JP4931353B2 - Microwave transceiver and rangefinder - Google Patents

Microwave transceiver and rangefinder Download PDF

Info

Publication number
JP4931353B2
JP4931353B2 JP2005018539A JP2005018539A JP4931353B2 JP 4931353 B2 JP4931353 B2 JP 4931353B2 JP 2005018539 A JP2005018539 A JP 2005018539A JP 2005018539 A JP2005018539 A JP 2005018539A JP 4931353 B2 JP4931353 B2 JP 4931353B2
Authority
JP
Japan
Prior art keywords
microwave
probe
waveguide
antenna
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005018539A
Other languages
Japanese (ja)
Other versions
JP2006208096A (en
Inventor
勲 太田
早衛 萱野
孝一 西田
憲二 黒瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wadeco Co Ltd
Original Assignee
Wadeco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wadeco Co Ltd filed Critical Wadeco Co Ltd
Priority to JP2005018539A priority Critical patent/JP4931353B2/en
Publication of JP2006208096A publication Critical patent/JP2006208096A/en
Application granted granted Critical
Publication of JP4931353B2 publication Critical patent/JP4931353B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Description

本発明は、マイクロ波を検出媒体として被検出物体までの距離を計測する距離計、並びに前記距離計に組み込まれるマイクロ波送受信器に関する。   The present invention relates to a distance meter that measures a distance to an object to be detected using a microwave as a detection medium, and a microwave transceiver that is incorporated in the distance meter.

従来より、溶鉱炉やコークス炉、焼却炉等における内容物の堆積量(レベル)を検出するために、マイクロ波を検出媒体とする距離計が用いられている。コークスや燃焼しているゴミは高温であり、しかも水蒸気ミストやオイルミスト等が周囲に蔓延しているため、レーザ光や赤外線等の光を用いた方式では感度が著しく低下して検出が困難になる。   Conventionally, a distance meter using a microwave as a detection medium has been used in order to detect the amount of accumulation (level) of contents in a blast furnace, a coke oven, an incinerator or the like. Coke and burning garbage are hot, and water vapor mist and oil mist are prevalent in the surroundings. Therefore, the method using laser light or infrared light makes the sensitivity extremely low and difficult to detect. Become.

この距離計は、炉頂に配設したマイクロ波送信器からマイクロ波を炉底方向に向けて送信し、マイクロ波送信器に近接して配設したマイクロ波受信器で内容物の表面で反射された反射マイクロ波を受信し、マイクロ波の送信から受信までの伝播時間を基に内容物までの距離を求め、内容物の堆積量を算出するのが一般的である。   This rangefinder transmits microwaves toward the bottom of the furnace from a microwave transmitter placed at the top of the furnace, and reflects it on the surface of the contents with a microwave receiver placed close to the microwave transmitter. In general, the reflected microwave is received, the distance to the content is obtained based on the propagation time from transmission to reception of the microwave, and the amount of the deposited content is calculated.

また、本出願人も、マイクロ波として、電界方向が一方向に回転(例えば、時計回り)する回転波を用いることで、炉壁等の内容物以外による反射波を排除して検出精度を改善した距離計を製品化している(非特許文献1参照)。回転波は、反射により電界分布の回転方向を反転させる性質があるため、内容物のみで反射された回転波と、内容物で反射され、更に炉壁で反射された回転波とでは、電界分布の回転方向が逆となる。そのため、電界分布が反転した回転波のみを受信することで、内容物までの距離をより正確に測定できるようになる。   In addition, the present applicant also improves the detection accuracy by using a rotating wave whose electric field direction rotates in one direction (for example, clockwise) as a microwave, thereby eliminating the reflected wave other than the contents such as the furnace wall. The distance meter is commercialized (see Non-Patent Document 1). The rotating wave has the property of reversing the rotation direction of the electric field distribution by reflection, so the electric field distribution is different between the rotating wave reflected only by the contents and the rotating wave reflected by the contents and further reflected by the furnace wall. The direction of rotation is reversed. Therefore, the distance to the contents can be measured more accurately by receiving only the rotating wave whose electric field distribution is inverted.

株式会社ワイヤーデバイスの製品カタログ「マイクロレンジャー MWS−RF」(2002年12月2日発行)Wire device product catalog “Micro Ranger MWS-RF” (December 2, 2002)

非特許文献1に記載の距離計では、導波管のアンテナとは反対側の端部にマイクロ波送信プローブとマイクロ波受信プローブとを配設し、アンテナの前段に円偏波器を配設している。そして、マイクロ波送信プローブからは電界分布が一方向(例えば、垂直方向)を向くマイクロ波(直線波)が発振され、導波管内に付設された円偏波器を通過する際に回転波に変換され、回転波がアンテナから内容物に向けて送信される。そして、内容物で反射され、電界分布が反転した回転波はアンテナで捕集された後、再び円偏波器を通過して直線波に変化されるが、変換後の直線波は、その電界分布が、マイクロ波送信プローブから発振された直線波の電界分布の向きとは直交(ここでは、水平方向)したものとなる。そのため、マイクロ波受信プローブとマイクロ波受信プローブは、同一の基板上に、垂直方向と水平方向とを向くように直交して搭載されており、更にはマイクロ波送受信器全体としての小型化に伴う導波管の小径化のために、かなり近接している。   In the distance meter described in Non-Patent Document 1, a microwave transmitting probe and a microwave receiving probe are disposed at the end of the waveguide opposite to the antenna, and a circular polarizer is disposed in front of the antenna. is doing. A microwave (linear wave) whose electric field distribution is directed in one direction (for example, the vertical direction) is oscillated from the microwave transmission probe, and becomes a rotating wave when passing through a circular polarizer attached in the waveguide. It is converted and a rotating wave is transmitted from the antenna toward the contents. The rotating wave reflected by the contents and whose electric field distribution is inverted is collected by the antenna, and then passes through the circular polarizer again to be changed into a linear wave. The distribution is orthogonal (here, the horizontal direction) to the direction of the electric field distribution of the linear wave oscillated from the microwave transmission probe. For this reason, the microwave receiving probe and the microwave receiving probe are mounted on the same substrate so as to face each other in the vertical direction and the horizontal direction, and further, as the entire microwave transceiver is reduced in size. Due to the small diameter of the waveguide, they are very close.

そのため、マイクロ波送信プローブからの直線波がマイクロ波受信プローブに直接入射し、マイクロ波受信プローブが受信した直線波と干渉を起こして測定精度に悪影響を及ぼす可能性がある。逆に、アンテナで捕獲された直線波がマイクロ波送信プローブに入射して、マイクロ波送信プローブからの直線波に悪影響を及ぼす可能もある。   Therefore, the linear wave from the microwave transmission probe may directly enter the microwave reception probe, causing interference with the linear wave received by the microwave reception probe, which may adversely affect the measurement accuracy. Conversely, a linear wave captured by the antenna may enter the microwave transmission probe and adversely affect the linear wave from the microwave transmission probe.

本発明はこのような状況に鑑みてなされたものであり、マイクロ波として回転波を使用して検出精度を高めるとともに、マイクロ波送信プローブからマイクロ波受信プローブへの直接入射、並びに受信波による送信波への影響を排除したマイクロ波送受信器を提供することを目的とする。本発明はまた、前記マイクロ波送受信器を備え、より高精度で信頼性の高い距離計を提供することを目的とする。   The present invention has been made in view of such a situation, and while using a rotating wave as a microwave to improve detection accuracy, direct incidence from a microwave transmitting probe to a microwave receiving probe, and transmission by a received wave An object of the present invention is to provide a microwave transceiver that eliminates the influence on waves. Another object of the present invention is to provide a highly accurate and reliable distance meter that includes the microwave transceiver.

上記の目的を達成するために、本発明は以下に示すマイクロ波送受信器及び距離計を提供する。
(1)導波管の一端側にアンテナを備えるとともに、該導波管内に、前記アンテナから遠い順にマイクロ波送信プローブ、マイクロ波受信プローブ及び円偏波器の順で、それぞれをマイクロ波の進行方向に沿って所定距離離間させ、かつ、前記マイクロ波送信プローブと前記マイクロ波受信プローブとを直交配置するとともに、導電性材料からなり、前記導波管の内径を横断する棒状短絡体を、前記マイクロ波送信プローブと前記マイクロ波受信プローブとの中間地点に、前記マイクロ波受信プローブと平行に挿入したことを特徴とするマイクロ波送受信器。
(2)前記導波管の前記アンテナとは反対側の端面を開口して該導波管内をエアーパージするための空気導入口を形成するとともに、前記空気導入口と前記マイクロ波送信プローブとの間に、マイクロ波送信プローブと平行に前記導波管の内径を横断する導電性材料からなる棒状短絡体、または導電性材料からなり、前記導波管の内径を横断する2本の棒状短絡体からなる十字型短絡体、または導電性材料からなるメッシュ板を配設し、該棒状短絡体、該十字型短絡体または該メッシュ板により前記マイクロ波送信プローブから発振されたマイクロ波を前記アンテナ側に反射させることを特徴とする上記(1)記載のマイクロ波送受信器。
(3)マイクロ波を被検出物体に向けて送信し、前記被検出物体からの反射マイクロ波を受信して前記被検出物体までの距離を計測する距離計であって、
上記(1)または(2)記載のマイクロ波送受信器を備え、一方向に回転する電界分布を有するマイクロ波回転波を前記アンテナから送信し、前記被検出物体で反射され、電界分布の回転方向が反転したマイクロ波回転波を受信すること特徴とする距離計
In order to achieve the above object, the present invention provides the following microwave transceiver and rangefinder.
(1) with an antenna at one end of the waveguide, the conductor-wave tube, farthest to the microwave transmitter probe from the antenna, in the order of the microwave receiver probe and circular polarizers, micro and their respective A rod-like short-circuit body that is spaced apart by a predetermined distance along the traveling direction of the wave, and that the microwave transmission probe and the microwave reception probe are arranged orthogonally, and is made of a conductive material and crosses the inner diameter of the waveguide. Is inserted in parallel with the microwave receiving probe at an intermediate point between the microwave transmitting probe and the microwave receiving probe .
(2) An end surface of the waveguide opposite to the antenna is opened to form an air inlet for purging the inside of the waveguide, and the air inlet and the microwave transmission probe In between, a rod-like short-circuit body made of a conductive material crossing the inner diameter of the waveguide parallel to the microwave transmission probe, or two rod-like short-circuit bodies made of a conductive material and crossing the inner diameter of the waveguide A cross-shaped short-circuit body made of, or a mesh plate made of a conductive material, and a microwave oscillated from the microwave transmission probe by the rod-shaped short-circuit body, the cross-shaped short-circuit body or the mesh plate The microwave transmitter / receiver according to (1), wherein the microwave transmitter / receiver is reflected .
(3) A distance meter that transmits a microwave toward a detected object, receives a reflected microwave from the detected object, and measures a distance to the detected object;
The microwave transmitter / receiver according to the above (1) or (2) is provided, a microwave rotating wave having an electric field distribution rotating in one direction is transmitted from the antenna, reflected by the detected object, and rotated in the electric field distribution direction. A distance meter characterized in that it receives a microwave rotation wave in which is inverted .

本発明のマイクロ波送受信器は、マイクロ波として回転波を用いるため検出精度に優れるとともに、マイクロ波送信プローブからマイクロ波受信プローブへの直接入射並びに受信波による送信波への影響を排除できる。また、エアーパージによる導波管内の浄化を効率良く行うことができる。   The microwave transceiver according to the present invention is excellent in detection accuracy because it uses a rotating wave as a microwave, and can eliminate the direct incidence from the microwave transmitting probe to the microwave receiving probe and the influence of the received wave on the transmitted wave. In addition, it is possible to efficiently purify the waveguide by air purge.

また、本発明の距離計は、このようなマイクロ波送受信器を備えることで、高精度で信頼性の高いものとなる。   In addition, the distance meter of the present invention includes such a microwave transmitter / receiver, so that it becomes highly accurate and reliable.

以下、本発明に関して図面を参照して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

図1は本発明のマイクロ波送受信器を示す斜視図であり、図2は本発明の距離計並びにマイクロ波の各位置における電界分布を示す模式図である。   FIG. 1 is a perspective view showing a microwave transceiver according to the present invention, and FIG. 2 is a schematic diagram showing an electric field distribution at each position of the distance meter and microwave according to the present invention.

本発明のマイクロ波送受信器1は、導波管10の一端面(図示せず)の近傍にて、マイクロ波送信プローブ11とマイクロ波受信プローブ12とが、マイクロ波送信プローブ11を端面側とし、このマイクロ波送信プローブ11から導波管10の他端側に所定距離離間し、かつ直交して装着されている。マイクロ波送信プローブ11及びマイクロ波受信プローブ12は、共に公知のもので構わず、使用するマイクロ波の周波数に応じて適宜選択される。尚、マイクロ波送信プローブ11及びマイクロ波受信プローブ12は、それぞれの先端が導波管10の内壁に接触しないように突出長が設定されている。このようにマイクロ波送信プローブ11とマイクロ波受信プローブ12とが配置されているため、従来のマイクロ波送信プローブ11とマイクロ波受信プローブ12とを同一の基板上に並設した場合に比べて両プローブ11,12を離して配置でき、マイクロ波送信プローブ11からマイクロ波受信プローブ12への直接入射並びに受信波による送信波への影響を排除できるとともに、導波管10の断面積が少なくて済み、装置全体としてより小型になる。 In the microwave transmitter / receiver 1 of the present invention, the microwave transmission probe 11 and the microwave reception probe 12 are arranged in the vicinity of one end face (not shown) of the waveguide 10 with the microwave transmission probe 11 as the end face side. The microwave transmission probe 11 is attached to the other end of the waveguide 10 at a predetermined distance and orthogonally. Both the microwave transmission probe 11 and the microwave reception probe 12 may be known ones, and are appropriately selected according to the microwave frequency to be used. Note that the microwave transmission probe 11 and the microwave reception probe 12 are set to have a protruding length so that the respective tips do not contact the inner wall of the waveguide 10. Thus for a microwave transmission probe 11 and the microwave receiver probe 12 is placed, and a conventional microwave transmission probe 11 and the microwave receiver probe 12 as compared with the case where juxtaposed on the same substrate Both probes 11 and 12 can be arranged apart from each other, the direct incidence from the microwave transmission probe 11 to the microwave reception probe 12 and the influence on the transmission wave by the reception wave can be eliminated, and the cross-sectional area of the waveguide 10 is small. As a result, the entire device becomes smaller.

また、マイクロ波送信プローブ11とマイクロ波受信プローブ12との中間地点には、導電性材料からなる棒状短絡体13が、マイクロ波受信プローブ12と平行に、かつ、導波管10の内径を横断するように挿入されている。棒状短絡体13としては、金属からなる丸棒や角棒、あるいは幅の狭い板が適当であり、その直径または幅は、マイクロ波受信プローブ12の直径または幅よりも大きく、かつ、マイクロ波送信プローブ11から発振されるマイクロ波が、棒状短絡体13と導波管10の内壁との間で形成される隙間を自由に通過できるように調整される。   In addition, a rod-like short-circuit body 13 made of a conductive material is parallel to the microwave reception probe 12 and crosses the inner diameter of the waveguide 10 at an intermediate point between the microwave transmission probe 11 and the microwave reception probe 12. Have been inserted. As the rod-like short-circuit body 13, a round bar or square bar made of metal or a narrow plate is suitable, and its diameter or width is larger than the diameter or width of the microwave receiving probe 12, and microwave transmission is performed. The microwave oscillated from the probe 11 is adjusted so that it can freely pass through the gap formed between the rod-shaped short-circuit body 13 and the inner wall of the waveguide 10.

マイクロ波送信プローブ11、マイクロ波送信プローブ12及び棒状短絡体13の各離間距離は、使用するマイクロ波の周波数に応じて適宜設定される。また、棒状短絡体13はマイクロ波送信プローブ11とマイクロ波送信プローブ12との中間地点に挿入される。このマイクロ波送信プローブ11とマイクロ波受信プローブ12との離間距離は、従来の両プローブ11.12を同一基板上に並設した場合に比べて格段に大きい。   The respective separation distances of the microwave transmission probe 11, the microwave transmission probe 12, and the rod-shaped short-circuit body 13 are appropriately set according to the frequency of the microwave to be used. Further, the rod-shaped short-circuit body 13 is inserted at an intermediate point between the microwave transmission probe 11 and the microwave transmission probe 12. The separation distance between the microwave transmission probe 11 and the microwave reception probe 12 is much larger than when both conventional probes 11.12 are arranged side by side on the same substrate.

また、導波管10の他端はアンテナ14に接続しており、マイクロ波受信プローブ12とアンテナ14との間には円偏波器15が装着されている。円偏波器15は、導波管10の軸線に向かって突出する金属製の平板とすることができ、更にこの金属製平板の両端部15aは、マイクロ波の反射を防止するためにテーパ状に切除されている。そして、円偏波器15は、マイクロ波送信プローブ11及びマイクロ波受信プローブ12の両方に対して45°の角度で交差するように、導波管10の内壁に装着される。また、図示は省略するが、円偏波器15として、導波管10の内径を横断する誘電体製の平板とすることもできる。   The other end of the waveguide 10 is connected to an antenna 14, and a circular polarizer 15 is mounted between the microwave reception probe 12 and the antenna 14. The circular polarizer 15 can be a metal flat plate protruding toward the axis of the waveguide 10, and both ends 15a of the metal flat plate are tapered to prevent reflection of microwaves. Has been excised. The circular polarizer 15 is attached to the inner wall of the waveguide 10 so as to intersect with both the microwave transmission probe 11 and the microwave reception probe 12 at an angle of 45 °. Although not shown, the circular polarizer 15 may be a dielectric plate that crosses the inner diameter of the waveguide 10.

マイクロ波送信プローブ11からは、電界分布が一方向を向くマイクロ波(直線波)が発振されるが、この直線波が円偏波器15を通過する際に電界分布が時計回り、あるいは反時計回りに回転するマイクロ波(回転波)に変換される。そして、アンテナ14からはこの回転波が送信される。   The microwave transmission probe 11 oscillates a microwave (linear wave) whose electric field distribution is directed in one direction. When the linear wave passes through the circular polarizer 15, the electric field distribution is clockwise or counterclockwise. It is converted into a microwave (rotating wave) that rotates around. The rotating wave is transmitted from the antenna 14.

本発明のマイクロ波送受信器1は上記の如く構成されるが、本発明は更に上記のマイクロ波送受信器1を備える距離計を提供する。図2に模式的に示すように、距離計は、上記のマイクロ波送受信器1と、アンテナ14と、図示は省略される制御回路とから概略構成される。アンテナ14には制限がなく、ホーンアンテナやカセグレンアンテナ等を用途に合わせて適宜選択できる。また、制御回路は、マイクロ波送信プローブ11及びマイクロ波受信プローブ12の駆動、制御を行う制御部や、マイクロ波送信プローブ11から送信され、被検出物体20で反射されたマイクロ波をマイクロ波受信プローブ12で受信するまでの伝搬時間に基づいて被検出物体20までの距離を算出する演算部等で構成されており、その具体的な回路構成は公知のものでかまわない。   Although the microwave transceiver 1 of the present invention is configured as described above, the present invention further provides a distance meter including the microwave transceiver 1 described above. As schematically shown in FIG. 2, the distance meter is roughly constituted by the microwave transceiver 1, the antenna 14, and a control circuit not shown. There is no restriction | limiting in the antenna 14, A horn antenna, a Cassegrain antenna, etc. can be suitably selected according to a use. In addition, the control circuit receives the microwaves transmitted from the microwave transmission probe 11 and reflected by the detected object 20 and received from the control unit that drives and controls the microwave transmission probe 11 and the microwave reception probe 12. It is comprised by the calculating part etc. which calculate the distance to the to-be-detected object 20 based on the propagation time until it receives with the probe 12, The concrete circuit structure may be a well-known thing.

尚、FMCW方式の距離計については、本出願人による特開2002−156447号公報を参照することができる。当該距離計は、制御電圧により発振周波数を可変して出力する電圧制御型発振器と、階段波形電圧を電圧制御型発振器に供給して電圧制御型発振器からの出力周波数を測定する周波数測定手段と、周波数測定手段で得られた階段波形電圧の各電圧に対応する測定周波数からスイープ速度を一定化するための印加電圧を算出し、この印加電圧を所定間隔で電圧制御型発振器に供給する制御手段とを具備するスイープ発振装置を備えており、被検出物体20からの反射波と、電圧制御型発振器からの送信波の周波数とを混合してビート信号を生成し、このビート信号に基づいて被検出物体20との間の距離を算出する構成となっている。このような構成により、被検出物体以外からの不要反射波を排除してより正確な距離検出が可能になる。   For the FMCW type distance meter, Japanese Patent Application Laid-Open No. 2002-156447 by the present applicant can be referred to. The distance meter includes a voltage-controlled oscillator that varies and outputs an oscillation frequency according to a control voltage, a frequency measuring unit that supplies a staircase waveform voltage to the voltage-controlled oscillator and measures an output frequency from the voltage-controlled oscillator, Control means for calculating an applied voltage for making the sweep speed constant from a measurement frequency corresponding to each voltage of the staircase waveform voltage obtained by the frequency measuring means, and supplying the applied voltage to the voltage controlled oscillator at a predetermined interval; And a sweep signal generated by mixing the reflected wave from the detected object 20 and the frequency of the transmission wave from the voltage controlled oscillator, and detecting the detected signal based on the beat signal. The distance between the object 20 is calculated. With such a configuration, it is possible to detect a more accurate distance by eliminating unnecessary reflected waves from other than the object to be detected.

上記距離計において、マイクロ波送受信器1のマイクロ波送信プローブ11から直線波W1が発振される。この直線波W1は、電界分布がマイクロ波送信プローブ11の配置方向に一致(ここでは図中左右方向)しており、棒状短絡体13及びマイクロ波受信プローブ12と直交するため、棒状短絡体13及びマイクロ波受信プローブ12で反射されることなくそのままの電界分布を維持して導波管10を伝搬する。そして、この直線波W1は、円偏波器15を通過する際に、電界分布がある方向に回転(ここでは時計回り)する回転波W2に変換され、回転波W2がアンテナ14から被検出物体20に向けて送信される。   In the distance meter, a linear wave W <b> 1 is oscillated from the microwave transmission probe 11 of the microwave transceiver 1. Since this linear wave W1 has an electric field distribution that coincides with the arrangement direction of the microwave transmission probe 11 (here, the horizontal direction in the figure) and is orthogonal to the rod-shaped short-circuit 13 and the microwave reception probe 12, the rod-shaped short-circuit 13 And it propagates through the waveguide 10 while maintaining the electric field distribution as it is without being reflected by the microwave receiving probe 12. The linear wave W1 is converted into a rotating wave W2 that rotates in a certain direction (clockwise in this case) when passing through the circular polarizer 15, and the rotating wave W2 is detected from the antenna 14 by the object to be detected. Sent to 20.

回転波W2は反射により電界分布の回転方向が反転する性質があり、被検出物体20で反射された回転波W3は、図中反時計回りに回転する電界分布を持つようになる。そして、回転波W3はアンテナ14で捕獲されると、電界分布の回転方向を維持したまま導波管10を伝搬し、円偏波器15を通過する際に直線波W4に変換される。この直線波W4は、電界分布の向きがマイクロ波送信プローブ11から発振された直線波W1の電界分布と直交しており(図中上下方向)、即ちマイクロ波受信プローブ12と平行であるため、マイクロ波受信プローブ12で検波される。   The rotating wave W2 has a property that the rotation direction of the electric field distribution is reversed by reflection, and the rotating wave W3 reflected by the detected object 20 has an electric field distribution that rotates counterclockwise in the drawing. When the rotating wave W3 is captured by the antenna 14, it propagates through the waveguide 10 while maintaining the rotation direction of the electric field distribution, and is converted to a linear wave W4 when passing through the circular polarizer 15. The direction of the electric field distribution of the linear wave W4 is orthogonal to the electric field distribution of the linear wave W1 oscillated from the microwave transmission probe 11 (in the vertical direction in the figure), that is, parallel to the microwave reception probe 12. Detection is performed by the microwave receiving probe 12.

ここで、マイクロ波送信プローブ11から発振される直線波W1は、マイクロ波受信プローブ12の配置方向(ここでは図中上下方向)に一致する成分も多少含まれている。この成分は、棒状短絡体13で短絡され消滅するため、被検出物体20で反射され円偏波器15を通過した直線波W4と混合してマイクロ波受信プローブ12で受信されることはない。   Here, the linear wave W1 oscillated from the microwave transmission probe 11 also includes some components that coincide with the arrangement direction of the microwave reception probe 12 (here, the vertical direction in the figure). Since this component is short-circuited by the rod-shaped short-circuit body 13 and disappears, it is not mixed with the linear wave W4 reflected by the detected object 20 and passed through the circular polarizer 15 and received by the microwave receiving probe 12.

このように、本発明のマイクロ波送受信器1はマイクロ波送信プローブ11とマイクロ波受信プローブ12との間のアイソレーションを高くとることができ、これを組み込んだ距離計も高精度で、信頼性の高いものとなる。   As described above, the microwave transmitter / receiver 1 of the present invention can provide high isolation between the microwave transmission probe 11 and the microwave reception probe 12, and a distance meter incorporating the microwave transmitter / receiver 12 has high accuracy and reliability. Will be expensive.

尚、FMCW方式の距離計としたきに、マイクロ波送受信器1の導波管10の断面形状を正方形とすることにより、使用するマイクロ波の振り幅を拡げることができるため、検出精度がより高まり好ましい。   When the FMCW type distance meter is used, the microwave 10 used in the microwave transmitter / receiver 1 has a square cross-sectional shape, so that the width of the microwave to be used can be increased. Increased and preferable.

ところで、本発明の距離計は溶鉱炉やコークス炉、焼却炉等に好適に使用されるが、これらの炉内には各種の粉状物が浮遊しており、粉状物がアンテナ14を通じてマイクロ波送受信器1の導波管10に入り込み、マイクロ波の送受信に悪影響を及ぼすことがある。そのため、導波管10に空気を導入して内部を浄化(エアーパージ)することが有効であるが、導波管10の周壁から空気を導入すると導波管内で複雑な気流が発生して粉状物を効果的に排出できない。   By the way, the distance meter of the present invention is suitably used for a blast furnace, a coke oven, an incinerator, etc., but various powders are floating in these furnaces, and the powders are microwaved through the antenna 14. It may enter the waveguide 10 of the transceiver 1 and adversely affect microwave transmission / reception. For this reason, it is effective to introduce air into the waveguide 10 to purify the inside (air purge). However, when air is introduced from the peripheral wall of the waveguide 10, a complicated air flow is generated in the waveguide and powder is generated. The matter cannot be discharged effectively.

そこで、図3に示すように、導波管10の端面を開口して空気導入口10Aとし、この空気導入口10Aから空気を導入する。導入空気は、導波管10の内部で直線状の気流を形成するため、粉状物を確実に排出できるようになる。   Therefore, as shown in FIG. 3, the end face of the waveguide 10 is opened to form an air inlet 10A, and air is introduced from the air inlet 10A. Since the introduced air forms a linear air flow inside the waveguide 10, the powdered material can be reliably discharged.

その一方で、空気導入口10Aとマイクロ波送信プローブ11との間に同様の棒状短絡体13Aを配設し、この棒状短絡体13Aによりマイクロ波送信プローブ11から発振される直線波をアンテナ側に反射する。   On the other hand, a similar rod-shaped short-circuit 13A is disposed between the air inlet 10A and the microwave transmission probe 11, and the linear wave oscillated from the microwave transmission probe 11 by this rod-shaped short-circuit 13A is directed to the antenna side. reflect.

このような構成とすることで、マイクロ波の送受信に何ら影響を与えることなく、エアーパージによる浄化を良好に行うことが可能になる。   By adopting such a configuration, it is possible to satisfactorily perform purification by air purge without affecting the transmission / reception of microwaves.

尚、図示は省略するが、棒状短絡体13Aに代えて、棒状短絡体13Aを2本、十字状に交差させた十字型短絡体を用いてもよい。また、空気導入口10Aを塞ぐように金属のメッシュ板を付設してもよい。   In addition, although illustration is abbreviate | omitted, it may replace with rod-shaped short circuit body 13A, and may use the cross-shaped short circuit body which crossed two rod-shaped short circuit bodies 13A in the shape of a cross. Further, a metal mesh plate may be provided so as to close the air inlet 10A.

本発明のマイクロ波送受信器を示す一部破断斜視図である。It is a partially broken perspective view which shows the microwave transmitter / receiver of this invention. 本発明の距離計並びにマイクロ波の各位置における電界分布を示す模式図である。It is a schematic diagram which shows the electric field distribution in each position of the distance meter and microwave of this invention. 本発明のマイクロ波送受信器の他の例を示す一部破断斜視図である。It is a partially broken perspective view which shows the other example of the microwave transmitter / receiver of this invention.

符号の説明Explanation of symbols

1 マイクロ波送受信器
10 導波管
10A 空気導入口
11 マイクロ波送信プローブ
12 マイクロ波受信プローブ
13 棒状短絡体
13A 棒状短絡体
14 アンテナ
15 円偏波器
20 被検出物体
DESCRIPTION OF SYMBOLS 1 Microwave transmitter / receiver 10 Waveguide 10A Air inlet 11 Microwave transmitting probe 12 Microwave receiving probe 13 Rod-shaped short-circuit 13A Rod-shaped short-circuit 14 Antenna 15 Circular polarizer 20 Object to be detected

Claims (3)

導波管の一端側にアンテナを備えるとともに、該導波管内に、前記アンテナから遠い順にマイクロ波送信プローブ、マイクロ波受信プローブ及び円偏波器の順で、それぞれをマイクロ波の進行方向に沿って所定距離離間させ、かつ、前記マイクロ波送信プローブと前記マイクロ波受信プローブとを直交配置するとともに、導電性材料からなり、前記導波管の内径を横断する棒状短絡体を、前記マイクロ波送信プローブと前記マイクロ波受信プローブとの中間地点に、前記マイクロ波受信プローブと平行に挿入したことを特徴とするマイクロ波送受信器。 With an antenna at one end of the waveguide, the conductor-wave tube microwave transmitter probe farthest from the antenna, in the order of the microwave receiver probe and circular polarizer, the progress of the microwave their respective A rod-shaped short-circuit body that is spaced apart from each other by a predetermined distance along the direction and is orthogonally disposed between the microwave transmission probe and the microwave reception probe, is made of a conductive material, and traverses the inner diameter of the waveguide. A microwave transmitter / receiver, wherein the microwave transmitter / receiver is inserted in parallel with the microwave receiving probe at an intermediate point between the microwave transmitting probe and the microwave receiving probe . 前記導波管の前記アンテナとは反対側の端面を開口して該導波管内をエアーパージするための空気導入口を形成するとともに、前記空気導入口と前記マイクロ波送信プローブとの間に、マイクロ波送信プローブと平行に前記導波管の内径を横断する導電性材料からなる棒状短絡体、または導電性材料からなり、前記導波管の内径を横断する2本の棒状短絡体からなる十字型短絡体、または導電性材料からなるメッシュ板を配設し、該棒状短絡体、該十字型短絡体または該メッシュ板により前記マイクロ波送信プローブから発振されたマイクロ波を前記アンテナ側に反射させることを特徴とする請求項1記載のマイクロ波送受信器。 Opening the end surface of the waveguide opposite to the antenna to form an air inlet for air purge inside the waveguide, and between the air inlet and the microwave transmission probe, A rod-like short-circuit body made of a conductive material crossing the inner diameter of the waveguide in parallel with the microwave transmission probe, or a cross made of a conductive material and made of two rod-like short-circuit bodies crossing the inner diameter of the waveguide A type short-circuit body or a mesh plate made of a conductive material is provided, and the microwave oscillated from the microwave transmission probe is reflected to the antenna side by the rod-shaped short-circuit body, the cross-shaped short-circuit body or the mesh plate. The microwave transceiver according to claim 1. マイクロ波を被検出物体に向けて送信し、前記被検出物体からの反射マイクロ波を受信して前記被検出物体までの距離を計測する距離計であって、
請求項1または2記載のマイクロ波送受信器を備え、一方向に回転する電界分布を有するマイクロ波回転波を前記アンテナから送信し、前記被検出物体で反射され、電界分布の回転方向が反転したマイクロ波回転波を受信すること特徴とする距離計
A distance meter that transmits a microwave toward a detected object, receives a reflected microwave from the detected object, and measures a distance to the detected object;
A microwave transmitter / receiver comprising the microwave transmitter / receiver according to claim 1, wherein a microwave rotation wave having an electric field distribution rotating in one direction is transmitted from the antenna, reflected by the object to be detected, and the rotation direction of the electric field distribution is reversed. A distance meter characterized by receiving a microwave rotation wave .
JP2005018539A 2005-01-26 2005-01-26 Microwave transceiver and rangefinder Active JP4931353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005018539A JP4931353B2 (en) 2005-01-26 2005-01-26 Microwave transceiver and rangefinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005018539A JP4931353B2 (en) 2005-01-26 2005-01-26 Microwave transceiver and rangefinder

Publications (2)

Publication Number Publication Date
JP2006208096A JP2006208096A (en) 2006-08-10
JP4931353B2 true JP4931353B2 (en) 2012-05-16

Family

ID=36965134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005018539A Active JP4931353B2 (en) 2005-01-26 2005-01-26 Microwave transceiver and rangefinder

Country Status (1)

Country Link
JP (1) JP4931353B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011176726A (en) * 2010-02-25 2011-09-08 Oki Electric Industry Co Ltd Corner waveguide
JP5652735B2 (en) * 2011-03-11 2015-01-14 株式会社ワイヤーデバイス Coke oven coal level measurement device
JP2014215166A (en) * 2013-04-25 2014-11-17 株式会社ワイヤーデバイス Distance measuring device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0276301A (en) * 1988-09-12 1990-03-15 Hitachi Ltd Polarizer
JP2570886B2 (en) * 1989-04-27 1997-01-16 日本鋼管株式会社 Furnace level meter
JP2968639B2 (en) * 1992-04-28 1999-10-25 本田技研工業株式会社 FM radar module
JPH08181631A (en) * 1994-12-21 1996-07-12 Yokogawa Denshi Kiki Kk Duplexer
JP3155684B2 (en) * 1995-07-19 2001-04-16 アルプス電気株式会社 Probe mounting structure for outdoor converter for satellite broadcasting reception
JPH11168301A (en) * 1997-12-02 1999-06-22 Sharp Corp Converter for satellite broadcast reception
JP3662446B2 (en) * 1999-07-30 2005-06-22 シャープ株式会社 Dual frequency feed
FR2818444B1 (en) * 2000-12-14 2003-02-14 Thomson Multimedia Sa DEVICE FOR SEPARATING TRANSMISSION AND RECEPTION SIGNALS
JP2002232231A (en) * 2001-01-30 2002-08-16 Shinko Mex Co Ltd Antenna device
JP2002243845A (en) * 2001-02-14 2002-08-28 Shinko Mex Co Ltd Radar device and distance measuring method by the same
JP2003177182A (en) * 2001-12-11 2003-06-27 Wire Device:Kk Object detection device
JP4027175B2 (en) * 2002-08-05 2007-12-26 アルプス電気株式会社 Converter for satellite broadcasting reception
JP4160409B2 (en) * 2003-01-23 2008-10-01 株式会社ワイヤーデバイス Antenna and object detection device

Also Published As

Publication number Publication date
JP2006208096A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
AU2011295673B2 (en) Multiphase fluid characterization system
US9414024B2 (en) Terahertz imaging
US7068213B2 (en) Level meter
US7560869B2 (en) Method and apparatus for remotely monitoring properties of gases and plasmas
US10845338B2 (en) Fluid meter including a first wall thickness in the area of a transmitter and in the area of a receiver and a second wall thickness in the area there between
UA51797C2 (en) Method for determining quantity of free-flowing material; method for determining flow rate of free-flowing material (variants)
JP4931353B2 (en) Microwave transceiver and rangefinder
JPS6238360A (en) Ultrasonic phase reflectoscope
WO2011016578A1 (en) Short range radar device and distance measuring method
CN109906369B (en) Microwave measuring device for determining two-phase flow load
US20180045820A1 (en) Proximity sensor and method for measuring the distance from an object
JP2813007B2 (en) Microwave type powder flow meter
JP2002243845A (en) Radar device and distance measuring method by the same
JP2004294449A (en) Distance measuring instrument for measuring distance by electromagnetic wave, based on radar principle
Kim et al. Determination of the velocity of ultrasound by short pulse switched sinusoidal excitation and phase-sensitive detection by a computer-controlled pulse-echo system
US6490909B1 (en) Method and apparatus for calculating carbon content of fly ash
JP2023131319A (en) Inspection device
JP2008224666A (en) Microwave measurement system of piping thickness reduction
RU2395789C1 (en) Method of defining loose material layer height
JPS60218086A (en) Distance measuring instrument
US7066008B2 (en) Method for measuring concentration of solid or liquid particulate matter in a gaseous carrier medium
RU2597666C1 (en) Method of measuring mass flow rate of liquid media
JP2016044984A (en) Weld monitoring device and method by ultrasonic wave
JP2000266580A (en) Flowmeter
JP2003177182A (en) Object detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100114

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120214

R150 Certificate of patent or registration of utility model

Ref document number: 4931353

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250