JP4940598B2 - Method for producing organic peroxide - Google Patents

Method for producing organic peroxide Download PDF

Info

Publication number
JP4940598B2
JP4940598B2 JP2005244334A JP2005244334A JP4940598B2 JP 4940598 B2 JP4940598 B2 JP 4940598B2 JP 2005244334 A JP2005244334 A JP 2005244334A JP 2005244334 A JP2005244334 A JP 2005244334A JP 4940598 B2 JP4940598 B2 JP 4940598B2
Authority
JP
Japan
Prior art keywords
peroxide
organic
ocf
organic peroxide
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005244334A
Other languages
Japanese (ja)
Other versions
JP2006089472A (en
Inventor
勝也 上野
和彦 山田
伸 立松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2005244334A priority Critical patent/JP4940598B2/en
Publication of JP2006089472A publication Critical patent/JP2006089472A/en
Application granted granted Critical
Publication of JP4940598B2 publication Critical patent/JP4940598B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、管型反応器を用いた有機ペルオキシドの製造方法に関する。   The present invention relates to a method for producing an organic peroxide using a tubular reactor.

有機ペルオキシド、特にジアシルペルオキシドは、重合開始剤、架橋剤、プラスチックの表面処理剤等として有用な化合物である。   Organic peroxides, particularly diacyl peroxides, are useful compounds as polymerization initiators, crosslinking agents, plastic surface treatment agents, and the like.

従来、ジアシルペルオキシドは、槽型撹拌反応器を用いた回分操作により、アシルハライドおよび過酸化物を反応させて製造されている(例えば、特許文献1参照。)。   Conventionally, a diacyl peroxide is produced by reacting an acyl halide and a peroxide by a batch operation using a tank-type stirred reactor (see, for example, Patent Document 1).

ジアシルペルオキシドを製造する反応は大きな発熱を伴い、回分操作による製造方法では厳密な温度制御が困難であることから、生成したジアシルペルオキシドが熱分解し収率が低かった。また、ジアシルペルオキシドは自己分解性があり、ジアシルペルオキシドを運搬する際に振動や熱により爆発する恐れがある。   The reaction for producing diacyl peroxide has a large exotherm, and it is difficult to strictly control the temperature by the production method by batch operation. Therefore, the produced diacyl peroxide is thermally decomposed and the yield is low. In addition, diacyl peroxide is self-degradable and may explode due to vibration or heat when the diacyl peroxide is transported.

一方、種々の製品の大量生産には、生成物の品質が安定することから連続操作が採用されている。ジアシルペルオキシドの製造に連続操作を適用した例として、激しい撹拌を与える手段と組み合わせる方法が提案されている(例えば、特許文献2参照。)。しかし、この方法では激しく撹拌しながらジアシルペルオキシドを製造するため、副生するカルボン酸等が原因で反応液が泡立ち、反応後、有機相と水相との分離が困難である問題がある。   On the other hand, continuous operation is adopted for mass production of various products because the quality of the product is stable. As an example in which continuous operation is applied to the production of diacyl peroxide, a method combined with means for giving vigorous stirring has been proposed (see, for example, Patent Document 2). However, since this method produces diacyl peroxide with vigorous stirring, there is a problem that the reaction solution is foamed due to by-product carboxylic acid and the like, and it is difficult to separate the organic phase and the aqueous phase after the reaction.

特開平5−97797号公報Japanese Patent Laid-Open No. 5-979797 特表平11−511464号公報Japanese National Patent Publication No. 11-511464

本発明の目的は、上記のような問題点を解決し、除熱性に優れ、大量生産性に優れ、収率に優れ、安全性に優れた有機ペルオキシドの製造方法を提供することである。   The object of the present invention is to solve the above-mentioned problems and to provide a method for producing an organic peroxide that is excellent in heat removal, excellent in mass productivity, excellent in yield, and excellent in safety.

RC(=O)X(ここで、RはR’またはR’Oを表し、R’はアルキル基(ただし、アルキル基R’にはフッ素原子が含まれていてもよく、エーテル性の酸素原子が含まれていてもよい。)であり、Xはハロゲン原子である。)で表される化合物と過酸化物とをアルカリ化合物の存在下に反応させてRC(=O)OOC(=O)Rで表される有機ペルオキシドを製造する方法であって、RC(=O)Xを含む有機相と過酸化物およびアルカリ化合物を含む水相とを管型反応器内に導入し、管型反応器内での有機相および水相のレイノルズ数を1000以下の層流状態に保持してRC(=O)Xと過酸化物との反応を行い、生成する有機ペルオキシドを含む反応混合物を管型反応器から連続的に取り出すことを特徴とする有機ペルオキシドの製造方法を提供する。 RC (═O) X (where R represents R ′ or R′O, R ′ represents an alkyl group (provided that the alkyl group R ′ may contain a fluorine atom, and an etheric oxygen atom) And X is a halogen atom, and a compound represented by (2) is reacted with a peroxide in the presence of an alkali compound to produce RC (= O) OOC (= O). A method for producing an organic peroxide represented by R, wherein an organic phase containing RC (= O) X and an aqueous phase containing a peroxide and an alkali compound are introduced into a tubular reactor, and a tubular reaction is conducted. The reaction mixture containing the organic peroxide produced by the reaction of RC (= O) X and peroxide is carried out while maintaining the Reynolds number of the organic phase and aqueous phase in the vessel in a laminar flow state of 1000 or less. Process for producing organic peroxides characterized by continuous removal from the reactor Provide law.

本発明の製造方法によれば、除熱性に優れ、大量生産性に優れ、生成物の収率に優れ、安全性に優れる方法でジアシルペルオキシドまたはジアルキルペルオキシジカーボネートが得られるので、工業的価値が極めて高い。   According to the production method of the present invention, diacyl peroxide or dialkyl peroxydicarbonate can be obtained by a method that is excellent in heat removal, excellent in mass productivity, excellent in product yield, and excellent in safety. Extremely expensive.

本発明における管型反応器は、以下マイクロリアクターともいう。本発明におけるマイクロリアクターとしては、基板の表面に、積層、貼付、エッチング、LIGAプロセス、切削、鋳型成形などの方法により流路が形成されるか、または、細管を用いて流路が形成された3次元構造体等を用いることができる。   Hereinafter, the tubular reactor in the present invention is also referred to as a microreactor. As a microreactor in the present invention, a channel is formed on the surface of a substrate by a method such as lamination, sticking, etching, LIGA process, cutting, molding, or the like, or a channel is formed using a thin tube. A three-dimensional structure or the like can be used.

マイクロリアクターの形状としては、基板の表面に流路が形成されたチップ型マイクロリアクターが好ましい。流路の断面形状としては、三角形、四角形、円形、楕円形等が挙げられる。細管を用いて流路が形成されたマイクロリアクターの流路の形状としては、直管状、曲管状、円形コイル状、楕円形コイル状、正方形、長方形等の四角形コイル状等が挙げられる。マイクロリアクターの形状としては、流路の断面形状が四角形のチップ型マイクロリアクターがより好ましい。   As the shape of the microreactor, a chip type microreactor in which a channel is formed on the surface of the substrate is preferable. Examples of the cross-sectional shape of the channel include a triangle, a quadrangle, a circle, and an ellipse. Examples of the shape of the flow path of the microreactor in which the flow path is formed using a thin tube include a straight tubular shape, a curved tubular shape, a circular coil shape, an elliptical coil shape, and a square coil shape such as a square and a rectangle. As the shape of the microreactor, a chip type microreactor having a square cross-sectional shape of the flow path is more preferable.

マイクロリアクターには、流体の供給口、排出口につながる1つ以上の流路があり、複数の流体が接触する連続反応部を有する。連続反応部は、層流を維持しながら、複数の流体が接触または混合できる空間であれば特に限定されず、例えば、流路がT字またはY字に形成された構造、それらを多層に積み重ねた構造等が好ましい。   The microreactor has one or more flow paths connected to a fluid supply port and a fluid discharge port, and has a continuous reaction unit in contact with a plurality of fluids. The continuous reaction section is not particularly limited as long as it is a space where a plurality of fluids can contact or mix while maintaining a laminar flow. For example, a structure in which a flow path is formed in a T shape or a Y shape, and these layers are stacked in multiple layers. The structure etc. are preferable.

マイクロリアクターとしては、非混和性の水性流体および有機性流体が層流状態で交互に接する流れを構築できる構造がより好ましい。具体的な構造の例としては、図1に示す構造が挙げられる。   As the microreactor, a structure capable of constructing a flow in which an immiscible aqueous fluid and an organic fluid are alternately contacted in a laminar flow state is more preferable. An example of a specific structure is the structure shown in FIG.

RC(=O)Xで表される化合物を含む有機相を供給口1より供給し、過酸化物およびアルカリ化合物を含む水相を供給口2より供給する。各相は連続流路3を通り、連続反応部4に供給される。連続反応部4で有機ペルオキシドが生成し、排出口5より連続的に取り出される。   An organic phase containing a compound represented by RC (═O) X is supplied from the supply port 1, and an aqueous phase containing a peroxide and an alkali compound is supplied from the supply port 2. Each phase passes through the continuous flow path 3 and is supplied to the continuous reaction unit 4. Organic peroxide is generated in the continuous reaction section 4 and is continuously taken out from the outlet 5.

本発明におけるマイクロリアクターの流路の断面積は、1.0×10−5〜0.8cmであることが好ましい。断面積が該範囲であると、マイクロリアクターの製作が容易であり、単位体積当たりの壁面積が大きくなるため除熱効率に優れ、有機ペルオキシドの収率が高い。 The cross-sectional area of the flow path of the microreactor in the present invention is preferably 1.0 × 10 −5 to 0.8 cm 2 . When the cross-sectional area is within this range, the production of the microreactor is easy, the wall area per unit volume is large, and the heat removal efficiency is excellent, and the yield of organic peroxide is high.

本発明においては、マイクロリアクター内での有機相および水相のレイノルズ数(以下、Reと記す。)を1000以下の層流状態に保持してアシルハライドまたはアシルハロゲン化ホルメートと、過酸化物との反応を行う。Reが該範囲であると、流体の流れは層流であり、反応の進行が安定し、有機ペルオキシドの収率が高い。   In the present invention, an acyl halide or acyl halide formate, a peroxide, and a Reynolds number (hereinafter referred to as Re) of the organic phase and aqueous phase in the microreactor are maintained in a laminar flow state of 1000 or less. Perform the reaction. When Re is within this range, the fluid flow is laminar, the progress of the reaction is stable, and the yield of organic peroxide is high.

Reとは、平均流体速度、流路の寸法および流体の動力学的速度から計算される、流体の状態を表す無次元数であり、例えば、Re=lρu/μ(lは流体を代表する長さ、ρは流体の密度、uは管内の流体の平均流速、μは粘度を示す。)の式を用いて計算できる。   Re is a dimensionless number representing the state of the fluid, calculated from the average fluid velocity, the dimensions of the flow path, and the dynamic velocity of the fluid. For example, Re = lρu / μ (l is a length representing a fluid) Ρ is the density of the fluid, u is the average flow velocity of the fluid in the tube, and μ is the viscosity.

本発明においては、マイクロリアクター内での有機相と水相の接触界面積が0.1mm/mm以上であることが好ましく、0.5mm/mm以上がより好ましく、0.8mm/mm以上が最も好ましい。接触界面積が該範囲であると、有機相と水相との接触面積が充分となり、有機ペルオキシドの収率が高い。 In the present invention, the contact interface area between the organic phase and the aqueous phase in the microreactor is preferably 0.1 mm 2 / mm 3 or more, more preferably 0.5 mm 2 / mm 3 or more, and 0.8 mm 2. / Mm 3 or more is most preferable. When the contact interface area is within this range, the contact area between the organic phase and the aqueous phase is sufficient, and the yield of organic peroxide is high.

RC(=O)Xで表される化合物と過酸化物との連続反応部としては、有機相、水相、反応混合物等が連続的に供給および排出ができる構造であれば特に限定されない。連続反応部は、昇温・冷却ができる構造を有することが好ましい。連続反応部の設置方向としては、特に限定されず、垂直方向、水平方向、斜め方向等が採用される。   The continuous reaction portion between the compound represented by RC (═O) X and the peroxide is not particularly limited as long as the organic phase, the aqueous phase, the reaction mixture, and the like can be continuously supplied and discharged. The continuous reaction part preferably has a structure capable of heating and cooling. The installation direction of the continuous reaction unit is not particularly limited, and a vertical direction, a horizontal direction, an oblique direction, and the like are employed.

連続反応部の長さは0.005〜1000mが好ましく、0.01〜10mがより好ましい。連続反応部の長さが該範囲であると、原料の滞留時間が充分となり、有機ペルオキシドの収率が高く、原料の供給口と反応混合物の排出口の間の圧力損失を小さくでき、連続反応器内の流体の流れが安定し、層流状態が保持できる。滞留時間は0.1秒〜5時間が好ましく、0.2秒〜2時間がより好ましく、0.5秒〜1時間が最も好ましい。   The length of the continuous reaction part is preferably 0.005 to 1000 m, and more preferably 0.01 to 10 m. When the length of the continuous reaction part is within this range, the residence time of the raw material becomes sufficient, the yield of organic peroxide is high, the pressure loss between the raw material supply port and the reaction mixture discharge port can be reduced, and the continuous reaction The flow of fluid in the vessel is stabilized and a laminar flow state can be maintained. The residence time is preferably 0.1 seconds to 5 hours, more preferably 0.2 seconds to 2 hours, and most preferably 0.5 seconds to 1 hour.

本発明において、連続反応部は単独で用いてもよく、複数個並列して用いてもよい。複数個並列して用いる場合には、1〜1000個が好ましく、1〜100個がより好ましい。複数個用いることにより、有機ペルオキシドの生産量を制御できる。   In this invention, a continuous reaction part may be used independently and may be used in parallel. When using in parallel, 1 to 1000 is preferable, and 1 to 100 is more preferable. By using a plurality, the production amount of organic peroxide can be controlled.

本発明におけるRC(=O)Xで表される化合物としては、アシルハライド(Rがアルキル基R’である場合)およびアルキルハロゲン化ホルメート(Rがアルコキシ基R’Oである場合)が好ましい。ただし、アルキル基R’にはフッ素原子が含まれていてもよく、エーテル性の酸素原子が含まれていてもよい。XはCl、F、BrまたはIを示す。Xとしては、FまたはClが好ましい。   As the compound represented by RC (═O) X in the present invention, acyl halide (when R is an alkyl group R ′) and alkyl halide formate (when R is an alkoxy group R′O) are preferable. However, the alkyl group R ′ may contain a fluorine atom or an etheric oxygen atom. X represents Cl, F, Br or I. X is preferably F or Cl.

R’としては、(1)炭素数2〜20の炭化水素基、(2)炭素数2〜20の含フッ素炭化水素基、(3)エーテル性の酸素原子を含む炭素数2〜20の炭化水素基、(4)エーテル性の酸素原子を含む炭素数2〜20の含フッ素炭化水素基が好ましい。なお、(1)〜(4)の炭化水素基または含フッ素炭化水素基は、直鎖状でも分岐状でも環状でもよい。   R ′ includes (1) a hydrocarbon group having 2 to 20 carbon atoms, (2) a fluorine-containing hydrocarbon group having 2 to 20 carbon atoms, and (3) a carbon atom having 2 to 20 carbon atoms containing an etheric oxygen atom. A hydrogen group and (4) a fluorine-containing hydrocarbon group having 2 to 20 carbon atoms containing an etheric oxygen atom are preferred. In addition, the hydrocarbon group or fluorine-containing hydrocarbon group of (1) to (4) may be linear, branched or cyclic.

該(1)〜(4)としては、それぞれ以下の基が好ましい。
(1)C2m+1−(mは2〜20の整数。)、C−、C11−、
(2)C2n+1−(nは2〜20の整数。)、C−、C11−、
(3)C2p+1−d(OC2g+1OC2q−(p、g、qはそれぞれ独立に1〜7の整数、dは0または1〜5の整数、p+g×d+q≦20。)、C2u+1O(C2vO)2w−(u、v、wはそれぞれ独立に1〜7の整数、eは1〜5の整数、u+v×e+w≦20。)、
(4)C2h+1−a(OC2i+1OC2j−(h、i、jはそれぞれ独立に1〜7の整数、aは0または1〜5の整数、h+i×a+j≦20。)、C2k+1O(C2sO)2t−(k、s、tはそれぞれ独立に1〜7の整数、bは1〜5の整数、k+s×b+t≦20。)、下式で表される基(ただし、Rは炭素数1〜3のポリフルオロアルキル基を示す。)。
As said (1)-(4), the following groups are respectively preferable.
(1) C m H 2m + 1 - (m is 2-20 of integral.), C 6 H 5 - , C 6 H 11 -,
(2) C n F 2n + 1 - (n is 2-20 integer.), C 6 F 5 - , C 6 F 11 -,
(3) C p H 2p + 1-d (OC g H 2g + 1) d OC q H 2q - (p, g, q are each independently 1-7 integer, d is 0 or an integer of 1 to 5, p + g × d + q ≦ 20.), C u H 2u + 1 O (C v H 2v O) e C w H 2w − (u, v, w are each independently an integer of 1-7, e is an integer of 1-5, u + v × e + w ≦ 20.),
(4) Ch F 2h + 1-a (OC i F 2i + 1 ) a OC j F 2j − (h, i, j are each independently an integer of 1-7, a is an integer of 0 or 1-5, h + i × a + j ≦ 20.), C k F 2k + 1 O (C s F 2s O) b C t F 2t − (k, s, t are each independently an integer of 1-7, b is an integer of 1-5, k + s × b + t ≦ 20.), A group represented by the following formula (where R f represents a polyfluoroalkyl group having 1 to 3 carbon atoms).

Figure 0004940598
Figure 0004940598

Figure 0004940598
Figure 0004940598

RC(=O)Xで表される化合物であるアシルハライド、アルキルハロゲン化ホルメートとしては、以下の化合物が好ましく挙げられる。
(1)CHCH(CH)COF、CHC(CHCHCH(CH)CHCOF、CH(CHCOF、CHCHCHOCOF、CHCHCH(CH)OCOF、CH(CHCH(C)CHOCOF、CHCH(CH)COCl、CHC(CHCHCH(CH)CHCOCl、CH(CHCOF、CHCHCHOCOCl、CHCHCH(CH)OCOCl、CH(CHCH(C)CHOCOCl、
(2)CFCFCFCOF、CFCFCFCFCOF、CCOF、C11COF、CFCFCFCOCl、CFCFCFCFCOCl、CCOCl、C11COCl、
(3)CHCHOCHCHOCOF、CHCH(OCH)CHCHOCOF、CHCHOCHCHOCOCl、CHCH(OCH)CHCHOCOCl、
(4)COCF(CF)COF、COCF(CF)CFOCF(CF)COF、COCF(CF)CFOCF(CF)CFOCF(CF)COF、CFOCF(CF)CFOCF(CF)COF、CFCFCFCOF、CFCFCFCFCOF、CFOCFCFOCFCOF、CFO(CFCFO)CFCOF、CFO(CFCFO)CFCOF、CFOCF(CF)CFOCFCOF、CFO[CF(CF)CFOCFCOF、CFOCF(CF)CF(OCFCOF、CFO[CF(CF)CF(OCFCOF、COCF(CF)COCl、COCF(CF)CFOCF(CF)COCl、COCF(CF)CFOCF(CF)CFOCF(CF)COCl、CFOCF(CF)CFOCF(CF)COCl、CFCFCFCOCl、CFCFCFCFCOCl、CFOCFCFOCFCOCl、CFO(CFCFO)CFCOCl、CFO(CFCFO)CFCOCl、CFOCF(CF)CFOCFCOCl、CFO[CF(CF)CFOCFCOCl、CFOCF(CF)CF(OCFCOCl、CFO[CF(CF)CF(OCFCOCl、下記化合物。
Preferred examples of the acyl halide and alkyl halide formate that are compounds represented by RC (═O) X include the following compounds.
(1) CH 3 CH (CH 3) COF, CH 3 C (CH 3) 2 CH 2 CH (CH 3) CH 2 COF, CH 3 (CH 2) 6 COF, CH 3 CH 2 CH 2 OCOF, CH 3 CH 2 CH (CH 3) OCOF , CH 3 (CH 2) 3 CH (C 2 H 5) CH 2 OCOF, CH 3 CH (CH 3) COCl, CH 3 C (CH 3) 2 CH 2 CH (CH 3 ) CH 2 COCl, CH 3 (CH 2 ) 6 COF, CH 3 CH 2 CH 2 OCOCl, CH 3 CH 2 CH (CH 3 ) OCOCl, CH 3 (CH 2 ) 3 CH (C 2 H 5 ) CH 2 OCOCl ,
(2) CF 3 CF 2 CF 2 COF, CF 3 CF 2 CF 2 CF 2 COF, C 6 F 5 COF, C 6 F 11 COF, CF 3 CF 2 CF 2 COCl, CF 3 CF 2 CF 2 CF 2 COCl , C 6 F 5 COCl, C 6 F 11 COCl,
(3) CH 3 CH 2 OCH 2 CH 2 OCOF, CH 3 CH (OCH 3) CH 2 CH 2 OCOF, CH 3 CH 2 OCH 2 CH 2 OCOCl, CH 3 CH (OCH 3) CH 2 CH 2 OCOCl,
(4) C 3 F 7 OCF (CF 3) COF, C 3 F 7 OCF (CF 3) CF 2 OCF (CF 3) COF, C 3 F 7 OCF (CF 3) CF 2 OCF (CF 3) CF 2 OCF (CF 3 ) COF, CF 3 OCF (CF 3 ) CF 2 OCF (CF 4 ) COF, CF 3 CF 2 CF 2 COF, CF 3 CF 2 CF 2 CF 2 COF, CF 3 OCF 2 CF 2 OCF 2 COF , CF 3 O (CF 2 CF 2 O) 2 CF 2 COF, CF 3 O (CF 2 CF 2 O) 3 CF 2 COF, CF 3 OCF (CF 3 ) CF 2 OCF 2 COF, CF 3 O [CF ( CF 3 ) CF 2 ] 2 OCF 2 COF, CF 3 OCF (CF 3 ) CF 2 (OCF 2 ) 2 COF, CF 3 O [CF (CF 3 ) CF 2 ] 2 (OCF 2 ) 2 COF, C 3 F 7 OCF (CF 3 ) COCl, C 3 F 7 OCF (CF 3 ) CF 2 OCF (CF 3 ) COCl, C 3 F 7 OCF (CF 3 ) CF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COCl, CF 3 OCF (CF 3 ) CF 2 OCF (CF 4 ) COCl, CF 3 CF 2 CF 2 COCl, CF 3 CF 2 CF 2 CF 2 COCl, CF 3 OCF 2 CF 2 OCF 2 COCl , CF 3 O (CF 2 CF 2 O) 2 CF 2 COCl, CF 3 O (CF 2 CF 2 O) 3 CF 2 COCl, CF 3 OCF (CF 3) CF 2 OCF 2 COCl, CF 3 O [CF ( CF 3) CF 2] 2 OCF 2 COCl, CF 3 OCF (CF 3) CF 2 (OCF 2) 2 COCl, CF 3 O [CF (CF ) CF 2] 2 (OCF 2 ) 2 COCl, the following compound.

Figure 0004940598
Figure 0004940598

Figure 0004940598
Figure 0004940598

本発明におけるジアシルペルオキシドとしては[R’(C=O)O]が好ましく、ジアルキルペルオキシジカーボネートとしては[R’O(C=O)O]が好ましい。ただし、式中のR’は前記と同じ意味を示す。ジアシルペルオキシド、ジアルキルペルオキシジカーボネートとしては、以下の化合物が好ましく挙げられる。 In the present invention, the diacyl peroxide is preferably [R ′ (C═O) O] 2 , and the dialkyl peroxydicarbonate is preferably [R′O (C═O) O] 2 . However, R ′ in the formula has the same meaning as described above. Preferred examples of diacyl peroxide and dialkyl peroxydicarbonate include the following compounds.

(1)[CHCH(CH)COO]、[CHC(CHCHCH(CH)CHCOO]、[CH(CHCOO]、[CHCHCHOCOO]、[CHCH(CH)OCOO]、[CHCHCH(CH)OCOO]、[CH(CHCH(C)CHOCOO]
(2)[CFCFCFCOO]、[CFCFCFCFCOO]、[CCOO]、[C11COO]
(3)[CHCHOCHCHOCOO]、[CHCH(OCH)CHCHOCOO]
(4)[COCF(CF)COO]、[COCF(CF)CFOCF(CF)COO]、[COCF(CF)CFOCF(CF)CFOCF(CF)COO]、[CFOCF(CF)COO]、[CFOCF(CF)CFOCF(CF)COO]、[CFOCFCFOCFCOO]、[CFO(CFCFO)CFCOO]、[CFO(CFCFO)CFCOO]、[CFOCF(CF)CFOCFCOO]、[CFO[CF(CF)CFOCFCOO]、[CFOCF(CF)CF(OCFCOO]、[CFO[CF(CF)CF(OCFCOO]、下記有機ペルオキシド。
(1) [CH 3 CH (CH 3 ) COO] 2 , [CH 3 C (CH 3 ) 2 CH 2 CH (CH 3 ) CH 2 COO] 2 , [CH 3 (CH 2 ) 6 COO] 2 , [ CH 3 CH 2 CH 2 OCOO] 2, [CH 3 CH (CH 3) OCOO] 2, [CH 3 CH 2 CH (CH 3) OCOO] 2, [CH 3 (CH 2) 3 CH (C 2 H 5 ) CH 2 OCOO] 2 ,
(2) [CF 3 CF 2 CF 2 COO] 2 , [CF 3 CF 2 CF 2 CF 2 COO] 2 , [C 6 F 5 COO] 2 , [C 6 F 11 COO] 2 ,
(3) [CH 3 CH 2 OCH 2 CH 2 OCOO] 2 , [CH 3 CH (OCH 3 ) CH 2 CH 2 OCOO] 2 ,
(4) [C 3 F 7 OCF (CF 3) COO] 2, [C 3 F 7 OCF (CF 3) CF 2 OCF (CF 3) COO] 2, [C 3 F 7 OCF (CF 3) CF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COO] 2 , [CF 3 OCF (CF 3 ) COO] 2 , [CF 3 OCF (CF 3 ) CF 2 OCF (CF 3 ) COO] 2 , [CF 3 OCF 2 CF 2 OCF 2 COO] 2, [CF 3 O (CF 2 CF 2 O) 2 CF 2 COO] 2, [CF 3 O (CF 2 CF 2 O) 3 CF 2 COO] 2, [CF 3 OCF (CF 3 ) CF 2 OCF 2 COO] 2 , [CF 3 O [CF (CF 3 ) CF 2 ] 2 OCF 2 COO] 2 , [CF 3 OCF (CF 3 ) CF 2 (OCF 2 ) 2 COO] 2 , [CF 3 O [CF (CF 3 ) CF 2 ] 2 (OCF 2 ) 2 COO] 2 , the following organic peroxide.

Figure 0004940598
Figure 0004940598

Figure 0004940598
Figure 0004940598

本発明の製造方法と同様の方法を用いて、以下の有機化合物を製造することができる。   The following organic compounds can be produced using a method similar to the production method of the present invention.

CHCH(CH)OOH、CHCH(CH)COOCH(CH)CH、CHCH(CH)C(O)OOH、CHCH(CH)C(O)OOCH(CH)CH、CHCH(CH)C(O)OOC(O)CH(CH)CHCH 3 CH (CH 3 ) OOH, CH 3 CH (CH 3 ) COOCH (CH 3 ) CH 3 , CH 3 CH (CH 3 ) C (O) OOH, CH 3 CH (CH 3 ) C (O) OOCH ( CH 3) CH 3, CH 3 CH (CH 3) C (O) OOC (O) CH (CH 3) CH 3.

本発明においては、有機ペルオキシドを製造する際に溶媒を用いることが好ましい。該溶媒としては、RC(=O)Xで表される化合物および有機ペルオキシドの溶解性に優れ、過酸化物との反応性がない溶媒が好ましい。溶媒は1種を用いてもよく、2種以上を用いてもよい。   In the present invention, it is preferable to use a solvent when producing the organic peroxide. As the solvent, a solvent excellent in solubility of the compound represented by RC (═O) X and the organic peroxide and having no reactivity with the peroxide is preferable. 1 type may be used for a solvent and 2 or more types may be used for it.

有機ペルオキシドが含フッ素化合物の場合の溶媒としては、フルオロカーボンが好ましく、CFCHCFH、CFCFCHCFH、CHClFCFCFCl、F(CFOCH、F(CFOC、H(CFOCH、H(CFOC、ペルフルオロ(ブチルテトラヒドロフラン)、ペルフルオロ(プロピルテトラヒドロピラン)等がより好ましい。 As the solvent in the case where the organic peroxide is a fluorine-containing compound, fluorocarbon is preferable, and CF 3 CH 2 CF 2 H, CF 3 CF 2 CH 2 CF 2 H, CHClFCF 2 CF 2 Cl, F (CF 2 ) 4 OCH 3 , More preferred are F (CF 2 ) 4 OC 2 H 5 , H (CF 2 ) 4 OCH 3 , H (CF 2 ) 4 OC 2 H 5 , perfluoro (butyltetrahydrofuran), perfluoro (propyltetrahydropyran) and the like.

また、有機ペルオキシドが含フッ素化合物以外の化合物の場合の溶媒としては、ハイドロカーボンまたはフルオロカーボンが好ましく、ヘキサン、シクロヘキサン、トルエン、ミネラルスピリッツ、CFCHCFH、CFCFCHCFH、CHClFCFCFCl、F(CFOCH、F(CFOC、H(CFOCH、H(CFOC、ペルフルオロ(ブチルテトラヒドロフラン)、ペルフルオロ(プロピルテトラヒドロピラン)等がより好ましい。 Further, as the solvent when the organic peroxide is a compound other than the fluorine-containing compound, hydrocarbon or fluorocarbon is preferable, and hexane, cyclohexane, toluene, mineral spirits, CF 3 CH 2 CF 2 H, CF 3 CF 2 CH 2 CF 2. H, CHClFCF 2 CF 2 Cl, F (CF 2 ) 4 OCH 3 , F (CF 2 ) 4 OC 2 H 5 , H (CF 2 ) 4 OCH 3 , H (CF 2 ) 4 OC 2 H 5 , perfluoro ( Butyltetrahydrofuran), perfluoro (propyltetrahydropyran) and the like are more preferable.

本発明における過酸化物としては、過酸化水素、過酸化ナトリウム、過酸化バリウムまたは過酸化カリウムが好ましく、過酸化水素がより好ましい。過酸化物は、1種を用いるのが好ましい。該過酸化物は、水溶液として用いることが好ましい。   As the peroxide in the present invention, hydrogen peroxide, sodium peroxide, barium peroxide or potassium peroxide is preferable, and hydrogen peroxide is more preferable. One peroxide is preferably used. The peroxide is preferably used as an aqueous solution.

本発明におけるアルカリ化合物としては、アルカリ金属水酸化物が好ましく、水酸化ナトリウム、水酸化カリウム、水酸化リチウムまたは水酸化セシウムがより好ましく、水酸化ナトリウム、水酸化カリウムが最も好ましい。該アルカリ化合物は、水溶液として用いるのが好ましい。   The alkali compound in the present invention is preferably an alkali metal hydroxide, more preferably sodium hydroxide, potassium hydroxide, lithium hydroxide or cesium hydroxide, and most preferably sodium hydroxide or potassium hydroxide. The alkali compound is preferably used as an aqueous solution.

過酸化物として過酸化水素を用いる場合の原料の供給量はモル比で、RC(=O)Xで表される化合物/過酸化水素/アルカリ化合物=1/0.3〜20/0.3〜10が好ましく、1/0.5〜10/0.5〜7がより好ましい。また過酸化水素以外の過酸化物を用いる場合の原料の供給量はモル比で、RC(=O)Xで表される化合物/過酸化物/アルカリ化合物=1/0.3〜20/0.3〜10が好ましく、1/0.5〜15/0.5〜7がより好ましい。該範囲であると、有機ペルオキシドの収率が高く、反応に要する時間が短い。   When hydrogen peroxide is used as the peroxide, the feed amount of the raw material is a molar ratio of a compound represented by RC (= O) X / hydrogen peroxide / alkali compound = 1 / 0.3 to 20 / 0.3. To 10 is preferable, and 1 / 0.5 to 10 / 0.5 to 7 is more preferable. In addition, when a peroxide other than hydrogen peroxide is used, the supply amount of the raw material is a molar ratio of a compound represented by RC (= O) X / peroxide / alkali compound = 1 / 0.3 to 20/0. 3 to 10 is preferable, and 1 / 0.5 to 15 / 0.5 to 7 is more preferable. Within this range, the yield of organic peroxide is high and the time required for the reaction is short.

過酸化物およびアルカリ化合物を水溶液として用いる場合の水溶液の濃度は、合計で1〜60質量%が好ましく、5〜30質量%がより好ましい。該範囲であると、有機ペルオキシドの収率が高い。本発明の製造方法における反応の温度は、−30〜50℃が好ましい。該温度であると、反応時間が短く、生成した有機ペルオキシドが分解しにくく、有機ペルオキシドの収率が高い。   When the peroxide and the alkali compound are used as the aqueous solution, the concentration of the aqueous solution is preferably 1 to 60% by mass in total, and more preferably 5 to 30% by mass. Within this range, the yield of organic peroxide is high. The reaction temperature in the production method of the present invention is preferably -30 to 50 ° C. If it is this temperature, reaction time is short, the produced | generated organic peroxide is hard to decompose | disassemble, and the yield of an organic peroxide is high.

本発明において、連続反応部内を流れる有機相、水相および反応混合物の流速は0.001〜100mL/秒が好ましく、0.01〜50mL/秒がより好ましい。該範囲であると、単位時間当たりの有機ペルオキシドの生成量が多く、原料および反応混合物の流れが安定であり、有機ペルオキシドの収率が高い。   In the present invention, the flow rate of the organic phase, the aqueous phase and the reaction mixture flowing in the continuous reaction part is preferably 0.001 to 100 mL / second, more preferably 0.01 to 50 mL / second. Within this range, the amount of organic peroxide produced per unit time is large, the flow of raw materials and reaction mixture is stable, and the yield of organic peroxide is high.

以下に、実施例(例1、2)、比較例(例3)、参考例(例4)を用いて本発明を詳細に説明するが、本発明はこれらに限定されない。   Hereinafter, the present invention will be described in detail using Examples (Examples 1 and 2), Comparative Examples (Example 3), and Reference Examples (Example 4), but the present invention is not limited thereto.

なお、有機ペルオキシドの分析方法は以下に示すヨードメトリー法を用いた。
内容積200mLの共栓付き三角フラスコに、イソプロピルアルコールの30mL、氷酢酸の2mL、飽和ヨウ化カリウム水溶液の2mLをこの順序で入れ、ついで有機ペルオキシドを含む試料の5gを秤量型ピペットを用いて正しくはかり入れる。密栓してフラスコを軽くゆり動かして内容物を混合し、暗所で10分間反応させた後、チオ硫酸ナトリウム(0.1モル/L)溶液を用いてヨウ素の色が消えるまで滴定する。滴定に要したチオ硫酸ナトリウムの体積(単位:mL)を用いて、質量百分率=(n×F×100×M)/(20000×S)の式により、試料に含まれる有機ペルオキシドの質量百分率(単位:質量%)を算出する。ただし、前記式における記号は以下の意味を示す。
n:滴定に要したチオ硫酸ナトリウム溶液(0.1モル/L)の体積[mL]
F:チオ硫酸ナトリウム溶液(0.1モル/L)のファクター
:有機ペルオキシドの分子量
:試料の質量[g]。
In addition, the iodometry method shown below was used for the analysis method of organic peroxide.
Into a 200 mL stoppered Erlenmeyer flask, add 30 mL of isopropyl alcohol, 2 mL of glacial acetic acid, and 2 mL of saturated potassium iodide aqueous solution in this order, and then correctly transfer 5 g of the sample containing organic peroxide using a weighing pipette. Scale in. Seal the flask and gently shake the flask to mix the contents, react for 10 minutes in the dark, and then titrate with the sodium thiosulfate (0.1 mol / L) solution until the iodine color disappears. Using the volume of sodium thiosulfate required for titration (unit: mL), the mass of organic peroxide contained in the sample by the formula: mass percentage = (n × F × 100 × M w ) / (20000 × S a ) The percentage (unit: mass%) is calculated. However, the symbols in the above formulas have the following meanings.
n: Volume of sodium thiosulfate solution (0.1 mol / L) required for titration [mL]
F: Factor of sodium thiosulfate solution (0.1 mol / L) M w : Molecular weight of organic peroxide S a : Mass of sample [g].

[例1]
図2に示す装置(反応器の連続反応部12の断面積は7.5mm、長さは2cm。)を使用した。
原料として、シリンジ6に水酸化カリウムの水溶液(2.5モル/L)の25g、シリンジ7に過酸化水素の水溶液(13.6質量%)の22.0g、シリンジ8にペルフルオロ(2,5−ジメチル−3,6−ジオキサノナノイルフルオリド)(以下、アシルフルオリドAと記す。)の3.3gおよびCHClFCFCFClの23.3g(以下、合わせてアシルフルオリド溶液Aと記す。)を充填した。
[Example 1]
The apparatus shown in FIG. 2 (the cross-sectional area of the continuous reaction part 12 of the reactor is 7.5 mm 2 and the length is 2 cm) is used.
As raw materials, 25 g of an aqueous potassium hydroxide solution (2.5 mol / L) was added to the syringe 6, 22.0 g of an aqueous hydrogen peroxide solution (13.6% by mass) to the syringe 7, and perfluoro (2,5) to the syringe 8 -Dimethyl-3,6-dioxanonanoyl fluoride (hereinafter referred to as acyl fluoride A) 3.3 g and CHClFCF 2 CF 2 Cl 23.3 g (hereinafter collectively referred to as acyl fluoride solution A) Filled in).

シリンジ6、7、8から製品回収タンク13までの装置全体を、ジャケット方式の冷媒を用いて5℃に冷却し、5℃に保持しながら、各原料を送液プランジャー9、10、11を用いて、水酸化カリウムの水溶液を0.78mL/分、過酸化水素の水溶液を0.20mL/分、アシルフルオリド溶液Aを1.0mL/分の流速で、連続反応部でのReが91.5となるように20分間かけて送液し、反応を行って反応混合物を得た。   The entire apparatus from the syringes 6, 7, 8 to the product recovery tank 13 is cooled to 5 ° C. using a jacket-type refrigerant, and the raw material plungers 9, 10, 11 are held while keeping the respective materials at 5 ° C. Using an aqueous potassium hydroxide solution of 0.78 mL / min, an aqueous hydrogen peroxide solution of 0.20 mL / min, and an acyl fluoride solution A of 1.0 mL / min at a flow rate of 91 in the continuous reaction section. The mixture was fed over 20 minutes so as to be 0.5, and reacted to obtain a reaction mixture.

2相分離用装置13に回収されたジアシルペルオキシドを含む反応混合物は2相分離しており、上相が水層、下相がジアシルペルオキシドを含む有機相であった。下相を製品回収タンク14に回収後、回収液と同量の冷水を用いて洗浄を2回行った。さらに硫酸マグネシウムを用いて脱水を行い、有機ペルオキシドを含む溶液の25.1gを得た。19F−NMRを用いて有機ペルオキシドのすべてがジ(ペルフルオロ−2,5−ジメチル−3,6−ジオキサノナノイル)ペルオキシドであることを確認した。ヨードメトリー法による分析結果の収量は2.97gであり、アシルフルオリド溶液Aを基準とした収率は90モル%であった。 The reaction mixture containing diacyl peroxide recovered in the two-phase separation apparatus 13 was separated into two phases, the upper phase being an aqueous layer and the lower phase being an organic phase containing diacyl peroxide. After the lower phase was recovered in the product recovery tank 14, washing was performed twice using the same amount of cold water as the recovered liquid. Furthermore, dehydration was performed using magnesium sulfate to obtain 25.1 g of a solution containing an organic peroxide. 19 F-NMR was used to confirm that all of the organic peroxide was di (perfluoro-2,5-dimethyl-3,6-dioxanonanoyl) peroxide. The yield of the analysis result by the iodometry method was 2.97 g, and the yield based on the acyl fluoride solution A was 90 mol%.

[例2]
例1と同じ装置を使用し、シリンジ6に水酸化カリウムの水溶液(5.5モル/L)の25g、シリンジ7に過酸化水素の水溶液(30質量%)の22.0g、シリンジ8にイソプロピルクロロホルメートの1.76gおよびCHClFCFCFClの23.3gを充填し、水酸化カリウムの水溶液を0.78mL/分、過酸化水素の水溶液を0.20mL/分、イソプロピルクロロホルメートを0.12mL/分の流速、Reを41.9とした以外は例1と同様にして反応混合物を得た。
[Example 2]
Using the same apparatus as in Example 1, 25 g of an aqueous potassium hydroxide solution (5.5 mol / L) was added to the syringe 6, 22.0 g of an aqueous hydrogen peroxide solution (30% by mass) was added to the syringe 7, and isopropyl was added to the syringe 8. 1.76 g of chloroformate and 23.3 g of CHClFCF 2 CF 2 Cl were charged, 0.78 mL / min of an aqueous solution of potassium hydroxide, 0.20 mL / min of an aqueous solution of hydrogen peroxide, and isopropyl chloroformate. A reaction mixture was obtained in the same manner as in Example 1 except that the flow rate was 0.12 mL / min and Re was 41.9.

2相分離用装置13に回収されたペルオキシジカーボネートを含む反応混合物は2相分離しており、上相が水相、下相がジアルキルペルオキシジカーボネートを含む有機相であった。下相を製品回収タンク14に回収後、例1と同様にして洗浄、脱水を行った。H−NMRを用いて有機ペルオキシドのすべてがジイソプロピルペルオキシジカーボネートであることを確認した。ヨードメトリー法による分析結果の収量は1.48gであり、イソプロピルクロロホルメートを基準とした収率は84モル%であった。 The reaction mixture containing peroxydicarbonate recovered in the two-phase separation apparatus 13 was separated into two phases, the upper phase being an aqueous phase and the lower phase being an organic phase containing dialkylperoxydicarbonate. The lower phase was recovered in the product recovery tank 14, and then washed and dehydrated in the same manner as in Example 1. 1 H-NMR was used to confirm that all of the organic peroxide was diisopropyl peroxydicarbonate. The yield of the analysis result by the iodometry method was 1.48 g, and the yield based on isopropyl chloroformate was 84 mol%.

[例3]
撹拌装置、温度計および滴下漏斗を備えた300mLの四つ口フラスコに、水酸化ナトリウムの2.4g(0.06モル)および水の117.6gを入れて溶解させた。次に、撹拌下にて、溶媒のCHClFCFCFClの120gを添加し、約−5℃に冷却した後、過酸化水素水の水溶液(30質量%)の6.6g(0.06モル)を添加した。
[Example 3]
In a 300 mL four-necked flask equipped with a stirrer, a thermometer, and a dropping funnel, 2.4 g (0.06 mol) of sodium hydroxide and 117.6 g of water were dissolved. Next, 120 g of the solvent CHClFCF 2 CF 2 Cl was added under stirring and cooled to about −5 ° C., and then 6.6 g (0.06 mol) of an aqueous solution of hydrogen peroxide (30% by mass). ) Was added.

次いでアシルフルオリド溶液Aの20g(0.04モル)とCHClFCFCFClのl20gとを、−5℃〜5℃の範囲に保ちながら20分間かけて滴下し、撹拌下にて30分間反応を行い反応液を得た。反応終了後、かなりの泡立ちが観察され、水相と有機相にきれいに2相分離しなかった。 Next, 20 g (0.04 mol) of acyl fluoride solution A and 120 g of CHClFCF 2 CF 2 Cl were added dropwise over 20 minutes while maintaining the temperature in the range of −5 ° C. to 5 ° C., and the reaction was performed for 30 minutes with stirring. To obtain a reaction solution. After completion of the reaction, considerable foaming was observed, and the two phases were not separated cleanly into the aqueous phase and the organic phase.

アシルペルオキシドを含む有機相を分離した後、200mLの水を用いて該有機相を2回洗浄し、有機ペルオキシドを含む溶液の115.4gを得た。19F−NMRを用いて有機ペルオキシドのすべてがジ(ペルフルオロ−2,5−ジメチル−3,6−ジオキサノナノイル)ペルオキシドであることを確認した。ヨードメトリー法による分析結果の収量は10.0gであり、アシルフルオリドAを基準とした収率は50モル%であった。 After separating the organic phase containing the acyl peroxide, the organic phase was washed twice with 200 mL of water to obtain 115.4 g of a solution containing the organic peroxide. 19 F-NMR was used to confirm that all of the organic peroxide was di (perfluoro-2,5-dimethyl-3,6-dioxanonanoyl) peroxide. The yield of the analysis result by the iodometry method was 10.0 g, and the yield based on acyl fluoride A was 50 mol%.

[例4]BuC(O)OOBu(TBPP)合成
<反応式>BuC(O)Cl(化合物名:ピバロイルクロリド)+BuOOH(略称:TBHP)+KOH→BuC(O)OOBu(略称:TBPP)
装置は、流路幅500μm、反応流路長450mmのマイクロリアクターを使用した。シリンジ6に蒸留水の4mLに水酸化カリウムの24mmol(1.88g)を溶解したもの、シリンジ7にC13Hの2.6mLにピバロイルクロリドの20mmol(2.42g)を溶解したもの、シリンジ8に70%のTBHP水溶液の6.18g(TBHPの48mmolに相当)を充填した。シリンジポンプから製品回収タンクまでは例1の装置と同様にしてジャケット方式の冷媒を用いて0℃に冷却し、0℃に保持しながら、各原料を送液プランジャーを用いて、水酸化カリウムの水溶液を1mL/分、ピバロイルクロリド溶液を1mL/分、TBHP水溶液を1.33mL/分の流速で、連続反応部でのReが125となるように5分間かけて送液し、反応を行って粗反応混合物を得た。
[Example 4] t BuC (O) OO t Bu (TBPP) Synthesis <Reaction formula> t BuC (O) Cl (Compound name: pivaloyl chloride) + t BuOOH (abbreviated: TBHP) + KOH → t BuC (O) OO t Bu (abbreviation: TBPP)
The apparatus used was a microreactor having a channel width of 500 μm and a reaction channel length of 450 mm. In syringe 6, 24 mmol (1.88 g) of potassium hydroxide was dissolved in 4 mL of distilled water, and in syringe 7, 20 mmol (2.42 g) of pivaloyl chloride was dissolved in 2.6 mL of C 6 F 13 H. The syringe 8 was filled with 6.18 g of 70% TBHP aqueous solution (equivalent to 48 mmol of TBHP). From the syringe pump to the product recovery tank, it is cooled to 0 ° C. using a jacket-type refrigerant in the same manner as in the apparatus of Example 1, and while maintaining the temperature at 0 ° C., each raw material is supplied with potassium hydroxide using a liquid feeding plunger 1 mL / min, pivaloyl chloride solution at 1 mL / min, TBHP aqueous solution at a flow rate of 1.33 mL / min, and sent for 5 minutes so that the Re in the continuous reaction part is 125. To obtain a crude reaction mixture.

得られた粗反応生成物を、分液ロートを用いて分離し、有機相を炭酸水素ナトリウム水溶液および食塩水を用いて洗浄し、ついで硫酸マグネシウムを用いて脱水し、TBPPを含む生成物の10.9gを得た。H−NMR、IRを用いて生成物のすべてがTBPPであることを確認した。ヨードメトリー法による分析結果の収量は2.99gであり、ピバロイルクロリドを基準とした収率は86モル%であった。 The resulting crude reaction product is separated using a separatory funnel, and the organic phase is washed with aqueous sodium bicarbonate and brine, then dehydrated with magnesium sulfate, and 10% of the product containing TBPP. .9 g was obtained. All of the products were confirmed to be TBPP using 1 H-NMR and IR. The yield of the analysis result by the iodometry method was 2.99 g, and the yield based on pivaloyl chloride was 86 mol%.

本発明の製造方法によれば、有機ペルオキシドを収率よく、安全に、大量生産できる。   According to the production method of the present invention, an organic peroxide can be mass-produced with good yield and safely.

本発明の有機ペルオキシドの製造方法の管型反応器の一例を示す図The figure which shows an example of the tubular reactor of the manufacturing method of the organic peroxide of this invention 本発明の有機ペルオキシドの製造工程の一例を示す図The figure which shows an example of the manufacturing process of the organic peroxide of this invention

符号の説明Explanation of symbols

1:供給口(1)
2:供給口(2)
3:連続流路
4:連続反応部
5:排出口
6:アルカリ化合物供給用シリンジ
7:過酸化物供給用シリンジ
8:RC(=O)X供給用シリンジ
9:送液プランジャー
10:送液プランジャー
11:送液プランジャー
12:連続反応部
13:2相分離用装置
14:製品回収タンク
1: Supply port (1)
2: Supply port (2)
3: Continuous flow path 4: Continuous reaction part 5: Discharge port 6: Syringe for supplying alkali compound 7: Syringe for supplying peroxide 8: Syringe for supplying RC (= O) X 9: Liquid feeding plunger 10: Liquid feeding Plunger 11: Liquid feeding plunger 12: Continuous reaction unit 13: Two-phase separation device 14: Product recovery tank

Claims (6)

RC(=O)X(ここで、RはR’またはR’Oを表し、R’はアルキル基(ただし、アルキル基R’にはフッ素原子が含まれていてもよく、エーテル性の酸素原子が含まれていてもよい。)であり、Xはハロゲン原子である。)で表される化合物と過酸化物とをアルカリ化合物の存在下に反応させてRC(=O)OOC(=O)Rで表される有機ペルオキシドを製造する方法であって、RC(=O)Xを含む有機相と過酸化物およびアルカリ化合物を含む水相とを管型反応器内に導入し、管型反応器内での有機相および水相のレイノルズ数を1000以下の層流状態に保持してRC(=O)Xと過酸化物との反応を行い、生成する有機ペルオキシドを含む反応混合物を管型反応器から連続的に取り出すことを特徴とする有機ペルオキシドの製造方法。 RC (═O) X (where R represents R ′ or R′O, R ′ represents an alkyl group (provided that the alkyl group R ′ may contain a fluorine atom, and an etheric oxygen atom) And X is a halogen atom, and a compound represented by (2) is reacted with a peroxide in the presence of an alkali compound to produce RC (= O) OOC (= O). A method for producing an organic peroxide represented by R, wherein an organic phase containing RC (= O) X and an aqueous phase containing a peroxide and an alkali compound are introduced into a tubular reactor, and a tubular reaction is conducted. The reaction mixture containing the organic peroxide produced by the reaction of RC (= O) X and peroxide is carried out while maintaining the Reynolds number of the organic phase and aqueous phase in the vessel in a laminar flow state of 1000 or less. Process for producing organic peroxides characterized by continuous removal from the reactor Law. 前記化合物がアシルハライドであり前記有機ペルオキシドがジアシルペルオキシドである請求項1に記載の有機ペルオキシドの製造方法。   The method for producing an organic peroxide according to claim 1, wherein the compound is an acyl halide and the organic peroxide is a diacyl peroxide. 前記化合物がアルキルハロゲン化ホルメートであり、前記有機ペルオキシドがジアルキルペルオキシジカーボネートである請求項1に記載の有機ペルオキシドの製造方法。   The method for producing an organic peroxide according to claim 1, wherein the compound is an alkyl halogenated formate, and the organic peroxide is a dialkyl peroxydicarbonate. 管型反応器内での有機相と水相との単位体積当たりの接触界面積が0.1mm/mm以上である請求項1、2または3に記載の有機ペルオキシドの製造方法。 4. The method for producing an organic peroxide according to claim 1, wherein a contact interface area per unit volume between the organic phase and the aqueous phase in the tubular reactor is 0.1 mm 2 / mm 3 or more. 前記過酸化物が、過酸化水素、過酸化ナトリウム、過酸化バリウムまたは過酸化カリウムである請求項1、2、3または4に記載の製造方法。   The manufacturing method according to claim 1, 2, 3 or 4, wherein the peroxide is hydrogen peroxide, sodium peroxide, barium peroxide or potassium peroxide. 前記アルカリ化合物が、水酸化ナトリウム、水酸化カリウム、水酸化リチウムまたは水酸化セシウムである請求項1、2、3、4または5に記載の製造方法。
The method according to claim 1, 2, 3, 4 or 5, wherein the alkali compound is sodium hydroxide, potassium hydroxide, lithium hydroxide or cesium hydroxide.
JP2005244334A 2004-08-27 2005-08-25 Method for producing organic peroxide Active JP4940598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005244334A JP4940598B2 (en) 2004-08-27 2005-08-25 Method for producing organic peroxide

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004248390 2004-08-27
JP2004248390 2004-08-27
JP2005244334A JP4940598B2 (en) 2004-08-27 2005-08-25 Method for producing organic peroxide

Publications (2)

Publication Number Publication Date
JP2006089472A JP2006089472A (en) 2006-04-06
JP4940598B2 true JP4940598B2 (en) 2012-05-30

Family

ID=36230782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005244334A Active JP4940598B2 (en) 2004-08-27 2005-08-25 Method for producing organic peroxide

Country Status (1)

Country Link
JP (1) JP4940598B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9550731B2 (en) 2014-05-22 2017-01-24 Honeywell Federal Manufacturing & Technologies, Llc Method for phase transfer synthesis of organic peroxides

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4835050B2 (en) * 2005-06-29 2011-12-14 旭硝子株式会社 Method for producing fluorinated solvent solution of organic peroxide
EP2418199B1 (en) * 2009-04-08 2018-06-06 Asahi Glass Company, Limited Method of manufacturing a perfluoro organic peroxide
JP2011178678A (en) * 2010-02-26 2011-09-15 Dic Corp Method for producing alkyl-substituted benzenediol
CN104496874A (en) * 2014-11-26 2015-04-08 淄博正华助剂股份有限公司 Method for continuous flow preparation of cumyl peroxyneodecanoate (CNP)
JP2017105944A (en) * 2015-12-10 2017-06-15 ダイキン工業株式会社 Manufacturing method of peroxidized perfluoropolyoxyalkylene compound
CN109553560A (en) * 2017-08-12 2019-04-02 上海惠和化德生物科技有限公司 A kind of online Total continuity stream production technology directly preparing organic peroxide by alcohol or alkane
CN109535054A (en) * 2018-12-04 2019-03-29 浙江巨圣氟化学有限公司 A kind of continuous preparation method of perfluoroacyl peroxides
CN113260639A (en) * 2018-12-20 2021-08-13 索尔维特殊聚合物意大利有限公司 Process for preparing perhaloacyl peroxides
CN111333559A (en) * 2020-03-18 2020-06-26 中国天辰工程有限公司 Method for rapidly preparing peroxyacetic acid by continuous flow
CN111233728A (en) * 2020-03-18 2020-06-05 中国天辰工程有限公司 Method for rapidly preparing high-concentration peroxyacetic acid

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS559067A (en) * 1978-06-30 1980-01-22 Ppg Industries Inc Manufacture of peroxydicarbonates
JPH0597797A (en) * 1991-10-14 1993-04-20 Nippon Oil & Fats Co Ltd Method for producing difluoroalkanoyl peroxide
JPH06172303A (en) * 1992-12-09 1994-06-21 Nippon Oil & Fats Co Ltd Production of fluoroalkanoyl peroxide
JPH10175950A (en) * 1996-12-19 1998-06-30 Asahi Glass Co Ltd Production of functional group-containing and fluorine-containing peroxide
JP2004099491A (en) * 2002-09-06 2004-04-02 Nof Corp Method for producing dialkyl peroxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9550731B2 (en) 2014-05-22 2017-01-24 Honeywell Federal Manufacturing & Technologies, Llc Method for phase transfer synthesis of organic peroxides

Also Published As

Publication number Publication date
JP2006089472A (en) 2006-04-06

Similar Documents

Publication Publication Date Title
JP4940598B2 (en) Method for producing organic peroxide
US8759567B2 (en) Process for producing perfluoro organic peroxide
JPH04502319A (en) Direct fluorination method to produce perfluorinated organic materials
JP5360208B2 (en) Method for producing high purity fluorine-containing ether
WO2019110710A1 (en) Process for preparing fluorohalogenoethers
KR101431926B1 (en) Method for producing perfluorosulfonic acid having ether structure and derivative thereof, and surfactant containing fluorine-containing ether sulfonic acid compound and derivative thereof
EP0531344B1 (en) Process for the preparation of perfluoroalkylethyl alcohols
Francesco et al. Recent developments in the chemistry of organic perfluoro hypofluorites
KR101127162B1 (en) Preparing method and apparatus of preparing hydrofluoroether in a semi-continuous process
WO2004002932A1 (en) Fluorine-containing alcohols and process for production thereof
US7408019B2 (en) Fluorinated ether compound
JP2008044863A (en) Perfluoro-organic peroxide, its manufacturing method and manufacturing method of polymer
CN101080362B (en) Method for producing carbonyl fluoride
US9550731B2 (en) Method for phase transfer synthesis of organic peroxides
JP5558067B2 (en) Method for producing perfluorosulfonic acid having an ether structure and derivatives thereof, and surfactant containing fluorine-containing ether sulfonic acid compound and derivatives thereof
KR20220034026A (en) Method for preparing perfluoroacyl peroxide and method for preparing fluoroalkyl iodide
JP2005120037A (en) Method for producing alkylbenzaldehydes
JP4019592B2 (en) Method for producing ethylene carbonate
JP4864226B2 (en) Method for producing fluorine-containing compound
WO2002020444A1 (en) Process for producing fluoroalkanol
RU2157805C2 (en) Method of preparing perfluorinated epoxides
JP4835050B2 (en) Method for producing fluorinated solvent solution of organic peroxide
WO2004050649A1 (en) Perfluoro five-membered ring compound
WO2009000748A1 (en) Preparation of compounds with a perfluoroalkylsulfonyl group

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080618

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

R151 Written notification of patent or utility model registration

Ref document number: 4940598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250