JP2000217924A - Extended body for extended catheter and its manufacture - Google Patents

Extended body for extended catheter and its manufacture

Info

Publication number
JP2000217924A
JP2000217924A JP11023447A JP2344799A JP2000217924A JP 2000217924 A JP2000217924 A JP 2000217924A JP 11023447 A JP11023447 A JP 11023447A JP 2344799 A JP2344799 A JP 2344799A JP 2000217924 A JP2000217924 A JP 2000217924A
Authority
JP
Japan
Prior art keywords
thickness
sleeve portion
expansion
expansion body
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11023447A
Other languages
Japanese (ja)
Inventor
Kohei Fukaya
浩平 深谷
Takuji Nishide
拓司 西出
Hiromi Maeda
博巳 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP11023447A priority Critical patent/JP2000217924A/en
Priority to KR1020017003516A priority patent/KR100636338B1/en
Priority to EP99969951A priority patent/EP1120129B1/en
Priority to CA002346460A priority patent/CA2346460C/en
Priority to DE69939655T priority patent/DE69939655D1/en
Priority to PCT/JP1999/005467 priority patent/WO2000020063A1/en
Priority to US09/787,930 priority patent/US6613066B1/en
Priority to CNB998118044A priority patent/CN100406079C/en
Publication of JP2000217924A publication Critical patent/JP2000217924A/en
Priority to HK02103305.2A priority patent/HK1041657A1/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To narrow a diameter of a tip part of an extended catheter and improve flexibility by composing an extended body for the extended catheter of a cylinder part which is swollen and shrunken by supply and discharge of pressure fluid and a sleeve part which is connected with both ends of the cylinder part through a conical part and specifying proportion of section thickness for the cylinder part and the sleeve part. SOLUTION: An extended body 1 is composed of a cylinder part 2 which is swollen and shrunken by supply and discharge of pressure fluid, conical parts 3a and 3b which are connected to both ends of the cylinder part 2 and shrink their diameters as they direct toward outside and cylindrical sleeve parts 4a and 4b which are connected with the conical parts 3a and 3b. In the extended body 1, proportion of section thickness is controlled so that proportion of section thickness A/B, i.e., proportion of section thickness between a section thickness of cylindrical part A and that of sleeve part B is kept within a range 2.5-2.0 to a selected value of nominal extended diameter for the extended body within a range, i.e., 3.5 mm-1.5 mm. To put it concretely, proportion of section thickness is controlled below 2.5 corresponding to a selected value 3.5 mm-3.0 mm and also controlled proportion of section thickness below 2.3 corresponding to a selected value 2.5 mm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冠状動脈、四肢動
脈、腎動脈および末梢血管などの狭窄部や閉塞部を拡張
治療する経皮的血管形成術(PTA,PTCA)におい
て使用する拡張カテーテル用拡張体(バルーン)に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dilatation catheter for use in percutaneous angioplasty (PTA, PTCA) for dilating and treating a stenosis or an obstruction such as a coronary artery, a limb artery, a renal artery and a peripheral blood vessel. It relates to an expansion body (balloon).

【0002】[0002]

【従来の技術】図6は、一般的なオーバー・ザ・ワイヤ
型拡張カテーテルの要部断面を示す全体側面図である。
この拡張カテーテルは、カテーテルシャフト21と、カ
テーテルシャフト21の遠位端に設けた拡張体(バルー
ン)24と、カテーテルシャフト21の基端に設けたマ
ニフォールド25とを備えて構成されている。拡張体2
4は、円筒部26と、この円筒部26の両端と連接する
遠位側円錐部27aおよび近位側円錐部27bと、これ
ら円錐部27a,27bと連接する遠位側スリーブ部2
8aおよび近位側スリーブ部28bとから構成される。
また、カテーテルシャフト21は、内部にガイドワイヤ
を挿通させるガイドワイヤ通過用チューブ23と、内部
に圧力流体を通す拡張チューブ22とからなる。この拡
張チューブ22は、基端においてマニフォールド25に
備わる圧力流体供給口と連通し、遠位端において拡張体
24の近位側スリーブ部28bと接合しており、また、
ガイドワイヤ通過用チューブ23は、基端においてマニ
フォールド25に備わるガイドワイヤ挿入口と連通し、
遠位端において拡張体24の遠位側スリーブ部28aと
接合してチップ部29を形成している。このような拡張
カテーテルを用いた経皮的血管形成術は、以下のように
施行される。先ず、ガイドワイヤをガイドワイヤ通過用
チューブ23に挿通させ、このガイドワイヤを狭窄部や
閉塞部の病変部位に先行して通過させる。次いで、その
ガイドワイヤに沿って拡張カテーテルを挿入し、マニフ
ォールド25を操作して拡張体24を病変部位に一致さ
せ、次いで希釈した造影剤などの圧力流体を拡張体24
に導入し、拡張体24を膨張させて病変部位を拡張治療
する。そして、拡張治療後は、拡張体24を減圧収縮さ
せて拡張カテーテルを体外へ抜去するというものであ
る。尚、拡張カテーテルは、前記のオーバー・ザ・ワイ
ヤ型のものの他に、図2に示すように、ガイドワイヤ通
過用チューブ6が、拡張カテーテルの先端20cm〜3
5cmの部位にのみ存在するモノレール型のものもあ
る。
2. Description of the Related Art FIG. 6 is an overall side view showing a cross section of a main part of a general over-the-wire type dilatation catheter.
The dilatation catheter includes a catheter shaft 21, an expansion body (balloon) 24 provided at a distal end of the catheter shaft 21, and a manifold 25 provided at a base end of the catheter shaft 21. Extension 2
4 is a cylindrical portion 26, a distal conical portion 27a and a proximal conical portion 27b connected to both ends of the cylindrical portion 26, and a distal sleeve portion 2 connected to these conical portions 27a and 27b.
8a and the proximal sleeve portion 28b.
The catheter shaft 21 includes a guide wire passage tube 23 through which a guide wire is inserted, and an expansion tube 22 through which pressurized fluid is passed. The dilation tube 22 communicates at a proximal end with a pressure fluid supply port provided in the manifold 25, and is joined at a distal end to a proximal sleeve portion 28b of the dilation body 24;
The guide wire passage tube 23 communicates with a guide wire insertion port provided in the manifold 25 at the base end,
The distal end is joined to the distal sleeve portion 28a of the expansion body 24 to form a tip portion 29. Percutaneous angioplasty using such a dilatation catheter is performed as follows. First, a guide wire is inserted into the guide wire passage tube 23, and the guide wire is passed prior to a lesion site such as a stenosis part or an occlusion part. Then, a dilatation catheter is inserted along the guide wire, and the manifold 25 is operated to match the dilatation body 24 to the lesion site.
To expand the expandable body 24 to expand and treat the lesion site. Then, after the dilatation treatment, the dilatation body 24 is decompressed and contracted, and the dilatation catheter is pulled out of the body. In addition to the above-mentioned over-the-wire type dilatation catheter, as shown in FIG.
There is also a monorail type that exists only at a site of 5 cm.

【0003】拡張体に最小限必要な性質は、(1)圧力
流体により内圧を加えられても破裂しない十分な耐圧性
と、(2)予め定められた拡張圧力に対する拡張外径の
関係(膨張特性)であり、概ね4気圧(約0.4MP
a)から10気圧(約1MPa)に至る範囲内で定めた
各公称圧力に対する拡張外径が「公称拡張径」と呼ばれ
ている。拡張カテーテルを使用する際には、治療部位に
おける体内通路の径に応じて、公称拡張径と膨張特性を
考慮して適合する拡張体を搭載した拡張カテーテルを選
択する。
[0003] The minimum required properties of the expandable body are (1) sufficient pressure resistance so that it does not burst even when an internal pressure is applied by a pressure fluid, and (2) the relationship between a predetermined expansion pressure and the expansion outer diameter (expansion). Characteristic), generally 4 atmospheres (approximately 0.4MP
The expanded outer diameter for each nominal pressure defined in the range from a) to 10 atmospheres (about 1 MPa) is called "nominal expanded diameter". When using a dilatation catheter, a dilatation catheter equipped with a suitable dilatation body is selected according to the diameter of the body passageway at the treatment site in consideration of the nominal dilation diameter and the expansion characteristics.

【0004】ところで、拡張体の円筒部の肉厚は、拡張
体を減圧収縮してコンパクトに折畳むためには、薄い方
が好ましく、また、遠位側円錐部および近位側円錐部の
肉厚も、前記と同じ理由に加えて再使用時における病変
部位への再突入をスムーズに行うためには、薄い方が好
ましく、更には、遠位側スリーブ部および近位側スリー
ブ部の肉厚も、拡張カテーテルの柔軟性と細径を損なわ
ないためには、薄い方が好ましい。特に、拡張カテーテ
ルの最先端にあるチップ部は、屈曲の激しい体内通路
や、狭窄度や閉塞度の高い病変部位を先行して通過する
ために、外径が小さく且つ柔軟であることが求められて
いる。また、一般に、チップ部は、ガイドワイヤ通過用
チューブと遠位側スリーブ部とを同軸状に溶着または接
着して形成されるものであるが、接着、溶着に関わら
ず、その遠位側スリーブ部の肉厚が薄いほどに、チップ
部が細径化し柔軟化することは明らかである。
The thickness of the cylindrical portion of the expandable body is preferably thin in order to fold the expandable body under reduced pressure and compactly fold the expandable body. In addition, the thickness of the distal conical portion and the proximal conical portion is preferably small. Also, in addition to the same reason as described above, in order to smoothly re-enter the lesion site at the time of re-use, it is preferable that the thickness is thin, and further, the thickness of the distal sleeve portion and the proximal sleeve portion is also reduced. In order not to impair the flexibility and small diameter of the dilatation catheter, the thinner is preferable. In particular, the tip portion at the forefront of the dilatation catheter is required to have a small outer diameter and to be flexible in order to precede a severely bent internal passage or a lesion site having a high degree of stenosis or occlusion. ing. In general, the tip portion is formed by coaxially welding or adhering the guide wire passage tube and the distal sleeve portion, but regardless of the adhesion or welding, the distal sleeve portion is formed. It is obvious that the thinner the thickness of the thinner, the thinner the tip portion becomes and the more flexible it becomes.

【0005】[0005]

【発明が解決しようとする課題】拡張体には、体内通路
の径に応じて種々の公称拡張径をもつものを用意するの
が普通である。このような拡張体の作製は、拡張体のも
つべき耐圧性と正確な膨張特性を発揮させるために、公
称拡張径毎に予め定められた形状をもつチューブ状部材
(パリソン)を用意しておき、各公称拡張径に対応した
倍率にて延伸加工を施してなされ、この延伸加工の多く
は、各公称拡張径に対応したキャビティを有する金型を
用いたブロー成形法が採用されている。このように、公
称拡張径を基準にして拡張体を形成するとき、(1)耐
圧性能を確保するために、公称拡張径の大きな拡張体の
円筒部の肉厚は、公称拡張径の小さいそれに比べて、若
干厚くする必要があり、(2)公称拡張径が大きくなる
と延伸量が増すため、相乗的に原材料であるチューブ状
部材の肉厚も大きくする必要がある。よって、公称拡張
径を大きくするに従ってチューブ状部材の肉厚を増して
いくと、拡張体の円筒部の肉厚が増すと共に、スリーブ
部は径方向に延伸される要素が少ないので円筒部の肉厚
以上に極端に厚肉化し、細径化と柔軟性を損なうのであ
る。他方、高強度材料を用いると円筒部を薄肉化するこ
とができ、自然とスリーブ部の肉厚も或る程度薄くなる
が、高強度材料を用いるのでスリーブ部は剛性的に硬
く、柔軟性を損なうこととなる。以上から、拡張体の耐
圧強度、円筒部肉厚およびスリーブ部肉厚のバランスに
関しては改善の余地が残されていた。
It is common to prepare dilators having various nominal dilation diameters depending on the diameter of the body passage. In order to produce the expansion body, a tubular member (parison) having a predetermined shape for each nominal expansion diameter is prepared in order to exhibit the pressure resistance and accurate expansion characteristics that the expansion body should have. Stretching is performed at a magnification corresponding to each nominal expanded diameter, and most of the stretching is performed by a blow molding method using a mold having a cavity corresponding to each nominal expanded diameter. As described above, when forming the expansion body on the basis of the nominal expansion diameter, (1) in order to ensure the pressure resistance performance, the wall thickness of the cylindrical portion of the expansion body having a large nominal expansion diameter is smaller than that of the nominal expansion diameter. On the other hand, it is necessary to increase the thickness slightly, and (2) when the nominal expanded diameter increases, the amount of stretching increases. Therefore, it is necessary to synergistically increase the thickness of the tubular member as a raw material. Therefore, when the wall thickness of the tubular member is increased as the nominal expanded diameter is increased, the wall thickness of the cylindrical portion of the expanded body is increased, and the sleeve portion has a small number of elements extending in the radial direction. The thickness becomes extremely thicker than the thickness, and the reduction in diameter and flexibility are impaired. On the other hand, if a high-strength material is used, the thickness of the cylindrical portion can be reduced, and the wall thickness of the sleeve portion naturally decreases to a certain extent. However, since the high-strength material is used, the sleeve portion is rigidly hard and has flexibility. You will lose. From the above, there is room for improvement regarding the balance between the pressure resistance of the expansion body, the thickness of the cylindrical portion, and the thickness of the sleeve portion.

【0006】また、上記したように、拡張カテーテルで
強く要求される屈曲した体内通路における良好な操作
性、狭窄の激しい病変部位における良好な通過性を実現
するには、拡張カテーテルのチップ部の細径化を図り、
柔軟性を向上させることが重要である。そのため、チッ
プ部を形成する遠位側スリーブ部の一層の細径化、柔軟
化が切に求められていた。しかしながら、ブロー成形を
用いて拡張体を形成する場合、ブロー成形に適合した分
子間力をもつ樹脂材料を用いる必要があり、樹脂材料の
流動性に制限がある場合が多いため、スリーブ部の肉厚
を自由に薄くすることは困難であった。
[0006] As described above, in order to realize good operability in a bent internal passage strongly required for a dilatation catheter and good passageability in a lesion part with severe stenosis, the tip portion of the dilatation catheter must be thin. To increase the diameter,
It is important to increase flexibility. Therefore, further reduction in the diameter and flexibility of the distal sleeve portion forming the tip portion has been urgently required. However, when the expansion body is formed by blow molding, it is necessary to use a resin material having an intermolecular force suitable for blow molding, and the flowability of the resin material is often limited. It was difficult to freely reduce the thickness.

【0007】以上の事情に鑑み、本発明が解決しようと
するところは、十分な耐圧性能を有しつつも、拡張カテ
ーテルのチップ部の細径化および柔軟性を向上し得る拡
張カテーテル用拡張体およびその製造方法を提供する点
にある。
SUMMARY OF THE INVENTION In view of the above circumstances, an object of the present invention is to provide an expandable catheter expandable body which has a sufficient pressure resistance and can improve the diameter and flexibility of the tip portion of the expandable catheter. And a method for producing the same.

【0008】[0008]

【課題を解決するための手段】前記課題を解決すべく、
本発明の拡張カテーテル用拡張体は、体内通路の病変部
位を拡張治療する拡張カテーテルに用いられる拡張体で
あって、この拡張体が、圧力流体を内部に導入されるこ
とにより膨張または収縮する円筒部と、この円筒部の両
端と連接する円錐部と、これら円錐部と連接するスリー
ブ部とからなり、3.5mm〜1.5mmの範囲内にお
ける拡張体の公称拡張径の選択値に対応して、前記円筒
部肉厚(A)とスリーブ部肉厚(B)との肉厚比(B/
A)が2.5〜2.0の範囲内の所定値以下に調整され
ることを特徴としている。
In order to solve the above-mentioned problems,
The expansion body for a dilatation catheter of the present invention is a dilation body used for a dilation catheter for dilating and treating a lesion site in a body passage, and the expansion body expands or contracts when a pressure fluid is introduced thereinto. Portion, a conical portion connected to both ends of the cylindrical portion, and a sleeve portion connected to these conical portions, and corresponds to a selected value of the nominal expansion diameter of the expansion body within a range of 3.5 mm to 1.5 mm. The thickness ratio (B / B) of the cylindrical portion thickness (A) and the sleeve portion thickness (B)
A) is characterized in that A) is adjusted to a predetermined value or less within a range of 2.5 to 2.0.

【0009】前記公称拡張径の選択値と肉厚比(B/
A)との関係は、具体的には、選択値3.5mm〜3.
0mmに対応して、肉厚比が2.5以下であり、選択値
2.5mmに対応して、肉厚比が2.3以下であり、選
択値2.0mmに対応して、肉厚比が2.1以下であ
り、選択値1.5mmに対応して、肉厚比(B/A)が
2.0以下であることが好ましい。
The selected value of the nominal expansion diameter and the thickness ratio (B /
The relationship with A) is, specifically, a selection value of 3.5 mm to 3.
The thickness ratio is 2.5 or less, corresponding to 0 mm, and the thickness ratio is 2.3 or less, corresponding to the selected value of 2.5 mm. Preferably, the ratio is 2.1 or less, and the thickness ratio (B / A) is 2.0 or less, corresponding to the selected value of 1.5 mm.

【0010】このような拡張カテーテル用拡張体の第1
の製造方法は、チューブ状部材を軸方向延伸し、ブロー
成形用圧力流体を導入することにより径方向延伸して拡
張体を形成する二軸延伸工程と、前記拡張体の円筒部お
よび円錐部を金型に装着し、前記拡張体内腔に前記径方
向延伸時よりも高圧の圧力流体を導入しつつ、前記拡張
体のスリーブ部に軸方向延伸加工を施すことにより、
3.5mm〜1.5mmの範囲内における拡張体の公称
拡張径の選択値に対応して、前記円筒部の肉厚(A)と
スリーブ部の肉厚(B)との肉厚比(B/A)を2.5
〜2.0の範囲内の所定値以下となすように当該スリー
ブ部の肉厚調整を行うスリーブ部延伸工程と、を備えて
構成されるものである。
[0010] The first of such expansion bodies for dilatation catheters.
Is a biaxial stretching step in which the tubular member is axially stretched and radially stretched by introducing a blow molding pressure fluid to form an expanded body, and a cylindrical portion and a conical portion of the expanded body. Attached to the mold, while introducing a pressure fluid at a higher pressure than the radial stretching into the expansion body cavity, by performing axial stretching processing on the sleeve portion of the expansion body,
The thickness ratio (B) of the thickness of the cylindrical portion (A) to the thickness of the sleeve portion (B) corresponding to the selected value of the nominal expansion diameter of the expansion body within the range of 3.5 mm to 1.5 mm. / A) is 2.5
And a sleeve portion extending step of adjusting the thickness of the sleeve portion so as to be equal to or less than a predetermined value within the range of 2.0 to 2.0.

【0011】このような第1の製造方法で用いる拡張体
の原材料には、ショア硬度が75Dより大きく、伸び率
が250%未満で、且つガラス転移温度が37℃未満の
熱可塑性樹脂が好適である。
The raw material of the expansion body used in the first production method is preferably a thermoplastic resin having a Shore hardness of more than 75D, an elongation of less than 250%, and a glass transition temperature of less than 37 ° C. is there.

【0012】また、第2の製造方法は、チューブ状部材
を軸方向延伸し、ブロー成形用圧力流体を導入すること
により径方向延伸して拡張体を形成する二軸延伸工程
と、前記拡張体のスリーブ部外面に研磨または研削を施
すことにより、3.5mm〜1.5mmの範囲内におけ
る拡張体の公称拡張径の選択値に対応して、前記円筒部
の肉厚(A)とスリーブ部の肉厚(B)との肉厚比(B
/A)を2.5〜2.0の範囲内の所定値以下となすよ
うに当該スリーブ部の肉厚調整を行う研削工程と、を備
えて構成されるものである。
[0012] A second manufacturing method includes a biaxial stretching step of stretching the tubular member in the axial direction and radially stretching the tubular member by introducing a pressure fluid for blow molding to form an expanded body. By grinding or grinding the outer surface of the sleeve portion, the thickness (A) of the cylindrical portion and the sleeve portion corresponding to the selected value of the nominal expansion diameter of the expansion body within the range of 3.5 mm to 1.5 mm. Thickness ratio (B) to wall thickness (B)
/ A) to adjust the thickness of the sleeve portion so that / A) is not more than a predetermined value in the range of 2.5 to 2.0.

【0013】そして、上記第1および第2の製造方法に
おいて、公称拡張径の選択値3.5mm〜3.0mmに
対応して肉厚比(B/A)を2.5以下となし、選択値
2.5mmに対応して肉厚比(B/A)を2.3以下と
なし、選択値2.0mmに対応して肉厚比(B/A)を
2.1以下となし、選択値1.5mmに対応して肉厚比
(B/A)を2.0以下となすように肉厚調整を行うこ
とがより好ましい。
In the first and second manufacturing methods, the thickness ratio (B / A) is set to 2.5 or less corresponding to the selected value of the nominal expanded diameter of 3.5 mm to 3.0 mm. The thickness ratio (B / A) is set to 2.3 or less corresponding to the value of 2.5 mm, and the thickness ratio (B / A) is set to 2.1 or less corresponding to the selected value of 2.0 mm. It is more preferable to adjust the thickness so that the thickness ratio (B / A) is 2.0 or less corresponding to the value of 1.5 mm.

【0014】[0014]

【発明の実施の形態】以下に、本発明に係る拡張カテー
テル用拡張体の実施形態を図面を参照しながら説明す
る。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a dilatation device for a dilatation catheter according to an embodiment of the present invention.

【0015】図1は、本発明に係る拡張カテーテル用拡
張体の一実施例を示す概略断面図であり、図2は、この
ような拡張体を用いたモノレール型拡張カテーテルの要
部断面を示す全体側面図である。
FIG. 1 is a schematic sectional view showing an embodiment of an expandable body for a dilatation catheter according to the present invention, and FIG. 2 is a sectional view of a main part of a monorail type dilatation catheter using such an expandable body. It is a whole side view.

【0016】本実施例の拡張体1は、圧力流体の導入に
より膨張または収縮する円筒部2と、この円筒部2の両
端と連接し外側に向かうにつれて縮径する遠位側円錐部
3aおよび近位側円錐部3bと、これら円錐部3a,3
bと連接する円筒状の遠位側スリーブ部4aおよび近位
側スリーブ部4bとから構成される。このような拡張体
1は、3.5mm〜1.5mmの範囲内における拡張体
の公称拡張径の選択値に対応して、前記円筒部肉厚
(A)とスリーブ部肉厚(B)との肉厚比(B/A)が
2.5〜2.0の範囲内の所定値以下となるように肉厚
調整したものである。より具体的には、前記選択値3.
5mm〜3.0mmに対応して、肉厚比が2.5以下で
あり、選択値2.5mmに対応して、肉厚比が2.3以
下であり、選択値2.0mmに対応して、肉厚比が2.
1以下であり、選択値1.5mmに対応して、肉厚比が
2.0以下となるような対応関係が成立するのが好まし
く、これにより、拡張体に十分な耐圧性能を付与しつつ
も、拡張体の円筒部肉厚とスリーブ部肉厚とのバランス
を最適化することが可能となる。尚、図示した拡張体1
では、円筒部2はその外径が一定の完全な直管形状を示
しているが、本発明ではこれに限定されずに、若干のテ
ーパー形状の円筒部でもよく、途中の一部または複数部
にくびれを有する円筒部でもよい。
The expandable body 1 of this embodiment has a cylindrical portion 2 which expands or contracts due to the introduction of a pressure fluid, and a distal conical portion 3a which is connected to both ends of the cylindrical portion 2 and has a diameter decreasing toward the outside. Position side conical portion 3b and these conical portions 3a, 3
b and a cylindrical distal sleeve portion 4a and a proximal sleeve portion 4b which are connected to each other. Such an expansion body 1 has a cylindrical part thickness (A) and a sleeve part thickness (B) corresponding to a selected value of a nominal expansion diameter of the expansion body in a range of 3.5 mm to 1.5 mm. The thickness is adjusted so that the thickness ratio (B / A) becomes equal to or less than a predetermined value in the range of 2.5 to 2.0. More specifically, the selected value 3.
Corresponding to 5 mm to 3.0 mm, the thickness ratio is 2.5 or less, corresponding to the selected value 2.5 mm, the thickness ratio is 2.3 or less, corresponding to the selected value 2.0 mm And the thickness ratio is 2.
It is preferable that a correspondence relationship is established such that the wall thickness ratio is 2.0 or less corresponding to a selection value of 1.5 mm or less, thereby providing a sufficient pressure resistance performance to the expansion body. In addition, it is possible to optimize the balance between the thickness of the cylindrical portion and the thickness of the sleeve portion of the expansion body. In addition, the illustrated expansion body 1
Although the cylindrical portion 2 has a perfect straight tube shape with a constant outer diameter, the present invention is not limited to this, and may be a slightly tapered cylindrical portion, and a portion or a plurality of portions in the middle. A cylindrical portion having a constriction may be used.

【0017】このような拡張体1をモノレール型拡張カ
テーテルに適用した例を図2に示す。モノレール型拡張
カテーテルの遠位端において、拡張体1の近位側スリー
ブ部4bは拡張チューブ5に接合され、その遠位側スリ
ーブ部4aはガイドワイヤ通過用チューブ6に接合され
てチップ部7を形成している。また、ガイドワイヤ通過
用チューブ6は、拡張カテーテルの先端20cm〜35
cmの部位にのみ存在する。一般に、遠位側スリーブ部
4aは、ガイドワイヤ通過用チューブ6と同軸状に接合
されることが多い。また、近位側スリーブ部4bは、ガ
イドワイヤ通過用チューブ6と拡張チューブ5の双方に
接合されるため、遠位側スリーブ部4aの内径よりも大
きな内径を有するのが普通である。よって、後述する延
伸工程の際に、近位側スリーブ部4bの肉厚は、遠位側
スリーブ部4aの肉厚よりも薄く形成され易い。また、
近位側スリーブ部4bは、体内通路においてチップ部7
よりも先行して進入しないことから、遠位側スリーブ部
4aほどの柔軟性は要求されないが、拡張カテーテルの
柔軟性を高め、剛性の不連続性を低減させるには、遠位
側スリーブ部4aと同様に薄肉化されるのが好ましい。
尚、本発明に係る拡張体は、オーバー・ザ・ワイヤ型拡
張カテーテルにも同様に適用することが可能である。
FIG. 2 shows an example in which such an expansion body 1 is applied to a monorail type expansion catheter. At the distal end of the monorail dilatation catheter, the proximal sleeve portion 4b of the dilation body 1 is joined to the dilation tube 5, and the distal sleeve portion 4a is joined to the guide wire passage tube 6 to attach the tip portion 7 to the distal tube. Has formed. In addition, the guide wire passage tube 6 has a distal end 20 cm to 35 cm of the dilatation catheter.
It exists only at the site of cm. Generally, the distal sleeve portion 4a is often coaxially joined to the guide wire passage tube 6. Further, since the proximal side sleeve portion 4b is joined to both the guide wire passage tube 6 and the dilation tube 5, it usually has an inner diameter larger than the inner diameter of the distal side sleeve portion 4a. Therefore, the thickness of the proximal sleeve portion 4b is likely to be smaller than the thickness of the distal sleeve portion 4a during the stretching step described later. Also,
The proximal sleeve portion 4b is adapted to hold the tip portion 7 in the body passage.
Is not required as much as the distal sleeve portion 4a, but the distal sleeve portion 4a is not required to increase the flexibility of the dilatation catheter and reduce the discontinuity of rigidity. It is preferable to reduce the thickness in the same manner as described above.
The expandable body according to the present invention can be similarly applied to an over-the-wire type dilatation catheter.

【0018】次に、上記拡張体1の製造方法について以
下に説明する。拡張体1の製造には、拡張時に導入され
る内圧に対して十分な強度を与えるためにブロー成形法
が採用されるが、具体的には、押出成形などにより形成
したチューブ状パリソンを軸方向に延伸させ、次いで金
型内においてブロー成形用圧縮空気を吹込むことにより
径方向に延伸させるという二軸延伸工程を用いるのが好
ましい。この延伸工程の代わりに、前記パリソンを軸方
向に延伸した後に、比較的低温環境下で高い内圧を加え
ることにより、最終形成される拡張体の外径よりも小さ
な外径をもつように径方向に膨張変形させ、次いで、前
記のブロー成形用圧縮空気の吹込みを行うという二軸延
伸工程が好ましい場合もある。
Next, a method for manufacturing the expansion body 1 will be described below. In the manufacture of the expansion body 1, a blow molding method is employed in order to give sufficient strength to the internal pressure introduced at the time of expansion. Specifically, a tubular parison formed by extrusion or the like is used in the axial direction. It is preferable to use a biaxial stretching step of stretching in the radial direction by blowing compressed air for blow molding in a mold. Instead of this stretching step, after the parison is stretched in the axial direction, a high internal pressure is applied in a relatively low-temperature environment, so that the parison has an outer diameter smaller than the outer diameter of the finally formed expanded body. In some cases, the biaxial stretching step of expanding and deforming the compressed air and then blowing the above-described compressed air for blow molding is preferable.

【0019】次に、変形や破壊を防ぐために、更に高い
内圧を前記拡張体全体に導入して円筒部および円錐部を
金型内にホールドした状態で、スリーブ部に軸方向の引
張り延伸を加え、当該スリーブ部を薄肉化して肉厚調整
することにより、本発明に係る拡張体1が形成される。
このとき、拡張体に加える内圧が低いと、拡張体の円筒
部および円錐部に変形や破壊が生じ易く、スリーブ部の
薄肉化が進行しないため、十分に高い内圧を導入する必
要がある。尚、拡張体の形状および寸法を固定するため
または強度を増すために、スリーブ部の肉厚調整後、必
要に応じて拡張体に熱固定処理を施してもよい。また、
拡張体に用いる樹脂材料としては、特に制限されるもの
ではないが、ポリエチレンテレフタレート、ポリエチレ
ン、ポリビニルアセテート、アイオノマー、ポリ塩化ビ
ニール、ポリアミド、ポリアミド系熱可塑性エラストマ
ー、ポリエステル系熱可塑性エラストマー、ポリウレタ
ン系熱可塑性エラストマーなどの熱可塑性樹脂が好適に
使用でき、これらの中でも、特に、ショア硬度が75D
より大きく、伸び率が250%未満で、ガラス転移温度
が37℃未満のものが、前記スリーブ部を軸方向に引張
り延伸して肉厚調整することが容易となるので好まし
い。
Next, in order to prevent deformation and destruction, a higher internal pressure is applied to the entire expansion body to hold the cylindrical portion and the conical portion in the mold. The expansion body 1 according to the present invention is formed by reducing the thickness of the sleeve portion and adjusting the thickness.
At this time, if the internal pressure applied to the expansion body is low, the cylindrical part and the conical part of the expansion body are likely to be deformed or broken, and the sleeve part does not become thinner. Therefore, it is necessary to introduce a sufficiently high internal pressure. In order to fix the shape and size of the expansion body or to increase the strength, the expansion body may be subjected to a heat fixing treatment as necessary after adjusting the thickness of the sleeve portion. Also,
The resin material used for the expansion body is not particularly limited, but polyethylene terephthalate, polyethylene, polyvinyl acetate, ionomer, polyvinyl chloride, polyamide, polyamide-based thermoplastic elastomer, polyester-based thermoplastic elastomer, polyurethane-based thermoplastic Thermoplastic resins such as elastomers can be suitably used. Among them, especially, Shore hardness is 75D.
Those having a larger elongation ratio of less than 250% and a glass transition temperature of less than 37 ° C. are preferred because the thickness of the sleeve portion can be easily adjusted by stretching the sleeve portion in the axial direction.

【0020】また、スリーブ部を薄肉化させる他の手段
として、研磨または研削加工を用いることも効果的であ
る。この研削加工は、例えば、図3に示すようなセンタ
ーレス研削装置10を用いて以下のように行われれる。
先ず、内腔に内径保持用の芯材11を挿入した遠位側ス
リーブ部4aを受板12の上に載置すると同時に、右方
から調整砥石車13、左方から研削砥石車14によって
当接支持する。この状態で、遠位側スリーブ部4aの軸
心を支持せずに、研削砥石車14と調整砥石車13の双
方を時計回りに軸回転させることにより、当該スリーブ
部4aの外面が研削される。このとき、研削砥石車14
の回転速度は、調整砥石車13よりも高い回転速度に維
持させられ、研削の深さは、両者の回転速度や回転速度
比、調整砥石車13の送り込み回転量などにより適宜定
められる。このような研削加工は、比較的小径なチュー
ブであっても肉厚調整を高精度に行うことができるた
め、特に、拡張カテーテル用拡張体に適したものといえ
る。また、研磨・研削加工を施す拡張体の樹脂材料とし
ては、上記熱可塑性樹脂が好適に使用できる。
It is also effective to use polishing or grinding as another means for reducing the thickness of the sleeve portion. This grinding is performed as follows using, for example, a centerless grinding apparatus 10 as shown in FIG.
First, the distal side sleeve portion 4a in which the core material 11 for maintaining the inner diameter is inserted into the lumen is placed on the receiving plate 12, and at the same time, the adjusting wheel 13 from the right side and the grinding wheel 14 from the left side contact the grinding wheel 14. Support. In this state, the outer surface of the sleeve portion 4a is ground by rotating both the grinding wheel 14 and the adjusting wheel 13 clockwise without supporting the axis of the distal side sleeve portion 4a. . At this time, the grinding wheel 14
Is maintained at a rotation speed higher than that of the adjusting grinding wheel 13, and the depth of grinding is appropriately determined by the rotation speed and the rotation speed ratio of the two, the amount of rotation of the adjusting grinding wheel 13, and the like. Such a grinding process can be performed with high precision even for a tube having a relatively small diameter, so that it can be said that it is particularly suitable for an expansion body for a dilatation catheter. Further, as the resin material of the expansion body to be subjected to polishing / grinding, the above-mentioned thermoplastic resin can be suitably used.

【0021】また、拡張体の各部の観察・測定手段につ
いては、各部形状に合わせて好適な手段を適宜選択すれ
ばよい。例えば、拡張体の円筒部の肉厚についてはマイ
クロゲージを用い、その断面については光学顕微鏡や電
子顕微鏡を用いることができ、一方、拡張体のスリーブ
部の内径についてはピンゲージを用い、その外径につい
てはレーザー測定器などを用い、その断面については光
学顕微鏡や電子顕微鏡を用いることができる。また、各
部における測定値にバラツキがある場合は、その分布状
態に応じた測定値の平均化計算を行えばよい。例えば、
図4の拡張体の断面図に示すように、拡張体1の肉厚の
分布状態が、肉厚最小箇所16の軸対称箇所17が肉厚
最大となるようなものである場合、肉厚最小値と肉厚最
大値の中間値を肉厚値として採用すればよい。また、遠
位側スリーブ部の肉厚測定の場合、一般にスリーブ部に
おける肉厚は軸方向の変化が小さい分布状態をとり易い
が、ガイドワイヤ通過用チューブと溶着接合されている
ときには溶着の影響が少ない円錐部との境界付近で、肉
厚測定を行うことが好ましい。
As for the means for observing and measuring each part of the expansion body, a suitable means may be appropriately selected according to the shape of each part. For example, a micro gauge can be used for the thickness of the cylindrical portion of the expansion body, and an optical microscope or an electron microscope can be used for the cross section. On the other hand, a pin gauge is used for the inner diameter of the sleeve portion of the expansion body, and the outer diameter thereof is used. For the above, a laser measuring instrument or the like is used, and for the cross section, an optical microscope or an electron microscope can be used. In addition, when there is a variation in the measured values in each part, an averaging calculation of the measured values according to the distribution state may be performed. For example,
As shown in the cross-sectional view of the expansion body in FIG. 4, when the distribution state of the thickness of the expansion body 1 is such that the axially symmetric portion 17 of the minimum thickness portion 16 has the maximum thickness, An intermediate value between the value and the maximum thickness may be adopted as the thickness. In addition, when measuring the thickness of the distal sleeve portion, generally, the thickness of the sleeve portion tends to take a distribution state in which the change in the axial direction is small, but the influence of welding when welding is performed with the guide wire passage tube. It is preferable to measure the wall thickness near the boundary with a small conical portion.

【0022】[0022]

【実施例】以下、本発明に係る拡張体の代表的な実施例
と比較例について詳細に説明するが、本発明は以下の実
施例に何ら限定されるものではない。
Hereinafter, typical examples and comparative examples of the expansion body according to the present invention will be described in detail, but the present invention is not limited to the following examples.

【0023】(実施例1;公称拡張径3.5mm)ショ
ア硬度が77.5D、ガラス転移温度が−9℃、極限伸
び率が220%のポリウレタン系熱可塑性エラストマー
を用いて、押出成形法により、外径が1.09mm、内
径が0.48mmのパリソンを作製した。次に、このパ
リソンを55℃に温調した金型内において軸方向に約
1.5倍に延伸し、内部に約4MPaの圧縮空気を導入
することにより、その外径が元のパリソンの外径の約2
倍になるまで径方向に延伸した。次いで、パリソンを延
伸して形成されたチューブ状部材を、内径が約3.5m
mの円筒空間を有する別の金型内に装着し、約104℃
の温度環境下で、内部に2.2MPaの圧縮空気を導入
することにより拡張体を成形した。続けて、前記圧縮空
気の圧力を3.5MPaに上げ、この拡張体の円筒部お
よび円錐部を同金型にホールドした状態で、遠位側スリ
ーブ部および近位側スリーブ部の双方を軸方向に引張り
延伸した。そして、冷却した金型から本実施例の拡張体
(公称拡張径3.5mm)を取り出した。本実施例の拡
張体の寸法は、円筒部の肉厚(A)が0.024mm、
遠位側スリーブ部の肉厚(B)が0.058mmであ
り、肉厚比(B/A)が2.42であった。
(Example 1; nominal expanded diameter: 3.5 mm) A polyurethane-based thermoplastic elastomer having a Shore hardness of 77.5 D, a glass transition temperature of -9 ° C. and an ultimate elongation of 220% was obtained by extrusion molding. A parison having an outer diameter of 1.09 mm and an inner diameter of 0.48 mm was produced. Next, the parison is stretched about 1.5 times in the axial direction in a mold controlled at 55 ° C., and compressed air of about 4 MPa is introduced into the parison so that the outer diameter of the parison is smaller than that of the original parison. About 2 of diameter
The film was stretched in the radial direction until it doubled. Next, the tubular member formed by stretching the parison is turned into an inner diameter of about 3.5 m.
m in a separate mold with a cylindrical space of approx.
The expanded body was formed by introducing 2.2 MPa of compressed air into the inside under the temperature environment of. Subsequently, the pressure of the compressed air is increased to 3.5 MPa, and while the cylindrical portion and the conical portion of the expansion body are held in the same mold, both the distal side sleeve portion and the proximal side sleeve portion are placed in the axial direction. And stretched. Then, the expanded body (nominal expanded diameter: 3.5 mm) of this example was taken out from the cooled mold. The dimensions of the expansion body of this embodiment are as follows: the thickness (A) of the cylindrical portion is 0.024 mm;
The thickness (B) of the distal sleeve portion was 0.058 mm, and the thickness ratio (B / A) was 2.42.

【0024】(実施例1;公称拡張径3.0mm)ショ
ア硬度が77.5D、ガラス転移温度が−9℃、極限伸
び率が220%のポリウレタン系熱可塑性エラストマー
を用いて、押出成形法により、外径が0.95mm、内
径が0.44mmのパリソンを作製した。次に、このパ
リソンを55℃に温調した金型内において軸方向に約
1.5倍に延伸し、内部に約3.5MPaの圧縮空気を
導入することにより、その外径が元のパリソンの外径の
約2倍になるまで径方向に延伸した。次いで、パリソン
を延伸して形成されたチューブ状部材を、内径が約3.
0mmの円筒空間を有する別の金型内に装着し、約10
4℃の温度環境下で、内部に2.2MPaの圧縮空気を
導入することにより拡張体を成形した。続けて、前記圧
縮空気の圧力を3.5MPaに上げ、この拡張体の円筒
部および円錐部を同金型内にホールドした状態で、遠位
側スリーブ部および近位側スリーブ部の双方を軸方向に
引張り延伸した。そして、冷却した金型から本実施例の
拡張体(公称拡張径3.0mm)を取り出した。本実施
例の拡張体の寸法は、円筒部の肉厚(A)が0.021
mm、遠位側スリーブ部の肉厚(B)が0.050mm
であり、肉厚比(B/A)が2.38であった。
(Example 1; nominal expansion diameter: 3.0 mm) A polyurethane-based thermoplastic elastomer having a Shore hardness of 77.5 D, a glass transition temperature of -9 ° C. and an ultimate elongation of 220% was obtained by an extrusion molding method. A parison having an outer diameter of 0.95 mm and an inner diameter of 0.44 mm was produced. Next, the parison is stretched about 1.5 times in the axial direction in a mold controlled at 55 ° C., and compressed air of about 3.5 MPa is introduced into the parison so that the outer diameter of the parison becomes the original parison. In the radial direction until the outer diameter becomes about twice as large as Next, the tubular member formed by stretching the parison is processed to have an inner diameter of about 3.
It is installed in another mold having a cylindrical space of 0 mm,
Under a temperature environment of 4 ° C., an expanded body was formed by introducing 2.2 MPa compressed air into the inside. Subsequently, the pressure of the compressed air is increased to 3.5 MPa, and while the cylindrical portion and the conical portion of the expanded body are held in the same mold, both the distal sleeve portion and the proximal sleeve portion are pivoted. The film was stretched in the drawing direction. Then, the expanded body (nominal expanded diameter: 3.0 mm) of this example was taken out from the cooled mold. The dimension of the expansion body of this embodiment is such that the thickness (A) of the cylindrical portion is 0.021.
mm, the thickness (B) of the distal sleeve portion is 0.050 mm
And the thickness ratio (B / A) was 2.38.

【0025】(実施例1;公称拡張径2.5mm)ショ
ア硬度が77.5D、ガラス転移温度が−9℃、極限伸
び率が220%のポリウレタン系熱可塑性エラストマー
を用いて、押出成形法により、外径が0.80mm、内
径が0.35mmのパリソンを作製した。次に、このパ
リソンを55℃に温調した金型内において軸方向に約
1.6倍に延伸し、内部に約3.0MPaの圧縮空気を
導入することにより、その外径が元のパリソンの外径の
約2倍になるまで径方向に延伸した。次いで、パリソン
を延伸して形成されたチューブ状部材を、内径が約2.
5mmの円筒空間を有する別の金型内に装着し、約10
4℃の温度環境下で、内部に2.2MPaの圧縮空気を
導入することにより拡張体を成形した。続けて、前記圧
縮空気の圧力を3.5MPaに上げ、この拡張体の円筒
部および円錐部を同金型内にホールドした状態で、遠位
側スリーブ部および近位側スリーブ部の双方を軸方向に
引張り延伸した。そして、冷却した金型から本実施例の
拡張体(公称拡張径2.5mm)を取り出した。本実施
例の拡張体の寸法は、円筒部の肉厚(A)が0.020
mm、遠位側スリーブ部の肉厚(B)が0.045mm
であり、肉厚比(B/A)が2.25であった。
(Example 1; nominal expanded diameter: 2.5 mm) A polyurethane-based thermoplastic elastomer having a Shore hardness of 77.5 D, a glass transition temperature of -9 ° C. and an ultimate elongation of 220% was obtained by extrusion molding. A parison having an outer diameter of 0.80 mm and an inner diameter of 0.35 mm was produced. Next, the parison is stretched about 1.6 times in the axial direction in a mold controlled at 55 ° C., and compressed air of about 3.0 MPa is introduced into the parison, so that the outer diameter of the parison becomes the original parison. In the radial direction until the outer diameter becomes about twice as large as Next, the tubular member formed by stretching the parison is pressed into an inner diameter of about 2.
Installed in another mold with 5mm cylindrical space, about 10
Under a temperature environment of 4 ° C., an expanded body was formed by introducing 2.2 MPa compressed air into the inside. Subsequently, the pressure of the compressed air is increased to 3.5 MPa, and while the cylindrical portion and the conical portion of the expanded body are held in the same mold, both the distal sleeve portion and the proximal sleeve portion are pivoted. The film was stretched in the drawing direction. Then, the expanded body (nominal expanded diameter: 2.5 mm) of this example was taken out from the cooled mold. The dimensions of the expansion body of this embodiment are such that the wall thickness (A) of the cylindrical portion is 0.020.
mm, the thickness of the distal sleeve portion (B) is 0.045 mm
And the thickness ratio (B / A) was 2.25.

【0026】(実施例1;公称拡張径2.0mm)ショ
ア硬度が77.5D、ガラス転移温度が−9℃、極限伸
び率が220%のポリウレタン系熱可塑性エラストマー
を用いて、押出成形法により、外径が0.65mm、内
径が0.30mmのパリソンを作製した。次に、このパ
リソンを55℃に温調した金型内において軸方向に約
1.7倍に延伸し、内部に約2.5MPaの圧縮空気を
導入することにより、その外径が元のパリソンの外径の
約2倍になるまで径方向に延伸した。次いで、パリソン
を延伸して形成されたチューブ状部材を、内径が約2.
0mmの円筒空間を有する別の金型内に装着し、約10
0℃の温度環境下で、内部に2.2MPaの圧縮空気を
導入することにより拡張体を成形した。続けて、前記圧
縮空気の圧力を3.0MPaに上げ、この拡張体の円筒
部および円錐部を同金型内にホールドした状態で、遠位
側スリーブ部および近位側スリーブ部の双方を軸方向に
引張り延伸した。そして、冷却した金型から本実施例の
拡張体(公称拡張径2.0mm)を取り出した。本実施
例の拡張体の寸法は、円筒部の肉厚(A)が0.018
mm、遠位側スリーブ部の肉厚(B)が0.037mm
であり、肉厚比(B/A)が2.06であった。
(Example 1; nominal expansion diameter: 2.0 mm) A polyurethane-based thermoplastic elastomer having a Shore hardness of 77.5 D, a glass transition temperature of -9 ° C. and an ultimate elongation of 220% was formed by an extrusion molding method. A parison having an outer diameter of 0.65 mm and an inner diameter of 0.30 mm was produced. Next, the parison is stretched about 1.7 times in the axial direction in a mold controlled at 55 ° C., and compressed air of about 2.5 MPa is introduced into the parison so that the outer diameter of the parison becomes the original parison. In the radial direction until the outer diameter becomes about twice as large as Next, the tubular member formed by stretching the parison is pressed into an inner diameter of about 2.
It is installed in another mold having a cylindrical space of 0 mm,
Under a temperature environment of 0 ° C., an expanded body was formed by introducing 2.2 MPa compressed air into the inside. Subsequently, the pressure of the compressed air is increased to 3.0 MPa, and both the distal side sleeve portion and the proximal side sleeve portion are pivoted with the cylindrical portion and the conical portion of the expansion body held in the same mold. The film was stretched in the drawing direction. Then, the expanded body (nominal expanded diameter: 2.0 mm) of this example was taken out from the cooled mold. The dimensions of the expansion body of this embodiment are such that the wall thickness (A) of the cylindrical portion is 0.018.
mm, thickness of the distal sleeve part (B) is 0.037 mm
And the thickness ratio (B / A) was 2.06.

【0027】(実施例1;公称拡張径1.5mm)ショ
ア硬度が77.5D、ガラス転移温度が−9℃、極限伸
び率が220%のポリウレタン系熱可塑性エラストマー
を用いて、押出成形法により、外径が0.50mm、内
径が0.24mmのパリソンを作製した。次に、このパ
リソンを55℃に温調した金型内において軸方向に約
1.8倍に延伸し、内部に約2.5MPaの圧縮空気を
導入することにより、その外径が元のパリソンの外径の
約2倍になるまで径方向に延伸した。次いで、パリソン
を延伸して形成されたチューブ状部材を、内径が約1.
5mmの円筒空間を有する別の金型内に装着し、約10
0℃の温度環境下で、内部に2.2MPaの圧縮空気を
導入することにより拡張体を成形した。続けて、前記圧
縮空気の圧力を3.0MPaに上げ、この拡張体の円筒
部および円錐部を金型内にホールドした状態で、遠位側
スリーブ部および近位側スリーブ部の双方を軸方向に引
張り延伸した。そして、冷却した金型から本実施例の拡
張体(公称拡張径:1.5mm)を取り出した。本実施
例の拡張体の寸法は、円筒部の肉厚(A)が0.018
mm、遠位側スリーブ部の肉厚(B)が0.034mm
であり、肉厚比(B/A)が1.89であった。
(Example 1; nominal expanded diameter: 1.5 mm) A polyurethane-based thermoplastic elastomer having a Shore hardness of 77.5 D, a glass transition temperature of -9 ° C., and an ultimate elongation of 220% was obtained by extrusion molding. A parison having an outer diameter of 0.50 mm and an inner diameter of 0.24 mm was produced. Next, the parison is stretched about 1.8 times in the axial direction in a mold controlled at 55 ° C., and compressed air of about 2.5 MPa is introduced into the parison, so that the outer diameter of the parison becomes the original parison. In the radial direction until the outer diameter becomes about twice as large as Next, the tubular member formed by stretching the parison is used to obtain an inner diameter of about 1.
Installed in another mold with 5mm cylindrical space, about 10
Under a temperature environment of 0 ° C., an expanded body was formed by introducing 2.2 MPa compressed air into the inside. Subsequently, the pressure of the compressed air is increased to 3.0 MPa, and while the cylindrical portion and the conical portion of the expansion body are held in a mold, both the distal side sleeve portion and the proximal side sleeve portion are placed in the axial direction. And stretched. Then, the expanded body (nominal expanded diameter: 1.5 mm) of this example was taken out from the cooled mold. The dimensions of the expansion body of this embodiment are such that the wall thickness (A) of the cylindrical portion is 0.018.
mm, thickness (B) of the distal sleeve portion is 0.034 mm
And the thickness ratio (B / A) was 1.89.

【0028】以上の実施例1に係る各拡張体の寸法を図
5の表に示す。表中の寸法は、B/A=(肉厚比)で示
されている(以下、同じ)。
The dimensions of each expansion body according to the first embodiment are shown in the table of FIG. The dimensions in the table are indicated by B / A = (thickness ratio) (the same applies hereinafter).

【0029】(実施例2;公称拡張径3.5mm)ショ
ア硬度が72D、ガラス転移温度が12℃、極限伸び率
が260%のポリエステル系熱可塑性エラストマーを用
いて、押出成形法により、外径が1.04mm、内径が
0.52mmのパリソンを作製した。次に、このパリソ
ンに二軸延伸ブロー成形を施すことにより、拡張体(公
称拡張径3.5mm)を形成した。この拡張体の寸法
は、円筒部の肉厚が0.023mm、遠位側スリーブ部
の肉厚が0.092mm(外径が0.76mm)であっ
た。次いで、図3に示したように、前記拡張体の遠位側
スリーブ部の内腔に、その内径に略等しい外径を有する
芯材を挿入した状態で、センターレス研削装置に装着
し、外径が0.69mmになるまで遠位側スリーブ部外
面を研削加工し、研削後、研削長が1.5mmとなるよ
うに当該スリーブ部の端部を切断することにより、本実
施例の拡張体(公称拡張径3.5mm)を作製した。本
実施例の拡張体の寸法は、円筒部の肉厚(A)が0.0
23mm、遠位側スリーブ部の肉厚(B)が0.057
mmであり、肉厚比(B/A)が2.48であった。
(Example 2; nominal expanded diameter: 3.5 mm) Using a polyester thermoplastic elastomer having a Shore hardness of 72 D, a glass transition temperature of 12 ° C., and an ultimate elongation of 260%, an outer diameter was obtained by extrusion molding. Was 1.04 mm, and an inner diameter was 0.52 mm. Next, the parison was subjected to biaxial stretch blow molding to form an expanded body (3.5 mm nominal expanded diameter). Regarding the dimensions of the expanded body, the thickness of the cylindrical portion was 0.023 mm, and the thickness of the distal sleeve portion was 0.092 mm (the outer diameter was 0.76 mm). Next, as shown in FIG. 3, a core having an outer diameter substantially equal to the inner diameter is inserted into the lumen of the distal sleeve portion of the expansion body, and the core is mounted on a centerless grinding apparatus. By grinding the outer surface of the distal sleeve portion until the diameter becomes 0.69 mm, and after grinding, cutting the end of the sleeve portion so that the grinding length becomes 1.5 mm, the expanded body of this embodiment (Nominal expanded diameter 3.5 mm). The dimensions of the expansion body of this embodiment are such that the wall thickness (A) of the cylindrical portion is 0.0
23 mm, the thickness (B) of the distal sleeve portion is 0.057
mm, and the thickness ratio (B / A) was 2.48.

【0030】(実施例2;公称拡張径3.0mm)ショ
ア硬度が72D、ガラス転移温度が12℃、極限伸び率
が260%のポリエステル系熱可塑性エラストマーを用
いて、押出成形法により、外径が0.98mm、内径が
0.49mmのパリソンを作製した。次に、このパリソ
ンに二軸延伸ブロー成形を施すことにより、拡張体(公
称拡張径3.0mm)を形成した。この拡張体の寸法
は、円筒部の肉厚が0.021mm、遠位側スリーブ部
の肉厚が0.085mm(外径が0.77mm)であっ
た。次いで、図3に示したように、前記拡張体の遠位側
スリーブ部の内腔に、その内径に略等しい外径を有する
芯材を挿入した状態で、センターレス研削装置に装着
し、外径が0.70mmになるまで遠位側スリーブ部外
面を研削加工し、研削後、研削長が1.5mmとなるよ
うに当該スリーブ部の端部を切断することにより、本実
施例の拡張体(公称拡張径3.0mm)を作製した。本
実施例の拡張体の寸法は、円筒部の肉厚(A)が0.0
21mm、遠位側スリーブ部の肉厚(B)が0.050
mmであり、肉厚比(B/A)が2.38であった。
(Example 2; nominal expanded diameter: 3.0 mm) Using a polyester thermoplastic elastomer having a Shore hardness of 72 D, a glass transition temperature of 12 ° C., and an ultimate elongation of 260%, an outer diameter was obtained by extrusion molding. Was 0.98 mm, and an inner diameter was 0.49 mm. Next, the parison was subjected to biaxial stretch blow molding to form an expanded body (nominal expanded diameter: 3.0 mm). Regarding the dimensions of the expanded body, the thickness of the cylindrical portion was 0.021 mm, and the thickness of the distal sleeve portion was 0.085 mm (the outer diameter was 0.77 mm). Next, as shown in FIG. 3, a core having an outer diameter substantially equal to the inner diameter is inserted into the lumen of the distal sleeve portion of the expansion body, and the core is mounted on a centerless grinding apparatus. By grinding the outer surface of the distal sleeve portion until the diameter becomes 0.70 mm, and after grinding, cutting the end of the sleeve portion so that the grinding length becomes 1.5 mm, the expanded body of this embodiment (Nominal expanded diameter: 3.0 mm). The dimensions of the expansion body of this embodiment are such that the wall thickness (A) of the cylindrical portion is 0.0
21 mm, thickness (B) of the distal sleeve portion is 0.050
mm, and the thickness ratio (B / A) was 2.38.

【0031】以上の実施例2に係る各拡張体の寸法を図
5の表に示す。
The dimensions of each expansion body according to the second embodiment are shown in the table of FIG.

【0032】(比較例1)市販のポリエチレン製の拡張
体を構成部品とした公称拡張径3.5mm、3.0m
m、2.5mm、2.0mm、1.5mmの拡張カテー
テルに関して、この拡張体の円筒部および遠位側スリー
ブ部の肉厚を測定し、その肉厚比(B/A)を計算し
た。この結果を図5の表に示す。
(Comparative Example 1) Nominal expanded diameter of 3.5 mm, 3.0 m using a commercially available expanded body made of polyethylene as a component part
With respect to the dilatation catheters of m, 2.5 mm, 2.0 mm, and 1.5 mm, the thicknesses of the cylindrical portion and the distal sleeve portion of the expanded body were measured, and the thickness ratio (B / A) was calculated. The results are shown in the table of FIG.

【0033】(比較例2)市販のポリアミド系熱可塑性
エラストマー製の拡張体を構成部品とした公称拡張径
3.5mm、3.0mm、2.5mm、2.0mm、
1.5mmの拡張カテーテルに関して、この拡張体の円
筒部および遠位側スリーブ部の肉厚を測定し、その比
(B/A)を計算した。この結果を図5の表に示す。
(Comparative Example 2) Nominal expanded diameters of 3.5 mm, 3.0 mm, 2.5 mm, 2.0 mm, and a commercially available expanded body made of a polyamide thermoplastic elastomer as constituent parts.
With respect to a 1.5 mm dilatation catheter, the wall thickness of the cylindrical portion and the distal sleeve portion of the dilatation body was measured, and the ratio (B / A) was calculated. The results are shown in the table of FIG.

【0034】(比較例3)市販のポリウレタン系熱可塑
性エラストマー製の拡張体を構成部品とした公称拡張径
3.5mm、3.0mm、2.5mm、2.0mm、
1.5mmの拡張カテーテルに関して、この拡張体の円
筒部およびスリーブ部の肉厚を測定し、その比(B/
A)を計算した。この結果を図5の表に示す。
(Comparative Example 3) A nominal expansion diameter of 3.5 mm, 3.0 mm, 2.5 mm, 2.0 mm, and a commercially available expansion body made of a polyurethane-based thermoplastic elastomer was used as a component.
With respect to a 1.5 mm dilatation catheter, the thicknesses of the cylindrical portion and the sleeve portion of the dilation body were measured, and the ratio (B /
A) was calculated. The results are shown in the table of FIG.

【0035】(評 価)上記実施例および比較例につい
ては、各公称拡張径において肉厚比(B/A)が小さい
ほどに優れた拡張体であると評価される。図5の表を参
照すると、各実施例において、公称拡張径が3.5mm
または3.0mmのものでは、肉厚比が2.5以下であ
り、公称拡張径が2.5mmのものでは、肉厚比が2.
3以下であり、公称拡張径が2.0mmのものでは、肉
厚比が2.1以下であり、公称拡張径が1.5mmのも
のでは、肉厚比が2.0以下である。従って、実施例の
拡張体は、3.5mm〜1.5mmの範囲内の各公称拡
張径に対応して、2.5〜2.0の範囲内の値以下の肉
厚比を有している。これに対して、比較例の拡張体は、
何れの肉厚比も実施例より大きな肉厚比を有するので、
実施例と比べて劣っていることが分かる。以上の結果か
ら、実施例に係る拡張体は、耐圧性と材料強度との関係
から円筒部の肉厚を最適化されても、スリーブ部の肉厚
を十分に薄く加工されていることが示された。
(Evaluation) In the above Examples and Comparative Examples, the smaller the thickness ratio (B / A) at each nominal expanded diameter, the better the expanded body. Referring to the table of FIG. 5, in each example, the nominal expanded diameter was 3.5 mm.
Or, in the case of 3.0 mm, the thickness ratio is 2.5 or less, and in the case of the nominal expanded diameter of 2.5 mm, the thickness ratio is 2.0.
3, the thickness ratio is 2.1 or less when the nominal expanded diameter is 2.0 mm, and the thickness ratio is 2.0 or less when the nominal expanded diameter is 1.5 mm. Therefore, the expanded body of the embodiment has a thickness ratio not more than a value in the range of 2.5 to 2.0, corresponding to each nominal expanded diameter in the range of 3.5 mm to 1.5 mm. I have. In contrast, the extension of the comparative example is
Since any thickness ratio has a larger thickness ratio than the embodiment,
It turns out that it is inferior to an Example. From the above results, it is shown that the expanded body according to the example is processed to have a sufficiently small thickness of the sleeve part even if the thickness of the cylindrical part is optimized from the relationship between the pressure resistance and the material strength. Was done.

【0036】また、上記各実施例の拡張体を用いて、図
2に示したようなモノレール型拡張カテーテルを作製し
評価した。拡張体の遠位側スリーブ部4aは、平均的ク
リアランスが0.015mmとなるように、ガイドワイ
ヤ通過用チューブ6(外径0.54mm;内径0.41
mm)とポリウレタン系接着剤を用いて接合された。こ
のような拡張カテーテルのチップ部7は、何れも満足の
ゆく柔軟性を示し、優れたものであることが確認され
た。
Further, a monorail type dilatation catheter as shown in FIG. 2 was prepared using the dilatation body of each of the above embodiments, and evaluated. The distal-side sleeve portion 4a of the expansion body has a guide wire passing tube 6 (outer diameter 0.54 mm; inner diameter 0.41 mm) so that the average clearance is 0.015 mm.
mm) and a polyurethane-based adhesive. It was confirmed that each of the tip portions 7 of such a dilatation catheter exhibited satisfactory flexibility and was excellent.

【0037】[0037]

【発明の効果】以上の如く、本発明の拡張カテーテル用
拡張体は、3.5mm〜1.5mmの範囲内における拡
張体の公称拡張径の選択値に対応して、前記円筒部肉厚
(A)とスリーブ部肉厚(B)との肉厚比(B/A)が
2.5〜2.0の範囲内の所定値以下に調整されるもの
なので、拡張カテーテルとしての耐圧性能を確保したう
えで、先端チップ部の細径化および柔軟性を向上させる
ことができ、もって拡張カテーテルの操作性を向上さ
せ、難易度や屈曲度の高い病変部位、ステント内等の表
面抵抗が大きい部位への通過性を向上させることが可能
となる。
As described above, the expandable body for a dilatation catheter according to the present invention has a thickness corresponding to the selected value of the nominal expanded diameter of the expandable body in the range of 3.5 mm to 1.5 mm. Since the thickness ratio (B / A) between A) and the thickness of the sleeve portion (B) is adjusted to a predetermined value or less within the range of 2.5 to 2.0, the pressure resistance performance of the dilatation catheter is secured. After that, it is possible to reduce the diameter of the distal tip portion and improve the flexibility, thereby improving the operability of the dilatation catheter, a lesion portion having a high degree of difficulty or bending, or a portion having a large surface resistance such as in a stent. Can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る拡張体の断面を示す模式図であ
る。
FIG. 1 is a schematic view showing a cross section of an expansion body according to the present invention.

【図2】本発明に係る拡張体を備えたモノレール型拡張
カテーテルの一実施例を示す要部断面図である。
FIG. 2 is a cross-sectional view of a main part showing one embodiment of a monorail type dilatation catheter provided with the dilatation body according to the present invention.

【図3】本発明に係るセンターレス研削装置を示す模式
図である。
FIG. 3 is a schematic view showing a centerless grinding device according to the present invention.

【図4】拡張体の断面を示す概略説明図である。FIG. 4 is a schematic explanatory view showing a cross section of an expansion body.

【図5】本発明に係る拡張体の実施例と比較例の寸法を
示す表である。
FIG. 5 is a table showing dimensions of an example of an expansion body according to the present invention and a comparative example.

【図6】一般的なオーバー・ザ・ワイヤ型拡張カテーテ
ルの要部断面を示す全体側面図である。
FIG. 6 is an overall side view showing a cross section of a main part of a general over-the-wire type dilatation catheter.

【符号の説明】[Explanation of symbols]

1 拡張体 2 円筒部 3a 遠位側円錐部 3b 近位側円
錐部 4a 遠位側スリーブ部 4b 近位側ス
リーブ部 5 拡張チューブ 6 ガイドワイ
ヤ通過用チューブ 7 チップ部 8 アダプター 10 センターレス研削装置 11 芯材 12 受板 13 調整砥石
車 14 研削砥石車 15 拡張体の
内腔 16 拡張体の肉厚最小箇所 17 拡張体の
肉厚最大箇所 21 カテーテルシャフト 22 拡張チュ
ーブ 23 ガイドワイヤ通過用チューブ 24 拡張体
(バルーン) 25 マニフォールド 26 円筒部 27a 遠位側円錐部 27b 近位側
円錐部 28a 遠位側スリーブ部 28b 近位側
スリーブ部 29 チップ部
DESCRIPTION OF SYMBOLS 1 Expansion body 2 Cylindrical part 3a Distal conical part 3b Proximal conical part 4a Distal sleeve part 4b Proximal sleeve part 5 Expansion tube 6 Guide wire passage tube 7 Tip part 8 Adapter 10 Centerless grinding device 11 Core material 12 Receiving plate 13 Adjusting grind wheel 14 Grinding grind wheel 15 Inner cavity of expansion body 16 Minimum wall thickness of expansion body 17 Maximum wall thickness of expansion body 21 Catheter shaft 22 Expansion tube 23 Guide wire passage tube 24 Expansion body (Balloon) 25 Manifold 26 Cylindrical part 27a Distal conical part 27b Proximal conical part 28a Distal sleeve part 28b Proximal sleeve part 29 Tip part

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 体内通路の病変部位を拡張治療する拡張
カテーテルに用いられる拡張体であって、この拡張体
が、圧力流体を内部に導入されることにより膨張または
収縮する円筒部と、この円筒部の両端と連接する円錐部
と、これら円錐部と連接するスリーブ部とからなり、
3.5mm〜1.5mmの範囲内における拡張体の公称
拡張径の選択値に対応して、前記円筒部肉厚(A)とス
リーブ部肉厚(B)との肉厚比(B/A)が2.5〜
2.0の範囲内の所定値以下に調整されることを特徴と
する拡張カテーテル用拡張体。
1. A dilation body used for a dilatation catheter for dilating and treating a lesion site in a body passage, wherein the dilation body expands or contracts when a pressure fluid is introduced therein, and the cylinder It consists of a conical part connected to both ends of the part and a sleeve part connected to these conical parts,
The thickness ratio (B / A) of the cylindrical portion thickness (A) to the sleeve portion thickness (B) corresponding to the selected value of the nominal expansion diameter of the expansion body in the range of 3.5 mm to 1.5 mm. ) Is 2.5 ~
An expansion body for a dilatation catheter, which is adjusted to a predetermined value or less within a range of 2.0.
【請求項2】 前記公称拡張径の選択値3.5mm〜
3.0mmに対応して肉厚比(B/A)が2.5以下で
あり、選択値2.5mmに対応して肉厚比(B/A)が
2.3以下であり、選択値2.0mmに対応して肉厚比
(B/A)が2.1以下であり、選択値1.5mmに対
応して肉厚比(B/A)が2.0以下であるように肉厚
調整された請求項1記載の拡張カテーテル用拡張体。
2. The selected value of the nominal expanded diameter is 3.5 mm or more.
The thickness ratio (B / A) is 2.5 or less corresponding to 3.0 mm, and the thickness ratio (B / A) is 2.3 or less corresponding to the selected value of 2.5 mm. The thickness ratio (B / A) is 2.1 or less corresponding to 2.0 mm, and the thickness ratio (B / A) is 2.0 or less corresponding to the selected value of 1.5 mm. The expansion body for a dilatation catheter according to claim 1, wherein the thickness is adjusted.
【請求項3】 二軸延伸ブロー成形により形成した拡張
体のスリーブ部に軸方向延伸加工を施してなる請求項1
または2記載の拡張カテーテル用拡張体。
3. An axial stretching process is performed on a sleeve portion of an expansion body formed by biaxial stretch blow molding.
Or the expansion body for a dilatation catheter according to 2.
【請求項4】 ショア硬度が75Dより大きく、伸び率
が250%未満で、且つガラス転移温度が37℃未満の
熱可塑性樹脂を原材料として用いる請求項3記載の拡張
カテーテル用拡張体。
4. The expansion body for a dilatation catheter according to claim 3, wherein a thermoplastic resin having a Shore hardness of more than 75D, an elongation of less than 250%, and a glass transition temperature of less than 37 ° C. is used as a raw material.
【請求項5】 研磨または研削により前記スリーブ部を
薄肉化してなる請求項1または2記載の拡張カテーテル
用拡張体。
5. The expansion body for a dilatation catheter according to claim 1, wherein the sleeve portion is thinned by polishing or grinding.
【請求項6】 チューブ状部材を軸方向延伸し、ブロー
成形用圧力流体を導入することにより径方向延伸して拡
張体を形成する二軸延伸工程と、前記拡張体の円筒部お
よび円錐部を金型に装着し、前記拡張体内腔に前記径方
向延伸時よりも高圧の圧力流体を導入しつつ、前記拡張
体のスリーブ部に軸方向延伸加工を施すことにより、
3.5mm〜1.5mmの範囲内における拡張体の公称
拡張径の選択値に対応して、前記円筒部の肉厚(A)と
スリーブ部の肉厚(B)との肉厚比(B/A)を2.5
〜2.0の範囲内の所定値以下となすように当該スリー
ブ部の肉厚調整を行うスリーブ部延伸工程と、を備えて
構成される拡張カテーテル用拡張体の製造方法。
6. A biaxial stretching step in which a tubular member is axially stretched and radially stretched by introducing a blow molding pressure fluid to form an expanded body; and a cylindrical portion and a conical portion of the expanded body. Attached to the mold, while introducing a pressure fluid at a higher pressure than the radial stretching into the expansion body cavity, by performing axial stretching processing on the sleeve portion of the expansion body,
The thickness ratio (B) of the thickness of the cylindrical portion (A) to the thickness of the sleeve portion (B) corresponding to the selected value of the nominal expansion diameter of the expansion body within the range of 3.5 mm to 1.5 mm. / A) is 2.5
And a sleeve portion extending step of adjusting the thickness of the sleeve portion so as to be equal to or less than a predetermined value within the range of 2.0 to 2.0.
【請求項7】 前記チューブ状部材として、ショア硬度
が75Dより大きく、伸び率が250%未満で且つガラ
ス転移温度が37℃未満の熱可塑性樹脂を用いる請求項
6記載の拡張カテーテル用拡張体の製造方法。
7. The expansion body for a dilatation catheter according to claim 6, wherein a thermoplastic resin having a Shore hardness of more than 75D, an elongation of less than 250%, and a glass transition temperature of less than 37 ° C. is used as the tubular member. Production method.
【請求項8】 チューブ状部材を軸方向延伸し、ブロー
成形用圧力流体を導入することにより径方向延伸して拡
張体を形成する二軸延伸工程と、前記拡張体のスリーブ
部外面に研磨または研削を施すことにより、3.5mm
〜1.5mmの範囲内における拡張体の公称拡張径の選
択値に対応して、前記円筒部の肉厚(A)とスリーブ部
の肉厚(B)との肉厚比(B/A)を2.5〜2.0の
範囲内の所定値以下となすように当該スリーブ部の肉厚
調整を行う研削工程と、を備えて構成される拡張カテー
テル用拡張体の製造方法。
8. A biaxial stretching step in which the tubular member is stretched in the axial direction, and is radially stretched by introducing a pressure fluid for blow molding to form an expanded body, and polishing or polishing is performed on the outer surface of the sleeve portion of the expanded body. 3.5mm by grinding
The thickness ratio (B / A) of the thickness of the cylindrical portion (A) and the thickness of the sleeve portion (B) corresponding to the selected value of the nominal expansion diameter of the expansion body within the range of ~ 1.5 mm. And a grinding step of adjusting the thickness of the sleeve portion so that the thickness is not more than a predetermined value in the range of 2.5 to 2.0.
【請求項9】 前記公称拡張径の選択値3.5mm〜
3.0mmに対応して肉厚比(B/A)を2.5以下と
なし、選択値2.5mmに対応して肉厚比(B/A)を
2.3以下となし、選択値2.0mmに対応して肉厚比
(B/A)を2.1以下となし、選択値1.5mmに対
応して肉厚比(B/A)を2.0以下となすように肉厚
調整を行う請求項6〜8の何れか1項に記載の拡張カテ
ーテル用拡張体の製造方法。
9. The selected value of the nominal expanded diameter is 3.5 mm or more.
The thickness ratio (B / A) is set to 2.5 or less corresponding to 3.0 mm, and the thickness ratio (B / A) is set to 2.3 or less corresponding to 2.5 mm, the selected value. The thickness ratio (B / A) is set to 2.1 or less corresponding to 2.0 mm, and the thickness ratio (B / A) is set to 2.0 or less corresponding to the selected value of 1.5 mm. The method for producing an expandable body for a dilatation catheter according to any one of claims 6 to 8, wherein the thickness is adjusted.
JP11023447A 1998-10-05 1999-02-01 Extended body for extended catheter and its manufacture Pending JP2000217924A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP11023447A JP2000217924A (en) 1999-02-01 1999-02-01 Extended body for extended catheter and its manufacture
KR1020017003516A KR100636338B1 (en) 1998-10-05 1999-10-05 Balloon catheter and method for manufacturing same
EP99969951A EP1120129B1 (en) 1998-10-05 1999-10-05 Balloon catheter
CA002346460A CA2346460C (en) 1998-10-05 1999-10-05 Balloon catheter and method for manufacturing same
DE69939655T DE69939655D1 (en) 1998-10-05 1999-10-05 Balloon catheter
PCT/JP1999/005467 WO2000020063A1 (en) 1998-10-05 1999-10-05 Balloon catheter and production method therefor
US09/787,930 US6613066B1 (en) 1998-10-05 1999-10-05 Balloon catheter and production method therefor
CNB998118044A CN100406079C (en) 1998-10-05 1999-10-05 Balloon catheter and production method therefor
HK02103305.2A HK1041657A1 (en) 1998-10-05 2002-05-02 Balloon catheter and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11023447A JP2000217924A (en) 1999-02-01 1999-02-01 Extended body for extended catheter and its manufacture

Publications (1)

Publication Number Publication Date
JP2000217924A true JP2000217924A (en) 2000-08-08

Family

ID=12110770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11023447A Pending JP2000217924A (en) 1998-10-05 1999-02-01 Extended body for extended catheter and its manufacture

Country Status (1)

Country Link
JP (1) JP2000217924A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003062078A (en) * 2001-08-28 2003-03-04 Terumo Corp Dilator for living organ and balloon therefor
WO2003028795A1 (en) * 2001-09-28 2003-04-10 Kaneka Corporation Stent delivery catheter
JP2004509712A (en) * 2000-09-28 2004-04-02 ボストン サイエンティフィック リミテッド Method for manufacturing balloon for medical device
JP2004187717A (en) * 2002-12-06 2004-07-08 Nippon Sherwood Medical Industries Ltd Balloon for catheter
JP2005514178A (en) * 2002-01-04 2005-05-19 ボストン サイエンティフィック リミテッド Multi-wing balloon catheter reduces damage to coated expandable medical implants
JP2009501062A (en) * 2005-07-12 2009-01-15 アボット・ラボラトリーズ Medical device balloon
JP2011152181A (en) * 2010-01-26 2011-08-11 Toray Ind Inc Balloon catheter
WO2013122003A1 (en) * 2012-02-16 2013-08-22 テルモ・クリニカルサプライ株式会社 Balloon for vascular occlusion balloon catheter, vascular occlusion balloon catheter, and production method for balloon for vascular occlusion balloon catheter
JP2021137598A (en) * 2015-06-17 2021-09-16 サフィナ・メディカル・インコーポレイテッドSaphena Medical, Inc. Unitary endoscopic vessel harvesting devices
US11751896B2 (en) 2013-03-14 2023-09-12 Saphena Medical, Inc. Unitary endoscopic vessel harvesting devices
WO2023199634A1 (en) * 2022-04-15 2023-10-19 株式会社カネカ Balloon for balloon catheter

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS648981A (en) * 1987-07-02 1989-01-12 Terumo Corp Balloon catheter and its preparation
JPH04176473A (en) * 1990-11-10 1992-06-24 Terumo Corp Balloon for catheter, manufacture thereof and balloon catheter
JPH06508532A (en) * 1991-01-08 1994-09-29 アプライド メディカル リソーセス コーポレイション Low profile balloon catheter and its manufacturing method
JPH06304920A (en) * 1992-09-30 1994-11-01 C R Bard Inc Extendable inflatable baloon having elastic stress response and its production
JPH08164196A (en) * 1994-12-16 1996-06-25 Sumitomo Bakelite Co Ltd Catheter for medical treatment and its production
JPH0938195A (en) * 1995-08-04 1997-02-10 Kanegafuchi Chem Ind Co Ltd Catheter balloon and manufacture of the same
JPH09192227A (en) * 1996-01-11 1997-07-29 Schneider Usa Inc Catheter for forming blood vessel, and removing and shaping balloon using laser
JPH09509860A (en) * 1994-03-02 1997-10-07 シメッド ライフ システムズ インコーポレイテッド Block copolymer elastomer, catheter, balloon
WO1997040877A1 (en) * 1996-05-02 1997-11-06 Cardiovascular Dynamics, Inc. Focalized intraluminal balloons
JPH10238A (en) * 1996-03-12 1998-01-06 Cordis Corp Manufacture of catheter balloon and catheter
JPH10506315A (en) * 1995-07-20 1998-06-23 ナビアス コーポレイション Expandable polyethylene terephthalate balloon and method for producing the same
JPH10314297A (en) * 1997-05-15 1998-12-02 Kanegafuchi Chem Ind Co Ltd Balloon catheter and manufacture of balloon used therefor
JPH10337330A (en) * 1997-06-09 1998-12-22 Kanegafuchi Chem Ind Co Ltd Thin wall working of pipe

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS648981A (en) * 1987-07-02 1989-01-12 Terumo Corp Balloon catheter and its preparation
JPH04176473A (en) * 1990-11-10 1992-06-24 Terumo Corp Balloon for catheter, manufacture thereof and balloon catheter
JPH06508532A (en) * 1991-01-08 1994-09-29 アプライド メディカル リソーセス コーポレイション Low profile balloon catheter and its manufacturing method
JPH06304920A (en) * 1992-09-30 1994-11-01 C R Bard Inc Extendable inflatable baloon having elastic stress response and its production
JPH09509860A (en) * 1994-03-02 1997-10-07 シメッド ライフ システムズ インコーポレイテッド Block copolymer elastomer, catheter, balloon
JPH08164196A (en) * 1994-12-16 1996-06-25 Sumitomo Bakelite Co Ltd Catheter for medical treatment and its production
JPH10506315A (en) * 1995-07-20 1998-06-23 ナビアス コーポレイション Expandable polyethylene terephthalate balloon and method for producing the same
JPH0938195A (en) * 1995-08-04 1997-02-10 Kanegafuchi Chem Ind Co Ltd Catheter balloon and manufacture of the same
JPH09192227A (en) * 1996-01-11 1997-07-29 Schneider Usa Inc Catheter for forming blood vessel, and removing and shaping balloon using laser
JPH10238A (en) * 1996-03-12 1998-01-06 Cordis Corp Manufacture of catheter balloon and catheter
WO1997040877A1 (en) * 1996-05-02 1997-11-06 Cardiovascular Dynamics, Inc. Focalized intraluminal balloons
JPH10314297A (en) * 1997-05-15 1998-12-02 Kanegafuchi Chem Ind Co Ltd Balloon catheter and manufacture of balloon used therefor
JPH10337330A (en) * 1997-06-09 1998-12-22 Kanegafuchi Chem Ind Co Ltd Thin wall working of pipe

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004509712A (en) * 2000-09-28 2004-04-02 ボストン サイエンティフィック リミテッド Method for manufacturing balloon for medical device
JP2003062078A (en) * 2001-08-28 2003-03-04 Terumo Corp Dilator for living organ and balloon therefor
WO2003028795A1 (en) * 2001-09-28 2003-04-10 Kaneka Corporation Stent delivery catheter
JP4663236B2 (en) * 2002-01-04 2011-04-06 ボストン サイエンティフィック リミテッド Coated medical implant delivery system and assembly method thereof
JP2005514178A (en) * 2002-01-04 2005-05-19 ボストン サイエンティフィック リミテッド Multi-wing balloon catheter reduces damage to coated expandable medical implants
JP2004187717A (en) * 2002-12-06 2004-07-08 Nippon Sherwood Medical Industries Ltd Balloon for catheter
JP2009501062A (en) * 2005-07-12 2009-01-15 アボット・ラボラトリーズ Medical device balloon
JP2011152181A (en) * 2010-01-26 2011-08-11 Toray Ind Inc Balloon catheter
WO2013122003A1 (en) * 2012-02-16 2013-08-22 テルモ・クリニカルサプライ株式会社 Balloon for vascular occlusion balloon catheter, vascular occlusion balloon catheter, and production method for balloon for vascular occlusion balloon catheter
US11751896B2 (en) 2013-03-14 2023-09-12 Saphena Medical, Inc. Unitary endoscopic vessel harvesting devices
JP2021137598A (en) * 2015-06-17 2021-09-16 サフィナ・メディカル・インコーポレイテッドSaphena Medical, Inc. Unitary endoscopic vessel harvesting devices
JP7242752B2 (en) 2015-06-17 2023-03-20 サフィナ・メディカル・インコーポレイテッド single endoscope angiography device
WO2023199634A1 (en) * 2022-04-15 2023-10-19 株式会社カネカ Balloon for balloon catheter

Similar Documents

Publication Publication Date Title
JP2859150B2 (en) Balloon catheter, multi-band balloon catheter and method using the same
US5733299A (en) Two balloon catheter
JP3602147B2 (en) Multi-layer high strength balloon for dilatation catheter
US7226472B2 (en) Catheter balloon with advantageous cone design
JP4361217B2 (en) Balloon catheter and stent deployment catheter system
US6527741B1 (en) Angioplasty catheter system with adjustable balloon length
US6027517A (en) Fixed focal balloon for interactive angioplasty and stent implantation catheter with focalized balloon
US6027486A (en) Interactive angioplasty
JP3871734B2 (en) Multi-layer balloon attached to medical catheter and method for producing the same
JP2006502801A (en) Expansion control type balloon
JP2003519540A (en) Balloon molding process
WO1996040349A1 (en) Sheath for an adjustable length balloon
US6955658B2 (en) Mold for forming a medical balloon
JP2000217924A (en) Extended body for extended catheter and its manufacture
US20090254113A1 (en) Dilatation balloon with ridges and methods
JP6259560B2 (en) Balloon for balloon catheter
JPWO2004101057A1 (en) Balloon catheter and balloon catheter manufacturing method
US20090234282A1 (en) Outer Catheter Shaft to Balloon Joint
EP2796162A1 (en) Production method for expansion balloon
US6712833B1 (en) Method of making a catheter balloon
WO2015146259A1 (en) Balloon catheter and method for manufacturing balloon
JP4713057B2 (en) Catheter balloon and method for manufacturing the same
JP2001190678A (en) Medical long balloon and balloon catheter having the long balloon
JP2005319289A (en) Catheter balloon
JP2004298356A (en) Balloon for dilation and balloon catheter with the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060703

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060811

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060922