JP4936478B2 - Carbonized fabric manufacturing method and carbonized fabric - Google Patents

Carbonized fabric manufacturing method and carbonized fabric Download PDF

Info

Publication number
JP4936478B2
JP4936478B2 JP2009006135A JP2009006135A JP4936478B2 JP 4936478 B2 JP4936478 B2 JP 4936478B2 JP 2009006135 A JP2009006135 A JP 2009006135A JP 2009006135 A JP2009006135 A JP 2009006135A JP 4936478 B2 JP4936478 B2 JP 4936478B2
Authority
JP
Japan
Prior art keywords
fabric
carbonized
raw material
fiber
carbonized fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009006135A
Other languages
Japanese (ja)
Other versions
JP2010163709A (en
Inventor
善正 新保
Original Assignee
前田 俊克
本多 秀雄
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 前田 俊克, 本多 秀雄 filed Critical 前田 俊克
Priority to JP2009006135A priority Critical patent/JP4936478B2/en
Publication of JP2010163709A publication Critical patent/JP2010163709A/en
Application granted granted Critical
Publication of JP4936478B2 publication Critical patent/JP4936478B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/16Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from products of vegetable origin or derivatives thereof, e.g. from cellulose acetate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Inorganic Fibers (AREA)
  • Woven Fabrics (AREA)
  • Treatment Of Fiber Materials (AREA)

Description

本発明は、炭素化布帛の製造方法に関する。さらに詳しくは、セルロース系繊維を原料とした十分な引張強度、曲げ強度を有する高品質炭素化布帛を製造可能な炭素化布帛の製造方法に関するものである。   The present invention relates to a method for producing a carbonized fabric. More specifically, the present invention relates to a method for producing a carbonized fabric capable of producing a high-quality carbonized fabric having sufficient tensile strength and bending strength using cellulosic fibers as raw materials.

炭素化布帛は、比強度や比弾性率等の力学的特性、その他優れた化学的、電気的性質により、様々な分野に使用されている。その需要の拡大に伴い、より一層の品質の向上と同時に製造コストの低減が望まれている。   Carbonized fabrics are used in various fields due to mechanical properties such as specific strength and specific elastic modulus, and other excellent chemical and electrical properties. As the demand expands, it is desired to further improve quality and reduce manufacturing costs.

従来、炭素化布帛は、セルロース、ポリアクリロニトリル、ピッチ等の有機繊維を不活性ガス中、高温で焼成することによって製造している。この有機繊維を用いた炭素化布帛の製造プロセスは、一般に酸素を除去する炭化前工程と、窒素などの不活性雰囲気中で熱処理する炭化工程とで構成されている。   Conventionally, carbonized fabrics are produced by firing organic fibers such as cellulose, polyacrylonitrile, and pitch in an inert gas at a high temperature. The process for producing a carbonized fabric using organic fibers generally comprises a pre-carbonization step for removing oxygen and a carbonization step for heat treatment in an inert atmosphere such as nitrogen.

炭素化布帛の原料としては、アクリル系繊維が広く用いられている(例えば、特許文献1)。これはアクリル系繊維を焼成して得られる炭素化布帛は、炭素密度が高く均一な分子構造であるという利点を有するためである。   As a raw material for the carbonized fabric, acrylic fibers are widely used (for example, Patent Document 1). This is because the carbonized fabric obtained by firing acrylic fibers has the advantage of a high molecular density and a uniform molecular structure.

しかしながら、特許文献1記載のアクリル系繊維を原料とする炭素化布帛では、石油を原料としており、環境負荷が高い。また、アクリル繊維を炭化する工程で発生するシアンガスを外部に漏らさない密閉装置が必要になるため、装置コストが増大する結果、製品である炭素織物も1m2当たり数万円という高価な材料となる。 However, the carbonized fabric using acrylic fiber as a raw material described in Patent Document 1 uses petroleum as a raw material and has a high environmental load. In addition, since a sealing device that does not leak cyan gas generated in the process of carbonizing acrylic fiber to the outside is required, the cost of the device increases, and as a result, the carbon fabric that is the product becomes an expensive material of tens of thousands of yen per 1 m 2. .

一方、セルロースを主成分とする原料とする炭素化布帛は、安価で再生可能な原材料であるため、環境負荷が小さいという利点があり、例えば、特許文献2には、セルロースを主成分とする原料とした炭素化布帛の製造方法が開示されている。   On the other hand, carbonized fabrics containing cellulose as a main ingredient are raw materials that are inexpensive and can be regenerated, and therefore have an advantage of low environmental impact. For example, Patent Document 2 discloses a raw material containing cellulose as a main ingredient. A method for producing a carbonized fabric is disclosed.

特開2003−96625号公報Japanese Patent Laid-Open No. 2003-96625 特開2008−169490号公報JP 2008-169490 A

しかしながら、セルロースを主成分とする原料からなる炭素化布帛は、単位面積(体積)当たりの炭素量が少ないため、引張強度や曲げ強度などの機械強度が不十分である。   However, a carbonized fabric made of a raw material mainly composed of cellulose has insufficient mechanical strength such as tensile strength and bending strength because the amount of carbon per unit area (volume) is small.

さらに、炭素化布帛の利用方法として、十分な引張強度や曲げ強度などが必要とされる構造材が挙げられるが、セルロース系繊維を主成分とする原料から、機械強度を満足できる炭素化布帛を製造する方法は存在しないのが実状である。   Further, as a method of using the carbonized fabric, structural materials that require sufficient tensile strength, bending strength, and the like can be mentioned. From a raw material mainly composed of cellulosic fibers, a carbonized fabric that can satisfy mechanical strength is used. The fact is that there is no manufacturing method.

このような状況下、本発明の目的は、植物繊維を主成分とする布帛を原料として、十分な機械強度を有しつつ、電磁波防止、脱臭性能などの機能は発揮できる炭素化布帛の製造方法を提供することである。   Under such circumstances, an object of the present invention is to provide a method for producing a carbonized fabric capable of exhibiting functions such as electromagnetic wave prevention and deodorizing performance while using a fabric mainly composed of vegetable fibers as a raw material and having sufficient mechanical strength. Is to provide.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、セルロース系繊維を主成分とする原料布帛に、さらに多糖類、デンプン等の繊維素を均一に付加した後に、非酸化状態で加熱して炭化することで、上記目的を解決できることを見出し、本発明に至った。   As a result of intensive studies to solve the above problems, the present inventors have further added a cellulose, starch, and other fiber elements uniformly to a raw material fabric mainly composed of cellulosic fibers, and then a non-oxidized state. It discovered that the said objective can be solved by heating and carbonizing by this, and came to this invention.

すなわち、本発明は、下記の<1>〜<8>の発明に係るものである。

<1> セルロース系繊維を主成分とする原料布帛を、非酸化雰囲気下で加熱して炭化する工程を含む炭素化布帛の製造方法において、前記炭化工程の前工程として、前記原料布帛に繊維素を均一に付加する炭素化布帛の製造方法。
<2> 前記原料布帛の原料となるセルロース系繊維が、綿、麻、竹及び木材のいずれか1種類または2種類以上の組み合わせからなる前記<1>記載の炭素化布帛の製造方法。
<3> 繊維素が、デンプン、水溶性のセルロース誘導体、石油タール、及び微粉炭のいずれかである前記<1>または<2>に記載の炭素化布帛の製造方法。
<4> 繊維素を均一に付加する方法が、泥状の前記繊維素を拡布状態の前記原料布帛にコーティングする方法である前記<1>から<3>のいずれかに記載の炭素化布帛の製造方法。
<5> 繊維素を均一に付加する方法が、前記繊維素をフィルム状にして、前記原料布帛に密着させて付加する方法である前記<1>から<3>のいずれかに記載の炭素化布帛の製造方法。
<6> 繊維素を均一に付加する方法が、前記原料布帛に繊維素を含む溶液に浸漬後、乾燥させる方法である前記<1>から<3>のいずれかに記載の炭素化布帛の製造方法。
<7> 炭化を行う温度が、1200℃以上1800℃以下である前記<1>から<6>のいずれかに記載の炭素化布帛の製造方法。
<8> 前記<1>から<7>のいずれかに記載の製造方法で製造してなる炭素化布帛。
That is, the present invention relates to the following <1> to <8> inventions.

<1> In the method for producing a carbonized fabric including a step of heating and carbonizing a raw material fabric mainly composed of cellulosic fibers in a non-oxidizing atmosphere, the raw material fabric may include a fiber element as a pre-step of the carbonization step. A method for producing a carbonized fabric in which is uniformly added.
<2> The method for producing a carbonized fabric according to <1>, wherein the cellulosic fibers used as a raw material of the raw material fabric are one kind or a combination of two or more kinds of cotton, hemp, bamboo, and wood.
<3> The method for producing a carbonized fabric according to <1> or <2>, wherein the fiber is any one of starch, a water-soluble cellulose derivative, petroleum tar, and pulverized coal.
<4> The carbonized fabric according to any one of <1> to <3>, wherein the method of uniformly adding the fiber is a method of coating the raw fabric in a spread state with the muddy fiber. Production method.
<5> The carbonization according to any one of <1> to <3>, wherein the method of uniformly adding the fibrous material is a method of adding the fibrous material in the form of a film and closely adhering to the raw material fabric. Fabric manufacturing method.
<6> The method for producing a carbonized fabric according to any one of <1> to <3>, wherein the method for uniformly adding the fiber is a method in which the raw material is dipped in a solution containing the fiber and then dried. Method.
<7> The method for producing a carbonized fabric according to any one of <1> to <6>, wherein the carbonization temperature is 1200 ° C. or higher and 1800 ° C. or lower.
<8> A carbonized fabric produced by the production method according to any one of <1> to <7>.

本発明の製造方法では、単位面積当たりの炭素量が多い炭素化布帛を容易に製造することができる。また、この方法で製造した炭素化布帛は、十分な引張強度や曲げ強度を有することに加え、電磁波防止、脱臭性能などの機能を有するため、工業的に極めて有望である。   In the production method of the present invention, a carbonized fabric having a large amount of carbon per unit area can be easily produced. In addition to having sufficient tensile strength and bending strength, the carbonized fabric produced by this method is extremely promising industrially because it has functions such as electromagnetic wave prevention and deodorizing performance.

以下、本発明につき詳細に説明する。
本発明は、セルロース系繊維を主成分とする原料布帛(以下、「セルロース系原料布帛」あるいは単に「原料布帛」と呼ぶ場合もある。)を、非酸化雰囲気下で加熱して炭化する工程を含む炭素化布帛の製造方法において、前記炭化工程の前工程として、前記原料布帛に一定の割合で多糖類、デンプン等からなる繊維素を均一に付加する炭素化布帛の製造方法に係るものである。
なお、詳しくは後述するが、本発明において「繊維素」とは、原料布帛の有する細孔に導入可能な炭素含有物質を意味する。
Hereinafter, the present invention will be described in detail.
The present invention includes a step of heating and carbonizing a raw fabric mainly composed of cellulosic fibers (hereinafter sometimes referred to as “cellulosic raw fabric” or simply “raw fabric”) in a non-oxidizing atmosphere. The carbonized fabric manufacturing method includes a carbonized fabric manufacturing method in which, as a pre-step of the carbonization step, a fibrous material composed of polysaccharides, starch, and the like is uniformly added to the raw material fabric at a certain ratio. .
In addition, although mentioned later in detail, in this invention, a "fiber element" means the carbon containing substance which can be introduce | transduced into the pore which a raw material fabric has.

本発明の特徴は、セルロース系原料布帛の炭化工程の前に、セルロース系原料布帛に一定の割合で多糖類、デンプン等の繊維素を均一に付加することにある。繊維素を付加した後、炭化工程を経て製造された炭素化布帛は、単位面積(体積)当たりの炭素量が繊維素を付加しない場合より多くなり、機械強度が向上する。   The feature of the present invention resides in uniformly adding cellulose, starch and other fiber elements to the cellulosic raw material fabric at a certain ratio before the carbonization step of the cellulosic raw material fabric. After adding the fiber, the carbonized fabric manufactured through the carbonization step has a larger carbon amount per unit area (volume) than when no fiber is added, and the mechanical strength is improved.

この製造方法で、炭素化布帛の機械強度が向上する理由については、現時点では完全に明らかではないが、セルロース系原料布帛には、セルロースの繊維と繊維の間に微細な隙間が存在し、この隙間に多糖類、デンプン等の繊維素が導入された状態で、非酸化状態で加熱することにより、セルロースの繊維と導入された繊維素が一体化して炭化するため、炭化したセルロース繊維同士の結合力が増加する。その結果、製造品の炭素化布帛の機械強度が増加する、と考えられる。   The reason why the mechanical strength of the carbonized fabric is improved by this production method is not completely clear at present, but in the cellulosic raw material fabric, there are fine gaps between cellulose fibers. By heating in a non-oxidized state with fibrous materials such as polysaccharides and starch introduced in the gaps, the cellulose fibers and the introduced fibrous materials are integrated and carbonized, so the carbonized cellulose fibers are bonded together. Power increases. As a result, it is considered that the mechanical strength of the manufactured carbonized fabric increases.

セルロース系原料布帛は、セルロース系繊維からなるいわゆる織物または編物である。
セルロース系原料布帛の織り方、編み方は、特に限定されるものではなく、その目的に応じて、例えば、平織り、綾織り、繻子織り等の織り方、横編、縦編等によるシングルニット、ダブルニット等の編み方、あるいはこれらの組合せ等の各種のものを用いることができる。また、セルロース系原料布帛の厚さは、使用目的にもよるが、特に限定されるものではないが、通常、厚さが1〜500mm(好適には、5〜300mm)程度である。
The cellulosic material fabric is a so-called woven or knitted fabric made of cellulosic fibers.
The weaving method and knitting method of the cellulosic raw material fabric are not particularly limited, and depending on the purpose, for example, weaving methods such as plain weave, twill weave, satin weaving, single knit by weft knitting, warp knitting, etc. Various knitting methods such as double knitting or combinations thereof can be used. The thickness of the cellulosic raw material fabric is not particularly limited, although it depends on the purpose of use, but the thickness is usually about 1 to 500 mm (preferably 5 to 300 mm).

セルロース系繊維としては、セルロースを含むものであれば特に制限はなく、綿、麻、絹、その他、竹、こうぞ、木材などの植物性および動物性の天然セルロース繊維、レーヨン繊維、アセテート繊維などの合成セルロース繊維が挙げられ、これらは単独で用いても、2種類以上組み合わせて用いてもよい。また、これらのセルロース系繊維は、本発明の効果を損なわない範囲で不純物を含んでいてもよい。   Cellulosic fibers are not particularly limited as long as they contain cellulose, such as cotton, hemp, silk, and other plant and animal natural cellulose fibers such as bamboo, gutters, and wood, rayon fibers, and acetate fibers. These may be used alone or in combination of two or more. Moreover, these cellulosic fibers may contain impurities as long as the effects of the present invention are not impaired.

なお、原料調達の容易性、環境負荷の小ささからは、天然セルロース繊維が好適であり、この中でも、綿、麻、竹及び木材は、繊維素の導入に適した細孔を有する立体的な積層構造になっており、これを炭素化して得られた炭素化布帛は、他のセルロース繊維を使用した場合より、柔軟性、強度、吸着性に富む素材となるため、特に好適である。   In addition, natural cellulose fiber is suitable from the viewpoint of ease of raw material procurement and small environmental load, and among these, cotton, hemp, bamboo and wood are three-dimensional having pores suitable for introduction of fibrin. The carbonized fabric obtained by carbonizing the laminate structure is particularly suitable because it becomes a material richer in flexibility, strength, and adsorptivity than when other cellulose fibers are used.

繊維素は、上述のように炭素化布帛の機械強度の向上の目的で使用される物質である。繊維素は、炭素原子を含み、原料布帛の細孔を導入できる形態であれば、特に限定されず、粉末や液体などいかなる形態でよい。
繊維素の好適な具体例としては、アミロース、グリコーゲン、ヒアルロン酸などの多糖類、デンプン、微粉炭などの炭素粉末、石油タール、低級アルキルセルロース等の水溶性セルロース誘導体などが挙げられる。この中でもデンプン、水溶性のセルロース誘導体、石油タール、微粉炭が好適である。
Fibrin is a substance used for the purpose of improving the mechanical strength of the carbonized fabric as described above. The fiber is not particularly limited as long as it contains carbon atoms and can introduce the pores of the raw material fabric, and may be in any form such as powder or liquid.
Preferable specific examples of fibrin include polysaccharides such as amylose, glycogen and hyaluronic acid, carbon powder such as starch and pulverized coal, water-soluble cellulose derivatives such as petroleum tar and lower alkyl cellulose. Of these, starch, water-soluble cellulose derivatives, petroleum tar, and pulverized coal are preferable.

セルロース系原料布帛に繊維素を付加する割合は、セルロース系原料布帛に対する繊維素の重量%で表現して、0.01〜30重量%(好適には1〜10重量%)である。
0.01重量%未満の場合には、製造される炭素化布帛の強度が不十分である場合があり、30重量%を超える場合には、過分の繊維素が炭素化布帛から吹き出すなど品質が低下する場合がある。
The ratio of adding fiber to the cellulosic raw material fabric is 0.01 to 30% by weight (preferably 1 to 10% by weight), expressed as the weight% of the fiber based on the cellulosic raw material fabric.
When the amount is less than 0.01% by weight, the strength of the carbonized fabric produced may be insufficient. When the amount exceeds 30% by weight, the quality such as excess fiber blows out from the carbonized fabric. May decrease.

セルロース系原料布帛に繊維素を付加する方法は、特に制限されないが、その好適な方法としては、(1)セルロース系原料布帛を拡布状態にしてそのうえに、泥状の繊維素をコーティングする方法、(2)繊維素をフィルム状にして、セルロース系原料布帛に密着させて付加する方法、(3)繊維素を含む溶液に、セルロース系原料布帛を浸漬し、乾燥する方法、を挙げることができる。
(1)セルロース系原料布帛を拡布状態にしてそのうえに、泥状の繊維素をコーティングする方法は、繊維素に対して特別な処理が必要なく、具体的には、デンプンなど粘性が高い繊維素を使用する場合に適する方法である。
一方、(2)繊維素をフィルム状にして、セルロース系原料布帛に密着させて付加する方法では、フィルム状の繊維素を使用するため、原料布帛に付加される繊維素の量の均一性が特に高まるというという利点がある。具体的には、水溶性のセルロース誘導体など薄膜フィルムが容易に作製可能な繊維素を使用する場合に適する方法である。
また、(3)繊維素を含む溶液に、セルロース系原料布帛を浸漬し、乾燥する方法は、石油タールや微粉炭に代表される炭素粉末などの繊維素を使用する場合に適する方法であり、これらの繊維素は、元々熱分解性の炭素成分であるため、炭化処理を行った際に、発生するガスの量が少なく、また、繊維素自体の体積変化が小さいため、炭化工程において生じる内部応力による劣化が生じにくいという利点がある。
これらの方法は、それぞれ単独で行うだけでなく、組み合わせて行ってもよく、好適な一例として、上記(3)の方法で、炭素粉末などの繊維素を原料布帛に付加したのちに、上記(2)のフィルム状の繊維素をさらに付加する方法などを挙げられる。
The method for adding the fibrous material to the cellulosic raw material fabric is not particularly limited, and preferred methods include (1) a method of coating the cellulosic raw material fabric with mud fibrous material on the expanded state, ( 2) A method in which the fibrous material is formed into a film and is in close contact with the cellulosic raw material fabric, and (3) a method in which the cellulose raw material fabric is immersed in a solution containing the fibrous material and dried.
(1) The method of coating a cellulosic raw material fabric with a mud-like fiber element on the expanded state does not require any special treatment for the fiber element. Specifically, a high-viscosity fiber element such as starch is used. This method is suitable for use.
On the other hand, in the method of (2) adding the fibrous element in the form of a film and adhering it to the cellulosic raw material fabric, since the film-shaped fibrous element is used, the uniformity of the amount of fibrous element added to the raw material fabric is There is an advantage that it increases especially. Specifically, it is a method suitable for the case of using a fiber element that can easily produce a thin film such as a water-soluble cellulose derivative.
Further, (3) a method of immersing and drying the cellulosic raw material fabric in a solution containing fibrin is a method suitable for using fibrin such as carbon powder typified by petroleum tar and pulverized coal, Since these fiber elements are originally pyrolyzable carbon components, the amount of gas generated during carbonization is small, and the volume change of the fiber elements themselves is small, so that the internal volume generated in the carbonization process is small. There is an advantage that deterioration due to stress hardly occurs.
These methods may be performed not only independently but also in combination. As a suitable example, after adding a fiber element such as carbon powder to a raw material fabric by the method (3) above, The method of further adding the film-like fiber element of 2) is mentioned.

次に、繊維素を付加した原料布帛を非酸化雰囲気下で加熱して炭化する工程について説明する。   Next, the process of heating and carbonizing the raw material fabric to which the fiber is added in a non-oxidizing atmosphere will be described.

まず、十分に乾燥した原料繊維布帛を、加熱炉内に装入し、温度を上昇させる。加熱炉としては、温度制御可能であって、外部から空気が入らないように完全密閉可能で、炉内雰囲気をコントロール可能な加熱炉であれば特に限定されるものではないが、例えば、操作性の観点からは、横長立方体で上部から出し入れ可能な横型加熱炉が好適に使用される。   First, a sufficiently dried raw fiber fabric is charged into a heating furnace to raise the temperature. The heating furnace is not particularly limited as long as it is temperature-controllable and can be completely sealed so that air does not enter from the outside, and the furnace atmosphere can be controlled. From this point of view, a horizontal heating furnace that can be taken in and out from the top in a horizontally long cube is preferably used.

炭化工程における炉内雰囲気は、非酸化性雰囲気であればよく、窒素、アルゴン、ヘリウムなどの不活性雰囲気、水素、一酸化炭素などを含む還元雰囲気および真空雰囲気が挙げられるが、安全性、コストの観点から、通常、不活性雰囲気が選択される。
なお、炉内雰囲気は、原料布帛が炭化する温度(約450℃以上)になるときに、非酸化雰囲気であればよく、それまでの昇温過程は酸化工程でもよいが、室温から非酸化性雰囲気とする方がより好適である。
The atmosphere in the furnace in the carbonization process may be a non-oxidizing atmosphere, and examples thereof include an inert atmosphere such as nitrogen, argon, and helium, a reducing atmosphere containing hydrogen, carbon monoxide, and a vacuum atmosphere. From this point of view, an inert atmosphere is usually selected.
The furnace atmosphere may be a non-oxidizing atmosphere when the temperature of the raw material fabric is carbonized (about 450 ° C. or higher), and the temperature raising process up to that time may be an oxidation process. An atmosphere is more preferable.

炭化を行う温度は、非酸化雰囲気下で炭化が起こる温度以上であればよく、具体的には、450℃以上である。炭化を行う温度が450℃未満であると炭化が不十分となるため好ましくない。
なお、セルロース繊維および繊維素などの含炭素材料を非酸化雰囲気下で炭化した場合、1000℃以下では、含炭素材料のほとんどがアモルファス(不定形)炭素として炭化する。このアモルファス炭素は、表面積が広いため、製造される炭素化布帛の吸着性などが向上する。
一方、アモルファス炭素を高温で熱処理を行うと、炭素が結晶化するが、結晶化した炭素は、アモルファス炭素より硬度が高いため、製造される炭素化布帛の機械的強度が向上する。このように製造される炭素化布帛の強度を向上させるという観点からは、炭化を行う温度は、1200〜1800℃(好適には、1600〜1800℃)である。この温度が1200℃未満では、機械強度が不足する場合があり、1800℃を超えると部分的に脆化して、逆に機械強度が低下する場合がある。
The temperature at which carbonization is performed may be higher than the temperature at which carbonization occurs in a non-oxidizing atmosphere, and is specifically 450 ° C. or higher. If the carbonization temperature is less than 450 ° C., the carbonization becomes insufficient, which is not preferable.
In addition, when carbon-containing materials such as cellulose fibers and fiber elements are carbonized in a non-oxidizing atmosphere, most of the carbon-containing materials are carbonized as amorphous (amorphous) carbon at 1000 ° C. or lower. Since this amorphous carbon has a large surface area, the adsorptivity of the carbonized fabric to be produced is improved.
On the other hand, when amorphous carbon is heat-treated at a high temperature, the carbon is crystallized. Since the crystallized carbon has higher hardness than amorphous carbon, the mechanical strength of the produced carbonized fabric is improved. From the viewpoint of improving the strength of the carbonized fabric thus produced, the temperature for carbonization is 1200 to 1800 ° C. (preferably 1600 to 1800 ° C.). If this temperature is less than 1200 ° C., the mechanical strength may be insufficient, and if it exceeds 1800 ° C., it may be partially embrittled and the mechanical strength may decrease.

炭化時間は、原料の種類や必要な炭素化布帛の強度をはじめとする諸性質にもよるが、通常、0.5〜30時間程度である。また、昇温開始から到達温度(炭化を行う温度)までの昇温時間は、特に限定されないが、原料布帛から炭素化布帛に変態する際には、体積変化を伴うため、急激な昇温は好ましくない。そのため、昇温時間は通常、1〜20時間程度である。このように所期の炭化処理を行った後、非酸化性雰囲気に保たれた状態で、加熱炉を室温まで、冷却することで、炭素化布帛を得ることができる。冷却条件は特に限定されるものではなく、自然冷却で良く、通常、−10〜−100℃/時間程度である。   The carbonization time is usually about 0.5 to 30 hours, although it depends on various properties including the type of raw material and the required strength of the carbonized fabric. Further, the temperature rising time from the start of temperature rising to the ultimate temperature (temperature at which carbonization is performed) is not particularly limited. However, when transforming from a raw material fabric to a carbonized fabric, a change in volume is accompanied, so a rapid temperature increase is It is not preferable. Therefore, the temperature raising time is usually about 1 to 20 hours. After performing the desired carbonization treatment in this manner, the carbonized fabric can be obtained by cooling the heating furnace to room temperature while being kept in a non-oxidizing atmosphere. The cooling conditions are not particularly limited, and may be natural cooling, usually about −10 to −100 ° C./hour.

上記の製造方法で製造された炭素化布帛は、原料となるセルロース系原料布帛の有する繊維と繊維が絡まった積層構造に起因する物理特性をそのまま持続し、さらに空隙を繊維素が炭化した炭素によって埋めているため、単位面積(体積)当たりの炭素量が増加すると共に機械的強度が増加する。また、セルロース系原料布帛の有する繊維からなる炭素と、繊維素に起因する炭素との少なくとも2種類が混在し、複雑な炭素結合を形成しているため、優れた弾力性、可撓性、吸着性を有する。   The carbonized fabric manufactured by the above-described manufacturing method maintains the physical characteristics resulting from the laminated structure in which the fibers and the fibers of the cellulose-based material fabric as the raw material are entangled, and further, the carbon is formed by carbon carbonized in the voids. Since it is buried, the amount of carbon per unit area (volume) increases and the mechanical strength increases. In addition, at least two types of carbon consisting of fibers of cellulosic material fabric and carbon derived from fiber elements are mixed to form a complex carbon bond, so excellent elasticity, flexibility, adsorption Have sex.

以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下の実施例および比較例に記載の特性の測定方法としては次のような条件にて測定した。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these Examples. In addition, it measured on condition as follows as a measuring method of the characteristic as described in a following example and a comparative example.

<厚さ、単位面積当りの質量>
厚さは、マイクロメーターにより測定した。
<Thickness, mass per unit area>
The thickness was measured with a micrometer.

単位面積当りの質量は、JIS L 1018に規定されるところに従って測定した。   The mass per unit area was measured according to JIS L 1018.

<引張強度>
JIS L 1018 カットスリップ法に準拠して測定した。なお、測定条件としては、引張速度20cm/分、つかみ間隔20cm、試料幅5cm、試験機:定速伸張形とした。
<Tensile strength>
Measured according to JIS L 1018 cut slip method. The measurement conditions were a tensile speed of 20 cm / min, a gripping interval of 20 cm, a sample width of 5 cm, and a tester: constant speed extension type.

<電気抵抗>
得られた試験片を、四探針式低抵抗率計(ロレスタGP、三菱化学製)を用いて表面9箇所の抵抗(Ω)を測定し、同抵抗計により体積抵抗率(Ω・cm)に換算し、平均値を算出した。
<Electrical resistance>
Using the four-probe type low resistivity meter (Loresta GP, manufactured by Mitsubishi Chemical), the resistance (Ω) at the surface of the obtained test piece was measured, and the volume resistivity (Ω · cm) was measured using the same resistance meter. The average value was calculated.

<電磁波吸収特性>
KEC法(社団法人関西電子工業振興センターにて開発)により100MHz〜1000MHzの周波数における電磁波シールド効果を測定した(試験室の温湿度:20℃、40%RH)。測定は電磁波の発信部と受信部を10mm離間させるとともに、その間に測定試料(30mm×30mm)を介在させた状態で、発信部から受信部に向け電磁波を照射し、測定試料により入射エネルギーがどれだけ遮蔽されるかにつき、電界シールド、磁界シールドの両面において測定することとした。
<Electromagnetic wave absorption characteristics>
The electromagnetic shielding effect at a frequency of 100 MHz to 1000 MHz was measured by the KEC method (developed at Kansai Electronics Industry Promotion Center) (temperature and humidity in the test room: 20 ° C., 40% RH). In the measurement, the electromagnetic wave transmitting part and the receiving part are separated from each other by 10 mm, and an electromagnetic wave is irradiated from the transmitting part to the receiving part with a measurement sample (30 mm × 30 mm) interposed therebetween. It was decided to measure on both sides of the electric field shield and the magnetic field shield.

「実施例1」
綿織物(梅信株式会社、幅:150cm、長さ:50m、厚み:0.3mm)を拡布状態にしてそのうえに1m2当たり350gのデンプンを温水で泥状にしたものを均一に綿織物に付着させた後、水分を蒸発させて乾燥させた。
次に、このデンプンを付着乾燥後の綿織物を、炭素シート焼成炉(服部電気炉工業製、SNT−5)に入れ、炉内に窒素ガスを毎分1.5Lの流量で、30分間流通させることで炉内を非酸化雰囲気とした。
その後、窒素ガスを毎分0.5Lの流量で流通させた状態で、炉内温度を250℃まで昇温させることで、水分や揮発性の有機物などを蒸発除去した。その後、炉内温度を1650℃まで昇温し、同温度で、3時間保持することで、炭素化布帛(実施例1)を得た。
また、比較のため、綿織物にデンプンを塗布せずに同様の工程で焼成した、炭素化布帛(比較例1)を作製した。
"Example 1"
A cotton fabric (Umeshin Co., Ltd., width: 150 cm, length: 50 m, thickness: 0.3 mm) was expanded and 350 g of starch per m 2 made muddy with warm water was uniformly adhered to the cotton fabric. Thereafter, the water was evaporated and dried.
Next, the cotton fabric after the starch is adhered and dried is put into a carbon sheet baking furnace (manufactured by Hattori Electric Furnace Industry, SNT-5), and nitrogen gas is circulated in the furnace at a flow rate of 1.5 L / min for 30 minutes. Thus, the inside of the furnace was made a non-oxidizing atmosphere.
Thereafter, in a state where nitrogen gas was circulated at a flow rate of 0.5 L / min, the furnace temperature was raised to 250 ° C., thereby evaporating and removing moisture and volatile organic substances. Thereafter, the temperature in the furnace was raised to 1650 ° C. and kept at that temperature for 3 hours to obtain a carbonized fabric (Example 1).
For comparison, a carbonized fabric (Comparative Example 1) was produced by firing in the same process without applying starch to a cotton fabric.

それぞれの炭素化布帛における単位面積当たりの質量を比較すると、実施例1の炭素化布帛は、比較例1の炭素化布帛の2倍以上であった。また、単位面積当たりの引張強度、電気抵抗、電磁波防止性能を向上させることが出来た
そのため、実施例1の炭素化布帛は、綿炭素のみからなる従来品である、比較例1の炭素化布帛より小量で同一の性能を出せることが確認された。
When the mass per unit area in each carbonized fabric was compared, the carbonized fabric of Example 1 was more than twice the carbonized fabric of Comparative Example 1. Moreover, the tensile strength per unit area, electrical resistance, and electromagnetic wave prevention performance were able to be improved. Therefore, the carbonized fabric of Example 1 is a conventional product consisting of only cotton carbon, and the carbonized fabric of Comparative Example 1 It was confirmed that the same performance could be achieved with a smaller amount.

「実施例2」
麻織物(梅信株式会社、幅:150cm、長さ:50m、厚み:0.5mm)を拡布状態にしてその上に1m2当たり250gの炭素粉末をデンプンで泥状にしたものを均一に麻織物に付着させた後、水分を蒸発させて乾燥させた。次に、この炭素粉末及びデンプンを付着乾燥後の綿織物を、炭素シート焼成炉(服部電気炉工業製、SNT−5)に入れ、炉内に窒素ガスを毎分2.0Lの流量で、30分間流通させることで炉内を非酸化雰囲気とした。
その後、窒素ガスを毎分0.5Lの流量で流通させた状態で、炉内温度を250℃まで昇温させることで、水分や揮発性の有機物などを蒸発除去した。その後、炉内温度を1650℃まで昇温し、同温度で、3時間保持することで、炭素化布帛(実施例2)を得た。
また、比較のため、麻織物に炭素粉末及びデンプンを塗布せずに同様の工程で焼成した、炭素化布帛(比較例2)を作製した。
"Example 2"
A hemp fabric (Umeshin Co., Ltd., width: 150 cm, length: 50 m, thickness: 0.5 mm) in a spread state and 250 g of carbon powder per 1 m 2 made into mud with starch are uniformly hemped After adhering to the fabric, the moisture was evaporated and dried. Next, the cotton fabric after the carbon powder and starch are adhered and dried is placed in a carbon sheet baking furnace (manufactured by Hattori Electric Furnace Industry, SNT-5), and nitrogen gas is supplied into the furnace at a flow rate of 2.0 L / min. The inside of the furnace was made a non-oxidizing atmosphere by circulating for a minute.
Thereafter, in a state where nitrogen gas was circulated at a flow rate of 0.5 L / min, the furnace temperature was raised to 250 ° C., thereby evaporating and removing moisture and volatile organic substances. Thereafter, the temperature in the furnace was raised to 1650 ° C. and kept at that temperature for 3 hours to obtain a carbonized fabric (Example 2).
For comparison, a carbonized fabric (Comparative Example 2) was prepared by firing in the same process without applying carbon powder and starch to linen fabric.

それぞれの炭素化布帛における単位面積当たりの質量を比較すると、実施例2の炭素化布帛は、比較例2の炭素化布帛の3倍以上であった。また、単位面積当たりの引張強度、電気抵抗、電磁波防止性能を向上させることが出来た
そのため、実施例2の炭素化布帛は、麻炭素のみからなる従来品である、比較例2の炭素化布帛より小量で同一の性能を出せることが確認された。
When the mass per unit area in each carbonized fabric was compared, the carbonized fabric of Example 2 was 3 times or more the carbonized fabric of Comparative Example 2. Moreover, the tensile strength per unit area, electrical resistance, and electromagnetic wave prevention performance could be improved. Therefore, the carbonized fabric of Example 2 is a conventional product made only of hemp carbon, and the carbonized fabric of Comparative Example 2 It was confirmed that the same performance could be achieved with a smaller amount.

「実施例3」
レーヨン編物に石油タール(固形分20%)を絞り率100%で均一に含浸させた後、水分を蒸発させて乾燥させた。次に、この炭素粉末及びデンプンを付着乾燥後のレーヨン編物を、炭素シート焼成炉(服部電気炉工業製、SNT−5)に入れ、炉内に窒素ガスを毎分1.5Lの流量で、30分間流通させることで炉内を非酸化雰囲気とした。
その後、窒素ガスを毎分0.5Lの流量で流通させた状態で、炉内温度を250℃まで昇温させることで、水分や揮発性の有機物などを蒸発除去した。その後、炉内温度を1650℃まで昇温し、同温度で、3時間保持することで、炭素化布帛(実施例3)を得た。
また、比較のため、麻織物に炭素粉末及びデンプンを塗布せずに同様の工程で焼成した、炭素化布帛(比較例3)を作製した。
"Example 3"
The rayon knitted fabric was uniformly impregnated with petroleum tar (solid content 20%) at a drawing ratio of 100%, and then dried by evaporating water. Next, the rayon knitted fabric after adhering and drying the carbon powder and starch is placed in a carbon sheet firing furnace (manufactured by Hattori Electric Furnace Industry, SNT-5), and nitrogen gas is flown into the furnace at a flow rate of 1.5 L / min. The inside of the furnace was made non-oxidizing atmosphere by circulating for 30 minutes.
Thereafter, in a state where nitrogen gas was circulated at a flow rate of 0.5 L / min, the furnace temperature was raised to 250 ° C., thereby evaporating and removing moisture and volatile organic substances. Thereafter, the temperature in the furnace was raised to 1650 ° C. and kept at that temperature for 3 hours to obtain a carbonized fabric (Example 3).
For comparison, a carbonized fabric (Comparative Example 3) was produced by firing in the same process without applying carbon powder and starch to the hemp fabric.

それぞれの炭素化布帛における単位面積当たりの質量を比較すると、実施例3の炭素化布帛は、比較例3の炭素化布帛の2倍以上であった。また、単位面積当たりの引張強度、電気抵抗、電磁波防止性能を向上させることが出来た
そのため、実施例3の炭素化布帛は、綿炭素のみからなる従来品である、比較例3の炭素化布帛より小量で同一の性能を出せることが確認された。
When the mass per unit area in each carbonized fabric was compared, the carbonized fabric of Example 3 was more than twice the carbonized fabric of Comparative Example 3. Moreover, the tensile strength per unit area, the electrical resistance, and the electromagnetic wave prevention performance could be improved. Therefore, the carbonized fabric of Example 3 is a conventional product made only of cotton carbon, and the carbonized fabric of Comparative Example 3 It was confirmed that the same performance could be achieved with a smaller amount.

本発明の製造方法は、安価なセルロースを主成分とする原料とする布帛から、機械的強度が高い炭素化布帛を製造できる。また、製造された炭素化布帛は、構造材料、電磁波防止剤、脱臭剤、電極材料などへの幅広い利用が期待される。   According to the production method of the present invention, a carbonized fabric having high mechanical strength can be produced from a fabric made mainly from inexpensive cellulose. The produced carbonized fabric is expected to be widely used for structural materials, electromagnetic wave inhibitors, deodorants, electrode materials, and the like.

Claims (8)

セルロース系繊維を主成分とする原料布帛を、非酸化雰囲気下で加熱して炭化する工程を含む炭素化布帛の製造方法において、
前記炭化工程の前工程として、前記原料布帛に繊維素を均一に付加することを特徴とする炭素化布帛の製造方法。
In a method for producing a carbonized fabric comprising a step of heating and carbonizing a raw fabric mainly composed of cellulosic fibers in a non-oxidizing atmosphere,
A method for producing a carbonized fabric, characterized by uniformly adding fiber to the raw material fabric as a pre-step of the carbonization step.
前記原料布帛の原料となるセルロース系繊維が、綿、麻、竹及び木材のいずれか1種類または2種類以上の組み合わせからなる請求項1記載の炭素化布帛の製造方法。   The method for producing a carbonized fabric according to claim 1, wherein the cellulosic fibers used as a raw material of the raw material fabric are one or a combination of two or more of cotton, hemp, bamboo and wood. 繊維素が、デンプン、水溶性のセルロース誘導体、石油タール、及び微粉炭のいずれかである請求項1または2に記載の炭素化布帛の製造方法。   The method for producing a carbonized fabric according to claim 1 or 2, wherein the fiber is any one of starch, a water-soluble cellulose derivative, petroleum tar, and pulverized coal. 繊維素を均一に付加する方法が、泥状の前記繊維素を拡布状態の前記原料布帛にコーティングする方法である請求項1から3のいずれかに記載の炭素化布帛の製造方法。   The method for producing a carbonized fabric according to any one of claims 1 to 3, wherein the method of uniformly adding the fiber is a method of coating the raw material fabric in a spread state with the muddy fiber. 繊維素を均一に付加する方法が、前記繊維素をフィルム状にして、前記原料布帛に密着させて付加する方法である請求項1から3のいずれかに記載の炭素化布帛の製造方法。   The method for producing a carbonized fabric according to any one of claims 1 to 3, wherein the method of uniformly adding the fiber is a method in which the fiber is formed into a film and adhered to the raw material fabric. 繊維素を均一に付加する方法が、前記原料布帛に繊維素を含む溶液に浸漬後、乾燥させる方法である請求項1から3のいずれかに記載の炭素化布帛の製造方法。   The method for producing a carbonized fabric according to any one of claims 1 to 3, wherein the method for uniformly adding the fiber is a method in which the raw material is dipped in a solution containing the fiber and then dried. 炭化を行う温度が、1200℃以上1800℃以下である請求項1から6のいずれかに記載の炭素化布帛の製造方法。   The method for producing a carbonized fabric according to any one of claims 1 to 6, wherein the carbonization temperature is 1200 ° C or higher and 1800 ° C or lower. 請求項1から7のいずれかに記載の製造方法で製造してなることを特徴とする炭素化布帛。   A carbonized fabric produced by the production method according to claim 1.
JP2009006135A 2009-01-14 2009-01-14 Carbonized fabric manufacturing method and carbonized fabric Active JP4936478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009006135A JP4936478B2 (en) 2009-01-14 2009-01-14 Carbonized fabric manufacturing method and carbonized fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009006135A JP4936478B2 (en) 2009-01-14 2009-01-14 Carbonized fabric manufacturing method and carbonized fabric

Publications (2)

Publication Number Publication Date
JP2010163709A JP2010163709A (en) 2010-07-29
JP4936478B2 true JP4936478B2 (en) 2012-05-23

Family

ID=42580086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009006135A Active JP4936478B2 (en) 2009-01-14 2009-01-14 Carbonized fabric manufacturing method and carbonized fabric

Country Status (1)

Country Link
JP (1) JP4936478B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6217040B2 (en) * 2013-09-05 2017-10-25 道宇 可児 Carbonized fabric manufacturing method
CN116039167B (en) * 2022-12-06 2024-07-19 西安工程大学 Multifunctional flexible shielding fabric based on hybrid waste textiles and preparation method and application thereof
CN117384323B (en) * 2023-12-12 2024-03-08 成都锂能科技有限公司 Starch-based precursor material and preparation method and application thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2801907B1 (en) * 1999-12-06 2002-03-01 Snecma CARBONIZATION OF CELLULOSIC FIBROUS MATERIALS IN THE PRESENCE OF AN ORGANOSILICA COMPOUND
JP3579679B2 (en) * 2002-04-15 2004-10-20 新日本テックス株式会社 Carbide and its sheet products
JP4338959B2 (en) * 2002-11-19 2009-10-07 新日本テックス株式会社 Electromagnetic shielding material
JP4392432B2 (en) * 2007-01-09 2010-01-06 新日本テックス株式会社 Method for producing carbonized fabric
JP4392435B2 (en) * 2007-01-09 2010-01-06 新日本テックス株式会社 Method for producing carbonized fabric
JP4355343B2 (en) * 2007-01-09 2009-10-28 新日本テックス株式会社 Carbonized fabric manufacturing method and carbonized fabric obtained thereby
JP4392433B2 (en) * 2007-01-09 2010-01-06 新日本テックス株式会社 Method for producing carbonized fabric
JP4355344B2 (en) * 2007-01-09 2009-10-28 新日本テックス株式会社 Carbonized fabric manufacturing method and carbonized fabric obtained thereby
JP4392434B2 (en) * 2007-01-09 2010-01-06 新日本テックス株式会社 Method for producing carbonized fabric

Also Published As

Publication number Publication date
JP2010163709A (en) 2010-07-29

Similar Documents

Publication Publication Date Title
Li et al. High-performance all-solid-state supercapacitor derived from PPy coated carbonized silk fabric
Li et al. All-solid-state flexible supercapacitor of carbonized MXene/cotton fabric for wearable energy storage
JP6156828B2 (en) Method for producing carbon material using catalyst and carbon material
JP4392432B2 (en) Method for producing carbonized fabric
JP6495456B2 (en) Graphite sheet and method for producing the same
JP4936478B2 (en) Carbonized fabric manufacturing method and carbonized fabric
CN110809395A (en) Magnetic carbon nanofiber aerogel wave-absorbing material and preparation method thereof
WO2019029101A1 (en) Preparation method for activated carbon fiber
WO2018115177A1 (en) Graphite material
Zhang Hydroentangling: a novel approach to high‐speed fabrication of carbon nanotube membranes
JP4355343B2 (en) Carbonized fabric manufacturing method and carbonized fabric obtained thereby
JP7229788B2 (en) activated carbon fiber material
KR101329104B1 (en) Manufacturing method of rayon -type activated carbon fiber using potassium permanganate
CN109957860B (en) Preparation method of viscose high-temperature graphite carbon fiber
JP4392433B2 (en) Method for producing carbonized fabric
JP2017101350A (en) Manufacturing method of carbon material using cupra fiber material
KR20230002184A (en) A manufacturing method of carbon fibers from cellulose fiber or cellulose derivative fiber
JP4392434B2 (en) Method for producing carbonized fabric
JP4355344B2 (en) Carbonized fabric manufacturing method and carbonized fabric obtained thereby
CN103334295B (en) A kind of activation method improving polyacrylonitrile-based carbon fibre ratio capacitance
KR102075114B1 (en) Carbon nanotube coating and heat treatment for manufacturing lyocell-based carbon fiber
JP7107801B2 (en) Method for producing activated carbon fiber material
KR102126247B1 (en) Carbon fiber modification method for high conductivity
EP3900061B1 (en) Improvements relating to thermoelectric materials
WO2024043101A1 (en) Carbonaceous fibrous structure and production method therefor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090430

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120111

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20120111

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4936478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250