JP4940166B2 - High frequency temperature attenuator - Google Patents

High frequency temperature attenuator Download PDF

Info

Publication number
JP4940166B2
JP4940166B2 JP2008038331A JP2008038331A JP4940166B2 JP 4940166 B2 JP4940166 B2 JP 4940166B2 JP 2008038331 A JP2008038331 A JP 2008038331A JP 2008038331 A JP2008038331 A JP 2008038331A JP 4940166 B2 JP4940166 B2 JP 4940166B2
Authority
JP
Japan
Prior art keywords
attenuator
frequency
distributed constant
resistor
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008038331A
Other languages
Japanese (ja)
Other versions
JP2009200671A (en
Inventor
泰弘 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2008038331A priority Critical patent/JP4940166B2/en
Publication of JP2009200671A publication Critical patent/JP2009200671A/en
Application granted granted Critical
Publication of JP4940166B2 publication Critical patent/JP4940166B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Non-Reversible Transmitting Devices (AREA)
  • Attenuators (AREA)

Description

本発明は高周波温度可変減衰器、特に高周波帯で使用され、周囲温度に応じて減衰量を変えることができる高周波温度可変減衰器の構成に関する。   The present invention relates to a high-frequency temperature variable attenuator, and more particularly to a configuration of a high-frequency temperature variable attenuator that is used in a high-frequency band and can change an attenuation amount according to an ambient temperature.

図8及び図9に、従来の高周波温度可変減衰器の2つの構成例が示されており、まず図8の減衰器では、入力端子20と出力端子21との間に配置されたマイクロストリップライン等の主線路22の途中に、2つの3dB−ブランチラインカプラ23が配置され、この2つの3dB−ブランチラインカプラ23の間に、抵抗値を変化させるためのPINダイオードD,Dが接続される。また、主線路22とブランチラインカプラ23との間に、コイル25を介して制御回路26が接続されると共に、電源27、サーミスタ等を用いた熱検知センサ28が設けられる。 8 and 9 show two configuration examples of a conventional high-frequency temperature variable attenuator. First, in the attenuator shown in FIG. 8, a microstrip line arranged between the input terminal 20 and the output terminal 21 is shown. Two 3 dB-branch line couplers 23 are arranged in the middle of the main line 22, and PIN diodes D 1 and D 2 for changing the resistance value are connected between the two 3 dB-branch line couplers 23. Is done. A control circuit 26 is connected between the main line 22 and the branch line coupler 23 via a coil 25, and a heat detection sensor 28 using a power source 27, a thermistor, and the like is provided.

このような構成の減衰器は、主に使用周波数帯域がSバンド帯以上の高周波帯で用いられており、熱検知センサ28は周囲温度を電圧に変換し、その電圧が制御回路26にて所望の電圧に変換され、減衰器内に設けられたPINダイオードD,Dに印加される。これによって、入出力端子間の減衰量は増減し、温度可変減衰器として動作する。なお、PINダイオードD,Dに反射された信号は、3dB−ブランチラインカプラ23にて吸収されることになり、この結果、反射損失は高く、入出力端のV.S.W.Rは低い状態に維持される。 The attenuator having such a configuration is mainly used in a high-frequency band whose use frequency band is S band band or higher. The heat detection sensor 28 converts the ambient temperature into a voltage, and the voltage is desired by the control circuit 26. And is applied to PIN diodes D 1 and D 2 provided in the attenuator. As a result, the amount of attenuation between the input and output terminals increases and decreases, and operates as a temperature variable attenuator. The signals reflected by the PIN diodes D 1 and D 2 are absorbed by the 3 dB-branch line coupler 23. As a result, the reflection loss is high and the VSWR at the input / output terminals is kept low. The

また、図9の減衰器は、入力端子20と出力端子21との間に配置されたマイクロストリップライン等の主線路22の途中に、図10のπ型減衰器の基本回路と等価になる回路を設けたもので、入出力端子間の抵抗R1 を構成するPINダイオードD,D、左側の抵抗R2 を構成するPINダイオードD、右側の抵抗R2 を構成するPINダイオードDを設けて構成される。また、上記ダイオードD,Dのアノード側とグランドとの間に、抵抗を介して固定電圧を与える電圧回路29が配置されると共に、上記ダイオードDとDの間に、抵抗を介して制御回路26が接続され、かつ電源27、熱検知センサ28が設けられる。 9 is a circuit equivalent to the basic circuit of the π-type attenuator in FIG. 10 in the middle of the main line 22 such as a microstrip line arranged between the input terminal 20 and the output terminal 21. PIN diodes D 3 and D 4 constituting the resistor R1 between the input and output terminals, a PIN diode D 5 constituting the left resistor R2, and a PIN diode D 6 constituting the right resistor R2 are provided. Composed. A voltage circuit 29 for providing a fixed voltage via a resistor is disposed between the anode side of the diodes D 5 and D 6 and the ground, and a resistor is provided between the diodes D 3 and D 4. The control circuit 26 is connected, and a power source 27 and a heat detection sensor 28 are provided.

このような構成の減衰器は、主に使用周波数帯がLバンド帯以下の比較的低い周波数帯で用いられ、熱検知センサ28は周囲温度を電圧に変換し、その電圧が制御回路26にて所望の電圧に変換され、PINダイオードD〜Dに印加される。これによって、PINダイオードD〜Dを含む諸抵抗がπ型減衰器と等価となって入出力端子間の減衰量が増減し、温度可変減衰器として動作する。この回路においても、反射損失は高く、入出力端のV.S.W.Rは低い状態に維持される。π型ダイオード可変減衰器は、例えば特許文献1に示されている。
特開平07−336177号公報
The attenuator having such a configuration is mainly used in a relatively low frequency band whose use frequency band is equal to or lower than the L band band, and the heat detection sensor 28 converts the ambient temperature into a voltage, and the voltage is controlled by the control circuit 26. is converted into a desired voltage is applied to the PIN diode D 3 to D 6. As a result, the resistors including the PIN diodes D 3 to D 6 are equivalent to the π-type attenuator, the amount of attenuation between the input and output terminals is increased and decreased, and the device operates as a variable temperature attenuator. Also in this circuit, the reflection loss is high, and the VSWR at the input / output terminal is kept low. A π-type diode variable attenuator is disclosed in Patent Document 1, for example.
Japanese Patent Laid-Open No. 07-336177

しかしながら、図8及び図9に示される従来の温度可変減衰器は、周囲温度を検知する熱検知センサ28に加え、この熱検知センサ28から出力された電圧に基づいてPINダイオードD〜Dを駆動するための制御回路26が必要であり、回路規模が大きくなるという問題がある。また、抵抗分を可変にするためのPINダイオードD〜Dを含め、半導体素子を使用しているため、減衰器自体が非常に高価になるという問題があった。 However, the conventional temperature variable attenuator shown in FIG. 8 and FIG. 9 has PIN diodes D 1 to D 6 based on the voltage output from the heat detection sensor 28 in addition to the heat detection sensor 28 that detects the ambient temperature. The control circuit 26 is required to drive the circuit, and there is a problem that the circuit scale becomes large. In addition, since semiconductor elements including PIN diodes D 1 to D 6 for making the resistance component variable are used, there is a problem that the attenuator itself becomes very expensive.

本発明は上記問題点に鑑みてなされたものであり、その目的は、回路規模が大きくならず、また半導体素子を使用せずに受動素子のみにて構成し、低コスト化を図ることができる高周波温度可変減衰器を提供することにある。   The present invention has been made in view of the above-described problems, and the object thereof is not to increase the circuit scale, and it is possible to reduce the cost by using only passive elements without using semiconductor elements. It is to provide a high-frequency temperature variable attenuator.

上記目的を達成するために、本発明に係る高周波温度可変減衰器は、入出力端子間に配置した分布定数主線路(マイクロストリップライン、コプレーナウェーブガイド等)及び接地導体が誘電体基板上に形成される減衰器であって、上記分布定数主線路における使用周波数の略1/4波長の奇数倍の間隔を以って、該分布定数主線路と接地導体又は接地とみなし得る点との間に、ポジティブサーミスタと抵抗が並列接続された抵抗体を少なくとも3個、並列に接続したことを特徴とする。
請求項2に係る発明は、上記接地導体に一方端が接続された使用周波数の略1/4波長の偶数倍の長さを有する先端短絡分布定数線路の他方端を、上記接地とみなし得る点として配置し、この先端短絡分布定数線路の他方端と上記分布定数主線路との間に、上記抵抗体を接続したことを特徴とする。
請求項3に係る発明は、使用周波数の略1/4波長の奇数倍の長さを有する先端開放分布定数線路の一方端を、上記接地とみなし得る点として配置し、この先端開放分布定数線路の一方端と上記分布定数主線路との間に、上記抵抗体を接続したことを特徴とする。
請求項4に係る発明は、入出力端子間に配置した主線路及び接地導体が高周波基板上に形成され、コイル及びコンデンサからなり使用周波数の略1/4波長の透過位相を有する回路網が配置される減衰器であって、上記使用周波数の略1/4波長の透過位相を有する回路網を挟むように、上記主線路と接地導体との間に、ポジティブサーミスタと抵抗が並列接続された抵抗体を少なくとも3個、並列に接続したことを特徴とする。
In order to achieve the above object, a high-frequency temperature variable attenuator according to the present invention has a distributed constant main line (microstrip line, coplanar waveguide, etc.) and a ground conductor arranged between input and output terminals formed on a dielectric substrate. Between the distributed constant main line and a point that can be regarded as a ground conductor or ground, with an interval that is an odd multiple of approximately 1/4 wavelength of the frequency used in the distributed constant main line. The positive thermistor and at least three resistors in which resistors are connected in parallel are connected in parallel.
The invention according to claim 2 is that the other end of the short-circuited short-circuit distributed constant line having a length that is an even multiple of approximately ¼ wavelength of the operating frequency connected at one end to the ground conductor can be regarded as the ground. And the resistor is connected between the other end of this short-circuited distributed constant line and the distributed constant main line.
The invention according to claim 3 is arranged such that one end of an open-ended distributed constant line having a length that is an odd multiple of approximately ¼ wavelength of the operating frequency is disposed as a point that can be regarded as the ground, and the open-ended distributed constant line The resistor is connected between one end of the first and the distributed constant main line.
According to a fourth aspect of the present invention, there is provided a circuit network in which a main line and a ground conductor arranged between input and output terminals are formed on a high-frequency substrate, and a circuit network comprising a coil and a capacitor and having a transmission phase of approximately ¼ wavelength of the operating frequency. A resistor in which a positive thermistor and a resistor are connected in parallel between the main line and the ground conductor so as to sandwich a circuit network having a transmission phase of approximately ¼ wavelength of the operating frequency. It is characterized by connecting at least three bodies in parallel.

本発明の減衰器によれば、抵抗体として、ポジティプサーミスタと抵抗を並列に接続したものが用いられ、この可変抵抗体が3個並列に接続された並列型減衰器であって、温度の変化に応じて減衰量が変化する減衰器が構成される。即ち、上記抵抗体の抵抗値は、温度が上がると上昇し、この結果、減衰量が小さくなり、逆に温度が下がると抵抗値は低下し、減衰量が大きくなる特性が得られる。また、本願発明の並列型減衰器は、主線路に対し少なくとも3個の可変抵抗体を並列接続することにより、入力端子側から見たインピーダンスの整合と出力端子側から見たインピーダンスの整合を良好にとることができる。 According to the attenuator of the present invention, a resistor in which a positive thermistor and a resistor are connected in parallel is used, and this variable attenuator is a parallel attenuator in which three variable resistors are connected in parallel. An attenuator whose attenuation is changed according to the above is configured. That is, the resistance value of the resistor increases as the temperature rises. As a result, the attenuation amount decreases, and conversely, when the temperature decreases, the resistance value decreases and the attenuation amount increases. Moreover, the parallel type attenuator of the present invention has a good impedance matching seen from the input terminal side and an impedance matching seen from the output terminal side by connecting in parallel at least three variable resistors to the main line. Can be taken.

更に、請求項3の場合は、接地(GND)から抵抗体までの物理長が無視できない場合に、先端開放分布定数回路の長さを微調整することで、減衰特性を改善できるという利点がある。   Further, in the case of claim 3, when the physical length from the ground (GND) to the resistor cannot be ignored, there is an advantage that the attenuation characteristic can be improved by finely adjusting the length of the open-ended distributed constant circuit. .

本発明の高周波温度可変減衰器によれば、抵抗値を変えるための制御回路が不要となるので、回路規模が大きくならず、またPINダイオード等の半導体素子を使用せずに受動素子のみにて構成するので、低コスト化を図ることが可能になるという効果がある。   According to the high-frequency temperature variable attenuator of the present invention, since a control circuit for changing the resistance value is not required, the circuit scale is not increased, and only a passive element is used without using a semiconductor element such as a PIN diode. Since it comprises, there exists an effect that it becomes possible to achieve cost reduction.

図1には、本発明の第1実施例に係る高周波温度可変減衰器の構成が示されている。この第1実施例では、図1に示されるように、入力端子1と出力端子2 との間に形成されたマイクロストリップライン等の主線路(分布定数主線路)3と接地導体4との間に、サーミスタ(ポジティブサーミスタ)6と抵抗7からなる3個の抵抗体(可変抵抗体)8が並列に懸架されており、これら3つの抵抗体8は、主線路3の略1/4λ(λ:使用周波数の波長)の奇数倍の長さ(主線路3a)毎に配置される。   FIG. 1 shows the configuration of a high-frequency temperature variable attenuator according to the first embodiment of the present invention. In the first embodiment, as shown in FIG. 1, between a main line (distributed constant main line) 3 such as a microstrip line formed between an input terminal 1 and an output terminal 2 and a ground conductor 4. In addition, three resistors (variable resistors) 8 including a thermistor (positive thermistor) 6 and a resistor 7 are suspended in parallel. These three resistors 8 are approximately 1 / 4λ (λ : Wavelength of the used frequency) is arranged for each odd length (main line 3a).

図5には、上記第1実施例で構成される並列型減衰器の基本回路が示されており、上記使用周波数の略1/4波長の奇数倍の長さの主線路(マイクロストリップライン)3aは、1/4波長の透過位相を有する移相器10であり、並列型減衰器は、この移相器10を挟む形で、主線路3とグランド(接地)との間に、3つの可変抵抗体8が接続されたものとなる。そして、この並列型減衰器が入出力端の特性インピーダンスと整合が維持された状態(即ち反射損失は高く、入出力端のV.S.W.Rが低い状態)で動作するとき、上記3つの抵抗体8内の中心の抵抗体8の可変抵抗値をRa、両側の抵抗体8の可変抵抗値をRbとすると、これら抵抗値Ra,Rbと減衰量L(dB)との関係は、次式のようになる。   FIG. 5 shows a basic circuit of the parallel attenuator configured in the first embodiment, and a main line (microstrip line) having a length that is an odd multiple of approximately ¼ wavelength of the used frequency. 3a is a phase shifter 10 having a transmission phase of ¼ wavelength, and the parallel type attenuator has three phase shifters 10 sandwiched between the main line 3 and the ground (ground). The variable resistor 8 is connected. When this parallel type attenuator operates in a state in which matching with the characteristic impedance of the input / output terminals is maintained (that is, the reflection loss is high and the VSWR of the input / output terminals is low), When the variable resistance value of the central resistor 8 is Ra and the variable resistance value of the resistor 8 on both sides is Rb, the relationship between the resistance values Ra and Rb and the attenuation L (dB) is as follows: .

Figure 0004940166
Figure 0004940166
ここで、Zは特性インピーダンスである。
Figure 0004940166
Figure 0004940166
Here, Z 0 is a characteristic impedance.

上記数式1及び2の関係から、図6に示されるように、並列型減衰器は抵抗体8の抵抗値Ra及びRbが共に増加することにより減衰量は小さくなり、逆に抵抗値Ra及びRbが共に低下することにより減衰量は大きくなる減衰器として動作することが理解できる。また、実施例の並列型減衰器は、3個の可変抵抗体8を並列接続することにより、入力端子側から見たインピーダンスの整合と出力端子側から見たインピーダンスの整合を良好にとることができる。   From the relationship of the above formulas 1 and 2, as shown in FIG. 6, the parallel type attenuator decreases the attenuation amount by increasing both the resistance values Ra and Rb of the resistor 8, and conversely the resistance values Ra and Rb. It can be understood that the attenuation is increased by decreasing both of the values, and operates as an attenuator. Further, the parallel type attenuator of the embodiment can satisfactorily match the impedance seen from the input terminal side and the impedance seen from the output terminal side by connecting the three variable resistors 8 in parallel. it can.

このような第1実施例によれば、上記サーミスタ6を有する抵抗体8の抵抗値(Ra,Rb)は、周囲温度が増加すると上昇し、この結果、減衰量が小さくなり、逆に周囲温度が減少すると低下し、この結果、減衰量が大きくなる。また、第1実施例は、並列型減衰器を構成しており、入出力端子1,2の反射損失が高く、V.S.W.Rが低く維持された状態で、温度変動により減衰量が変化する温度可変減衰器として動作する。   According to the first embodiment, the resistance value (Ra, Rb) of the resistor 8 having the thermistor 6 increases as the ambient temperature increases. As a result, the attenuation decreases, and conversely the ambient temperature. Decreases as the value decreases, and as a result, the amount of attenuation increases. In the first embodiment, a parallel type attenuator is configured, and the variable amount of attenuation in which the attenuation changes due to temperature fluctuation in a state where the reflection loss of the input / output terminals 1 and 2 is high and the VSWR is kept low. Operates as a vessel.

図7には、第1実施例の減衰器の特性の一例が示されており、周囲温度の変動に応じて減衰量が変化すると共に、反射損失は高く、V.S.W.Rの低い状態が維持されており、良好な温度可変減衰が得られる結果となっている。   FIG. 7 shows an example of the characteristics of the attenuator of the first embodiment. The attenuation changes according to the fluctuation of the ambient temperature, the reflection loss is high, and the low VSWR is maintained. As a result, good variable temperature attenuation can be obtained.

図2には、第2実施例の高周波温度可変減衰器の構成が示されている。この第2実施例の基本的な構成は、第1実施例と同様であり、主線路3に対し、使用周波数の略1/4波長の奇数倍の間隔(3a)で、3個の抵抗体(サーミスタ6及び抵抗7)8が並列に配置されており、これら3個の抵抗体8と接地導体4との間に、略1/4λ(λ:使用周波数の波長)の偶数倍の先端短絡分布定数線路12が挿入される。なお、この先端短絡分布定数線路12と抵抗体8との接続点Qが接地とみなし得る点となる。   FIG. 2 shows the configuration of the high-frequency temperature variable attenuator of the second embodiment. The basic configuration of the second embodiment is the same as that of the first embodiment, and three resistors are provided with respect to the main line 3 at an interval (3a) that is an odd multiple of approximately ¼ wavelength of the operating frequency. (Thermistor 6 and resistor 7) 8 are arranged in parallel, and a short-circuit between the three resistors 8 and the ground conductor 4 is an even multiple of about 1 / 4λ (λ: wavelength of the used frequency). A distributed constant line 12 is inserted. Note that the connection point Q between the tip short-circuited distributed constant line 12 and the resistor 8 is a point that can be regarded as ground.

このような第2実施例の減衰器も、図5の並列型減衰器となり、使用可能な周波数帯域が狭くなる方向ではあるが、第1実施例と同様の作用により、温度可変減衰器として良好に機能する。   The attenuator of the second embodiment is also a parallel attenuator shown in FIG. 5, and although the usable frequency band is narrowed, it is good as a temperature variable attenuator by the same action as the first embodiment. To work.

図3には、第3実施例の高周波温度可変減衰器の構成が示されている。この第3実施例の基本的な構成も、第1実施例と同様であり、主線路3に対し、使用周波数の略1/4波長の奇数倍の間隔(3a)で、3つの抵抗体(サーミスタ6及び抵抗7)8が並列に懸架されており、これら3つの抵抗体8に、略1/4λの奇数倍となる長さの先端開放の分布定数線路14が接続される。なお、この先端開放分布定数線路14と抵抗体8との接続点Qが接地とみなし得る点となる。   FIG. 3 shows the configuration of the high-frequency temperature variable attenuator of the third embodiment. The basic configuration of the third embodiment is the same as that of the first embodiment, and three resistors (3a) are spaced from the main line 3 at an interval (3a) that is an odd multiple of approximately ¼ wavelength of the operating frequency. A thermistor 6 and a resistor 7) 8 are suspended in parallel, and to these three resistors 8 are connected distributed constant lines 14 with open ends having a length that is an odd multiple of about 1 / 4λ. The connection point Q between the open-ended distributed constant line 14 and the resistor 8 is a point that can be regarded as ground.

このような第3実施例の減衰器によれば、図5の並列型減衰器となり、使用可能な周波数帯域が狭くなる方向ではあるが、第1実施例と同様の作用により、温度可変減衰器として機能する。また、使用周波数帯域の上昇に伴い、接地導体(GND)から抵抗体8のサーミスタ6及び抵抗7までの物理長が無視できない場合に、この先端開放の分布定数線路12によって、物理長を調整し、良好な減衰特性が維持できるという利点がある。   According to the attenuator of the third embodiment, the parallel attenuator shown in FIG. 5 is obtained, and although the usable frequency band is narrowed, the temperature variable attenuator is obtained by the same operation as that of the first embodiment. Function as. When the physical length from the ground conductor (GND) to the thermistor 6 and the resistor 7 of the resistor 8 cannot be ignored as the frequency band used increases, the physical length is adjusted by the distributed constant line 12 with the open end. There is an advantage that good attenuation characteristics can be maintained.

図4には、第4実施例の高周波温度可変減衰器の構成が示されており、この第4実施例は、第1乃至第3実施例の略1/4波長の偶数倍の分布定数線路3aを、コイル及びコンデンサで置き換えた回路となっている。即ち、図4に示されるように、高周波基板上に形成された入出力端子1,2間の主線路16に、コイル17が直列接続され、このコイル17の両端において主線路15と接地導体4との間に、2つのコンデンサ18a,18bが並列接続されており、これらコイル17及びコンデンサ18a,18bから、略1/4λの透過位相を有する回路網が構成される。そして、これら回路網(17,18a,18b)を挟むようにして、主線路16と接地導体4との間に、サーミスタ6と抵抗7からなる3つの抵抗体8が配置される。   FIG. 4 shows the configuration of the high-frequency temperature variable attenuator of the fourth embodiment. This fourth embodiment is a distributed constant line that is an even multiple of substantially 1/4 wavelength of the first to third embodiments. 3a is replaced with a coil and a capacitor. That is, as shown in FIG. 4, a coil 17 is connected in series to the main line 16 between the input / output terminals 1 and 2 formed on the high-frequency substrate, and the main line 15 and the ground conductor 4 are connected to both ends of the coil 17. The two capacitors 18a and 18b are connected in parallel to each other, and the coil 17 and the capacitors 18a and 18b constitute a circuit network having a transmission phase of approximately ¼λ. Then, the three resistors 8 including the thermistor 6 and the resistor 7 are arranged between the main line 16 and the ground conductor 4 so as to sandwich these circuit networks (17, 18a, 18b).

上記の回路網のコイル17のインダクタンスLとコンデンサ18a,18bの容量Cは、次式で示されるものとなる。
L = Z/(2×π×f
C = 1/(2×π×f×Z
ここで、Zは特性インピーダンス、fは中心周波数である。
The inductance L of the coil 17 of the circuit network and the capacitance C of the capacitors 18a and 18b are expressed by the following equations.
L = Z 0 / (2 × π × f 0 )
C = 1 / (2 × π × f 0 × Z 0 )
Here, Z 0 is a characteristic impedance, and f 0 is a center frequency.

このような第4実施例の構成においても、第1実施例と同様の動作をする温度可変減衰器として機能する。そして、この第4実施例の減衰器は、使用周波数帯が低く、第1乃至第3実施例の1/4波長の偶数倍の分布定数主線路3が物理的に大きくなる場合に、小型化を図る構成として有効である。   The configuration of the fourth embodiment also functions as a temperature variable attenuator that operates in the same manner as the first embodiment. The attenuator of the fourth embodiment is downsized when the operating frequency band is low and the distributed constant main line 3 that is an even multiple of a quarter wavelength of the first to third embodiments is physically large. It is effective as a configuration for achieving the above.

これら第2実施例乃至第4実施例においても、図6示した抵抗値と減衰量の関係が得られ、また図7に示したように、周囲温度の変動に応じて減衰量が変化すると共に、V.S.W.Rの低い状態が維持された特性が得られる。   Also in the second to fourth embodiments, the relationship between the resistance value and the attenuation shown in FIG. 6 is obtained, and as shown in FIG. 7, the attenuation changes according to the variation of the ambient temperature. , The characteristic that the low state of VSWR is maintained is obtained.

また、上記各実施例の抵抗体8を構成するサーミスタ6は、ポジティブサーミスタであり、これによって、適用回路の動作、特性に応じて温度変動による減衰量の調整が良好に行われる。即ち、ポジティブサーミスタ6は、温度の上昇に伴って抵抗値が大きくなり、その結果、減衰器の減衰量が小さくなる。一般に、例えばアンプでは、温度の上昇に伴って利得が低下する特性を有しており、このアンプに実施例の減衰器を適用したときには、減衰量が小さくなることで温度上昇によって低下する利得が打ち消され、その結果、温度変動による利得の低下が抑制される。   Further, the thermistor 6 constituting the resistor 8 of each of the above embodiments is a positive thermistor, and thereby, the amount of attenuation due to temperature fluctuation can be well adjusted according to the operation and characteristics of the applied circuit. That is, the resistance value of the positive thermistor 6 increases as the temperature rises, and as a result, the attenuation amount of the attenuator decreases. In general, for example, an amplifier has a characteristic that the gain decreases as the temperature rises, and when the attenuator of the embodiment is applied to this amplifier, the gain that decreases as the temperature rises due to a decrease in attenuation amount. As a result, a decrease in gain due to temperature fluctuation is suppressed.

なお、上記第1乃至第3実施例では、分布定数主線路として、マイクロストリップラインを用いた例を示したが、コプレーナウェーブガイド等の他の分布定数線路に対しても、本願発明を適用することができる。また、上記実施例では、抵抗体8を3個設けた例を示したが、3個以上を並列に配置してもよい。   In the first to third embodiments, the microstrip line is used as the distributed constant main line. However, the present invention is applied to other distributed constant lines such as a coplanar waveguide. be able to. Moreover, in the said Example, although the example which provided three resistors 8 was shown, you may arrange | position three or more in parallel.

本発明の第1実施例に係る高周波温度可変減衰器の構成を示す回路図である。It is a circuit diagram which shows the structure of the high frequency temperature variable attenuator which concerns on 1st Example of this invention. 第2実施例に係る高周波温度可変減衰器の構成を示す回路図である。It is a circuit diagram which shows the structure of the high frequency temperature variable attenuator which concerns on 2nd Example. 第3実施例に係る高周波温度可変減衰器の構成を示す回路図である。It is a circuit diagram which shows the structure of the high frequency temperature variable attenuator which concerns on 3rd Example. 第4実施例に係る高周波温度可変減衰器の構成を示す回路図である。It is a circuit diagram which shows the structure of the high frequency temperature variable attenuator which concerns on 4th Example. 各実施例の基本回路である並列型減衰器の構成を示す回路図である。It is a circuit diagram which shows the structure of the parallel type attenuator which is a basic circuit of each Example. 実施例の並列型減衰器の減衰量と各抵抗値との関係を示すグラフ図である。It is a graph which shows the relationship between the attenuation of the parallel type attenuator of an Example, and each resistance value. 実施例の減衰器の特性を示すグラフ図である。It is a graph which shows the characteristic of the attenuator of an Example. 従来の温度可変減衰器の一つの構成例を示す回路図である。It is a circuit diagram which shows one structural example of the conventional temperature variable attenuator. 従来の温度可変減衰器の他の構成例を示す回路図である。It is a circuit diagram which shows the other structural example of the conventional temperature variable attenuator. 従来のπ型減衰器の基本構成を示す回路図である。It is a circuit diagram which shows the basic composition of the conventional (pi) type attenuator.

符号の説明Explanation of symbols

1,20…入力端子、 2,21…出力端子、
3,22…主線路(マイクロストリップライン)、
3a…1/4λの奇数倍の長さの主線路、 4…接地導体、
6…サーミスタ、 7…抵抗、
8…抵抗体、 12…先端短絡分布定数線路、
14…先端開放分布定数線路、 16…主線路、
17…コイル、 18a,18b…コンデンサ、
Q…接地とみなし得る点。
1, 20 ... input terminal, 2, 21 ... output terminal,
3, 22 ... main line (microstrip line),
3a: Main line having an odd multiple of 1 / 4λ, 4: Ground conductor,
6 ... Thermistor, 7 ... Resistance,
8 ... resistor, 12 ... tip short circuit distributed constant line,
14 ... Open-ended distributed constant line, 16 ... Main line,
17 ... Coil, 18a, 18b ... Capacitor,
Q: Points that can be regarded as grounding.

Claims (4)

入出力端子間に配置した分布定数主線路及び接地導体が誘電体基板上に形成される減衰器であって、
上記分布定数主線路における使用周波数の略1/4波長の奇数倍の間隔を以って、該分布定数主線路と接地導体又は接地とみなし得る点との間に、ポジティブサーミスタと抵抗が並列接続された抵抗体を少なくとも3個、並列に接続した高周波温度可変減衰器。
An attenuator in which a distributed constant main line and a ground conductor arranged between input and output terminals are formed on a dielectric substrate,
A positive thermistor and a resistor are connected in parallel between the distributed constant main line and a point that can be regarded as a ground conductor or ground, with an interval that is an odd multiple of approximately 1/4 wavelength of the frequency used in the distributed constant main line. at least three have been resistor, high frequency temperature variable attenuator connected in parallel.
上記接地導体に一方端が接続された使用周波数の略1/4波長の偶数倍の長さを有する先端短絡分布定数線路の他方端を、上記接地とみなし得る点として配置し、この先端短絡分布定数線路の他方端と上記分布定数主線路との間に、上記抵抗体を接続したことを特徴とする請求項1記載の高周波温度可変減衰器。   The other end of the short-circuited short-circuit distributed constant line having a length that is an even multiple of approximately ¼ wavelength of the operating frequency, one end of which is connected to the ground conductor, is disposed as a point that can be regarded as the ground, and this short-circuit distribution 2. The high-frequency variable temperature attenuator according to claim 1, wherein the resistor is connected between the other end of the constant line and the distributed constant main line. 使用周波数の略1/4波長の奇数倍の長さを有する先端開放分布定数線路の一方端を、上記接地とみなし得る点として配置し、この先端開放分布定数線路の一方端と上記分布定数主線路との間に、上記抵抗体を接続したことを特徴とする請求項1記載の高周波温度可変減衰器。   One end of the open-ended distributed constant line having a length that is an odd multiple of approximately ¼ wavelength of the operating frequency is arranged as a point that can be regarded as the ground, and one end of the open-ended distributed constant line and the distributed constant main 2. The high-frequency temperature variable attenuator according to claim 1, wherein the resistor is connected to a line. 入出力端子間に配置した主線路及び接地導体が高周波基板上に形成され、コイル及びコンデンサからなり使用周波数の略1/4波長の透過位相を有する回路網が配置される減衰器であって、
上記使用周波数の略1/4波長の透過位相を有する回路網を挟むように、上記主線路と接地導体との間に、ポジティブサーミスタと抵抗が並列接続された抵抗体を少なくとも3個、並列に接続した高周波温度可変減衰器。
An attenuator in which a main line and a ground conductor disposed between input and output terminals are formed on a high-frequency substrate, and a circuit network including a coil and a capacitor and having a transmission phase of approximately ¼ wavelength of a use frequency is disposed,
At least three resistors, in which a positive thermistor and a resistor are connected in parallel, are connected in parallel between the main line and the ground conductor so as to sandwich a network having a transmission phase of approximately ¼ wavelength of the operating frequency. Connected high-frequency temperature variable attenuator.
JP2008038331A 2008-02-20 2008-02-20 High frequency temperature attenuator Expired - Fee Related JP4940166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008038331A JP4940166B2 (en) 2008-02-20 2008-02-20 High frequency temperature attenuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008038331A JP4940166B2 (en) 2008-02-20 2008-02-20 High frequency temperature attenuator

Publications (2)

Publication Number Publication Date
JP2009200671A JP2009200671A (en) 2009-09-03
JP4940166B2 true JP4940166B2 (en) 2012-05-30

Family

ID=41143733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008038331A Expired - Fee Related JP4940166B2 (en) 2008-02-20 2008-02-20 High frequency temperature attenuator

Country Status (1)

Country Link
JP (1) JP4940166B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012004635A (en) * 2010-06-14 2012-01-05 New Japan Radio Co Ltd Temperature variable attenuator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6069905A (en) * 1983-09-26 1985-04-20 Japan Radio Co Ltd Strip line attenuating circuit
JP2630485B2 (en) * 1990-05-23 1997-07-16 有限会社 戸谷建設工業 Automotive wheel anti-slip device
JP2000196395A (en) * 1998-12-25 2000-07-14 Mitsubishi Electric Corp Temperature compensated attenuator and microwave device
US6737933B2 (en) * 2002-01-15 2004-05-18 Nokia Corporation Circuit topology for attenuator and switch circuits

Also Published As

Publication number Publication date
JP2009200671A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
JPH06318804A (en) Resistive terminator
US20090015355A1 (en) Compensated attenuator
JP4940166B2 (en) High frequency temperature attenuator
US7956702B2 (en) Balun
JP4267511B2 (en) Band stop filter
CN113328718B (en) Balanced microwave circuit with differential negative group delay characteristic
KR102459725B1 (en) Phase Shifter
KR101497018B1 (en) 360° reflective analog phase shifter
JP6943193B2 (en) Transmission line, matching circuit and amplifier circuit
CN111384908A (en) Power divider circuit, power divider and design method of power divider circuit
JP2003264403A (en) Micro wave phase shifter
JP2007318264A (en) Limiter circuit
JP2002208803A (en) Temperature sensing attenuator
JP2008078734A (en) Variable frequency rf filter
KR101214913B1 (en) Tunable impedance transformer using multi-conductor coupled lines
US20240213948A1 (en) Systems and methods for frequency equalization and temperature compensation in radio frequency devices
CN211063582U (en) Power divider circuit and power divider
JP3962261B2 (en) Lumped constant temperature variable attenuator
KR102660183B1 (en) Impedance conversion circuit and harmonic impedance tuner using parallel-connected transmission line
JP3239720B2 (en) Microwave attenuator
EP2996190A1 (en) Method for selecting a phase shift, phase shifter, beamformer and antenna array
JP4305618B2 (en) Negative resistance circuit and active filter
JP2021150663A (en) Harmonic suppression circuit and microwave transmission system
JP2003163514A (en) Electric power distributor
JP5158862B2 (en) Broadband attenuation circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4940166

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees