JP4923614B2 - Corrosion resistant steel for ships - Google Patents

Corrosion resistant steel for ships Download PDF

Info

Publication number
JP4923614B2
JP4923614B2 JP2006044961A JP2006044961A JP4923614B2 JP 4923614 B2 JP4923614 B2 JP 4923614B2 JP 2006044961 A JP2006044961 A JP 2006044961A JP 2006044961 A JP2006044961 A JP 2006044961A JP 4923614 B2 JP4923614 B2 JP 4923614B2
Authority
JP
Japan
Prior art keywords
corrosion
corrosion resistance
test
steel
coating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006044961A
Other languages
Japanese (ja)
Other versions
JP2007224344A (en
Inventor
務 小森
康人 猪原
秀和 鶴田
和彦 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006044961A priority Critical patent/JP4923614B2/en
Publication of JP2007224344A publication Critical patent/JP2007224344A/en
Application granted granted Critical
Publication of JP4923614B2 publication Critical patent/JP4923614B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、船舶に用いられる耐食鋼材に関し、特に、船舶が海水により受ける厳しい腐食環境下においても優れた耐食性を発揮するプライマー処理が施された船舶用耐食鋼材に関するものである。なお、本発明でいう船舶用耐食鋼材には、厚鋼板の他、薄鋼板、形鋼、丸棒、鋼管等も含まれる。   The present invention relates to a corrosion-resistant steel material used for ships, and more particularly, to a corrosion-resistant steel material for ships that has been subjected to a primer treatment that exhibits excellent corrosion resistance even in a severe corrosive environment that the ship receives from seawater. In addition, the marine corrosion resistant steel material referred to in the present invention includes a thin steel plate, a shaped steel, a round bar, a steel pipe and the like in addition to a thick steel plate.

船舶は、常に海水に曝されており、非常に厳しい腐食環境下で使用されている。そこで、船舶には、腐食対策として、その外郭部分に塗装処理が施されているのが普通である。一方、船舶の内部は、積荷によっては外郭部分より厳しい腐食環境下で使用される場合も少なくない。例えば、原油の輸送に用いられるタンカーでは、原油中に含まれるHSと塩分との複合腐食によって、タンク槽の底板部では孔食、上甲板部では全面に亘る層状腐食が起こり易いことが知られている。また、積荷がない場合には、船舶の安定航行のために、バラストタンク中に海水を注入することが行われているため、バラストタンクも厳しい腐食を受ける。 Ships are constantly exposed to seawater and are used in extremely severe corrosive environments. Therefore, it is normal for a ship to be painted on its outer shell as a countermeasure against corrosion. On the other hand, the inside of a ship is often used in a more severe corrosive environment than the outer part depending on the load. For example, in a tanker used for transporting crude oil, pitting corrosion is likely to occur at the bottom plate of the tank tank and laminar corrosion over the entire surface of the upper deck due to the combined corrosion of H 2 S and salt contained in the crude oil. Are known. Further, when there is no cargo, seawater is injected into the ballast tank for the stable navigation of the ship, so that the ballast tank is also severely corroded.

上記のような厳しい腐食環境に対する対策としては、通常、多重塗装が行われることが多い。しかしながら、塗装のみによる防錆対策では、塗装に傷が入ると、傷部において集中して腐食が進行し、孔食が起こり易い。そのため、メインテナンスを厳格かつ高頻度で実施することが必要となる。   As a measure against the severe corrosive environment as described above, multiple coating is usually performed. However, with anti-corrosion measures only by painting, if scratches are applied to the coating, corrosion concentrates on the scratched part and pitting corrosion tends to occur. Therefore, it is necessary to carry out maintenance strictly and frequently.

そこで、従来から、鋼にCrやNiなどの耐食性向上効果のある元素を添加して、鋼材自身の耐食性を向上することが検討されてきた。しかし、この方法では、合金元素を多量に添加することが必要となるため、構造材としての船舶用鋼材に求められる溶接性と機械的特性とのバランスが崩れる場合が多い。そのため、船舶用鋼材の耐食性の向上には限界があり、鋼材のみでは十分な耐食性能を発揮できていない。   Therefore, conventionally, it has been studied to add an element having an effect of improving corrosion resistance such as Cr and Ni to steel to improve the corrosion resistance of the steel material itself. However, in this method, since it is necessary to add a large amount of alloy elements, the balance between weldability and mechanical properties required for marine steel as a structural material is often lost. Therefore, there is a limit in improving the corrosion resistance of marine steel materials, and sufficient corrosion resistance performance cannot be exhibited only with steel materials.

一方、船舶の建造中には、鋼材の一次防錆を主目的として、Zn系プライマーを表面に塗布することが行われている。そこで、このZn系プライマーに着目して、一次防錆性を確保しつつ、溶接性を向上する技術が開示されている。例えば、特許文献1には、無機ジンク一次防錆塗料で塗装した材料では、溶接部ビートにピットやブローホールのような溶接欠陥が発生し易いという問題に対して、珪素系化合物を含む主剤と亜鉛末を含むペーストに、リン酸塩系顔料および長石を含有する一次防錆塗料が提案されている。また、特許文献2には、亜鉛末含有防食塗料を塗布した材料では、溶接部にピットやブローホールが発生して溶接部の強度が低下するという問題に対して、亜鉛末の一部を雲母状酸化鉄粉に置き換えることによって、溶接性を改善する技術が提案されている。
特許第2852175号公報 特公昭48−22174号公報
On the other hand, during the construction of a ship, a Zn-based primer is applied to the surface mainly for primary rust prevention of steel materials. Then, paying attention to this Zn-type primer, the technique which improves weldability is ensured, ensuring primary rust prevention property. For example, Patent Document 1 discloses that a material coated with an inorganic zinc primary rust preventive paint has a main component containing a silicon-based compound for the problem that weld defects such as pits and blowholes are likely to occur in the weld beat. A primary rust preventive paint containing a phosphate pigment and feldspar in a paste containing zinc powder has been proposed. Further, Patent Document 2 discloses that a material coated with a zinc dust-containing anticorrosive coating has a mica with a part of zinc dust for the problem that pits and blowholes are generated in the weld and the strength of the weld decreases. A technique for improving the weldability by replacing with iron oxide powder has been proposed.
Japanese Patent No. 2852175 Japanese Patent Publication No. 48-22174

しかしながら、Zn系プライマーは、その上に塗装を施して使用されるのが普通である。そのため、耐食性の向上は、例えば、上記上塗装膜の厚膜化などで対応されており、Zn系プライマー自身の耐食性を向上することまで、十分な検討がなされていなかったのが実情である。そのため、従来のZn系プライマーでは、耐食性の向上には限界があった。   However, the Zn-based primer is usually used after being coated. Therefore, the improvement in corrosion resistance has been dealt with, for example, by increasing the thickness of the above-mentioned upper coating film. In fact, sufficient investigation has not been made until the corrosion resistance of the Zn-based primer itself has been improved. Therefore, the conventional Zn-based primer has a limit in improving the corrosion resistance.

そこで、本発明の目的は、海水による腐食が問題となる船舶の原油タンクやバラストタンクなどの部位に好適に用いることができる、Zn系プライマーを塗布した船舶用耐食鋼材を提供することにある。   Accordingly, an object of the present invention is to provide a marine corrosion resistant steel material coated with a Zn-based primer, which can be suitably used for a part such as a crude oil tank or a ballast tank of a ship where corrosion by seawater is a problem.

発明者らは、実船における海水による腐食問題を改善するために、実船の各部位における腐食環境を模した腐食試験を考案し、その試験方法を用いて、鋼材表面に塗布して使用するZn系プライマーの耐食性の評価とその改善を重ねてきた。その結果、Zn系のプライマーに特定の金属成分を特定の範囲で添加することにより、塗装傷などの損傷部からのZn系プライマーの劣化を効果的に抑制することができるとともに、緻密なさび層の形成を助長し、ひいては船舶に用いられている鋼材の耐食寿命を著しく改善できることを知見し、本発明に想到した。   The inventors have devised a corrosion test that mimics the corrosive environment in each part of the actual ship in order to improve the corrosion problem caused by seawater on the actual ship, and use it by applying it to the steel surface using the test method. We have repeatedly evaluated and improved the corrosion resistance of Zn-based primers. As a result, by adding a specific metal component in a specific range to the Zn-based primer, deterioration of the Zn-based primer from damaged parts such as paint scratches can be effectively suppressed, and a dense rust layer As a result, it was found that the corrosion resistance life of steel materials used in ships can be remarkably improved.

すなわち、本発明は、Zn系プライマー塗膜を表面に形成してなる船舶用鋼材であって、その塗膜は、Znの付着量が5〜70g/mであり、Cuを0.1〜35mass%およびSbを0.01〜10mass%含有することを特徴とする耐食性に優れるZn系プライマー塗布鋼材である。
本発明の上記塗膜は、さらに、Ni,Al,Mo,W,MgおよびTiうちから選ばれる1種または2種以上を、Zn含有量に対して0.1〜35mass%含有することを特徴とする。
That is, the present invention is a marine steel material having a Zn-based primer coating film formed on the surface thereof, and the coating film has a Zn deposition amount of 5 to 70 g / m 2 and Cu of 0.1 to 0.1%. is a Zn-based primer coating steel which is excellent in corrosion resistance, characterized in that it contains 35 mass% and 0.01~10Mass% of S b.
The coating film of the present invention further contains one or more selected from among Ni, Al, Mo, W, Mg and Ti in an amount of 0.1 to 35 mass% with respect to the Zn content. And

また、本発明の鋼材の上記塗膜には、さらに、Vを、Zn含有量に対してそれぞれ0.01〜10mass%でかつSbおよびVが合計で20mass%以下含有することを特徴とする。
Further, the above coating film of the steel material of the present invention, further, V a, and characterized in that and S b Contact and V a 0.01~10Mass% respectively Zn content contains less 20 mass% in total To do.

本発明によれば、特定の耐食性向上効果のある金属成分を適量添加した新しいZn系プライマーを鋼材表面に塗布することにより、船舶に用いられている鋼材の孔食抑制や海水飛散部における塗装後の耐食性向上などを図ることができるので、原油タンカーのホールド(船倉)や各種船舶のバラストタンク部などの厳しい腐食環境において、優れた耐腐食性を示す鋼材を安価に提供することが可能となる。   According to the present invention, after applying a new Zn-based primer to which an appropriate amount of a metal component having a specific corrosion resistance improving effect is added to the surface of the steel material, the pitting corrosion suppression of the steel material used in the ship and after coating in the seawater scattering part As a result, it is possible to provide steel materials exhibiting excellent corrosion resistance at a low cost in severe corrosive environments such as hold of crude oil tankers and ballast tanks of various ships. .

本発明に係るの船舶用耐食鋼材について説明する。
本発明の鋼材は、その表面にZn系のプライマーを塗布した鋼材である。素材となる鋼材は、船舶用鋼材として求められる溶接性や機械的特性などの特性を満たす従来公知の鋼材であればいずれでもよい。さらに、鋼材に微量元素を添加することにより、従来の鋼材が有する溶接性や機械的特性、耐食性をさらに改善した鋼材を用いても構わない。
The marine corrosion resistant steel material according to the present invention will be described.
The steel material of the present invention is a steel material having a Zn-based primer applied to its surface. The steel material used as a raw material may be any conventionally known steel material that satisfies characteristics such as weldability and mechanical characteristics required as marine steel materials. Furthermore, you may use the steel material which further improved the weldability, mechanical characteristics, and corrosion resistance which the conventional steel materials have by adding a trace element to steel materials.

次に、上記鋼材の表面に形成するZn系プライマーの塗膜について説明する。
Zn:5〜70g/m
Znは、犠牲防食により塗布した鋼板の耐食性を著しく改善する成分である。この効果を得るためには、鋼材の表面に形成した塗膜中に含まれるZnは5g/m以上であることが必要である。一方、Znの含有量は、犠牲防食による耐食性改善の観点からは、多ければ多いほど好ましいが、70g/mより多くなると、溶接性や溶断性などの基本特性が劣化するため、上限は70g/mとする必要がある。
Next, the coating film of Zn-based primer formed on the surface of the steel material will be described.
Zn: 5-70 g / m 2
Zn is a component that remarkably improves the corrosion resistance of the steel sheet applied by sacrificial corrosion protection. In order to obtain this effect, Zn contained in the coating film formed on the surface of the steel material needs to be 5 g / m 2 or more. On the other hand, the Zn content is preferably as large as possible from the viewpoint of improving corrosion resistance by sacrificial corrosion protection, but if it exceeds 70 g / m 2 , basic characteristics such as weldability and fusing property deteriorate, so the upper limit is 70 g. / M 2 is required.

Ni,Al,Cu,Mo,W,Mg,Tiの1種または2種以上:Zn含有量に対して金属換算で合計0.1〜35mass%
これらの添加成分は、Zn系プライマーに添加することで、耐食性を向上する効果がある。その機構については、現状では明確になっていないが、Znの緻密な腐食生成物の形成を促進する効果や、ZnまたはFeと安定な複合酸化物を形成する効果、あるいは、生成した錆中に分散して腐食を進行させるClイオンの浸入を抑制する効果などが、単独あるいは複合して耐食性を向上させているものと考えている。これらの添加金属の効果は、金属換算でそれぞれ塗膜中に含まれるZn含有量に対して0.1mass%以上で得られ、一方、Zn含有量に対して35mass%以上添加しても、その効果が飽和するので、0.1〜35mass%の範囲で含有させる。好ましくは、Zn含有量に対して10〜35mass%の範囲である。なお、これらの金属成分は、金属単体として添加しても、あるいは、酸化物等の化合物として添加しても、いずれでもよい。
One or more of Ni, Al, Cu, Mo, W, Mg, Ti: 0.1 to 35 mass% in total in terms of metal with respect to Zn content
These additive components have the effect of improving the corrosion resistance when added to a Zn-based primer. Although the mechanism is not clear at present, the effect of promoting the formation of a dense corrosion product of Zn, the effect of forming a stable complex oxide with Zn or Fe, or the generated rust The effect of suppressing the intrusion of Cl ions, which disperse and advance corrosion, is considered to improve the corrosion resistance, either alone or in combination. The effect of these added metals can be obtained at 0.1 mass% or more with respect to the Zn content contained in the coating film in terms of metal, while adding 35 mass% or more with respect to the Zn content. Since the effect is saturated, it is contained in the range of 0.1 to 35 mass%. Preferably, it is the range of 10-35 mass% with respect to Zn content. These metal components may be added as a simple metal or as a compound such as an oxide.

Sb,SnおよびVのうちから選ばれる1種または2種以上:Zn含有量に対してそれぞれ金属換算で0.01〜10mass%かつ合計で20mass%以下
Sb,SnおよびVは、微量の添加でZn系プライマーの耐食性を改善する効果を発現する。その機構は、まだ明確ではないが、緻密な腐食生成物の形成を促進する効果や安定な複合酸化物形成による過電圧の低下などの効果が単独あるいは複合しているものと考えている。上記効果を得るためには、これらの金属成分のいずれか1種以上をZn含有量に対して0.01mass%以上の添加することが好ましい。しかし、Zn含有量に対して10mass%を超えて添加しても、その効果は飽和するので、10mass%以下とするのが好ましい。好ましくは、Zn含有量に対して1〜10mass%の範囲である。また、上記金属の合計含有量が20mass%を超える場合にも、その効果が飽和するので、合計含有量は20mass%以下とすることが好ましい。なお、これらの金属成分は、金属単体として添加しても、あるいは、酸化物等の化合物として添加しても、いずれでもよい。
One or more selected from Sb, Sn and V: 0.01 to 10 mass% in terms of metal and 20 mass% or less in total with respect to the Zn content. Sb, Sn and V are added in a small amount The effect of improving the corrosion resistance of the Zn-based primer is exhibited. Although the mechanism is not yet clear, it is considered that the effect of promoting the formation of a dense corrosion product and the effect of reducing the overvoltage due to the formation of a stable complex oxide are independent or combined. In order to acquire the said effect, it is preferable to add any 1 or more types of these metal components 0.01 mass% or more with respect to Zn content. However, even if added in excess of 10 mass% with respect to the Zn content, the effect is saturated, so it is preferable to make it 10 mass% or less. Preferably, it is the range of 1-10 mass% with respect to Zn content. Moreover, since the effect is saturated also when the total content of the above metals exceeds 20 mass%, the total content is preferably 20 mass% or less. These metal components may be added as a simple metal or as a compound such as an oxide.

表1に示した鋼AおよびBの2種類の鋼材から、(15mm厚×50mm幅×50mm長さ)の試験片1、(6mm厚×55mm幅×45mm長さ)の試験片2および(6mm厚×70mm幅×150mm長さ)の試験片3のそれぞれ寸法が異なる3種類の試験片を採取し、これらの試験片にショットブラスト処理を施して表面のスケールや油分を除去してから、それらの試験片表面に、表2に示したような、Zn含有量、含有金属の種類、量が異なるZn系プライマーを、スプレーあるいは刷毛塗りによって塗付し、1日以上乾燥してから、下記の3種類の耐食試験に供した。なお、上記Zn系プライマーは、エチルシリケート樹脂を、全含有成分の12.5mass%含むものを用いた。   From the two types of steel materials A and B shown in Table 1, (15 mm thickness × 50 mm width × 50 mm length) test piece 1, (6 mm thickness × 55 mm width × 45 mm length) test piece 2 and (6 mm (Thickness x 70 mm width x 150 mm length) Three types of test pieces with different dimensions are collected, and these test pieces are subjected to shot blast treatment to remove surface scale and oil, and then On the surface of the test piece, as shown in Table 2, Zn-based primers having different Zn contents, types of contained metals, and amounts were applied by spraying or brushing and dried for one day or more. Three types of corrosion resistance tests were performed. In addition, the said Zn-type primer used what contained 12.5 mass% of ethyl silicate resin of all the containing components.

<腐食試験1>
実際の重油タンクの底板で生ずる局部腐食を模擬するため、試験片1の表面に、原油から採取した沈降成分を約100μmの厚さで塗布し、さらに、上記試験片1には、積極的に局部腐食を起こさせるために、原油の沈降成分を塗付する際に、オイルコートの欠陥部を模擬して直径1mmのオイルコート無塗付部分を2箇所設けた。その後、この試験片を、図1に示したような、腐食試験装置を用いて6ヶ月間の腐食試験を行った。上記、腐食試験装置は、腐蝕試験槽2と恒温槽3とからなる2重型のもので、腐蝕試験槽2の内部には試験液6が入れられており、試験片は、この液中にセットした。なお、腐食試験液としては、ASTM D 1141に規定された人工海水を試験母液に用い、これに、5%O+10%HSの分圧比に調製した混合ガス4を導入したものを使用した。この際、混合ガスの分圧バランス調整用の不活性ガスにはNガスを用いた。また、試験液6の温度は、恒温槽3に入れた水7の温度を制御することにより、50℃に保持した。
そして、耐食性の評価は、腐食試験後、オイルコート、プライマー塗膜および試験片表面に生成した錆を除去し、試験片に発生した最大孔食深さを測定し、その深さが0.2mm以下を耐局部腐食性良(○)、0.2mm超え1mm以下を耐局部腐食性やや良(△)、1mm超えを耐局部腐食性劣(×)と評価した。
<Corrosion test 1>
In order to simulate the local corrosion that occurs in the bottom plate of an actual heavy oil tank, a sedimentation component collected from crude oil is applied to the surface of the test piece 1 to a thickness of about 100 μm. In order to cause local corrosion, when applying the sediment component of the crude oil, two oil coat uncoated portions having a diameter of 1 mm were provided by simulating a defective portion of the oil coat. Thereafter, the test piece was subjected to a corrosion test for 6 months using a corrosion test apparatus as shown in FIG. The above-described corrosion test apparatus is a double type composed of a corrosion test tank 2 and a thermostatic tank 3, and a test liquid 6 is placed inside the corrosion test tank 2, and a test piece is set in this liquid. did. In addition, as the corrosion test liquid, artificial seawater specified in ASTM D 1141 is used as a test mother liquid, and a mixture gas 4 prepared at a partial pressure ratio of 5% O 2 + 10% H 2 S is used. did. At this time, N 2 gas was used as an inert gas for adjusting the partial pressure balance of the mixed gas. Moreover, the temperature of the test solution 6 was maintained at 50 ° C. by controlling the temperature of the water 7 put in the thermostat 3.
The corrosion resistance is evaluated by removing the rust generated on the surface of the oil coat, primer coating film and test piece after the corrosion test, measuring the maximum pitting corrosion depth generated on the test piece, and the depth is 0.2 mm. The following was evaluated as good local corrosion resistance (◯), more than 0.2 mm and 1 mm or less as local corrosion resistance somewhat good (Δ), and more than 1 mm as poor local corrosion resistance (x).

<腐食試験2>
実際の原油タンクの上甲板で起こる腐食を模擬するため、図2に示したような雰囲気と温度サイクルを調整可能な試験槽内に試験片2を曝露し、90日間の腐食試験を行った。試験槽内の雰囲気は、原油タンク内の環境を模擬するために、10%CO、8%O、0.02%SOx、残部Nからなる混合ガスを、飽和蒸気圧の下に充満させた。また、試験槽内の温度は、結露水による腐食が模擬できるように、試験槽内の上部に設置した加熱と冷却機能を有する温度調節プレートで、30℃×12時間+60℃×12時間を1サイクル(1日)として試験期間中変化させた。また、試験片2の表面には、腐食速度を加速させるために、塗膜の上から地鉄まで達する50mm長さのカッター傷をX字型に入れた。そして、腐食試験の評価は、上記カッター傷の部分から発生した赤錆の進行幅(片側幅)を任意の10点で測定し、その平均の幅が、3mm以下を結露水による耐食性良(○)、3mm超え10mm以下を結露水による耐食性やや良(△)、10mm超えを結露水による耐食性劣(×)と評価した。
<Corrosion test 2>
In order to simulate the corrosion that occurs on the upper deck of an actual crude oil tank, the test piece 2 was exposed to a test tank in which the atmosphere and temperature cycle could be adjusted as shown in FIG. The atmosphere in the test tank is filled with a mixed gas consisting of 10% CO 2 , 8% O 2 , 0.02% SOx, and the balance N 2 under saturated vapor pressure in order to simulate the environment in the crude oil tank. I let you. The temperature in the test tank is a temperature control plate having heating and cooling functions installed at the top of the test tank so that corrosion due to condensed water can be simulated, and 30 ° C. × 12 hours + 60 ° C. × 12 hours is 1 The cycle (1 day) was varied during the test period. Further, on the surface of the test piece 2, a 50 mm long cutter scratch reaching the base iron from the top of the coating film was put in an X shape in order to accelerate the corrosion rate. The corrosion test was evaluated by measuring the progression width (one side width) of red rust generated from the above-mentioned cutter scratch portion at an arbitrary 10 points, and the average width was 3 mm or less with good corrosion resistance due to condensed water (◯). 3 mm and 10 mm or less were evaluated as being slightly good in corrosion resistance due to condensed water (Δ), and 10 mm and above being evaluated as being poor in corrosion resistance due to condensed water (x).

<腐食試験3>
タンカーの上甲板裏の腐食環境を模擬して、人工海水を用いた噴霧と乾燥の繰り返し試験を行うことができる複合サイクル試験装置を用いて、40日間実施した。なお、この試験では、試験片3の表面に形成されたZn系プライマー塗膜の上に、さらに、厚さ100μmのタールエポキシ塗装を施し、その上から地鉄まで達する50mm長さのカッター傷をX字型に入れたものを試験片に用いた。また、耐食性の評価は、上記カッター傷の部分から発生した赤錆の進行幅(片側幅)を任意の10点で測定し、その平均の幅が、10mm以下を結露水による耐食性良(○)、10mm超え30mm以下を耐食性やや良(△)、30mm超えを耐食性劣(×)と評価した。
<Corrosion test 3>
It was carried out for 40 days using a combined cycle test apparatus that can simulate the corrosive environment behind the upper deck of a tanker and perform repeated spraying and drying tests using artificial seawater. In this test, a tar epoxy coating with a thickness of 100 μm was further applied on the Zn-based primer coating film formed on the surface of the test piece 3, and a 50 mm long cutter scratch reaching the base iron from above was applied. What was put into X shape was used for the test piece. In addition, the corrosion resistance is evaluated by measuring the progression width (one side width) of red rust generated from the above-mentioned cutter scratch part at an arbitrary 10 points, and the average width is 10 mm or less with good corrosion resistance due to condensed water (○), 10 mm and 30 mm or less were evaluated as slightly good corrosion resistance (Δ), and 30 mm or more was evaluated as poor corrosion resistance (x).

上記腐食試験1〜3の結果を、まとめて評2−1および表2−2に併記して示した。
上記表から、本発明に適合する鋼材(No.1〜24(ただし、No.1〜6,8〜22および24は参考例))は、原油タンカーの底部で発生する局部腐食の模擬試験においては、最大孔食深さが0.2mm以下で耐局部腐食性が優れており、また、原油タンカーの上甲板で発生する全面腐食の模擬試験においても、錆の発生やプライマー下での錆の進行が遅く、プライマー寿命の点で優れていることがわかる。さらに、船舶バラストタンクを模擬した腐食環境においても、傷部からの塗装膜の膨れの進行が低減されており、塗装後の耐食性が向上することがわかった。一方、本発明に適合しない鋼材(No.25〜35)では、1mm以上の深さとなる局部腐食の発生が見られると共に、プライマー下での錆進行が速くてプライマー寿命が短く、さらに塗膜下での腐食の進行も早くて塗装寿命が短いことがわかる。以上の結果から、本発明の鋼材は、船舶のあらゆる環境において、従来のジンクプライマーより格段に優れた耐食性を有することが確認された。なお、本実施例では、Zn系プライマリーを塗布する鋼材として、表1に示したA,Bの2種の鋼を用いたが、本発明は、これらに限定されるものでないことは勿論である。
The results of the corrosion tests 1 to 3 are collectively shown in Evaluation 2-1 and Table 2-2.
From the above table, the steel materials (No. 1 to 24 (No. 1 to 6 , 8 to 22 and 24 are reference examples) ) suitable for the present invention are used in a simulation test of local corrosion occurring at the bottom of a crude oil tanker. Has a maximum pitting corrosion depth of 0.2 mm or less and excellent local corrosion resistance. Also, in simulated tests of full-scale corrosion that occurs on the upper deck of crude oil tankers, rust generation and rusting under the primer occur. It can be seen that the progress is slow and the primer life is excellent. Furthermore, it was found that even in a corrosive environment simulating a ship ballast tank, the progress of the swelling of the coating film from the scratches is reduced, and the corrosion resistance after painting is improved. On the other hand, in the steel material (No. 25-35) that does not conform to the present invention, the occurrence of local corrosion with a depth of 1 mm or more is observed, the progress of rust under the primer is fast, the primer life is short, and It can be seen that the progress of corrosion is quick and the paint life is short. From the above results, it was confirmed that the steel material of the present invention has much better corrosion resistance than the conventional zinc primer in any environment of the ship. In this example, two types of steels A and B shown in Table 1 were used as the steel material to which the Zn-based primary was applied. However, the present invention is not limited to these. .

Figure 0004923614
Figure 0004923614

Figure 0004923614
Figure 0004923614

Figure 0004923614
Figure 0004923614

本発明の技術は、船舶用鋼材に限られるものではなく、橋梁や建築物などの鋼構造物で腐食環境の厳しい分野で用いられる鋼材にも適用することができる。   The technology of the present invention is not limited to marine steel materials, and can also be applied to steel materials used in fields where the corrosive environment is severe in steel structures such as bridges and buildings.

本発明の実施例の腐食試験1で用いた腐食試験装置の概要を示す模式図である。It is a schematic diagram which shows the outline | summary of the corrosion test apparatus used by the corrosion test 1 of the Example of this invention. 本発明の実施例の腐食試験2で用いた腐食試験装置の概要を示す模式図である。It is a schematic diagram which shows the outline | summary of the corrosion test apparatus used by the corrosion test 2 of the Example of this invention.

符号の説明Explanation of symbols

1、8:試験片
2、9:腐食試験槽
3:恒温槽
4、11:ガス導入
5、12:ガス排出
6:試験液
7、13:水
10:温度制御プレート
DESCRIPTION OF SYMBOLS 1, 8: Test piece 2, 9: Corrosion test tank 3: Constant temperature tank 4, 11: Gas introduction 5, 12: Gas discharge 6: Test liquid 7, 13: Water 10: Temperature control plate

Claims (3)

Zn系プライマー塗膜を表面に形成してなる船舶用鋼材であって、その塗膜は、Znの付着量が5〜70g/mであり、Zn含有量に対して、Cuを0.1〜35mass%およびSbを0.01〜10mass%含有することを特徴とする耐食性に優れるZn系プライマー塗布鋼材。 A marine steel material having a Zn-based primer coating film formed on the surface thereof, and the coating film has a Zn deposition amount of 5 to 70 g / m 2 , and Cu is 0.1% with respect to the Zn content. Zn-based primer coating steel which is excellent the ~35Mass% and S b in corrosion resistance, characterized in that it contains 0.01~10mass%. 上記塗膜は、さらに、Ni,Al,Mo,W,MgおよびTiうちから選ばれる1種または2種以上を、Zn含有量に対して0.1〜35mass%含有することを特徴とする請求項1に記載の耐食性に優れるZn系プライマー塗布鋼材。 The said coating film contains 0.1-35 mass% with respect to Zn content further including the 1 type (s) or 2 or more types chosen from Ni, Al, Mo, W, Mg, and Ti. Item 4. A Zn-based primer-coated steel material having excellent corrosion resistance according to Item 1. 上記塗膜は、さらに、Vを、Zn含有量に対して0.01〜10mass%でかつSb,およびVが合計で20mass%以下含有することを特徴とする請求項1または2に記載の耐食性に優れるZn系プライマー塗布鋼材。 The above coating film, further a V, with respect to Zn content 0. 01~10Mass% a and S b, Zn-based primer coating steel which is excellent in corrosion resistance according to claim 1 or 2 Contact and V are characterized by containing less 20 mass% in total.
JP2006044961A 2006-02-22 2006-02-22 Corrosion resistant steel for ships Expired - Fee Related JP4923614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006044961A JP4923614B2 (en) 2006-02-22 2006-02-22 Corrosion resistant steel for ships

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006044961A JP4923614B2 (en) 2006-02-22 2006-02-22 Corrosion resistant steel for ships

Publications (2)

Publication Number Publication Date
JP2007224344A JP2007224344A (en) 2007-09-06
JP4923614B2 true JP4923614B2 (en) 2012-04-25

Family

ID=38546420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006044961A Expired - Fee Related JP4923614B2 (en) 2006-02-22 2006-02-22 Corrosion resistant steel for ships

Country Status (1)

Country Link
JP (1) JP4923614B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010229526A (en) * 2009-03-30 2010-10-14 Jfe Steel Corp Highly-corrosion-resistant painted steel material
JP2011021248A (en) * 2009-07-16 2011-02-03 Jfe Steel Corp Steel for ship having excellent coating corrosion resistance
JP2016199777A (en) * 2015-04-07 2016-12-01 株式会社神戸製鋼所 Steel material for coating with excellent anticorrosion
JP6743524B2 (en) * 2015-08-06 2020-08-19 日本製鉄株式会社 Anti-corrosion coated steel and its manufacturing method, anti-corrosion method for coated steel

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176570A (en) * 1984-09-21 1986-04-19 Mitsui Eng & Shipbuild Co Ltd Anticorrosive composition
JPS62275173A (en) * 1986-05-22 1987-11-30 Kansai Paint Co Ltd Primary rust-resisting paint composition
JP3454010B2 (en) * 1996-03-29 2003-10-06 日本軽金属株式会社 Non-chrome type metal anticorrosion coating composition
JPH11116856A (en) * 1997-10-14 1999-04-27 Kobe Paint Kk Rustproofing coating composition
JP2005074272A (en) * 2003-08-29 2005-03-24 Kansai Paint Co Ltd Coating method
JP4514445B2 (en) * 2003-12-18 2010-07-28 大日本塗料株式会社 Highly anticorrosive coating material containing zinc dust
JP2005290399A (en) * 2004-03-31 2005-10-20 Jfe Steel Kk Steel material having excellent laser cutting property

Also Published As

Publication number Publication date
JP2007224344A (en) 2007-09-06

Similar Documents

Publication Publication Date Title
JP4502075B1 (en) Corrosion resistant steel for crude oil tankers
JP4393291B2 (en) Marine steel with excellent corrosion resistance
JP4525687B2 (en) Corrosion resistant steel for ships
JP5774859B2 (en) Corrosion resistant steel for ship superstructure
JP5662894B2 (en) Steel material for the upper deck of crude oil tankers with excellent corrosion resistance or cargo for bulk carriers
JP5763929B2 (en) Marine steel with excellent corrosion resistance
JP2014019908A (en) Anticorrosion coated steel material
JP2008144204A (en) Rust-proofing steel plate for ship&#39;s ballast tank to be protected in electric corrosion, and rust-proofing method for ship&#39;s ballast tank
JP2011021248A (en) Steel for ship having excellent coating corrosion resistance
JP2006037201A (en) Marine steel material superior in corrosion resistance
JP4923614B2 (en) Corrosion resistant steel for ships
JP5216199B2 (en) Marine welded joints and welded structures with excellent crevice corrosion resistance
JP4616181B2 (en) Marine steel with excellent HAZ toughness and corrosion resistance during high heat input welding
JP2012177168A (en) Steel material for vessel, which is excellent in resistance to corrosion caused due to coating
JP5771011B2 (en) Steel for structural members with excellent corrosion resistance
JP5265944B2 (en) Marine steel with excellent corrosion resistance
JP4119941B2 (en) Marine steel with excellent crevice corrosion resistance in humid air
JP2012092403A (en) Steel for ship having excellent coating corrosion resistance
JP5318550B2 (en) Painted steel material for ballast tanks with excellent paint film blistering resistance, and ballast tanks and ships using the same
JP5185712B2 (en) Steel for ballast tanks, ballast tanks and ships
JP2006009128A (en) Steel for vessel having excellent corrosion resistance
JP5735351B2 (en) Surface treated steel
JP4728129B2 (en) Marine steel with excellent corrosion resistance and toughness
JP2924584B2 (en) Durable ballast tank
JP2006118002A (en) Steel material for oil tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees