JP4922498B2 - Balloon parison - Google Patents

Balloon parison Download PDF

Info

Publication number
JP4922498B2
JP4922498B2 JP2001142321A JP2001142321A JP4922498B2 JP 4922498 B2 JP4922498 B2 JP 4922498B2 JP 2001142321 A JP2001142321 A JP 2001142321A JP 2001142321 A JP2001142321 A JP 2001142321A JP 4922498 B2 JP4922498 B2 JP 4922498B2
Authority
JP
Japan
Prior art keywords
balloon
parison
molding
mpa
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001142321A
Other languages
Japanese (ja)
Other versions
JP2002331034A (en
Inventor
哲年 坂田
毅 御林
守 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2001142321A priority Critical patent/JP4922498B2/en
Publication of JP2002331034A publication Critical patent/JP2002331034A/en
Application granted granted Critical
Publication of JP4922498B2 publication Critical patent/JP4922498B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Media Introduction/Drainage Providing Device (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、バルーンカテーテルに使用するバルーンを作成するための、バルーン用パリソンに関する。
【0002】
【従来の技術】
従来、血管などの脈管において狭窄あるいは閉塞が生じた場合、脈管の狭窄部位あるいは閉塞部位を拡張して、血管末梢側への血流を改善するために行う脈管形成術(PTA:Percutaneous Transluminal Angioplasty、PTCA:Percutaneous Transluminal Coronary Angioplastyなど)は、多くの医療機関において多数の術例があり、この種の症例における手術としては一般的になっている。
【0003】
バルーンカテーテルは、主に冠状動脈の狭窄部位を拡張するために、ガイドカテーテルとガイドワイヤーとのセットで使用される。このバルーンカテーテルを用いた脈管形成術は、まずガイドカテーテルを大腿動脈、上腕動脈、橈骨動脈等の穿刺部位から挿入して大動脈を経て冠状動脈の入口に先端を位置させた後、バルーンカテーテルを貫通させたガイドワイヤーを冠状動脈の狭窄部位を超えて前進させ、その後バルーンカテーテルをガイドワイヤーに沿って前進させ、バルーンカテーテルのバルーン(以下バルーンとする)を狭窄部位に位置させた状態で膨張させて狭窄部位を拡張する手順で行い、そしてバルーンを収縮させて体外に除去する。しかし、バルーンカテーテルは、動脈狭窄の治療だけに限定されず、血管の中への挿入、ならびに種々の体腔への挿入を含む多くの医療的用途に有用である。
【0004】
バルーンは、通常シングルルーメンチューブを二軸延伸ブロー成形することにより製造されるものである。特にバルーンの成形に用いるシングルルーメンチューブをバルーン用パリソンとよんでいる。バルーン用パリソンは、通常熱可塑性樹脂を押出成形することにより製造されるものである。
【0005】
押出成形ではダイス形状、押出機の設定温度、吐出量、バルーン用パリソンを引き取る速度、内部エアー圧力などの押出条件を調整することにより、所望サイズのバルーン用パリソンを得ることができる。
【0006】
PTCAカテーテルはモデルチェンジのサイクルが速く、バルーン各部の仕様が短期間に変化するため、バルーン用パリソンの仕様、二軸延伸ブロー成形条件をその度に決定する必要があった。
【0007】
しかし二軸延伸ブロー成形条件を変えると膨らまなかったり膨らんだ途端に破裂するなど成形できないことがあった。また成形できてもバルーン表面にひびが入ったりピンホールができていたり成形不良品も多く発生していた。
【0008】
【発明が解決しようとする課題】
そこで、本発明が前述の状況に鑑み目的とするところは、バルーンの作製において、二軸延伸ブロー成形をする際に安定してバルーンを作製できるバルーン用パリソンを提供することにある。
【0009】
【課題を解決するための手段】
前記課題を改善するべく鋭意検討を重ねた結果、バルーンカテーテルに使用するものであって、材料がポリアミドエラストマーであるバルーン用パリソンの、長さ300mmのバルーン用パリソンをチャック間距離を50mmで保持し、50mm/minの一定速度でバルーン用パリソンの軸方向に引張ったときの引張弾性率が2.9×102MPa以上、3.4×102MPa以下であることを特徴とするバルーン用パリソンを使用すると、バルーン作製時の二軸延伸ブロー成形工程の成形不良が減少し、安定してバルーンを作製できることを見出し、本発明に到達した。
【0010】
更に、二軸延伸ブロー成形する際に、バルーンがバルーン用パリソンに対し軸方向に2.0倍以上、4.0倍以下に延伸され、径方向に2.4倍以上、3.4倍以下の範囲で延伸して形成される場合に、更に安定してバルーンを作製することができる。
【0011】
【発明の実施の形態】
以下に本発明について詳細に説明する。本発明におけるバルーン用パリソンの作製に用いた押出装置の概略図を図1に示す。押出装置は押出機、冷却水槽、引取機により構成される。
【0012】
押出条件(吐出量、ダイ水槽間距離、引取速度)を変えることによりバルーン用パリソンの引張弾性率を制御できる。
【0013】
以下に本発明で使用するポリアミドエラストマーについて説明するが、本発明はこれにより制限されるものではない。本発明で使用するポリアミドエラストマーとしては、ハードセグメントとソフトセグメントからなるブロック共重合体が用いられ、好適にはポリアミドからなるハードセグメントと、ポリエーテルからなるソフトセグメントを用いたブロック共重合体が用いられる。更にこのハードセグメントを構成するポリアミドには、ポリアミド6、6−6、6−10、6−12、11、12等が使用できるが、特にポリアミド12が好ましい。更にソフトセグメントを構成するポリエーテルには、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等が使用できるが、特にポリテトラメチレングリコールが好ましい。一方、ポリアミドエラストマーの硬度は、バルーンに要求される柔軟性によりあらゆる硬度のものが用いられるが、好適にはショアD硬度で25から72のものが、更には好適にはショアD硬度で50から72のものが用いられる。
【0014】
次に引張弾性率について説明する。引張弾性率とはJIS−K7113に定義されているように、引張比例限度内における引張応力とこれに対応するひずみの比のことである。本発明における引張応力及びひずみの測定は温度23℃、湿度50%に制御された室内にて行い、装置にはオートグラフAG2000(島津製作所)を使用し、長さ300mmのバルーン用パリソンをチャック間距離を50mmで保持し、50mm/minの一定速度でバルーン用パリソンの軸方向に引張ることで行った。ここでチャック間距離とはバルーン用パリソンを挟んでいる上側の引張試験用治具の下端部と下側の引張試験用治具の上端部との距離をいい、バルーン用パリソンをこの間にたるまないように注意して挟んだ。試験に供するバルーン用パリソンの内径はピンゲージを用いて測定し、外径はレーザー式外径測定装置を用いて測定した。
【0015】
一方、引張弾性率の測定は破壊測定であり引張弾性率を測定した試料をそのままブロー成形しバルーンを得ることはできない。そこで、同条件で作製したバルーン用パリソンの内、5本のバルーン用パリソンの引張弾性率測定し、その平均値をその同条件で作成したバルーン用パリソンの引張弾性率とした。
本発明では、バルーン用パリソンの引張弾性率を2.9×102MPa以上、3.4×102MPa以下と規定している。該引張弾性率が2.9×102MPaより小さくなると、バルーン成形工程の加熱時にドローダウンが発生し成形が難しい。また該引張弾性率が3.4×102MPaを超えると、バルーン成形工程の長手方向延伸時にバルーン表面にひびが入り、成形不良となりやすく、治療の際血管内でバルーンカテーテルが破裂する危険性がある。
【0016】
該引張弾性率は3.0×102MPa以上、3.2×102MPa以下であることが更に好ましい。該引張弾性率が3.0×102MPa以上、3.2×102MPa以下を示すバルーン用パリソンによりバルーンを成形すると、バルーンの成形不良を更に低減することができる。
【0017】
本発明のバルーンは例えば図2に示す如き装置を用いて二軸延伸ブロー成形され製造される。すなわちバルーンに成形されるのに適切な材質、直径、肉厚であるバルーン用パリソン11を金型12内に導入し、バルーン用パリソンのバルーン成形部分13の軸方向の応力変化をフォースゲージの如き検知手段14で検知し、固定部15、16でバルーン用パリソン11を保持したまま軸方向で且つバルーンと反対側へスライドテーブル17上を移動させ、同時または前後して拡張流体18をバルーン用パリソン内に注入し、これらの操作によりトータルとして二軸延伸ブロー成形しバルーンを製造する。これらの各延伸は別々に行っても、それぞれの段階を更に多段に分けて行っても良い。
【0018】
二軸延伸ブロー成形する際には、バルーンがバルーン用パリソンに対し軸方向に2.0倍以上、4.0倍以下に延伸され、径方向に2.4倍以上、3.4倍以下に延伸されて形成されていることが好ましい。軸方向の延伸が2.0倍よりも小さいと、押し出しにより形状が安定的に得られるバルーン用パリソンからは実用に対し肉厚のバルーンしか得られず、4.0倍よりも大きいと、バルーン成形中に破裂することが多くなる。一方、径方向の延伸が2.4倍よりも小さいと未拡張部分が残ることが多く均一な外観のバルーンが得られにくく、3.4倍よりも大きく延伸するとバルーン成形中に破裂することが多くなる。
【0019】
ここで言う軸方向の延伸倍率は、二軸延伸前に予めバルーン用パリソンに付けておいた目盛りがバルーンの直管部とその両端の外側に向かうにつれて縮径するテーパー部になった時に、何倍に延ばされているかを測定した値であり、径方向の延伸倍率は、(流体によりバルーンが非延伸状態で拡張された時のバルーンの直径)/(バルーン用パリソンの直径)で表される値を意味する。但し、特段の事情がない限り、「流体によりバルーンが非延伸状態で拡張された時のバルーンの直径」の値は、バルーンを二軸延伸する際に使用した金型の直径の値で置き換えて使用しても良い。
【0020】
なお、本発明のバルーン用パリソンにより作成されたバルーンを用いたバルーンカテーテルは、人体のあらゆる体腔、血管に使用でき、更に好ましくは冠動脈、手足の血管、人造、肝臓の血管などに使用できる。
【0021】
【実施例】
以下、本発明を実施例、比較例に基づいて更に詳細に説明するが、これらは本発明を何ら制限するものではない。
【0022】
(実施例1)
ポリアミド系エラストマーPEBAX7033(elf atochem社製)を単軸25mm押出機を用いて表1に示す押出条件により押出成形し、外径1.18mm、内径0.58mmのバルーン用パリソンを成形した。該バルーン用パリソンの引張弾性率を測定したところ5本のサンプルの平均値は3.2×102MPaであった。該バルーン用パリソンを110℃に保持された3.5mmφの金型内で二軸延伸ブロー成形することで外径3.5mm、肉厚約20μmのバルーンを作製した(この時の軸方向の延伸倍率は3.5倍、径方向の延伸倍率は3.0倍であった)。作製したバルーン10個について外観検査を行った。外観検査はバルーン表面にわれ、ひび、ピンホールなど外観不良がないかを検査した。表1に示すようにすべてのバルーン表面にひびなどの外観不良は発生せず、良品率は100%であった。
【0023】
(実施例2)
実施例1と同様にして表1に示す押出条件により押出成形し、外径1.18mm、内径0.58mmのバルーン用パリソンを成形した。該バルーン用パリソンの引張弾性率を測定したところ5本のサンプルの平均値は3.3×102MPaであった。該バルーン用パリソンを110℃に保持された3.5mmφの金型内で二軸延伸ブロー成形することで外径3.5mm、肉厚約20μmのバルーンを作製した(この時の軸方向の延伸倍率は3.5倍、径方向の延伸倍率は3.0倍であった)。実施例1と同様に作製したバルーン10個について外観検査した。表1に示すようにほとんどのバルーン表面にひびなどの外観不良は発生せず、良品率は90%であった。
【0024】
(実施例3)
実施例1と同様にして表1に示す押出条件により押出成形し、外径1.18mm、内径0.58mmのバルーン用バルーン用パリソンを成形した。該バルーン用パリソンの引張弾性率を測定したところ5本のサンプルの平均値は3.0×102MPaであった。該バルーン用パリソンを110℃に保持された3.5mmφの金型内で二軸延伸ブロー成形することで外径3.5mm、肉厚約20μmのバルーンを作製した(この時の軸方向の延伸倍率は3.5倍、径方向の延伸倍率は3.0倍であった)。実施例1と同様に作製したバルーン10個について外観検査した。表1に示すようにほとんどのバルーン表面にひびなどの外観不良は発生せず、良品率は90%であった。
【0025】
(実施例4)
実施例1で作製したバルーン用パリソンを使用し(外径1.18mm、内径0.58mm、引張弾性率3.2×102MPa)、該バルーン用パリソンを110℃に保持された3.5mmφの金型内で二軸延伸ブロー成形することで外径3.5mm、肉厚約20μmのバルーンを作製した(この時の軸方向の延伸倍率は4.2倍、径方向の延伸倍率は3.0倍であった)。実施例1と同様に作製したバルーン10個について外観検査した。3個のバルーンにおいてテーパー部にくびれが見られた。良品率は70%であった。
【0026】
(実施例5)
実施例1と同様にして表1に示す押出条件により押出成形し、外径1.00mm、内径0.46mmのバルーン用パリソンを成形した。該バルーン用パリソンの引張弾性率を測定したところ5本のサンプルの平均値は3.2×102MPaであった。該バルーン用パリソンを110℃に保持された3.5mmφの金型内で二軸延伸ブロー成形することで外径3.5mm、肉厚約20μmのバルーンを作製した(この時の軸方向の延伸倍率は3.5倍、径方向の延伸倍率は3.5倍であった)。実施例1と同様に作製したバルーン10個について外観検査した。2個のバルーンは二軸延伸ブロー時に破裂し、更に2個のバルーンにおいてピンホールが見られた。良品率は60%であった。
【0027】
(比較例1)
実施例1と同様にして表1に示す押出条件により押出成形し、外径1.18mm、内径0.58mmのバルーン用パリソンに成形した。該バルーン用パリソンの引張弾性率を測定したところ、5本のサンプルの平均値は3.8×102MPaであった。該バルーン用パリソンを110℃に保持された3.5mmφの金型内で二軸延伸ブロー成形することで外径3.5mm、肉厚約20μmのバルーンを作製した(この時の軸方向の延伸倍率は3.5倍、径方向の延伸倍率は3.0倍であった)。実施例1と同様に作製したバルーン10個について外観検査した。ほとんどのバルーン表面の長手方向に垂直な方向にひびがあった。良品率は20%であった。
【0028】
(比較例2)
実施例1と同様にして表1に示す押出条件により押出成形し、外径1.18mm、内径0.58mmのバルーン用パリソンに成形した。該バルーン用パリソンの引張弾性率を測定したところ、5本のサンプルの平均値は2.6×102MPaであった。該バルーン用パリソンを110℃に保持された3.5mmφの金型内で二軸延伸ブロー成形することで外径3.5mm、肉厚約20μmのバルーンを作製した(この時の軸方向の延伸倍率は3.5倍、径方向の延伸倍率は3.0倍であった)。二軸延伸ブロー成形時にドローダウンが生じ成形できないものがバルーン10個中5個あった。実施例1と同様に作製できたバルーンカテーテル5個について外観検査を行うと、作製できたバルーンについてはひびなどなく外観は良好であった。良品率は50%となった。
【0029】
【発明の効果】
以上述べたごとく、本発明のバルーン用パリソンは、該バルーン用パリソンの引張弾性率を2.9×102MPa以上、3.4×102MPa以下とすることでバルーンの作製において、二軸延伸ブロー成形時に成形不良がなくなり、安定してバルーンを作製できる。
【表1】

Figure 0004922498
実施例、比較例におけるバルーン用パリソンの押出条件を示している。あわせて該バルーン用パリソンの引張弾性率の測定結果、及びバルーンの外観検査結果を示している。
【図面の簡単な説明】
【図1】本発明に係るバルーン用パリソンの押出装置概略図である。
【図2】本発明に係るバルーンカテーテル成形装置概略図である。
【符号の説明】
1.押出機
2.ダイス
3.冷却水槽
4.引取機
5.制御盤
6.巻取機
11.バルーン用パリソン
12.成形金型
13.バルーン用パリソンのバルーン成形部分
14.検知手段
15.固定部
16.固定部
17.スライドテーブル
18.圧力気体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a parison for a balloon for producing a balloon for use in a balloon catheter.
[0002]
[Prior art]
Conventionally, when stenosis or occlusion occurs in a vessel such as a blood vessel, an angioplasty (PTA: Percutaneous) is performed to expand the stenosis or occlusion site of the vessel and improve blood flow to the peripheral side of the vessel. Transluminal Angioplasty (PTCA: Percutaneous Transluminal Coronary Angioplasty, etc.) has many surgical cases in many medical institutions, and it has become common for surgery in this type of case.
[0003]
Balloon catheters are used in a set of guide catheter and guide wire, mainly to dilate the stenotic site of the coronary artery. In angioplasty using this balloon catheter, the guide catheter is first inserted from the puncture site such as the femoral artery, brachial artery, radial artery, and the tip is positioned at the entrance of the coronary artery via the aorta, and then the balloon catheter is inserted. The penetrating guide wire is advanced beyond the stenotic site of the coronary artery, and then the balloon catheter is advanced along the guide wire, and the balloon of the balloon catheter (hereinafter referred to as the balloon) is inflated while being positioned at the stenotic site. The procedure is to dilate the stenosis site, and the balloon is deflated and removed from the body. However, balloon catheters are not limited to treating arterial stenosis but are useful for many medical applications including insertion into blood vessels as well as insertion into various body cavities.
[0004]
The balloon is usually manufactured by biaxially stretching blow molding a single lumen tube. In particular, a single lumen tube used for forming a balloon is called a parison for a balloon. The parison for balloons is usually manufactured by extruding a thermoplastic resin.
[0005]
In extrusion molding, a parison for a balloon having a desired size can be obtained by adjusting extrusion conditions such as the die shape, the set temperature of the extruder, the discharge amount, the speed at which the balloon parison is taken, and the internal air pressure.
[0006]
The PTCA catheter has a fast model change cycle, and the specifications of each part of the balloon change in a short time. Therefore, it was necessary to determine the specifications of the balloon parison and the biaxial stretch blow molding conditions each time.
[0007]
However, when the biaxial stretch blow molding conditions were changed, molding could not be performed because it did not swell or burst as soon as it swelled. Even if molding was possible, cracks on the balloon surface, pinholes, and many molding defects occurred.
[0008]
[Problems to be solved by the invention]
Accordingly, an object of the present invention in view of the above-described circumstances is to provide a parison for a balloon that can stably produce a balloon when performing biaxial stretch blow molding in the production of a balloon.
[0009]
[Means for Solving the Problems]
As a result of intensive studies to improve the above problems, a balloon parison of 300 mm in length, which is used for a balloon catheter and made of polyamide elastomer, is held at a distance between chucks of 50 mm. A balloon parison having a tensile modulus of 2.9 × 10 2 MPa or more and 3.4 × 10 2 MPa or less when pulled in the axial direction of the parison for balloon at a constant speed of 50 mm / min. As a result, it was found that molding defects in the biaxial stretch blow molding process at the time of balloon production were reduced, and that a balloon could be stably produced, and the present invention was achieved.
[0010]
Furthermore, when biaxial stretch blow molding, the balloon is stretched 2.0 times or more and 4.0 times or less in the axial direction with respect to the parison for the balloon, and 2.4 times or more and 3.4 times or less in the radial direction. In the case where it is formed by stretching in this range, a balloon can be produced more stably.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below. FIG. 1 shows a schematic view of an extrusion apparatus used for production of a parison for a balloon according to the present invention. The extrusion apparatus includes an extruder, a cooling water tank, and a take-up machine.
[0012]
The tensile elastic modulus of the parison for the balloon can be controlled by changing the extrusion conditions (discharge amount, distance between die water tanks, take-up speed).
[0013]
The polyamide elastomer used in the present invention will be described below, but the present invention is not limited thereby. As the polyamide elastomer used in the present invention, a block copolymer composed of a hard segment and a soft segment is used, and preferably a block copolymer using a hard segment composed of polyamide and a soft segment composed of polyether is used. It is done. Furthermore, polyamide 6, 6-6, 6-10, 6-12, 11, 12 or the like can be used as the polyamide constituting this hard segment, but polyamide 12 is particularly preferred. Furthermore, polyethylene glycol, polypropylene glycol, polytetramethylene glycol and the like can be used as the polyether constituting the soft segment, and polytetramethylene glycol is particularly preferable. On the other hand, the hardness of the polyamide elastomer may be any hardness depending on the flexibility required of the balloon, but preferably has a Shore D hardness of 25 to 72, and more preferably a Shore D hardness of 50 to 50. 72 is used.
[0014]
Next, the tensile modulus will be described. As defined in JIS-K7113, the tensile elastic modulus is the ratio of the tensile stress and the corresponding strain within the tensile proportional limit. In the present invention, the tensile stress and strain are measured in a room controlled at a temperature of 23 ° C. and a humidity of 50%, and an autograph AG2000 (Shimadzu Corporation) is used as the apparatus, and a 300 mm long parison for the balloon is placed between the chucks. The distance was maintained at 50 mm, and it was pulled by pulling in the axial direction of the parison for the balloon at a constant speed of 50 mm / min. Here, the distance between chucks means the distance between the lower end of the upper tensile test jig and the upper end of the lower tensile test jig that sandwich the balloon parison, and the balloon parison does not sag between them. I caught it with care. The inner diameter of the parison for balloon used in the test was measured using a pin gauge, and the outer diameter was measured using a laser type outer diameter measuring device.
[0015]
On the other hand, the measurement of the tensile modulus is a fracture measurement, and it is impossible to obtain a balloon by directly blow-molding the sample whose tensile modulus was measured. Therefore, among the parisons for balloons produced under the same conditions, the tensile elastic modulus of five parisons for balloons was measured, and the average value was taken as the tensile elastic modulus of the parison for balloons produced under the same conditions.
In the present invention, the tensile elastic modulus of the balloon parison is defined as 2.9 × 10 2 MPa or more and 3.4 × 10 2 MPa or less. If the tensile elastic modulus is smaller than 2.9 × 10 2 MPa, drawdown occurs during heating in the balloon molding step and molding is difficult. If the tensile modulus exceeds 3.4 × 10 2 MPa, the balloon surface cracks during stretching in the longitudinal direction of the balloon molding process, which tends to cause molding failure, and the risk of the balloon catheter rupturing in the blood vessel during treatment. There is.
[0016]
The tensile modulus is more preferably 3.0 × 10 2 MPa or more and 3.2 × 10 2 MPa or less. When a balloon is molded with a parison for a balloon having a tensile elastic modulus of 3.0 × 10 2 MPa or more and 3.2 × 10 2 MPa or less, defective molding of the balloon can be further reduced.
[0017]
The balloon of the present invention is manufactured by biaxial stretch blow molding using an apparatus as shown in FIG. That is, a balloon parison 11 having a material, diameter, and thickness suitable for being molded into a balloon is introduced into the mold 12, and the axial stress change of the balloon molding portion 13 of the balloon parison is measured by a force gauge or the like. Detected by the detecting means 14, the balloon parison 11 is held by the fixing portions 15, 16 and moved on the slide table 17 in the axial direction and on the opposite side of the balloon. It is injected into the interior, and a biaxial stretch blow molding is performed as a total by these operations to produce a balloon. Each of these stretching operations may be performed separately, or each step may be further performed in multiple stages.
[0018]
When biaxial stretch blow molding is performed, the balloon is stretched 2.0 times or more and 4.0 times or less in the axial direction with respect to the parison for the balloon, and 2.4 times or more and 3.4 times or less in the radial direction. It is preferably formed by stretching. When the axial stretch is smaller than 2.0 times, only a balloon having a wall thickness that is practically obtained can be obtained from a parison for a balloon which can stably obtain a shape by extrusion, and when larger than 4.0 times, It often ruptures during molding. On the other hand, if the stretching in the radial direction is less than 2.4 times, an unexpanded portion is often left and it is difficult to obtain a balloon having a uniform appearance, and if it is stretched more than 3.4 times, it may burst during balloon molding. Become more.
[0019]
The axial draw ratio referred to here is what the scale that is preliminarily attached to the balloon parison before biaxial stretching becomes when the straight tube part of the balloon becomes a tapered part that decreases in diameter toward the outside of both ends. The stretching ratio in the radial direction is expressed by (the diameter of the balloon when the balloon is expanded in a non-stretched state by the fluid) / (the diameter of the parison for the balloon). Value. However, unless there are special circumstances, the value of “the diameter of the balloon when the balloon is expanded in a non-stretched state by the fluid” is replaced with the value of the diameter of the mold used when the balloon is biaxially stretched. May be used.
[0020]
The balloon catheter using the balloon created by the parison for balloon of the present invention can be used for all body cavities and blood vessels of the human body, and more preferably used for coronary arteries, limb blood vessels, artificial and liver blood vessels.
[0021]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example and a comparative example, these do not restrict | limit this invention at all.
[0022]
Example 1
Polyamide-based elastomer PEBAX7033 (manufactured by elf Atochem) was extruded using a single-screw 25 mm extruder under the extrusion conditions shown in Table 1 to form a balloon parison having an outer diameter of 1.18 mm and an inner diameter of 0.58 mm. When the tensile modulus of the balloon parison was measured, the average value of the five samples was 3.2 × 10 2 MPa. The balloon parison was biaxially stretched and blow molded in a 3.5 mmφ mold maintained at 110 ° C. to produce a balloon having an outer diameter of 3.5 mm and a wall thickness of about 20 μm (axial stretching at this time) The magnification was 3.5 times, and the radial draw ratio was 3.0 times. Appearance inspection was performed on 10 produced balloons. Appearance inspection was performed on the balloon surface to inspect for appearance defects such as cracks and pinholes. As shown in Table 1, no defects such as cracks occurred on all balloon surfaces, and the yield rate was 100%.
[0023]
(Example 2)
Extrusion molding was performed in the same manner as in Example 1 under the extrusion conditions shown in Table 1 to form a parison for a balloon having an outer diameter of 1.18 mm and an inner diameter of 0.58 mm. When the tensile modulus of the parison for balloon was measured, the average value of the five samples was 3.3 × 10 2 MPa. The balloon parison was biaxially stretched and blow molded in a 3.5 mmφ mold maintained at 110 ° C. to produce a balloon having an outer diameter of 3.5 mm and a wall thickness of about 20 μm (axial stretching at this time) The magnification was 3.5 times, and the radial draw ratio was 3.0 times. The appearance of 10 balloons produced in the same manner as in Example 1 was inspected. As shown in Table 1, appearance defects such as cracks did not occur on most balloon surfaces, and the yield rate was 90%.
[0024]
(Example 3)
Extrusion molding was carried out in the same manner as in Example 1 under the extrusion conditions shown in Table 1, and a balloon parison for balloon having an outer diameter of 1.18 mm and an inner diameter of 0.58 mm was molded. When the tensile modulus of the balloon parison was measured, the average value of the five samples was 3.0 × 10 2 MPa. The balloon parison was biaxially stretched and blow molded in a 3.5 mmφ mold maintained at 110 ° C. to produce a balloon having an outer diameter of 3.5 mm and a wall thickness of about 20 μm (axial stretching at this time) The magnification was 3.5 times, and the radial draw ratio was 3.0 times. The appearance of 10 balloons produced in the same manner as in Example 1 was inspected. As shown in Table 1, appearance defects such as cracks did not occur on most balloon surfaces, and the yield rate was 90%.
[0025]
Example 4
Using the balloon parison produced in Example 1 (outer diameter 1.18 mm, inner diameter 0.58 mm, tensile elastic modulus 3.2 × 10 2 MPa), the balloon parison was maintained at 110 ° C. at 3.5 mmφ. A balloon having an outer diameter of 3.5 mm and a wall thickness of about 20 μm was produced by biaxial stretching blow molding in a metal mold (the axial stretching ratio was 4.2 times and the radial stretching ratio was 3). .0 times). The appearance of 10 balloons produced in the same manner as in Example 1 was inspected. In three balloons, constriction was seen in the tapered portion. The yield rate was 70%.
[0026]
(Example 5)
Extrusion molding was performed in the same manner as in Example 1 under the extrusion conditions shown in Table 1, to form a parison for a balloon having an outer diameter of 1.00 mm and an inner diameter of 0.46 mm. When the tensile modulus of the balloon parison was measured, the average value of the five samples was 3.2 × 10 2 MPa. The balloon parison was biaxially stretched and blow molded in a 3.5 mmφ mold maintained at 110 ° C. to produce a balloon having an outer diameter of 3.5 mm and a wall thickness of about 20 μm (axial stretching at this time) The magnification was 3.5 times, and the radial draw ratio was 3.5 times. The appearance of 10 balloons produced in the same manner as in Example 1 was inspected. Two balloons were ruptured during biaxial stretching blow, and pinholes were seen in the two balloons. The yield rate was 60%.
[0027]
(Comparative Example 1)
Extrusion molding was performed in the same manner as in Example 1 under the extrusion conditions shown in Table 1 to form a balloon parison having an outer diameter of 1.18 mm and an inner diameter of 0.58 mm. When the tensile modulus of the balloon parison was measured, the average value of the five samples was 3.8 × 10 2 MPa. The balloon parison was biaxially stretched and blow molded in a 3.5 mmφ mold maintained at 110 ° C. to produce a balloon having an outer diameter of 3.5 mm and a wall thickness of about 20 μm (axial stretching at this time) The magnification was 3.5 times, and the radial draw ratio was 3.0 times. The appearance of 10 balloons produced in the same manner as in Example 1 was inspected. Most balloon surfaces were cracked in a direction perpendicular to the longitudinal direction. The yield rate was 20%.
[0028]
(Comparative Example 2)
Extrusion molding was performed in the same manner as in Example 1 under the extrusion conditions shown in Table 1 to form a balloon parison having an outer diameter of 1.18 mm and an inner diameter of 0.58 mm. When the tensile modulus of the balloon parison was measured, the average value of the five samples was 2.6 × 10 2 MPa. The balloon parison was biaxially stretched and blow molded in a 3.5 mmφ mold maintained at 110 ° C. to produce a balloon having an outer diameter of 3.5 mm and a wall thickness of about 20 μm (axial stretching at this time) The magnification was 3.5 times, and the radial draw ratio was 3.0 times. There were 5 out of 10 balloons that were drawn down during biaxial stretch blow molding and could not be molded. When an appearance inspection was performed on five balloon catheters that were produced in the same manner as in Example 1, the produced balloon had good appearance without cracks. The yield rate was 50%.
[0029]
【Effect of the invention】
As described above, the balloon parison of the present invention has a biaxial structure in which the tensile modulus of the balloon parison is 2.9 × 10 2 MPa or more and 3.4 × 10 2 MPa or less. A molding defect is eliminated at the time of stretch blow molding, and a balloon can be stably produced.
[Table 1]
Figure 0004922498
The extrusion conditions of the parison for balloon in an Example and a comparative example are shown. In addition, the measurement results of the tensile modulus of the balloon parison and the balloon appearance inspection results are shown.
[Brief description of the drawings]
FIG. 1 is a schematic view of a balloon parison extrusion apparatus according to the present invention.
FIG. 2 is a schematic view of a balloon catheter molding apparatus according to the present invention.
[Explanation of symbols]
1. Extruder 2. Dice 3. 3. Cooling water tank 4. take-up machine Control panel 6. Winder 11. 11. Parison for balloon Molding die 13. Balloon forming part of balloon parison 14. Detection means 15. Fixing part 16. Fixing part 17. Slide table 18. Pressure gas

Claims (4)

バルーンに使用するバルーン用パリソンであって、長さ300mmのバルーン用パリソンをチャック間距離を50mmで保持し、50mm/minの一定速度でバルーン用パリソンの軸方向に引張ったときの引張弾性率が2.9×102MPa以上、3.4×102MPa以下の範囲にあることを特徴とする、ポリアミドエラストマーからなるバルーン用パリソン。A parison for a balloon to be used for a balloon, the tensile modulus of elasticity when a parison for a balloon having a length of 300 mm is held at a chuck distance of 50 mm and pulled in the axial direction of the parison for a balloon at a constant speed of 50 mm / min. A parison for a balloon made of a polyamide elastomer, having a range of 2.9 × 10 2 MPa or more and 3.4 × 10 2 MPa or less. 請求項1記載のバルーン用パリソンを用い、二軸延伸ブロー成形して製造されることを特徴とするバルーン。  A balloon produced by biaxial stretch blow molding using the balloon parison according to claim 1. 二軸延伸ブロー成形する際に、バルーンがバルーン用パリソンに対し軸方向に2.0倍以上、4.0倍以下に延伸され、径方向に2.4倍以上、3.4倍以下に延伸されて形成されていることを特徴とする請求項2記載のバルーン。  During biaxial stretch blow molding, the balloon is stretched 2.0 times or more and 4.0 times or less in the axial direction with respect to the parison for the balloon, and stretched 2.4 times or more and 3.4 times or less in the radial direction. The balloon according to claim 2, wherein the balloon is formed. 二軸延伸ブロー成形する際に、バルーンがバルーン用パリソンに対し軸方向に2.0倍以上、4.0倍以下に延伸され、径方向に2.4倍以上、3.4倍以下に延伸されることを特徴とする請求項2記載バルーンの製造方法。  During biaxial stretch blow molding, the balloon is stretched 2.0 times or more and 4.0 times or less in the axial direction with respect to the parison for the balloon, and stretched 2.4 times or more and 3.4 times or less in the radial direction. The method for producing a balloon according to claim 2, wherein:
JP2001142321A 2001-05-11 2001-05-11 Balloon parison Expired - Fee Related JP4922498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001142321A JP4922498B2 (en) 2001-05-11 2001-05-11 Balloon parison

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001142321A JP4922498B2 (en) 2001-05-11 2001-05-11 Balloon parison

Publications (2)

Publication Number Publication Date
JP2002331034A JP2002331034A (en) 2002-11-19
JP4922498B2 true JP4922498B2 (en) 2012-04-25

Family

ID=18988641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001142321A Expired - Fee Related JP4922498B2 (en) 2001-05-11 2001-05-11 Balloon parison

Country Status (1)

Country Link
JP (1) JP4922498B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7029732B2 (en) 2002-02-28 2006-04-18 Boston Scientific Scimed, Inc. Medical device balloons with improved strength properties and processes for producing same
US7727442B2 (en) 2003-07-10 2010-06-01 Boston Scientific Scimed, Inc. Medical device tubing with discrete orientation regions
US8025638B2 (en) 2004-05-21 2011-09-27 Keio University Balloon catheter, medical apparatus and method for treating living organ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69514910T3 (en) * 1994-03-02 2009-09-24 Boston Scientific Ltd., Hastings Christ Church BLOCKCOPOLYMERELASTOMER BALLOON FOR CATHETER
JP3766122B2 (en) * 1995-08-04 2006-04-12 株式会社カネカ Catheter balloon and manufacturing method thereof
JP3742696B2 (en) * 1995-10-11 2006-02-08 テルモ株式会社 Catheter balloon and balloon catheter and vasodilator catheter
DE69840178D1 (en) * 1998-01-30 2008-12-11 Kaneka Corp Balloon catheter and manufacturing process

Also Published As

Publication number Publication date
JP2002331034A (en) 2002-11-19

Similar Documents

Publication Publication Date Title
JP3523876B2 (en) Method for manufacturing catheter balloon
US6620128B1 (en) Balloon blowing process with metered volumetric inflation
US5163989A (en) Method for forming a balloon mold and the use of such mold
US5316016A (en) Imaging balloon catheter and methods for use and manufacture
US5411477A (en) High-strength, thin-walled single piece catheters
JP3602147B2 (en) Multi-layer high strength balloon for dilatation catheter
US6620127B2 (en) Medical device balloon
EP0274411A2 (en) Thin wall high strength balloon and method of manufacture
JP2002520099A (en) Method of manufacturing a dilatation balloon with reduced conical stiffness
JPH0363908B2 (en)
JP6483941B2 (en) Balloon, balloon catheter, and balloon manufacturing method
EP0937482A2 (en) Thin cone balloons through a unique mold design
EP1320400A1 (en) Process for forming a medical device balloon
EP2796162B1 (en) Production method for expansion balloon
JP4922498B2 (en) Balloon parison
JP4815657B2 (en) Medical polymer blend material and medical balloon using this material
JP2000217924A (en) Extended body for extended catheter and its manufacture
JP2005319289A (en) Catheter balloon
JP4713057B2 (en) Catheter balloon and method for manufacturing the same
JP4420549B2 (en) Parison for balloon catheter
US20020171180A1 (en) Method of making a catheter balloon
JP2001314512A (en) Balloon having uniform film thickness and balloon catheter
JP2003144553A (en) Balloon and balloon catheter
JP2005323714A (en) Catheter balloon for medical use
JP2003326589A (en) Method for manufacturing balloon, and method for manufacturing catheter balloon by using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

R150 Certificate of patent or registration of utility model

Ref document number: 4922498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees