結晶、多結晶構造及びアモルファス構造のいずれか1つ、又は単結晶、多結晶構造及びアモルファス構造の混合状態からなることを特徴とする。   The thin film structure containing tungsten oxide as a main material is formed of any one of a single crystal, a polycrystalline structure, and an amorphous structure, or a mixed state of a single crystal, a polycrystalline structure, and an amorphous structure.

前記酸化タングステンを主材料とした薄膜構造は、酸化触媒効果を持つ金属微粒子を含有することを特徴とする。   The thin film structure containing tungsten oxide as a main material contains metal fine particles having an oxidation catalyst effect.

本発明は以上のとおり、酸化タングステン材料を利用することによりマイクロメートル領域の形状を持つ金型部品の耐久性を向上し、それを用いることで、微小部品生産を精度よく製造可能とする実現することが可能となる。   As described above, the present invention improves the durability of mold parts having a shape in the micrometer region by using a tungsten oxide material, and realizes that the production of micro parts can be manufactured with high accuracy by using it. It becomes possible.

本発明に係る微細加工用超硬材料工具の実施の形態を実施例に基づいて図面を参照して、以下に説明する。   An embodiment of a cemented carbide tool for microfabrication according to the present invention will be described below with reference to the drawings based on examples.

本発明に係る微細加工用超硬材料工具は、微細な形状を持つ金型用の工具(金型工具)であり、加工寸法が0.2mm以下の大きさを持つ金型工具である。この微細加工用超硬材料工具の特徴は、その加工表面に、厚さ20nm以上200nm以下の酸化タングステン構造を表面に一様に形成してなる構成にある。   The super-hard material tool for fine machining according to the present invention is a tool for a mold (die tool) having a fine shape, and is a mold tool having a machining dimension of 0.2 mm or less. The feature of this ultra-hard machining tool is that the tungsten oxide structure having a thickness of 20 nm or more and 200 nm or less is uniformly formed on the processing surface.

このような構成とすることで、本発明に係る微細加工用超硬材料工具は、超硬合金の炭化タングステン粒子の欠落を防止し、またバインダーコバルト材料による被加工材料との結合を防ぎ、工具表面状態を安定化することができる。   With such a configuration, the cemented carbide tool for micromachining according to the present invention prevents the tungsten carbide particles of the cemented carbide from being lost, and prevents the binder cobalt material from being bonded to the workpiece material. The surface state can be stabilized.

本発明の実施例を図1及び図2を、参照して以下に説明する。図1は、本発明の微細加工用超硬材料工具の表面近傍の概略図である。本発明の微細加工用超硬材料工具は、その加工工具部の本体として超硬合金工具1を備えている。この超硬合金工具1の表面に、酸化タングステン構造2が一様に形成されている。   An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a schematic view of the vicinity of the surface of a cemented carbide tool for micromachining according to the present invention. The cemented carbide tool for fine machining of the present invention includes a cemented carbide tool 1 as a main body of the machining tool portion. A tungsten oxide structure 2 is uniformly formed on the surface of the cemented carbide tool 1.

超硬合金工具1は、炭化タングステンの粒子3と、炭化タングステンの粒子3を結合するバインダーとしてのコバルト4等から構成されている。   The cemented carbide tool 1 is composed of tungsten carbide particles 3, cobalt 4 as a binder for bonding the tungsten carbide particles 3, and the like.

酸化タングステン構造2の詳細構造を図2に示す。この図2に示すように、酸化タングステン構造2は、酸化タングステンナノ結晶の領域5とアモルファス状の領域6からなる。或いは、酸化タングステンナノ結晶の領域5及びアモルファス状の領域6いずれかのみから成る構造でもよい。   A detailed structure of the tungsten oxide structure 2 is shown in FIG. As shown in FIG. 2, the tungsten oxide structure 2 includes a tungsten oxide nanocrystal region 5 and an amorphous region 6. Or the structure which consists only of the area | region 5 and the amorphous | non-crystalline area | region 6 of a tungsten oxide nanocrystal may be sufficient.

ここで、酸化タングステン構造2は、微細加工用超硬材料工具のうち打ち抜き工具に対してはその側面に、曲げ・絞り工具に対しては、その側面および被加工材料と接触する面に形成するとよい。   Here, the tungsten oxide structure 2 is formed on the side surface for the punching tool of the cemented carbide tool for micromachining, and on the side surface and the surface in contact with the workpiece for the bending / drawing tool. Good.

さらに、酸化タングステン構造2には、炭化タングステンの粒子3の酸化を促進する触媒効果のあるナノ粒子7(例えば、実施例で後記する「金ナノ粒子」等)を含有させる。なお、酸化触媒を利用しない場合は、ナノ粒子7を含有しなくても良い。   Further, the tungsten oxide structure 2 contains nanoparticles 7 (for example, “gold nanoparticles” described later in Examples) that have catalytic effect to promote the oxidation of the tungsten carbide particles 3. In addition, when not using an oxidation catalyst, the nanoparticle 7 does not need to be contained.

上記構成の本発明の微細加工用超硬材料工具の製造は、具体的に次のように行う。酸化タングステン構造2は、超硬合金工具1の表面酸化、スパッタ法、CVD法、PVD法、イオンプレーティング法、イオン注入法又はエアロゾルデポジション法により、金型工具形状加工後に形成することを特徴とする。   The manufacture of the cemented carbide tool for microfabrication of the present invention having the above-described configuration is specifically performed as follows. The tungsten oxide structure 2 is formed after die tool shape processing by surface oxidation of the cemented carbide tool 1, sputtering method, CVD method, PVD method, ion plating method, ion implantation method or aerosol deposition method. And

ここで、酸化タングステン構造を表面酸化により形成する場合には、炭化タングステン構造への影響を最小にするため酸化触媒を利用し低温による酸化を行うことを特徴とする。   Here, when the tungsten oxide structure is formed by surface oxidation, the oxidation is performed at a low temperature using an oxidation catalyst in order to minimize the influence on the tungsten carbide structure.

また、酸化タングステン構造の作成に、スパッタ法、CVD法、イオンプレーティング法、イオン注入法又はエアロゾルデポジション法を用いる場合にも、これらの処理の後熱処理による酸化の促進を付与することが可能である。   In addition, even when sputtering, CVD, ion plating, ion implantation, or aerosol deposition is used to create a tungsten oxide structure, it is possible to impart oxidation enhancement by heat treatment after these treatments. It is.

工具形状を作成してから、酸化触媒として金ナノ粒子7を、塗布、スパッタ法、蒸着法、又はイオン注入法等により、微細加工用超硬材料工具の超硬合金工具1の表面に形成し、その後427℃(700K)にて30分間大気中アニールを施す。これにより、厚さ100nmの酸化タングステン構造を作成している。   After creating the tool shape, gold nanoparticles 7 as an oxidation catalyst are formed on the surface of the cemented carbide tool 1 of the cemented carbide material tool for microfabrication by coating, sputtering, vapor deposition, ion implantation or the like. Thereafter, annealing in the atmosphere is performed at 427 ° C. (700 K) for 30 minutes. As a result, a tungsten oxide structure having a thickness of 100 nm is formed.

酸化タングステン構造2は、結晶状態三酸化タングステンが基本であり、部分的にアモルファス構造も存在している。酸化触媒の金ナノ粒子7も10nm程度の大きさである。またコバルトや炭素が残ったC4Co3W9構造も見られた。   The tungsten oxide structure 2 is basically crystalline tungsten trioxide, and an amorphous structure is also present partially. The gold nanoparticles 7 of the oxidation catalyst are also about 10 nm in size. A C4Co3W9 structure with cobalt and carbon remaining was also observed.

(実験例)
上記酸化タングステン構造2を超硬合金工具1の表面に形成し、直径0.15mmの丸穴打ち抜き用パンチに形成してなる本発明の微細加工用超硬材料工具を用意した。また、比較例として、超硬合金工具1の表面に酸化タングステン構造2を表面に形成されていないが、直径0.15mmの丸穴打ち抜き用パンチに形成してなる微細加工用超硬材料工具を用意した。
(Experimental example)
The tungsten oxide structure 2 was formed on the surface of the cemented carbide tool 1 and formed into a punch for punching a round hole having a diameter of 0.15 mm. As a comparative example, a tungsten carbide structure 2 is not formed on the surface of the cemented carbide tool 1, but a cemented carbide material tool for microfabrication formed by forming a punch for punching a round hole having a diameter of 0.15 mm. Prepared.

これらの2つの工具のそれぞれについて、厚さ0.2mmのステンレスばね材(SUS304−CSP−1/2H)の打ち抜き試験を行った。結果、未処理パンチでは1000回未満の打ち抜き回数で折損していたパンチが、最大15000回を超える打ち抜き可能となった。   Each of these two tools was subjected to a punching test of a stainless spring material (SUS304-CSP-1 / 2H) having a thickness of 0.2 mm. As a result, the unprocessed punch can be punched more than the maximum of 15000 times when the punch was broken after the number of punches of less than 1000 times.

以上、本発明に係る微細加工用超硬材料工具の最良の形態を実施例に基づいて説明したが、本発明はこのような実施例に限定されることなく、特許請求の範囲記載の技術的事項の範囲内で、いろいろな実施例があることは言うまでもない。   The best mode of the ultra-hard machining tool for micromachining according to the present invention has been described based on the embodiments. However, the present invention is not limited to such embodiments, and the technical scope described in the claims is not limited thereto. It goes without saying that there are various embodiments within the scope of the matter.

本発明に係る微細加工用超硬材料工具は、以上のような構成であるから、マイクロメートル領域の構造を持つ部品の製造のための金型プレス加工用工具、絞り用金型工具、曲げ用金型工具等に適用可能である。   Since the cemented carbide tool for micromachining according to the present invention has the above-described configuration, it is a tool for die pressing, a die tool for drawing, and a bending tool for manufacturing parts having a structure in the micrometer region. It can be applied to mold tools.

本発明に係る微細加工用超硬材料工具の実施例1を説明する図である。It is a figure explaining Example 1 of the cemented carbide material tool for fine processing which concerns on this invention. 本発明に係る微細加工用超硬材料工具の実施例1を説明する図である。It is a figure explaining Example 1 of the cemented carbide material tool for fine processing which concerns on this invention.

符号の説明Explanation of symbols

1 超硬合金工具
2 酸化タングステン構造
3 炭化タングステンの粒子
4 バインダーとしてのコバルト
5 酸化タングステンナノ結晶の領域
6 アモルファス状の領域
7 金ナノ粒子
1 Cemented Carbide Tool 2 Tungsten Oxide Structure 3 Tungsten Carbide Particles 4 Cobalt as Binder 5 Region of Tungsten Oxide Nanocrystal 6 Amorphous Region 7 Gold Nanoparticle

Claims (3)

打ち抜き用金型工具、絞り用金型工具、曲げ用金型工具のいずれかとして使用され、その最小加工形状寸法が0.2mm以下である微細加工用超硬材料工具であって
前記微細加工用超硬材料工具の加工工具部の材料が炭化タングステンを主材料とした超硬材料からなり、その表面に20nmより厚く200nm以下の厚さを持つ酸化タングステンを主材料とした薄膜構造を持たせたことを特徴とする微細加工用超硬材料工具。
It is used as a die tool for punching, a die tool for drawing, or a die tool for bending, and is a cemented carbide material tool for micro machining whose minimum machining shape dimension is 0.2 mm or less ,
The material of the working tool portion of the micro-machining superhard material tool consists superhard material in the tungsten carbide as the main material, the thin film structure of tungsten oxide having a thickness of less thickness 200nm than 20nm on a surface thereof as a primary material A cemented carbide tool for micromachining characterized by having
前記酸化タングステンを主材料とした薄膜構造は、単結晶、多結晶構造及びアモルファス構造のいずれか1つ、又は単結晶、多結晶構造及びアモルファス構造の混合状態からなることを特徴とする請求項1に記載の微細加工用超硬材料工具。 Wherein the thin film structure in which a tungsten oxide as a main material, a single crystal, any one of a polycrystalline structure and amorphous structure, or a single crystal, according to claim 1, characterized in that a mixed state of a polycrystalline structure and amorphous structure A cemented carbide tool for micromachining as described in 1. 前記酸化タングステンを主材料とした薄膜構造は、酸化触媒効果を持つ金属微粒子を含有することを特徴とする請求項1又は2に記載の微細加工用超硬材料工具。 The cemented carbide material tool for microfabrication according to claim 1 or 2, wherein the thin film structure containing tungsten oxide as a main material contains metal fine particles having an oxidation catalyst effect.
JP2007253825A 2007-09-28 2007-09-28 Carbide tool for micro machining Expired - Fee Related JP4941987B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007253825A JP4941987B2 (en) 2007-09-28 2007-09-28 Carbide tool for micro machining
KR1020107007143A KR20100050571A (en) 2007-09-28 2008-09-24 Cemented carbide tool for fine machining
PCT/JP2008/067148 WO2009041412A1 (en) 2007-09-28 2008-09-24 Cemented carbide tool for fine machining
DE112008002629T DE112008002629T5 (en) 2007-09-28 2008-09-24 Carbide tool for micromachining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007253825A JP4941987B2 (en) 2007-09-28 2007-09-28 Carbide tool for micro machining

Publications (2)

Publication Number Publication Date
JP2009082936A JP2009082936A (en) 2009-04-23
JP4941987B2 true JP4941987B2 (en) 2012-05-30

Family

ID=40511296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007253825A Expired - Fee Related JP4941987B2 (en) 2007-09-28 2007-09-28 Carbide tool for micro machining

Country Status (4)

Country Link
JP (1) JP4941987B2 (en)
KR (1) KR20100050571A (en)
DE (1) DE112008002629T5 (en)
WO (1) WO2009041412A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5459498B2 (en) * 2010-04-17 2014-04-02 三菱マテリアル株式会社 Surface coated cutting tool
JP6845715B2 (en) * 2017-03-13 2021-03-24 三菱マテリアル株式会社 Hard sintered body

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5189841A (en) 1975-02-04 1976-08-06 CHOKOGOKINNOION CHITSUKASHORIHOHO
JP2547886B2 (en) * 1990-05-09 1996-10-23 隆久 増沢 Electrochemical machining method by pulse current and its equipment
JP4215317B2 (en) 1998-11-12 2009-01-28 住友電工ハードメタル株式会社 IC lead frame cutting blade and manufacturing method thereof
JP2002201033A (en) * 2000-12-28 2002-07-16 Canon Inc Mold for forming optical element
JP2004230314A (en) * 2003-01-31 2004-08-19 Japan Atom Energy Res Inst Noble metal coated photocatalyst
JP3994161B2 (en) 2003-08-28 2007-10-17 独立行政法人物質・材料研究機構 Single crystal tungsten oxide nanotube and method for producing the same
JP4462408B2 (en) * 2004-01-28 2010-05-12 独立行政法人産業技術総合研究所 Processed article manufacturing method
US7919215B2 (en) * 2004-08-19 2011-04-05 Japan Science And Technology Agency Corrosion resistant metal oxide electrode catalyst for oxygen reduction
JP4430509B2 (en) 2004-10-20 2010-03-10 住友金属鉱山伸銅株式会社 Rolled copper foil
JP4846296B2 (en) * 2005-08-03 2011-12-28 富士フイルム株式会社 Electrochromic display element
JP2007039401A (en) 2005-08-04 2007-02-15 Biosums:Kk Method for repairing facial expression of dead body
JP4435098B2 (en) 2006-02-08 2010-03-17 日本電信電話株式会社 Wireless communication apparatus and wireless communication method

Also Published As

Publication number Publication date
WO2009041412A1 (en) 2009-04-02
KR20100050571A (en) 2010-05-13
JP2009082936A (en) 2009-04-23
DE112008002629T5 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
Neo et al. Performance evaluation of pure CBN tools for machining of steel
Xu et al. Size effects in micro blanking of metal foil with miniaturization
KR102061635B1 (en) Manufacturing method of mold and punching pipe
JP4941987B2 (en) Carbide tool for micro machining
CN107532293A (en) Diaphragm and its manufacture method
JP2006328539A (en) Coated cemented carbide, and tool
KR101860682B1 (en) Anvil roll, rotary cutter, and method for cutting workpiece
CN106715012A (en) Coated tool
Sieczkarek et al. Innovative tools to improve incremental bulk forming processes
CN111093873B (en) Cutting tool and method for manufacturing same
JP4749073B2 (en) Mold and manufacturing method thereof
CN109890555B (en) Method for forming fine periodic structure groove on surface of diamond
JP2004001034A (en) Die for pressing
JPH09253770A (en) Die
JP5797408B2 (en) Rotary cutter
JP2007181844A (en) Metal plate dowel forming method
KR102550103B1 (en) Jig for metal plastic processing
JP7057419B2 (en) Inserts and cutting tools equipped with them
KR20100086847A (en) Diamond tool and method of producing the same
JP2010036262A (en) Thin plate punching die
JP6515387B2 (en) Carbide tool and method of manufacturing the same
KR20170018831A (en) Cemented carbide necking tool
JP2004202592A (en) Tool member having amorphous carbon film containing silicon and its manufacturing method
WO2019181790A1 (en) Insert and cutting tool provided with same
JP2018140354A (en) Method for production of carbon-based superhard structure, and metal mold production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees