JP4928021B2 - Conductive adhesive and circuit using the same - Google Patents

Conductive adhesive and circuit using the same Download PDF

Info

Publication number
JP4928021B2
JP4928021B2 JP2001069695A JP2001069695A JP4928021B2 JP 4928021 B2 JP4928021 B2 JP 4928021B2 JP 2001069695 A JP2001069695 A JP 2001069695A JP 2001069695 A JP2001069695 A JP 2001069695A JP 4928021 B2 JP4928021 B2 JP 4928021B2
Authority
JP
Japan
Prior art keywords
powder
silver
tin
conductive adhesive
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001069695A
Other languages
Japanese (ja)
Other versions
JP2002265920A (en
Inventor
道典 駒形
恭夫 白井
憲一 鈴木
克昭 菅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namics Corp
Original Assignee
Namics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namics Corp filed Critical Namics Corp
Priority to JP2001069695A priority Critical patent/JP4928021B2/en
Publication of JP2002265920A publication Critical patent/JP2002265920A/en
Application granted granted Critical
Publication of JP4928021B2 publication Critical patent/JP4928021B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、導電性接着剤に関し、さらに詳しくは、導電性に優れ、半導体素子、チップ部品またはディスクリート部品を、マイグレーションを発生させないで印刷配線基板に接着できる導電性接着剤に関する。また、本発明は、このような導電性接着剤を用いて、半導体素子などを接合させた回路に関する。
【0002】
【従来の技術】
半導体の実装技術の一つとして、フリップチップ方式による接合がある。そこでは、ハンダメッキによりバンプを形成した半導体素子を用い、ハンダにより該半導体素子の接合を行う。また、銀などの貴金属粉末を使用した導電性接着剤を用いる接合、および樹脂ボールに金などをメッキした粉末を使用して、異方性導電フィルムを用いる電子部品の接合が試みられている。
【0003】
一方、印刷配線基板を用いる回路の形成においても、チップ部品やディスクリート部品の接合にはハンダが使用される。ハンダの代わりに導電性接着剤を用いて、これらの部品を実装することも行われている。しかし、該接着剤に導電粒子として銀を使用すると、優れた導電性を有する導電層が得られるが、電圧を印加するとマイグレーションを起こすことがある(IEEE Transaction on Components, Packaging and Manufacturing Technology, Part B, Vol.17, No.1, p83 参照)。また、スズメッキなどを施す際に、高温の影響を受けて、接着強さが低下する。
【0004】
現在、電子部品の接合には、鉛−スズ合金ハンダが使用されている。廃棄された電子機器に使用されているハンダが酸性雨により溶解し、地下水に溶け込み、飲料水などに地下水を使用するところでは、公衆衛生上の問題が生じている。したがって、スズ−銀系、スズ−亜鉛系のような、融点がより高いハンダを用いる傾向がある。しかしながら、ハンダを用いる方法では、洗浄剤を使用する場合があり、作業環境および安全面で好ましくない。
【0005】
ニッケルおよびニッケル合金の粉末は、マイグレーションを起こさない導電粒子であるが、それを用いて形成された導電層は、比抵抗が大きく、かつ高温にさらされると比抵抗がさらに大きくなるので、満足できるものではなかった。
【0006】
特開平9−157613号公報には、導電粒子として、表面がニッケルおよび/またはニッケル−ホウ素合金である金属粒子を、ポリオキシアルキレンリン酸エステル誘導体と、ポリオキシアルキレンアルキル(もしくはアルケニル)アミンまたはその誘導体と、の混合物で表面処理して得られた導電粒子を、反応性希釈剤を含むエポキシ樹脂と組み合わせることにより、マイグレーションを起こさず、かつ高温にさらされても安定した導電性を有する導電層を与える導電性接着剤が得られることが開示されている。しかし、最近の傾向としては、より高い導電性を有し、かつ高温のハンダに接着するような温度条件で加工しても、比抵抗の上昇が少ない導電性接着剤が求められている。
【0007】
【発明が解決しようとする課題】
本発明の課題は、上記のような状況に対応して、電圧を印加してもマイグレーションを起こさず、高い導電性を有し、ハンダの代わりに使用できる導電性接着剤、および該導電性接着剤を用いた回路を提供することである。
【0008】
【課題を解決するための手段】
本発明者らは、この課題を達成するために検討を重ねた結果、導電粒子として、特定の組成範囲の銀−スズ粉、特に合金粉を用いることにより、上記の課題を達成でき、特に予期しなかったことに、上記の銀−スズ粉に銀粉を併用してもマイグレーションを起こさないことを見出して、本発明を完成するに至った。
【0009】
すなわち、本発明の導電性接着剤は、導電粒子および樹脂を含む導電性接着剤において、該導電粒子の40重量%以上が、銀とスズから実質的になり、銀:スズのモル比2.5:1.5〜3.5:0.5の銀−スズ粉であることを特徴とし、本発明の回路は、上記の導電性接着剤を用いて、半導体素子、チップ部品、ディスクリート部品またはそれらの組合せを接合させた回路である。
【0010】
【発明の実施の形態】
本発明に導電粒子として用いられる、銀とスズから実質的になる銀−スズ粉は、本発明において特徴的な成分であり、マイグレーションを起こさず、かつ形成される導電層に高い導電性を付与する。該金属粉は、銀とスズのモル比が、2.5:1.5〜3.5:0.5、好ましくは2.6:1.4〜3.4:0.6である。両成分の合計数を4として表したとき、銀が2.5未満では接続抵抗が高く、3.5を越えるとマイグレーションが発生する。
【0011】
該銀−スズ粉は、同じ粉体粒子中の表面に銀とスズの原子が複合的に存在するものであれば、どのような形態のものでもよく、合金粉、混合塩の水溶液から還元共沈法によって得られた共沈粉、およびスズで被覆した銀粉をスタンプ法によってリン片状にして、表面に銀とスズが存在する複合粉などが例示され、均質な銀−スズ粉が得られて、安定した効果を示すことから、合金粉が好ましい。なお、銀粉とスズ粉を単に混合した混合粉では、本発明の効果が得られない。
【0012】
このような銀−スズ合金粉は、たとえば、銀とスズを所望のモル比になるように混合して溶融した後、アルゴン雰囲気中にノズルより吹き出して合金粉とし、所定の粒径以下のものを採取する方法;このようにしてアトマイズした粉末を、さらにプラズマ炉によって気化し、ついで冷却により固化させて合金粉を得る方法;その他、混合粉を任意の手段で加熱して合金化する方法などによって得ることができる。
【0013】
銀−スズ粉の形状は、球状でもりん片状でもよく、他の形状、たとえば針状や枝状のものを用いてもよい。また、それらの混合物でもよい。
【0014】
接着剤の状態で系が安定に保たれ、印刷の場合に目づまりを起こさず、かつ導電性の高い導電層が得られることから、球状粉の場合、平均粒径が0.1〜10μmのものが好ましく、りん片状の場合、その扁平面の平均直径、すなわち長径と短径の平均として2〜20μmのものが好ましい。アスペクト比は、通常10〜200であり、好ましくは20〜50である。
【0015】
このような組成の銀−スズ粉を、導電粒子中、40重量%以上、好ましくは70重量%以上、さらに好ましくは85重量%以上配合する。該銀−スズ粉の量が40重量%未満では、マイグレーションがなく、かつ導電性の高い導電層を形成しうる導電性接着剤が得られない。
【0016】
本発明においては、導電粒子として、上記の銀−スズ粉のほかに、他の金属粉および/または炭素粉を併用することができる。併用しうる金属粉としては、銀粉、スズ粉、ビスマス粉もしくはインジウム粉、またはこれらの金属の2種以上の合金粉、共沈粉および/または複合粉など(以下、「合金粉など」という。ただし、上記のモル比の組成を有する銀−スズ粉を除く。)が例示され、該合金粉などとしては、銀−ビスマス粉、銀−インジウム粉および上記のモル比以外の組成を有する銀−スズ粉が例示される。また、炭素粉としては、カーボンブラック、グラファイトおよびそのメソフェーズなどが挙げられる。
【0017】
これらの導電粒子の配合量は、低い接続抵抗が得られることから、上記の組成の銀−スズ粉に対して25重量%以下が好ましい。
【0018】
このうち、特に注目すべき金属粉は、銀粉である。従来、銀粉は、マイグレーションを起こすと考えられてきたが、予期しなかったことに、導電粒子として上記の銀−スズ粉と銀粉を併用することにより、マイグレーションを起こさず、導電性の優れた導電層を与える導電性接着剤を得ることができる。このような銀粉は、優れた導電性が得られ、かつマイグレーションがないことから、上記の組成の銀−スズ粉に対して4〜12重量%配合することがより好ましい。
【0019】
特に注目すべき他の金属粉は、ビスマス粉および銀−ビスマス粉である。ビスマス粉および/または銀−ビスマス粉を、上記の組成の銀−スズ粉と併用することにより、接着剤の硬化温度で、銀−スズ粉とビスマスとの反応によって金属接合を生じ、高い導電性が得られる。このようなビスマス粉または銀−ビスマス粉の配合量は、上記の組成の銀−スズ粉に対して0.1〜20重量%の範囲がより好ましい。
【0020】
導電性接着剤中の導電粒子の配合量は、印刷適性と、硬化して得られる導電層の導電性から、該導電粒子と樹脂の合計量に対して、60〜98重量%が好ましく、70〜95重量%がさらに好ましい。
【0021】
本発明の導電性接着剤は、上記の導電粒子に加えて、バインダーとして機能する樹脂を含む。該樹脂は、熱可塑性樹脂でも熱硬化性樹脂でもよい。熱可塑性樹脂としては、アクリル樹脂、エチルセルロース、ポリエステル、ポリスルホン、フェノキシ樹脂、ポリイミドなどが例示される。熱硬化性樹脂としては、尿素樹脂、メラミン樹脂、グアナミン樹脂のようなアミノ樹脂;ビスフェノールA型、ビスフェノールF型、フェノールノボラック型、脂環式などのエポキシ樹脂;オキセタン樹脂;レゾール型、ノボラック型のようなフェノール樹脂;シリコーンエポキシ、シリコーンポリエステルのようなシリコーン変性有機樹脂などが好ましい。これらの樹脂は、単独で用いても、2種以上を併用してもよい。
【0022】
これらのうち、導電性を損ねない量の樹脂を配合しても、優れた接着性が得られ、また耐熱性も優れていることから、エポキシ樹脂およびレゾール型フェノール樹脂が好ましく、ビスフェノールA型およびビスフェノールF型エポキシ樹脂が特に好ましい。
【0023】
樹脂として、常温で液状である樹脂を用いると、有機溶媒を用いないでビヒクルとすることができ、乾燥工程を省略できる。このような液状樹脂としては、液状エポキシ樹脂、液状フェノール樹脂などが例示される。液状エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂の平均分子量が約400以下のもの;p−グリシドキシフェニルジメチルトリルビスフェノールAジグリシジルエーテルのような分岐状多官能ビスフェノールA型エポキシ樹脂;ビスフェノールF型エポキシ樹脂;フェノールノボラック型エポキシ樹脂の平均分子量が約570以下のもの;ビニル(3,4−シクロヘキセン)ジオキシド、3,4−エポキシシクロヘキシルカルボン酸(3,4−エポキシシクロヘキシル)メチル、アジピン酸ビス(3,4−エポキシ−6−メチルシクロヘキシルメチル)、2−(3,4−エポキシシクロヘキシル)5,1−スピロ(3,4−エポキシシクロヘキシル)−m−ジオキサンのような脂環式エポキシ樹脂;ヘキサヒドロフタル酸ジグリシジル、3−メチルヘキサヒドロフタル酸ジグリシジル、ヘキサヒドロテレフタル酸ジグリシジルのようなグリシジルエステル型エポキシ樹脂;ジグリシジルアニリン、ジグリシジルトルイジン、トリグリシジル−p−アミノフェノール、テトラグリシジル−m−キシリレンジアミン、テトラグリシジルビス(アミノメチル)シクロヘキサンのようなグリシジルアミン型エポキシ樹脂;ならびに1,3−ジグリシジル−5−メチル−5−エチルヒダントインのようなヒダントイン型エポキシ樹脂が例示される。
【0024】
また、液状樹脂に、混合系が流動性を示す範囲内で、相溶性であって、常温で固体ないし超高粘性を呈する樹脂を混合して用いてもよく、そのような樹脂として、高分子量のビスフェノールA型エポキシ樹脂、ジグリシジルビフェニル、ノボラックエポキシ樹脂、テトラブロモビスフェノールA型エポキシ樹脂のようなエポキシ樹脂;ノボラックフェノール樹脂などが例示される。
【0025】
エポキシ樹脂の場合、硬化機構としては、自己硬化型樹脂を用いても、アミン類、イミダゾール類、酸無水物またはオニウム塩のような硬化剤や硬化促進剤を用いてもよく、アミノ樹脂やフェノール樹脂を、エポキシ樹脂の硬化剤として機能させてもよい。
【0026】
本発明に用いられる代表的なエポキシ樹脂は、フェノール樹脂によって硬化するものである。フェノール樹脂としては、エポキシ樹脂の硬化剤として通常用いられるフェノール樹脂初期縮合物であればよく、レゾール型でもノボラック型でもよいが、硬化の際の応力が緩和され、優れた耐ヒートサイクル性を得るためには、その50重量%以上がアルキルレゾール型またはアルキルノボラック型のフェノール樹脂であることが好ましい。また、アルキルレゾール型フェノール樹脂の場合、優れた印刷適性を得るためには、平均分子量が2,000以上であることが好ましい。これらのアルキルレゾール型またはアルキルノボラック型フェノール樹脂において、アルキル基としては、炭素数1〜18のものを用いることができ、エチル、プロピル、ブチル、ペンチル、ヘキシル、オクチル、ノニル、デシルのような炭素数2〜10のものが好ましい。
【0027】
エポキシ樹脂の硬化剤として用いるフェノール樹脂の量は、エポキシ樹脂と該フェノール樹脂の種類によっても異なるが、硬化後に比抵抗の高温における優れた安定性を得るためには、エポキシ樹脂とフェノール樹脂の重量比が、4:1〜1:4の範囲が好ましく、4:1〜1:1がさらに好ましい。
【0028】
導電性接着剤中の樹脂の配合量は、印刷適性と、硬化して得られる導電層の導電性から、該樹脂と導電粒子の合計に対して、2〜40重量%が好ましく、5〜30重量%がさらに好ましい。
【0029】
本発明の導電ペーストは、導電粒子および樹脂の種類と量を選択し、また必要に応じて希釈剤を用いることにより、素子、基板などに印刷または塗布する方法に応じて、適切な粘度に調製することができる。たとえば、スクリーン印刷に用いられる場合、常温における導電ペーストの見掛粘度は、10〜500Pa・sが好ましく、15〜300Pa・sがさらに好ましい。希釈剤としては、有機溶媒、および特に樹脂がエポキシ樹脂の場合には、反応性希釈剤を用いることができる。
【0030】
有機溶媒は、樹脂の種類に応じて選択される。有機溶媒としては、トルエン、キシレン、メシチレン、テトラリンのような芳香族炭化水素類;テトラヒドロフランのようなエーテル類;メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、イソホロンのようなケトン類;2−ピロリドン、1−メチル−2−ピロリドンのようなラクトン類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、さらにこれらに対応するプロピレングリコール誘導体のようなエーテルアルコール類;それらに対応する酢酸エステルのようなエステル類;ならびにマロン酸、コハク酸などのジカルボン酸のメチルエステル、エチルエステルのようなジエステル類が例示される。有機溶媒の使用量は、用いられる導電粒子および樹脂の種類と量比、ならびに導電ペーストを印刷または塗布する方法などにより、任意に選択される。
【0031】
本発明の導電性接着剤に、印刷や塗布によって任意のパターンを形成したり、細部に充填するために、適切な流動性を与え、かつ、溶媒の揮発による肉やせや作業環境の悪化を防ぐ必要がある場合は、希釈剤の一部または全部として、反応性希釈剤を用いることが好ましい。反応性希釈剤としては、ポリエチレングリコールジグリシジルエーテル、ポリ(2−ヒドロキシプロピレン)グリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ブタンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ジグリシジルアニリン、1,4−シクロヘキサンジメタノールジグリシジルエーテル、1,3−ビス(3−グリシドキシプロピル)−1,1,3,3−テトラメチルジシロキサンのようなジグリシジル化合物;およびトリメチロールプロパントリグリシジルエーテル、グリセリントリグリシジルエーテルのようなトリグリシジル化合物が例示され、必要に応じてn−ブチルグリシジルエーテル、アリルグリシジルエーテル、グリシジルメタクリラートのようなモノグリシジルエーテル型反応性希釈剤を併用してもよい。希釈剤として有機溶媒を用いずに、反応性希釈剤のみを用いた場合は、溶媒除去の代わりに、適切な条件で、これらを重合、硬化させて、導電層中に取り込むことができる。
【0032】
本発明の導電性接着剤には、このほか、必要に応じて、分散助剤として、ジイソプロポキシ(エチルアセトアセタト)アルミニウムのようなアルミニウムキレート化合物;イソプロピルトリイソステアロイルチタナートのようなチタン酸エステル;脂肪族多価カルボン酸エステル;不飽和脂肪酸アミン塩;ソルビタンモノオレエートのような界面活性剤;またはポリエステルアミン塩、ポリアミドのような高分子化合物などを用いてもよい。また、無機および有機顔料、シランカップリング剤、レベリング剤、チキソトロピック剤、消泡剤などを配合してもよい。
【0033】
本発明の導電性接着剤は、配合成分を、らいかい機、プロペラ撹拌機、ニーダー、ロール、ポットミルなどのような混合手段により、均一に混合して調製することができる。調製温度は、特に限定されず、たとえば常温で調製することができる。
【0034】
本発明の導電性接着剤は、スクリーン印刷、グラビア印刷、ディスペンスなど、任意の方法で基板に印刷または塗布することができる。有機溶媒を用いる場合は、印刷または塗布の後、常温で、または加熱によって、該溶媒を揮散させる。本発明の導電性接着剤を希釈剤なしに、または希釈剤として反応性希釈剤のみを配合して用いた場合は、上記の溶媒除去の工程は必要ない。ついで、樹脂を、樹脂および硬化剤や硬化触媒の種類に応じて、通常70〜250℃、たとえばフェノール樹脂を硬化剤として用いるエポキシ樹脂の場合、150〜200℃で2〜30分加熱して硬化させて、基板表面の必要な部分に、導電回路を形成させることができる。
【0035】
このようにして、本発明の導電性接着剤を用いて、半導体素子、チップ部品、ディスクリート部品またはそれらの組合せを接合させた回路を、基板表面に形成させることができる。
【0036】
【実施例】
以下、参考例、実施例および比較例によって、本発明をさらに詳細に説明する。本発明は、これらの実施例によって限定されるものではない。なお、これらの例において、部は重量部を示す。
【0037】
参考例1〜5 − 銀−スズ合金粉の作製
表1に示すモル比になるように、銀粉とスズ粉を混合して得た混合粉を、ノズルを設けた溶融装置内で溶融し、ノズルから合金の融点よりも低い温度のアルゴン雰囲気中に噴出することにより、微粉末を得た。これを分級して、表1に示す平均粒径を有する球状の銀−スズ合金粉を作製した。
【0038】
【表1】

Figure 0004928021
【0039】
上記の銀−スズ合金粉以外に、下記の金属粉を用いた。
銀粉、フレーク状、平均粒径10μm;
ビスマス粉、球状、平均粒径15μm;
銀−ビスマス粉、Ag:Biのモル比5:1の合金粉、球状、平均粒径15μm;
銀−インジウム粉、Ag:Inのモル比5:1の合金粉、球状、平均粒径20μm;
スズ粉、球状、平均粒径15μm
【0040】
実施例1〜10、比較例1、2
三本ロールを用いて、表2に示す導電粒子、平均分子量900のビスフェノールA型エポキシ樹脂およびレゾール型アルキルフェノール樹脂を配合し、均一になるまで混合した後、2−エチル−4−メチルイミダゾールを加えて混合した。混合物をニーダーに移し、混合しながらジエチレングリコールモノブチルエーテルを、25℃における系の見掛粘度が150Pa・sになるように加え、混合を続けることにより、導電性接着剤を調製した。いずれも、導電粒子の合計配合量が85部、樹脂の配合量が15部である。ただし、導電粒子として、比較例1の接着剤は、銀粉のみを用いたものであり、比較例2の接着剤は、35部の銀−スズ粉と残余の銀粉を用いたものである。
【0041】
回路試料の作製
上記のようにして得られた導電性接着剤を、厚さ75μmのメタルマスクを用いて、銅張ガラスエポキシ回路基板の銅面に孔版印刷した。これにスズメッキされた2012サイズのチップ抵抗器を圧着し、150℃で30分加熱して、該接着剤を硬化させることにより、回路基板にチップ抵抗器を接続させて、回路試料を作製した。
【0042】
接続抵抗の測定
回路試料の接続抵抗を測定した。
【0043】
接着強度の測定
回路試料の接着部を横からプッシュプルゲージ(丸菱科学機械製作所製、PGD II型)で突いて、数値を読みとることにより剥離に要する力を測定して、接着強度(初期値)とした。
【0044】
同様の回路試料を、下記:
150℃に30分放置
85℃、85%RHに30分放置
−40℃に30分放置
を1サイクルとするヒートサイクル試験に1,000サイクルかけた後、同様に接着強度を測定した。
【0045】
マイグレーション試験
前記のようにして調製した接着性組成物を、セラミックス基板上にスクリーン印刷し、150℃で30分加熱して硬化させて、線間2mmの対向電極を作成した。電極間に電圧10Vを印加して、イオン交換水を1滴、電極間に滴下し、電流が100mA流れた時間をマイグレーション時間とした。
【0046】
以上の結果を、まとめて表2に示す。
【0047】
【表2】
Figure 0004928021
【0048】
表2から明らかなように、比較例1および比較例2の導電性接着剤から得られた試料は、マイグレーションが著しく、またヒートサイクル試験後の接着強度が著しく低下していた。それに対して、本発明の導電性接着剤から得られた試料は、優れた接続抵抗と接着強度を示すばかりでなく、マイグレーションが少なく、かつヒートサイクル試験後も、接着強度の低下がほとんどなかった。
【0049】
【発明の効果】
本発明の導電性接着剤は、基材に印刷または塗布して硬化させることにより、マイグレーションを起こさず、高い導電性を有し、ハンダの代わりに使用でき、あるいは溶融状態の高融点ハンダと接触するなど、高温にさらしても比抵抗の変化が少なく、特に高温における湿分の存在で腐食により比抵抗が上昇することがない導電層を形成することができる。
【0050】
このような利点を生かして、本発明の導電性接着剤は、半導体や電子部品の接合や実装にきわめて有用であり、これを用いてマイクロ電子回路の形成を有利に行うことができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a conductive adhesive, and more particularly to a conductive adhesive that has excellent conductivity and can bond a semiconductor element, a chip component, or a discrete component to a printed wiring board without causing migration. The present invention also relates to a circuit in which a semiconductor element or the like is bonded using such a conductive adhesive.
[0002]
[Prior art]
As one of semiconductor mounting technologies, there is a flip-chip bonding. There, a semiconductor element in which bumps are formed by solder plating is used, and the semiconductor element is joined by solder. In addition, bonding using a conductive adhesive using a noble metal powder such as silver, and bonding of electronic parts using an anisotropic conductive film using powder obtained by plating a resin ball with gold or the like have been attempted.
[0003]
On the other hand, also in the formation of a circuit using a printed wiring board, solder is used for joining chip parts and discrete parts. It is also practiced to mount these parts using a conductive adhesive instead of solder. However, when silver is used as the conductive particles in the adhesive, a conductive layer having excellent conductivity can be obtained, but migration may occur when voltage is applied (IEEE Transaction on Components, Packaging and Manufacturing Technology, Part B). , Vol.17, No.1, p83). Further, when tin plating or the like is performed, the adhesive strength is reduced due to the influence of high temperature.
[0004]
Currently, lead-tin alloy solder is used for joining electronic components. There is a public health problem where solder used in discarded electronic equipment dissolves in acid rain, dissolves in groundwater, and uses groundwater for drinking water. Therefore, there is a tendency to use solder having a higher melting point such as tin-silver or tin-zinc. However, in the method using solder, a cleaning agent may be used, which is not preferable in terms of work environment and safety.
[0005]
Nickel and nickel alloy powders are conductive particles that do not cause migration, but the conductive layer formed using them has a large specific resistance and is satisfactory because it has a higher specific resistance when exposed to high temperatures. It was not a thing.
[0006]
In JP-A-9-157613, as conductive particles, metal particles whose surfaces are nickel and / or nickel-boron alloy, polyoxyalkylene phosphate derivatives, polyoxyalkylene alkyl (or alkenyl) amines or their Conductive particles obtained by surface treatment with a mixture of a derivative and an epoxy resin containing a reactive diluent do not cause migration and have stable conductivity even when exposed to high temperatures. It is disclosed that an electrically conductive adhesive can be obtained. However, as a recent trend, there is a demand for a conductive adhesive that has higher conductivity and has a small increase in specific resistance even when processed under temperature conditions such that it adheres to high-temperature solder.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a conductive adhesive that does not cause migration even when a voltage is applied, has high conductivity, and can be used in place of solder in response to the above situation, and the conductive adhesion It is to provide a circuit using an agent.
[0008]
[Means for Solving the Problems]
As a result of repeated studies to achieve this problem, the present inventors can achieve the above problem by using silver-tin powder, particularly alloy powder having a specific composition range as the conductive particles. In other words, the present inventors have found that no migration occurs even when silver powder is used in combination with the above silver-tin powder, and the present invention has been completed.
[0009]
That is, in the conductive adhesive of the present invention, in the conductive adhesive containing conductive particles and resin, 40% by weight or more of the conductive particles are substantially composed of silver and tin, and the silver: tin molar ratio is 2. 5: 1.5-3.5: 0.5 silver-tin powder, and the circuit of the present invention uses the above-mentioned conductive adhesive to produce a semiconductor element, chip component, discrete component or It is a circuit obtained by joining these combinations.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The silver-tin powder consisting essentially of silver and tin used as the conductive particles in the present invention is a characteristic component in the present invention, does not cause migration, and imparts high conductivity to the formed conductive layer. To do. The metal powder has a silver / tin molar ratio of 2.5: 1.5 to 3.5: 0.5, preferably 2.6: 1.4 to 3.4: 0.6. When the total number of both components is represented as 4, when silver is less than 2.5, the connection resistance is high, and when it exceeds 3.5, migration occurs.
[0011]
The silver-tin powder may have any form as long as silver and tin atoms are present on the surface in the same powder particle, and it can be reduced from an aqueous solution of alloy powder or mixed salt. Co-precipitated powder obtained by the precipitation method and silver powder coated with tin are formed into flakes by the stamp method, and composite powder having silver and tin on the surface is exemplified, and homogeneous silver-tin powder is obtained. In view of the stable effect, alloy powder is preferable. In addition, the effect of this invention is not acquired in the mixed powder which only mixed silver powder and tin powder.
[0012]
Such a silver-tin alloy powder is, for example, a mixture of silver and tin in a desired molar ratio and melted, and then blown from a nozzle into an argon atmosphere to form an alloy powder having a predetermined particle size or less. A method in which the powder thus atomized is further vaporized in a plasma furnace and then solidified by cooling to obtain an alloy powder; in addition, a method in which the mixed powder is heated to form an alloy by any means, etc. Can be obtained by:
[0013]
The shape of the silver-tin powder may be spherical or flake shaped, and other shapes such as needles or branches may be used. A mixture thereof may also be used.
[0014]
In the case of spherical powder, the average particle size is 0.1 to 10 μm because the system is kept stable in the state of adhesive, does not cause clogging in printing, and a highly conductive layer is obtained. In the case of flakes, the average diameter of the flat surface, that is, the average of the major axis and the minor axis is preferably 2 to 20 μm. The aspect ratio is usually 10 to 200, preferably 20 to 50.
[0015]
The silver-tin powder having such a composition is blended in the conductive particles by 40% by weight or more, preferably 70% by weight or more, more preferably 85% by weight or more. When the amount of the silver-tin powder is less than 40% by weight, there is no migration and a conductive adhesive that can form a conductive layer with high conductivity cannot be obtained.
[0016]
In the present invention, in addition to the silver-tin powder, other metal powder and / or carbon powder can be used in combination as the conductive particles. Examples of the metal powder that can be used in combination include silver powder, tin powder, bismuth powder, or indium powder, or two or more kinds of alloy powders, co-precipitated powders, and / or composite powders of these metals (hereinafter referred to as “alloy powder”). However, silver-tin powder having the above molar ratio composition is exemplified.) Examples of the alloy powder include silver-bismuth powder, silver-indium powder, and silver having a composition other than the above molar ratio. Tin powder is exemplified. Examples of the carbon powder include carbon black, graphite, and mesophase thereof.
[0017]
The blending amount of these conductive particles is preferably 25% by weight or less based on the silver-tin powder having the above composition because low connection resistance is obtained.
[0018]
Among these, the metal powder that should be particularly noted is silver powder. Conventionally, silver powder has been considered to cause migration, but unexpectedly, by using the above silver-tin powder and silver powder together as conductive particles, migration does not occur and conductivity is excellent. A conductive adhesive that provides a layer can be obtained. Such silver powder is more preferably blended in an amount of 4 to 12% by weight with respect to the silver-tin powder having the above composition because excellent conductivity is obtained and there is no migration.
[0019]
Other metal powders of particular note are bismuth powder and silver-bismuth powder. By using bismuth powder and / or silver-bismuth powder together with silver-tin powder having the above composition, a metal bond is formed by the reaction between silver-tin powder and bismuth at the curing temperature of the adhesive, and high conductivity. Is obtained. As for the compounding quantity of such bismuth powder or silver-bismuth powder, the range of 0.1-20 weight% is more preferable with respect to silver-tin powder of said composition.
[0020]
The blending amount of the conductive particles in the conductive adhesive is preferably 60 to 98% by weight with respect to the total amount of the conductive particles and the resin, from the printability and the conductivity of the conductive layer obtained by curing. More preferred is -95% by weight.
[0021]
The conductive adhesive of the present invention contains a resin that functions as a binder in addition to the conductive particles. The resin may be a thermoplastic resin or a thermosetting resin. Examples of the thermoplastic resin include acrylic resin, ethyl cellulose, polyester, polysulfone, phenoxy resin, and polyimide. Examples of thermosetting resins include amino resins such as urea resins, melamine resins, and guanamine resins; epoxy resins such as bisphenol A type, bisphenol F type, phenol novolac type, and alicyclic type; oxetane resins; resol type, novolac type Such phenol resins; silicone-modified organic resins such as silicone epoxy and silicone polyester are preferred. These resins may be used alone or in combination of two or more.
[0022]
Of these, epoxy resins and resol-type phenol resins are preferred, because even if an amount of resin that does not impair electrical conductivity is blended, excellent adhesiveness is obtained, and heat resistance is excellent, and bisphenol A type and Bisphenol F type epoxy resin is particularly preferred.
[0023]
When a resin that is liquid at room temperature is used as the resin, a vehicle can be obtained without using an organic solvent, and the drying step can be omitted. Examples of such a liquid resin include a liquid epoxy resin and a liquid phenol resin. Liquid epoxy resins include bisphenol A type epoxy resins having an average molecular weight of about 400 or less; branched polyfunctional bisphenol A type epoxy resins such as p-glycidoxyphenyldimethyltolyl bisphenol A diglycidyl ether; bisphenol F type Epoxy resin; phenol novolac type epoxy resin having an average molecular weight of about 570 or less; vinyl (3,4-cyclohexene) dioxide, 3,4-epoxycyclohexylcarboxylic acid (3,4-epoxycyclohexyl) methyl, bis (adipate) ( Cycloaliphatic epoxy resins such as 3,4-epoxy-6-methylcyclohexylmethyl), 2- (3,4-epoxycyclohexyl) 5,1-spiro (3,4-epoxycyclohexyl) -m-dioxane; Digly hydrophthalate Glycidyl ester type epoxy resin such as dil, 3-methylhexahydrophthalate diglycidyl, diglycidyl hexahydroterephthalate; diglycidyl aniline, diglycidyl toluidine, triglycidyl-p-aminophenol, tetraglycidyl-m-xylylenediamine, Examples include glycidylamine type epoxy resins such as tetraglycidylbis (aminomethyl) cyclohexane; and hydantoin type epoxy resins such as 1,3-diglycidyl-5-methyl-5-ethylhydantoin.
[0024]
In addition, the liquid resin may be mixed with a resin that is compatible within the range in which the mixed system exhibits fluidity and exhibits a solid or ultra-high viscosity at room temperature. Bisphenol A type epoxy resin, diglycidyl biphenyl, novolac epoxy resin, epoxy resin such as tetrabromobisphenol A type epoxy resin; and novolak phenol resin.
[0025]
In the case of an epoxy resin, the curing mechanism may be a self-curing resin, or a curing agent or curing accelerator such as amines, imidazoles, acid anhydrides or onium salts may be used. The resin may function as a curing agent for the epoxy resin.
[0026]
A typical epoxy resin used in the present invention is cured by a phenol resin. The phenol resin may be an initial condensate of a phenol resin that is usually used as a curing agent for an epoxy resin, and may be a resol type or a novolac type. However, stress during curing is relieved and excellent heat cycle resistance is obtained. Therefore, it is preferable that 50% by weight or more is an alkylresole type or alkyl novolac type phenol resin. In the case of an alkyl resole type phenol resin, the average molecular weight is preferably 2,000 or more in order to obtain excellent printability. In these alkylresole type or alkyl novolac type phenol resins, alkyl groups having 1 to 18 carbon atoms can be used, and carbons such as ethyl, propyl, butyl, pentyl, hexyl, octyl, nonyl and decyl can be used. The thing of several 2-10 is preferable.
[0027]
The amount of the phenol resin used as the curing agent for the epoxy resin varies depending on the type of the epoxy resin and the phenol resin, but in order to obtain excellent stability at a high specific resistance after curing, the weight of the epoxy resin and the phenol resin. The ratio is preferably in the range of 4: 1 to 1: 4, more preferably 4: 1 to 1: 1.
[0028]
The blending amount of the resin in the conductive adhesive is preferably 2 to 40% by weight, based on the printability and the conductivity of the conductive layer obtained by curing, with respect to the total of the resin and the conductive particles. More preferred is weight percent.
[0029]
The conductive paste of the present invention is prepared to have an appropriate viscosity according to the method of printing or applying to an element, a substrate, etc. by selecting the type and amount of conductive particles and resin, and using a diluent as necessary. can do. For example, when used for screen printing, the apparent viscosity of the conductive paste at room temperature is preferably 10 to 500 Pa · s, and more preferably 15 to 300 Pa · s. As the diluent, an organic solvent, and in particular, when the resin is an epoxy resin, a reactive diluent can be used.
[0030]
The organic solvent is selected according to the type of resin. Organic solvents include aromatic hydrocarbons such as toluene, xylene, mesitylene and tetralin; ethers such as tetrahydrofuran; ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and isophorone; 2-pyrrolidone, 1-methyl Lactones such as 2-pyrrolidone; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, and the corresponding propylene glycol derivatives Ether alcohols; corresponding esters such as acetates; and malonic acid, succinic acid, etc. Methyl esters of dicarboxylic acids, diesters, such as ethyl esters are exemplified. The amount of the organic solvent used is arbitrarily selected depending on the type and amount ratio of the conductive particles and resin used, the method of printing or applying the conductive paste, and the like.
[0031]
The conductive adhesive of the present invention is provided with appropriate fluidity in order to form an arbitrary pattern by printing or coating or to be filled in details, and also prevents deterioration of the meat due to the volatilization of the solvent and deterioration of the working environment. If necessary, it is preferable to use a reactive diluent as part or all of the diluent. Examples of reactive diluents include polyethylene glycol diglycidyl ether, poly (2-hydroxypropylene) glycol diglycidyl ether, polypropylene glycol diglycidyl ether, butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, diglycidyl aniline, 1, Diglycidyl compounds such as 4-cyclohexanedimethanol diglycidyl ether, 1,3-bis (3-glycidoxypropyl) -1,1,3,3-tetramethyldisiloxane; and trimethylolpropane triglycidyl ether, glycerin Examples include triglycidyl compounds such as triglycidyl ether, such as n-butyl glycidyl ether, allyl glycidyl ether, and glycidyl methacrylate as necessary. Mono glycidyl ether type reactive diluent may be used in combination. When only a reactive diluent is used without using an organic solvent as a diluent, these can be polymerized and cured under suitable conditions and incorporated into the conductive layer instead of removing the solvent.
[0032]
In addition to the conductive adhesive of the present invention, if necessary, an aluminum chelate compound such as diisopropoxy (ethylacetoacetate) aluminum; a titanium such as isopropyltriisostearoyl titanate as a dispersion aid. An acid ester; an aliphatic polyvalent carboxylic acid ester; an unsaturated fatty acid amine salt; a surfactant such as sorbitan monooleate; or a polymer compound such as a polyesteramine salt or polyamide may be used. Moreover, you may mix | blend an inorganic and organic pigment, a silane coupling agent, a leveling agent, a thixotropic agent, an antifoamer, etc.
[0033]
The conductive adhesive of the present invention can be prepared by uniformly mixing the blending components by a mixing means such as a raking machine, a propeller stirrer, a kneader, a roll, a pot mill and the like. Preparation temperature is not specifically limited, For example, it can prepare at normal temperature.
[0034]
The conductive adhesive of the present invention can be printed or applied to a substrate by any method such as screen printing, gravure printing, dispensing, or the like. In the case of using an organic solvent, the solvent is volatilized after printing or application at room temperature or by heating. When the conductive adhesive of the present invention is used without a diluent or only a reactive diluent as a diluent, the above solvent removal step is not necessary. Next, the resin is usually cured by heating at 70 to 250 ° C., for example, an epoxy resin using a phenol resin as a curing agent, at 150 to 200 ° C. for 2 to 30 minutes, depending on the type of resin and curing agent or curing catalyst. Thus, a conductive circuit can be formed on a necessary portion of the substrate surface.
[0035]
In this way, a circuit in which a semiconductor element, a chip component, a discrete component, or a combination thereof is bonded can be formed on the substrate surface using the conductive adhesive of the present invention.
[0036]
【Example】
Hereinafter, the present invention will be described in more detail with reference examples, examples and comparative examples. The present invention is not limited by these examples. In these examples, parts indicate parts by weight.
[0037]
Reference Examples 1-5-Production of silver-tin alloy powder The mixed powder obtained by mixing silver powder and tin powder so as to have the molar ratio shown in Table 1 was melted in a melting apparatus provided with a nozzle. The fine powder was obtained by jetting into an argon atmosphere at a temperature lower than the melting point of the alloy. This was classified to produce spherical silver-tin alloy powder having the average particle size shown in Table 1.
[0038]
[Table 1]
Figure 0004928021
[0039]
In addition to the above silver-tin alloy powder, the following metal powder was used.
Silver powder, flakes, average particle size 10 μm;
Bismuth powder, spherical, average particle size 15 μm;
Silver-bismuth powder, alloy powder with a molar ratio of Ag: Bi of 5: 1, spherical, average particle size 15 μm;
Silver-indium powder, alloy powder of 5: 1 molar ratio of Ag: In, spherical, average particle size 20 μm;
Tin powder, spherical, average particle size 15μm
[0040]
Examples 1 to 10, Comparative Examples 1 and 2
Using three rolls, blend the conductive particles shown in Table 2, the bisphenol A type epoxy resin having an average molecular weight of 900 and the resol type alkylphenol resin, and mix until uniform, then add 2-ethyl-4-methylimidazole And mixed. The mixture was transferred to a kneader, diethylene glycol monobutyl ether was added with mixing so that the apparent viscosity of the system at 25 ° C. was 150 Pa · s, and mixing was continued to prepare a conductive adhesive. In either case, the total blending amount of the conductive particles is 85 parts and the blending amount of the resin is 15 parts. However, as the conductive particles, the adhesive of Comparative Example 1 uses only silver powder, and the adhesive of Comparative Example 2 uses 35 parts of silver-tin powder and the remaining silver powder.
[0041]
Production of Circuit Sample The conductive adhesive obtained as described above was stencil-printed on the copper surface of a copper-clad glass epoxy circuit board using a metal mask having a thickness of 75 μm. A tin-plated 2012-size chip resistor was pressure-bonded and heated at 150 ° C. for 30 minutes to cure the adhesive, thereby connecting the chip resistor to the circuit board to produce a circuit sample.
[0042]
Connection resistance measurement circuit The connection resistance of the sample was measured.
[0043]
Adhesion strength measurement circuit Adhesive strength (initial value) is measured by pushing the adhesive part of the circuit sample from the side with a push-pull gauge (manufactured by Maruhishi Kagaku Seisakusho Co., Ltd., PGD II type) and reading the numerical value to measure the force required for peeling. ).
[0044]
A similar circuit sample is shown below:
The adhesive strength was measured in the same manner after 1,000 cycles of a heat cycle test in which one cycle was left at 150 ° C. for 30 minutes and left at 85% RH for 30 minutes and at −40 ° C. for 30 minutes.
[0045]
Migration test The adhesive composition prepared as described above was screen-printed on a ceramic substrate and cured by heating at 150 ° C. for 30 minutes to prepare a counter electrode having a line spacing of 2 mm. A voltage of 10 V was applied between the electrodes, one drop of ion-exchanged water and one electrode were dropped between the electrodes, and the time when the current flowed 100 mA was defined as the migration time.
[0046]
The above results are summarized in Table 2.
[0047]
[Table 2]
Figure 0004928021
[0048]
As can be seen from Table 2, the samples obtained from the conductive adhesives of Comparative Examples 1 and 2 showed significant migration, and the adhesive strength after the heat cycle test was significantly reduced. On the other hand, the sample obtained from the conductive adhesive of the present invention showed not only excellent connection resistance and adhesive strength, but also little migration, and almost no decrease in adhesive strength after the heat cycle test. .
[0049]
【Effect of the invention】
The conductive adhesive of the present invention is printed or coated on a substrate and cured to cause no migration, has high conductivity, can be used instead of solder, or is in contact with molten high melting point solder. Thus, it is possible to form a conductive layer in which the specific resistance hardly changes even when exposed to a high temperature, and the specific resistance does not increase due to corrosion particularly in the presence of moisture at a high temperature.
[0050]
Taking advantage of such advantages, the conductive adhesive of the present invention is extremely useful for bonding and mounting of semiconductors and electronic components, and can be used to advantageously form microelectronic circuits.

Claims (6)

導電粒子および樹脂を含む導電性接着剤において、該導電粒子の40重量%以上が、銀とスズからなり、銀:スズのモル比2.5:1.5〜3.5:0.5の銀−スズ粉であり、該銀−スズ粉が、合金粉または混合塩の水溶液から還元共沈法によって得られた共沈粉であることを特徴とする導電性接着剤。In conductive adhesive containing conductive particles and a resin, more than 40 wt% of the conductive particles, Ri silver and tin or Rana, silver molar ratio of tin 2.5: 1.5 to 3.5: 0. 5 silver - tin powder der is, silver - tin powder, conductive adhesive, characterized in that the co-precipitated obtained by reduction co-precipitation from an aqueous solution of an alloy powder or a mixed salt. 銀−スズ粉が、平均粒径0.1〜10μmの球状粉および/または扁平面の平均直径が2〜20μmのリン片状粉を含む、請求項記載の導電性接着剤。Silver - tin powder has an average particle size mean diameter of 0.1~10μm spherical powder and / or flat surface including the flaky powder of 2 to 20 [mu] m, the conductive adhesive of claim 1. 導電粒子として、さらに、銀粉、スズ粉、ビスマス粉もしくはインジウム粉、またはこれらの金属の2種以上の合金粉および/または混成粉(ただし、請求項1記載のモル比の組成を有する銀−スズ粉を除く)を、請求項1記載の銀−スズ粉に対して25重量%以下含む、請求項1または2記載の導電性接着剤。Further, as the conductive particles, silver powder, tin powder, bismuth powder or indium powder, or an alloy powder and / or composite powder of two or more of these metals (however, silver-tin having a composition with a molar ratio according to claim 1) The conductive adhesive according to claim 1 or 2 , comprising 25% by weight or less based on the silver-tin powder according to claim 1. 導電粒子として、請求項1記載の銀−スズ粉に対して4〜12重量%の銀粉を含む、請求項記載の導電性接着剤。The conductive adhesive according to claim 3 , comprising 4 to 12% by weight of silver powder with respect to the silver-tin powder according to claim 1 as conductive particles. 導電粒子として、請求項1記載の銀−スズ粉に対して0.1〜20重量%のビスマス粉および/または銀−ビスマス粉を含む、請求項または記載の導電性接着剤。The conductive adhesive according to claim 3 or 4 , comprising 0.1 to 20% by weight of bismuth powder and / or silver-bismuth powder with respect to the silver-tin powder according to claim 1 as conductive particles. 請求項1〜のいずれか1項記載の導電性接着剤を用いて、半導体素子、チップ部品、ディスクリート部品またはそれらの組合せを接合させた回路。Using a conductive adhesive agent according to any one of claims 1 to 5, the semiconductor element, chip components, circuits obtained by bonding discrete components or a combination thereof.
JP2001069695A 2001-03-13 2001-03-13 Conductive adhesive and circuit using the same Expired - Lifetime JP4928021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001069695A JP4928021B2 (en) 2001-03-13 2001-03-13 Conductive adhesive and circuit using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001069695A JP4928021B2 (en) 2001-03-13 2001-03-13 Conductive adhesive and circuit using the same

Publications (2)

Publication Number Publication Date
JP2002265920A JP2002265920A (en) 2002-09-18
JP4928021B2 true JP4928021B2 (en) 2012-05-09

Family

ID=18927697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001069695A Expired - Lifetime JP4928021B2 (en) 2001-03-13 2001-03-13 Conductive adhesive and circuit using the same

Country Status (1)

Country Link
JP (1) JP4928021B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE547494T1 (en) * 2002-09-04 2012-03-15 Namics Corp CONDUCTIVE ADHESIVE AND CIRCUIT CONTAINING SAME
JP2006514144A (en) * 2003-03-18 2006-04-27 ダウ・コーニング・コーポレイション Conductive adhesive composition
JP4482930B2 (en) * 2004-08-05 2010-06-16 昭栄化学工業株式会社 Conductive paste
JP4490206B2 (en) * 2004-08-11 2010-06-23 ナミックス株式会社 Metal paste
JP4831978B2 (en) * 2005-02-15 2011-12-07 ヘンケルエイブルスティックジャパン株式会社 Conductive adhesive
JP2006267998A (en) * 2005-02-28 2006-10-05 Fuji Photo Film Co Ltd Resin composition for recording material, photosensitive transfer material, light-blocking film for display apparatus and method for forming the same, substrate with light-blocking film, liquid crystal display element, and liquid crystal display apparatus
JP4828196B2 (en) * 2005-10-04 2011-11-30 富士フイルム株式会社 Dark color wall forming method, color filter, manufacturing method thereof, and display device
WO2007052661A1 (en) * 2005-11-02 2007-05-10 Matsushita Electric Industrial Co., Ltd. Conductive adhesive
JP2009193974A (en) * 2006-05-15 2009-08-27 Alps Electric Co Ltd Electronic component and manufacturing method thereof
WO2008004287A1 (en) 2006-07-05 2008-01-10 Ablestik (Japan) Co., Ltd. Conductive adhesive
JP4998732B2 (en) 2007-10-22 2012-08-15 ソニーケミカル&インフォメーションデバイス株式会社 Anisotropic conductive adhesive
KR101559605B1 (en) 2008-02-06 2015-10-13 나믹스 가부시끼가이샤 Thermosetting conductive paste and laminated ceramic electronic component possessing external electrodes formed using same
WO2011003948A2 (en) 2009-07-08 2011-01-13 Henkel Ag & Co. Kgaa Electrically conductive adhesives
KR101097670B1 (en) 2010-04-20 2011-12-22 서울대학교산학협력단 Printed circuit substrate and method of manufacturing the same
JP7084730B2 (en) * 2017-02-01 2022-06-15 Dowaエレクトロニクス株式会社 Silver alloy powder and its manufacturing method
CN112135887B (en) 2018-05-16 2023-02-07 汉高股份有限及两合公司 Curable adhesive composition for die attach

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58103567A (en) * 1981-12-14 1983-06-20 Matsushita Electric Ind Co Ltd Electrically conductive paint
JPH06336562A (en) * 1993-05-28 1994-12-06 Hitachi Chem Co Ltd Conductive paste
US5542602A (en) * 1994-12-30 1996-08-06 International Business Machines Corporation Stabilization of conductive adhesive by metallurgical bonding
JP2000309773A (en) * 1998-11-30 2000-11-07 Nippon Handa Kk Conductive adhesive and bonding method using same
JP2001143529A (en) * 1999-11-12 2001-05-25 Nippon Handa Kk Conductive bonding agent by cream solder mixing and bonding method using the same

Also Published As

Publication number Publication date
JP2002265920A (en) 2002-09-18

Similar Documents

Publication Publication Date Title
JP4401294B2 (en) Conductive adhesive and circuit using the same
JP4928021B2 (en) Conductive adhesive and circuit using the same
KR100832628B1 (en) Conductive paste
KR101225497B1 (en) Conductive paste and the manufacturing method thereof and the electric device comprising thereof
JP3689159B2 (en) Conductive adhesive and circuit using the same
WO2008004287A1 (en) Conductive adhesive
JP2007269959A (en) Electroconductive adhesive, electronic device and method for producing the same
JP5200662B2 (en) Conductive adhesive and electronic components
KR100929136B1 (en) Conductive paste and the manufacturing method thereof and the electric device comprising thereof
JP3837858B2 (en) Conductive adhesive and method of using the same
JP4235888B2 (en) Conductive paste
JP4831978B2 (en) Conductive adhesive
JP5048031B2 (en) Conductive adhesive and circuit using the same
JP5169517B2 (en) Conductive adhesive and electronic components
JP2000290617A (en) Electroconductive adhesive and usage thereof
KR100619390B1 (en) Conductive adhesive and circuit comprising it
JP2000192000A (en) Electrically conductive adhesive
JP5034577B2 (en) Conductive paste
JP4152163B2 (en) Conductive adhesive and method for producing the same
JP5119766B2 (en) Conductive adhesive and electronic component using the same
JPH11209716A (en) Electroconductive adhesive
JP3540830B2 (en) Adhesive composition
JP2007197498A (en) Conductive adhesive
JP3681907B2 (en) Conductive adhesive and electronic component mounting method using the same
JP3589569B2 (en) Conductive paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4928021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term