JP4929279B2 - 電解式水素水生成装置 - Google Patents

電解式水素水生成装置 Download PDF

Info

Publication number
JP4929279B2
JP4929279B2 JP2008518544A JP2008518544A JP4929279B2 JP 4929279 B2 JP4929279 B2 JP 4929279B2 JP 2008518544 A JP2008518544 A JP 2008518544A JP 2008518544 A JP2008518544 A JP 2008518544A JP 4929279 B2 JP4929279 B2 JP 4929279B2
Authority
JP
Japan
Prior art keywords
electrode
water
electrolytic
titanium
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008518544A
Other languages
English (en)
Other versions
JPWO2008062507A1 (ja
Inventor
義一 原田
建史 川嶋
Original Assignee
タカオカ化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タカオカ化成工業株式会社 filed Critical タカオカ化成工業株式会社
Publication of JPWO2008062507A1 publication Critical patent/JPWO2008062507A1/ja
Application granted granted Critical
Publication of JP4929279B2 publication Critical patent/JP4929279B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4676Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electroreduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Water Treatment By Sorption (AREA)

Description

本発明は,水道水に含まれる有機汚濁物質の吸着保持能をもつ活性炭ブロックを備えた殺菌機能を有する電解式水素水生成装置に関するものである。
従来,特開2006−43610に示される図2の電解式水素水生成装置(以下,従来装置と記する。)が知られている。
この従来装置は,電解用電極1,2を備える電解槽3および残留塩素やトリハロメタンをはじめとする有機塩素化合物,カビ臭の原因となる2−メチルイソボルネオール,農薬等の有機汚濁物質の吸着保持能を有する活性炭ブロック4を備えるろ過ユニット6から構成される。前記電解用電極1,2には電源ユニット7より直流電圧が給電され,装置内の貯留水を電気分解して水素および酸素から成る電解ガスを発生させ,通水停止時にはろ過ユニット6内に電解ガスを貯留する。電極1,2に給電する電源ユニット7では,水質の変動に影響を受けない電気分解を維持するため,電解電流を電流センサー9で検出し,レギュレータ10にフィードバックすることで電解電流を一定に保持する定電流制御が採用されている。
さらに,水道水中のミネラル成分,例えば,カルシウムが陰極表面に析出することを防止するための極性反転回路を備える。
電源ユニット7に設けられたトランジスタS1A,S1BおよびS2A,S2Bを同一のタイミングで開閉動作させることで電極1,2の極性を反転させる。
トランジスタS1A,S1Bを開,S2A,S2Bを閉として電源ユニット7から直流電圧を給電すると,電極1は陽極,電極2は陰極として水の電気分解が開始され,数時間に1回の割合でトランジスタS1A,S1Bを閉,S2A,S2Bを開に切り替え,電極1を陰極,電極2を陽極として電気分解を継続する。数時間の電解によっても陰極表面にカルシウムが析出する可能性があるが,極性反転が行われ,電極表面に多量の水素イオンを発生させることでカルシウムが溶解する酸性水を生成する。
また,前記電極1,2の近傍には,電極1,または,電極2に対し,常時,負電圧を給電するチタン製の殺菌用電極26を独立して設け,電極1および電極2間のインピーダンスをZ2としたとき,電極対を構成する各電極1,2とチタン電極26間のインピーダンスZ1を同等に保ちつつ,電解電流とチタン溶出に要する通電電流との比率でZ1,Z2を構成できる様,電極対1,2および殺菌用電極26を配設する。従来の電解式水素水生成装置では,前記殺菌用電極26を常時陰極として用い,このとき陽極となる電極1または,電極2との間に微弱電流を通電して極微少量のチタンを溶出させ,装置内や後段の活性炭ブロック4での細菌の発生を抑制している。
なお,前記殺菌用電極26には,電極1,または,電極2に対して,常時,負の直流電圧を電源ユニット7より供給する。
浄水を目的として活性炭等の吸着材料を要する一般の水処理装置では,吸着材料充填部での細菌の発生を抑制するため,抗菌作用を有する銀添着加工を施した活性炭を原料とする技術(特許文献1)やミネラル徐放粒子を添加した活性炭フィルタを利用し,活性炭フィルタから徐放されるカルシウム,マグネシウムによって細菌の繁殖を抑制する技術(特許文献2)が利用されるが,特許文献3では細菌繁殖を抑制するためにチタンを溶出させる方法をとっている。
特開平11−226570 特開2003−144821 特開2006−43610
さらに,特許文献3では,活性炭粉末をポリエチレン等のバインダを用いて中空柱状に成形した有機汚濁物質の吸着保持能を有する活性炭ブロック4を形成し,数μm程度の極めて微細な細孔を備えさせる発明が開示されている。
ろ過ユニット6内に貯留された電解ガスは活性炭ブロック4および活性炭粉末が有する無数の細孔に流入し,活性炭ブロック4内に電解ガスが吸蔵される。
なお,電解ガスの発生にともなう容器内圧の上昇により,貯留水は活性炭ブロック4の外周から浸透し,中心部の貫通穴5に浸み出て,圧力調整弁15を介して送水管16からドレン水として排出される。
水道蛇口12を開放して通水状態とすると,水道水はフロースイッチ13および電解槽3を介してろ過ユニット6に導水され,活性炭ブロック4の外周から浸透して貫通穴5から排出される。このとき,活性炭ブロック4内に吸蔵された電解ガスと水道水が接触し,電解ガスが水中に拡散,溶解する。
なお,電気分解を継続するとろ過ユニット6および電解槽3内の貯留水が完全に電解ガスで置換され,電極1,2が電解ガス層17に露出する。何らかの理由により電極1および電極2の間が短絡した場合,電解に消費されない無駄な電力を浪費するだけでなく,高濃度の水素ガスと酸素ガスで構成される電解ガスが短絡時に発生するアーク(火花)により発火現象や爆発現象をともなう場合がある。このような危険を防止するため,通水開始時のフロースイッチ13からの起動信号によって電源ユニット7から電極1,2への給電をスタートすることで電解を開始させ,電極1,2が電解ガス中に露出する前にタイマー11によって一定の時間で電源ユニット7からの給電を自動停止するように構成している。
なお,上述のタイマー制御方法の代替として,電解槽3内の上部,あるいは,ろ過ユニット6内の下部にフロートスイッチ等の水位センサーを設け,電解槽3内が常に貯留水で満たされる様,電源ユニット7の給電を水位センサーで制御する方法が用いられることもある。
電解停止後,水道蛇口12が開放され,水道水が電解式水素水生成装置に導水されると,電源ユニット7にフロースイッチ13の起動信号が入力され,再度,電気分解が開始される。
水の電気分解で生じる化学反応を化学式1に記する。
(化1)
2HO+2e→H+2OH … (1)
2HO→O+4H+4e … (2)
O→H+1/2O … (3)
(1)式は陰極反応,(2)式は陽極反応,(3)式は前記(1),(2)式を踏まえた系全体としての反応を示す。
(3)式に表されるように,水の電気分解によって発生する電解ガスは,水素ガス容積:酸素ガス容積が2:1の割合で構成されるため,約65%の高濃度の水素ガスが貯留することになる。また,活性炭ブロック4を構成する活性炭粉末とバインダの間隙が数μm程度の極めて微細な細孔を形成し,かつ,構成要素である活性炭粉末表面にはnm〜μmオーダーの無数の細孔を有している。このため,活性炭ブロック4内に貯留した電解ガスは,水道水と混合されて活性炭ブロック4から微細な気泡となって押し出され,この結果,高濃度の水素水が生成されることになる。
前述した従来の電解式水素水生成装置においては,電解用電極は,極性反転回路を備えることで負電圧印加時に付着したカルシウムを正電圧印加時に電極面に発生する多量の水素イオンを含んだ水,いわゆる酸性水によって溶解することで除去できるが,殺菌用電極については,常時,負電圧を印加するため,長期間の運転や水道水の硬度が高い地域では,電極表面にカルシウム等のミネラル成分が堆積して電解電流が低下する課題があった。電解電流の低下にともない殺菌用電極のチタン溶出量が低下し,安定した制菌効果を得ることが困難となるため,例えば,クエン酸等の酸性溶液を調製し,定期的に洗浄作業を行う必要があった。
上述の課題を解決するために,本発明の電解式水素水生成装置では,給水管と,それに接続された電解槽と,電解槽中の相互に対向する一対の電解電極と,その一方の電解電極の上方に配設された殺菌用電極と,前記一対の電解電極に一定期間ごとに相互に正,または,負の直流電圧を供給する電源と,前記一方の電極が陰極となったときのみ,その上方の殺菌用電極に負の電圧を供給する制御手段と,前記電解槽に接続され,電解槽で発生する電解水と電解ガスをろ過するろ過ユニットと,前記ろ過ユニットでろ過された水を外部に導く送水管で構成する。
前記電解電極は,白金,または,白金めっきを施した金属等,酸化反応による電気的特性の変化をうけにくい導電性材料,また,殺菌用電極はチタンで構成し,殺菌用電極と,これに対向する電解電極の間隙には,殺菌用電極の下部に配設された電解電極が陽極になったときに発生する酸素気泡の流れにより,前記陽極近傍で生成する酸性水を殺菌用電極に導くための誘導手段,例えばセパレータ等の遮蔽板を設ける。
また,後段の前記ろ過ユニットには,活性炭粉末をポリエチレン等のバインダを用いて中空柱状に成形した活性炭ブロックを収納する。
さらに,外部には給電電圧の極性を時間制御するための制御回路と定電流機能を有する電源ユニットを備え,前記電解槽の電解電極および殺菌用電極に給電する。
本発明の電解式水素水生成装置によれば,負極性時に微弱電解によってチタン電極表面に析出したカルシウム等のミネラル成分は,下部の電解電極が陽極時に水の電気分解によって発生する酸性水を,同じく電気分解によって発生する酸素気泡の上昇にともなって殺菌用のチタン電極近傍に誘導させることで溶解し,除去することができる。
また,この酸性水の誘導手段として,例えばセパレータ等の遮蔽板を配設することで,各電極で発生する電解ガスの混合を防止し,陽極側で生成する酸性水の酸性度の低下を抑制している。
さらに,チタン電極洗浄時は,チタン電極への給電を停止することでアルカリ性水を生成させず,酸性水による電極の洗浄効率を向上する。
なお,前記セパレータをチタン電極に近接して配設することで,陽極で発生する酸素気泡が陽極近傍に集約されて浮上するため,同時に生成する酸性水を効果的にチタン電極近傍に誘導することができ,カルシウム等,ミネラル成分の洗浄効果をさらに向上することができる。
図1に本発明の電解式水素水生成装置の構成例を示す。
本装置は,下部に水を電気分解し,電解ガス17を発生させるための電解用電極1,2と,電極1に対向させ,電極2の上方に配設される殺菌用チタン電極20と,電極1およびチタン電極20で構成されるギャップ部22に絶縁材料から成るセパレータ23で構成される電解槽3,上部に粉末活性炭をバインダにより中空柱状に成形した活性炭ブロック4を収納したろ過ユニット6を配設して成る。
なお,前記電極1,2はチタン等の金属に白金めっきを施した電極を使用し,前記殺菌用チタン電極20はチタン素材をそのまま使用する。
前記セパレータ23は,電極1および電極2で発生する電解ガスの気泡が双方向に混入して,電極2で生成される酸性水の酸性度を低下させることを抑制するため,電極1に対向するチタン電極20表面を覆い隠すように配設する。
なお,セパレータ23に導電性材料を使用した場合,セパレータ23が電極2とは逆極性の浮き電極として作用して水電解を行うため,電極2で生成した酸性水の酸性度を低下させる。よって,セパレータ23は絶縁物で構成するか,あるいは,導電性素材であっても絶縁被覆を施すことが望ましい。
また,電極1を陽極,チタン電極20を陰極として微弱電流を通電する場合,前記セパレータ23として,例えば,イオン交換膜のような微細孔を有する絶縁物を利用すれば,電極1および電極2で発生する電解ガスの混入を防止しつつ,電極1とチタン電極20への給電電圧を低減することもできる。
図3,図4に溶出チタンによる殺菌効果の一例を示す。
図3に示す事例は,陰極にチタン,陽極に白金めっきを施したチタンを用いた本発明の電極構成と,両極とも白金めっきを施したチタンを用いた電極構成として,1Lの水道水に対し,電流値(mA)と通電時間(hour)の積で表される通電条件が50mA×hour(以下,mA・hと略記する)相当となる10mAで5時間通電した後,一般細菌を投入した場合の生菌数の推移を示したものである。
両極とも白金めっきを施したチタンを用いた電極構成では,生菌数の低下が確認されないことに対し,本発明の電極構成では時間経過に従って明らかな殺菌効果が確認されている。
結果より,本発明の電極構成では,陰極から溶出した微量のチタンが水中に残存するため,通電停止後の水においても殺菌効果が発揮されることがわかる。
図4に示す事例は,図3の条件と同様に,陰極にチタン,陽極に白金めっきを施したチタンを用いて,1Lの水に対し,通電条件が50mA・h相当となる様,10mAで5時間通電し,通電前に一般細菌を投入した時の生菌数の推移を示したものである。
生菌数は通電直後より時間経過に伴って減少し,さらに,前述したように通電停止後も生菌数の減少が確認されている。
また,チタン電極の電流値を上昇させ,チタン濃度を増加させることで殺菌効果を向上できる可能性もあるが,低濃度のチタン含有水であっても,細菌が存在しない初期状態から継続的に使用すれば,細菌の増殖を充分に抑制できることから,チタンの溶出に必要となる電流値および通電時間の積で表す通電条件を50mA・h相当としている。
図5に電流値および通電時間の積で表される通電条件に対するチタンの溶出量を示す。チタンの溶出量は電流値および通電時間の積の上昇に伴って増加し,本発明の通電条件(貯留水1Lに対し,50mA・h相当)によるチタンの溶出量は10−4mg程度であり,貯留水のチタン濃度は10−4mg/L程度になると推察される。
さらに,チタン電極20は溶出チタンによる殺菌効果が発揮される通電条件を確保するため,電極2とチタン電極20の電流比率に応じた電極面積で構成する。
上記の殺菌効果を発揮するための通電条件は,前述の溶出チタンによる殺菌効果の検証結果に基づき,数式1に示す条件を満たすように設定する。
(数式1)
I=50mA・h×V/t
ここで,数式1に記されるIはチタン電極の通電電流(mA),Vは本発明による電解式水素水生成装置の貯留水の水量(L),tはチタン電極への給電時間(h)を示す。
なお,電極2の表面積S2とチタン電極の表面積S1は,電極1〜電極2間のインピーダンスをZ2,電極間距離をL2,電極1〜チタン電極20間のインピーダンスをZ1,電極間距離をL1とし,電解ガスの発生に要する電解電流をI2,チタン電極の通電電流をI1としたとき,数式2の(4)式の関係が成立する。
したがって,電極1〜電極2間の電解電流I2,電極間距離L2および電極2の
表面積S2の設定値に準じて,チタン電極20の表面積S1および電極間距離L1を(4)式の関係を満たすように構成すれば良い。
なお,チタン電極20の表面積S1は,チタン電極20の全対向面積に相当する見掛けの表面積を示すものではなく,微弱電流の通電に奇与する真の表面積を指すものであって,前記セパレータの形態によって変化し,開孔率の低い素材を用いるほど,表面積S1は小さくなる。
(数式2)
Z1×I1=Z2×I2 ・・・ (1)
Z1=ρ×L1/S1 ・・・ (2)
Z2=ρ×L2/S2 ・・・ (3)
I1×L1/S1=I2×L2/S2 ・・・ (4)
S2/S1=I2×L2/(I1×L1) ・・・ (5)
なお,数式2の(2)式および(3)式に示すρは,水の比抵抗を示す。
前記電極1,2およびチタン電極20に直流電圧を給電する電源ユニット7は,電極1,2とチタン電極20で流れる電流を検出する電流センサー9と,電流センサー9の出力信号により出力電圧を可変して電流値を一定に保つレギュレータ10と,所定の時間で電圧出力を停止するためのタイマ−11とを備えた定電流電源とする。なお,チタン電極2への給電回路にはダイオード24を具備し,陰極時のみに通電させ,陽極時には給電を停止することでチタン電極20の酸化による通電性能の低下を防止する。
電源ユニット7に設けられたトランジスタS1A,S1BおよびS2A,S2Bを同一のタイミングで開閉動作させることで電極1,2の極性を反転させる。
トランジスタS1A,S1Bを開,S2A,S2Bを閉として電源ユニット7から直流電圧を給電すると,電極1は陽極,電極2は陰極として水の電気分解が開始され,数時間に1回の割合でトランジスタS1A,S1Bを閉,S2A,S2Bを開に切り替え,電極1を陰極,電極2を陽極として電気分解を継続する。電極1,または電極2が陰極となった場合,原水に含まれるミネラル成分,例えば,カルシウムが電極表面に析出するが,上述の極性切替機能により電極1,または電極2が陽極となることで,水の電気分解によって発生した水素イオンによって電極近傍に酸性水が生成され,電極に析出したカルシウムを溶解することができる。なお,カルシウムを多量に含む水道水を使用する場合,前記の極性切替時間を短縮することで電極1および電極2におけるカルシウムの析出を抑制することができる。
チタン電極20には前記トランジスタS1A,S1Bを開,S2A,S2Bを閉とした条件で負電圧が印加され,微量のチタンを溶出して殺菌作用を発揮させ,
トランジスタS1A,S1Bを閉,S2A,S2Bを開した条件では,ダイオード24により,給電を停止する。なお,負電圧給電時,チタン電極20表面には,カルシウムが析出する。
チタン電極への給電停止時,下部の電極2には正電圧が印加され,水の電気分解によって,前記(化1)の(2)式に示す反応により,電解ガスである酸素気泡25および酸性水が生成する。
酸素気泡は浮力により上部に上昇し,同時に酸素気泡の流れに伴って酸性水がチタン電極20の近傍に効率良く導かれることで,前述のチタン電極20表面に析出したカルシウムを溶解,除去する。
さらに,前記セパレータ23を電極2およびチタン電極20に近接して配設することで酸素気泡の拡散が抑えられ,同時に生成される酸性水を効率良くチタン電極20表面に導くことができるため,電極表面に析出したカルシウムの洗浄効果を向上できる。
上述のように構成した電極1,2およびチタン電極20を備える電解槽3と前記各電極に極性を制御された直流電圧を印加することでろ過ユニット6および下部に配設された電解槽3内部の貯留水が電気分解され,電解ガス17である水素および酸素がろ過ユニット6の上部に溜まる。同時に,電極2およびチタン電極20が負極性であるとき,チタン電極20の通電面から微少量のチタンが溶出し,貯留水中に拡散する。
また,電解ガス17の発生にともなう容器内圧の上昇により,溶出チタンを含む貯留水は活性炭ブロック4の外周から浸透し,中心部の貫通穴5に浸み出て,圧力調整弁15を介して送水管16からドレン水として排出される。
上記のような過程を経て,溶出チタンが貯留水および活性炭ブロック4内の細菌を殺菌し,装置内を清浄な状態に保つことができる。
水道蛇口12を開放して通水状態とすると,水道水はフロースイッチ13および電解槽3を介してろ過ユニット6に導水され,貯留された電解ガスと混合された後,活性炭ブロック4の外周から浸透して貫通穴5から排出される。このとき,水道水中に含まれる微量の汚染物質が取り除かれるとともに,混合された電解ガスおよび活性炭ブロック4内に吸蔵された電解ガスが活性炭ブロック4によって微細気泡に変換され,水中に拡散,溶解することで高濃度の水素水を提供する。
次に,上述した本発明における電解槽構造を応用例として,電解電極対の双方の上方にチタン電極を配設した構成を図6に示す。
本装置では,電極1および電極2のいずれの上方にもチタン電極31,32を備えていること,およびこれに伴い,チタン電極31,32に双方に負電位を印加するための給電回路を備えることを除けば,その他の構成要素や動作条件については,上述の図1に示す装置の構成と同様である。
チタン電極31は電極1に,また,チタン電極32は電極2に極性を同期させて電源ユニット7から給電を行い,電流センサー9およびレギュレータ10によって出力電圧を可変して電流値を一定に保つ。このときチタン電極31,32には負電位のみを給電するため,チタン電極31,32への給電回路にはダイオード24を具備する。
上記の構成とすることで,トランジスタS1A,S1Bを開,S2A,S2Bを閉としたとき,電極1が陽極,電極2およびチタン電極32が陰極として働き,チタン電極32の表面にミネラル成分,例えばカルシウムが析出する。また,トランジスタS1A,S1Bを閉,S2A,S2Bを開としたとき,電極2が陽極,電極1およびチタン電極31が陰極として働き,チタン電極31の表面にカルシウムが析出する。なお,このとき,電極2では水の電気分解によって酸素気泡25および酸性水が生成される。酸性水は,酸素気泡25の上昇に伴ってチタン電極32の近傍に導かれ,チタン電極32に析出したカルシウムを溶解,除去する。また,チタン電極31に析出したカルシウムは,極性反転後,電極1で生成する酸性水によって溶解,除去される。
以上,詳述した本発明の電解式水素水生成装置を用いることで,長期間の使用によっても,チタン電極は常に清浄な状態に保たれ,安定した通電性能を確保できるため,細菌汚染の少ない安全な水素水を安定供給することができる。
本発明に係る電解式水素水生成装置の構成を示す図である。 従来の電解式水素水生成装置の構成を示す図である。 溶出チタンによる殺菌効果の一例を示す図である。 通電条件に対するチタンの溶出量を示す図である。 本発明に係る電解式水素水生成装置の構成を示す図である。
符号の説明
1 電極
2 電極
3 電解槽
4 活性炭ブロック
5 貫通穴
6 ろ過ユニット
7 電源ユニット
9 電流センサー
10 レギュレータ
11 タイマー
12 蛇口
13 フロースイッチ
15 圧力調整弁
16 送水管
17 電解ガス
20 殺菌用チタン電極
21 給電端子
22 ギャップ
23 セパレータ
24 ダイオード
25 酸素気泡
S1A,S1B,S2A,S2B トランジスタ
31,32 チタン電極

Claims (2)

  1. 給水管と,それに接続された電解槽と,電解槽中の相互に対向する一対の電解電極と,その一方の電解電極の上方に配設された殺菌用電極と,前記一対の電解電極に一定期間ごとに相互に正,または,負の直流電圧を供給する電源と,前記一方の電極が陰極となったときのみ,その上方の殺菌用電極に負の電圧を供給する制御手段と,前記電解槽に接続され,電解槽で発生する電解水と電解ガスをろ過するろ過ユニットと,前記ろ過ユニットでろ過された水を外部に導く送水管で構成されることを特徴とする電解式水素水生成装置。
  2. 電解槽中の相互に対向する一対の電解電極の間に,一方の電解電極が陽極になったときに発生する酸素気泡の流れにより,前記陽極近傍に生じた水素イオンを含んだ酸性水を殺菌用電極に導く誘導手段を設けて,前記殺菌用電極にカルシウム等のミネラル成分の蓄積を防止することを特徴とする請求項1の電解式水素水生成装置。
JP2008518544A 2006-11-21 2006-11-21 電解式水素水生成装置 Expired - Fee Related JP4929279B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/323138 WO2008062507A1 (fr) 2006-11-21 2006-11-21 Système de production d'eau à hydrogène électrolytique

Publications (2)

Publication Number Publication Date
JPWO2008062507A1 JPWO2008062507A1 (ja) 2010-03-04
JP4929279B2 true JP4929279B2 (ja) 2012-05-09

Family

ID=39429448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008518544A Expired - Fee Related JP4929279B2 (ja) 2006-11-21 2006-11-21 電解式水素水生成装置

Country Status (2)

Country Link
JP (1) JP4929279B2 (ja)
WO (1) WO2008062507A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106521546A (zh) * 2016-10-11 2017-03-22 广东工业大学 一种光解水制氢用多层BiVO4/CuWO4复合膜及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4944913B2 (ja) * 2009-03-13 2012-06-06 タカオカ化成工業株式会社 水素水生成装置
US10465300B2 (en) * 2014-10-16 2019-11-05 Hsin-Yung Lin Gas generator
CN105525305A (zh) * 2015-12-15 2016-04-27 四川大学 植酸金属电极材料用于碱性条件下的电解水分解

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06142652A (ja) * 1992-11-06 1994-05-24 Akai Electric Co Ltd 整水器における電極の洗浄装置
JPH08103769A (ja) * 1994-10-06 1996-04-23 Hoshizaki Electric Co Ltd 電解水生成装置
JPH11300355A (ja) * 1998-04-27 1999-11-02 Tokico Ltd 電解水生成器
JP2003039072A (ja) * 2001-07-31 2003-02-12 Pentel Corp 電気化学的防汚方法
JP2005296922A (ja) * 2004-03-19 2005-10-27 Sekisui Chem Co Ltd 雨水の殺菌システム
JP2005324117A (ja) * 2004-05-14 2005-11-24 Takaoka Kasei Kogyo Kk アルカリイオン整水器
JP2006043610A (ja) * 2004-08-05 2006-02-16 Takaoka Kasei Kogyo Kk 電解式水素水生成装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06142652A (ja) * 1992-11-06 1994-05-24 Akai Electric Co Ltd 整水器における電極の洗浄装置
JPH08103769A (ja) * 1994-10-06 1996-04-23 Hoshizaki Electric Co Ltd 電解水生成装置
JPH11300355A (ja) * 1998-04-27 1999-11-02 Tokico Ltd 電解水生成器
JP2003039072A (ja) * 2001-07-31 2003-02-12 Pentel Corp 電気化学的防汚方法
JP2005296922A (ja) * 2004-03-19 2005-10-27 Sekisui Chem Co Ltd 雨水の殺菌システム
JP2005324117A (ja) * 2004-05-14 2005-11-24 Takaoka Kasei Kogyo Kk アルカリイオン整水器
JP2006043610A (ja) * 2004-08-05 2006-02-16 Takaoka Kasei Kogyo Kk 電解式水素水生成装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106521546A (zh) * 2016-10-11 2017-03-22 广东工业大学 一种光解水制氢用多层BiVO4/CuWO4复合膜及其制备方法

Also Published As

Publication number Publication date
WO2008062507A1 (fr) 2008-05-29
JPWO2008062507A1 (ja) 2010-03-04

Similar Documents

Publication Publication Date Title
US6572902B2 (en) Process for producing improved alkaline drinking water and the product produced thereby
JP3349710B2 (ja) 電解槽および電解水生成装置
CN103951020B (zh) 健康饮水机
JP3785219B2 (ja) 酸性水及びアルカリ性水の製造方法
KR20110127588A (ko) 살균 정수기
JP5595213B2 (ja) 殺菌水製造装置および殺菌水の製造方法
JPH09290269A (ja) 酸性水の製造方法及び電解槽
KR20140074927A (ko) 전해장치 및 전해방법
JP4399221B2 (ja) 水素水給水装置
TW201708618A (zh) 電解裝置及電解臭氧水製造裝置
CN103951118B (zh) 商务水机
CN103936111A (zh) ***辅助净化装置
JP4069470B2 (ja) 電解式水素水生成装置
JP3820248B2 (ja) 電気分解整水器
JP4929279B2 (ja) 電解式水素水生成装置
CN203833687U (zh) 健康饮水机
JP4050047B2 (ja) ミネラル水生成装置
CN107935130B (zh) 一种用于净化饮用水的电化学***以及净化方法
GB2257982A (en) An electrolytic method of drinking-water purification
JP2002035751A (ja) バッチ式電解水生成装置
JP2002035754A (ja) バッチ式電解水生成装置
JP3056511B2 (ja) 被処理水の処理装置
JP4944913B2 (ja) 水素水生成装置
JPH04135692A (ja) 被処理水の処理方法
JPH11221566A (ja) 電解水の製造方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4929279

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees