JP4918646B2 - Catalyst for hydrogen production from methanol comprising Ni3 (Si, Ti) intermetallic compound, hydrogen production method, hydrogen production apparatus - Google Patents

Catalyst for hydrogen production from methanol comprising Ni3 (Si, Ti) intermetallic compound, hydrogen production method, hydrogen production apparatus Download PDF

Info

Publication number
JP4918646B2
JP4918646B2 JP2007192525A JP2007192525A JP4918646B2 JP 4918646 B2 JP4918646 B2 JP 4918646B2 JP 2007192525 A JP2007192525 A JP 2007192525A JP 2007192525 A JP2007192525 A JP 2007192525A JP 4918646 B2 JP4918646 B2 JP 4918646B2
Authority
JP
Japan
Prior art keywords
methanol
catalyst
hydrogen production
hydrogen
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007192525A
Other languages
Japanese (ja)
Other versions
JP2009028583A (en
Inventor
隆幸 高杉
泰幸 金野
亜 許
雅彦 出村
敏幸 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Osaka Prefecture University
Original Assignee
National Institute for Materials Science
Osaka Prefecture University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science, Osaka Prefecture University filed Critical National Institute for Materials Science
Priority to JP2007192525A priority Critical patent/JP4918646B2/en
Publication of JP2009028583A publication Critical patent/JP2009028583A/en
Application granted granted Critical
Publication of JP4918646B2 publication Critical patent/JP4918646B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Description

本発明は,Ni3(Si,Ti)系金属間化合物からなるメタノールからの水素製造用触媒、及びこの触媒を用いた水素製造方法及び装置に関する。 The present invention relates to a catalyst for producing hydrogen from methanol comprising a Ni 3 (Si, Ti) intermetallic compound, and a hydrogen production method and apparatus using this catalyst.

水素は、燃料電池の燃料として注目されている。このような燃料としての水素の製造方法としては、これまでに様々なものが知られている。その一例は、触媒を用いて以下の式のようにメタノールを水素と一酸化炭素に分解する方法である。
CH3OH→2H2+CO
Hydrogen has attracted attention as a fuel for fuel cells. Various methods for producing hydrogen as such a fuel have been known so far. One example is a method of decomposing methanol into hydrogen and carbon monoxide using a catalyst as shown in the following formula.
CH 3 OH → 2H 2 + CO

水素を分解する触媒としては様々の種類のものが知られているが、近年、金属間化合物であるNi3Alがメタノール分解反応に対して高い触媒活性を示すことが示され、この知見に基づき、Ni3Al箔からなる水素製造用触媒が提案された(例えば、特許文献1を参照。)。
特開2007−75799号公報
Various types of catalysts for decomposing hydrogen are known, but in recent years, Ni 3 Al, an intermetallic compound, has been shown to exhibit high catalytic activity for methanol decomposition reaction. A catalyst for hydrogen production made of Ni 3 Al foil has been proposed (see, for example, Patent Document 1).
JP 2007-75799 A

特許文献1に記載のNi3Al箔からなる水素製造用触媒は、高い触媒性能を示しているが、特許文献1では、Ni3Al箔は、Ni3Alの単結晶塊を作製し、それを圧延するという、比較的製造コストが高い方法で作製されている。 The hydrogen production catalyst comprising Ni 3 Al foil described in Patent Document 1 shows high catalytic performance, but in Patent Document 1, Ni 3 Al foil produces a single crystal lump of Ni 3 Al, and Is produced by a method with a relatively high manufacturing cost.

本発明はこのような事情に鑑みてなされたものであり,高い触媒性能を示し且つ箔の製造が安価な、メタノールからの水素製造用触媒を提供するものである。   The present invention has been made in view of such circumstances, and provides a catalyst for producing hydrogen from methanol that exhibits high catalyst performance and is inexpensive to produce foil.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

本発明によれば,Si:7.5〜12.5原子%,Ti:9.0〜11.5原子%,残部はNiからなる組成の合計重量に対してB:25〜500重量ppmを含むNi3(Si,Ti)系金属間化合物からなることを特徴とするメタノールからの水素製造用触媒が提供される。 According to the present invention, Si is 7.5 to 12.5 atomic%, Ti is 9.0 to 11.5 atomic%, and the balance is B: 25 to 500 ppm by weight with respect to the total weight of the composition made of Ni. There is provided a catalyst for producing hydrogen from methanol, comprising a Ni 3 (Si, Ti) -based intermetallic compound.

本発明者らは,鋭意研究を行った結果,上記組成のNi3(Si,Ti)系金属間化合物は、メタノール分解反応に対して高い触媒性能を示し、Ni3(Si,Ti)系金属間化合物からなる水素製造用触媒を使えば高効率でメタノールを分解して水素を製造できることを見出した。 As a result of intensive studies, the inventors of the present invention have shown that the Ni 3 (Si, Ti) -based intermetallic compound having the above composition exhibits high catalytic performance for methanol decomposition reaction, and Ni 3 (Si, Ti) -based metal It has been found that hydrogen can be produced by efficiently decomposing methanol by using a hydrogen production catalyst comprising an intermetallic compound.

また、Ni3(Si,Ti)系金属間化合物は、好ましくは箔状にして使用されるが、Ni3(Si,Ti)系金属間化合物箔は、多結晶である鋳塊を圧延することによって容易に製造することができるので、単結晶塊を製造する必要がなく、安価に製造することができる。 The Ni 3 (Si, Ti) intermetallic compound is preferably used in the form of a foil, but the Ni 3 (Si, Ti) intermetallic compound foil is a rolled ingot that is polycrystalline. Therefore, it is not necessary to produce a single crystal lump, and it can be produced at low cost.

また、本発明は、上記水素製造用触媒を400〜700℃の温度に加熱し、加熱された触媒に対してガス状のメタノールを接触させることによって前記メタノールを分解して水素を生成する工程を備える水素製造方法も提供する。この方法によれば、高効率でメタノールを分解して水素を製造できる。   The present invention further includes a step of heating the hydrogen production catalyst to a temperature of 400 to 700 ° C. and bringing the gaseous catalyst into contact with the heated catalyst to decompose the methanol to generate hydrogen. A hydrogen production method is also provided. According to this method, hydrogen can be produced by efficiently decomposing methanol.

また、本発明は、上記水素製造用触媒と、前記触媒を加熱する加熱部と、前記触媒に対してガス状のメタノールを供給するメタノール供給部とを備える水素製造装置も提供する。この装置を用いれば、上記の水素製造方法を容易に実施することができる。
なお,本明細書において,「〜」は,端の点を含む。
The present invention also provides a hydrogen production apparatus comprising the hydrogen production catalyst, a heating unit for heating the catalyst, and a methanol supply unit for supplying gaseous methanol to the catalyst. If this apparatus is used, said hydrogen production method can be implemented easily.
In the present specification, “to” includes end points.

1.メタノールからの水素製造用触媒
本発明の一実施形態のメタノールからの水素製造用触媒は、Si:7.5〜12.5原子%,Ti:9.0〜11.5原子%,残部はNiからなる組成の合計重量に対してB:25〜500重量ppmを含むNi3(Si,Ti)系金属間化合物からなることを特徴とする。
1. Catalyst for producing hydrogen from methanol The catalyst for producing hydrogen from methanol according to one embodiment of the present invention is composed of Si: 7.5 to 12.5 atomic%, Ti: 9.0 to 11.5 atomic%, and the balance is Ni. B relative to the total weight of the composition consisting of: 25 to 500 Ni 3 including weight ppm (Si, Ti) characterized by comprising the intermetallic compound.

1−1.Ni3(Si,Ti)系金属間化合物
以下,Ni3(Si,Ti)系金属間化合物に含まれる各元素について詳述する。
1-1. Ni 3 (Si, Ti) intermetallic compound Hereinafter, each element contained in the Ni 3 (Si, Ti) intermetallic compound will be described in detail.

Siの含有量は,7.5〜12.5原子%であり,例えば,10.0〜12.0原子%である。Siの具体的な含有量は,例えば,7.5,8.0,8.5,9.0,9.5,10.0,10.5,11.0,11.5,12.0又は12.5原子%である。Siの含有量の範囲は,ここで例示した数値の何れか2つの間であってもよい。   The content of Si is 7.5 to 12.5 atomic%, for example, 10.0 to 12.0 atomic%. Specific contents of Si are, for example, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0. Or 12.5 atomic%. The range of the Si content may be between any two of the numerical values exemplified here.

Tiの含有量は,9.0〜11.5原子%であり,例えば,9.0〜10.0原子%である。Tiの具体的な含有量は,例えば,9.0,9.5,10.0,10.5,11.0又は11.5原子%である。Tiの含有量の範囲は,ここで例示した数値の何れか2つの間であってもよい。   The Ti content is 9.0 to 11.5 atomic%, for example, 9.0 to 10.0 atomic%. The specific content of Ti is, for example, 9.0, 9.5, 10.0, 10.5, 11.0, or 11.5 atomic%. The range of the Ti content may be between any two of the numerical values exemplified here.

Niの含有量は,例えば,78.5〜81.0原子%であり、例えば,79〜80原子%である。Niの具体的な含有量は,例えば,78.5,79.0,79.5,80.0,80.5又は81.0原子%である。Niの含有量の範囲は,ここで例示した数値の何れか2つの間であってもよい。   The content of Ni is, for example, 78.5-81.0 atomic%, for example, 79-80 atomic%. The specific content of Ni is, for example, 78.5, 79.0, 79.5, 80.0, 80.5, or 81.0 atomic%. The range of the Ni content may be between any two of the numerical values exemplified here.

上記各元素の含有量は,Si,Ti及びNiの含有量の合計が100原子%になるように適宜調整される。   The content of each element is appropriately adjusted so that the total content of Si, Ti and Ni is 100 atomic%.

Bの含有量は,25〜500重量ppm,例えば,25〜100重量ppmである。Bの具体的な含有量は,例えば,25,40,50,60,75,100,150,200,300,400又は500重量ppmである。Bの含有量の範囲は,ここで例示した数値の何れか2つの間であってもよい。   The content of B is 25 to 500 ppm by weight, for example, 25 to 100 ppm by weight. The specific content of B is, for example, 25, 40, 50, 60, 75, 100, 150, 200, 300, 400, or 500 ppm by weight. The range of the B content may be between any two of the numerical values exemplified here.

本実施形態の水素製造用触媒の具体的な組成は,例えば,表1に示す組成(又は表1に示す組成のうちの何れか2つの間の範囲の組成)に上記含有量のBを添加したものである。   The specific composition of the hydrogen production catalyst of the present embodiment is, for example, adding B having the above content to the composition shown in Table 1 (or a composition in the range between any two of the compositions shown in Table 1). It is a thing.

1−2.Ni3(Si,Ti)系金属間化合物箔
Ni3(Si,Ti)系金属間化合物箔(以下、「Ni3(Si,Ti)箔」と称する。)は、好ましくは、厚さが20〜200μmの箔である。
1-2. Ni 3 (Si, Ti) -based intermetallic compound foil Ni 3 (Si, Ti) -based intermetallic compound foil (hereinafter referred to as “Ni 3 (Si, Ti) foil”) preferably has a thickness of 20 ~ 200 μm foil.

Ni3(Si,Ti)箔は、上記実施形態の組成のNi3(Si,Ti)系金属間化合物の鋳塊に対して均質化熱処理を行った後,圧延及び焼鈍を繰り返し行い,その後,冷間圧延を行うことによって製造することができる。 The Ni 3 (Si, Ti) foil is subjected to homogenization heat treatment for the ingot of the Ni 3 (Si, Ti) intermetallic compound having the composition of the above embodiment, and then repeatedly rolled and annealed, It can manufacture by performing cold rolling.

以下,各工程について詳細に説明する。   Hereinafter, each process will be described in detail.

1−2−1.鋳塊作製工程
まず,上記実施形態で示した組成の鋳塊からなる試料を作製する。一例では、Ni,Si,Tiの地金とBを秤量したものをアーク溶解炉で溶解,鋳造した鋳塊からなる試料を作製することができる。
1-2-1. Ingot making process First, a sample made of an ingot having the composition shown in the above embodiment is made. In one example, a sample made of an ingot obtained by melting and casting a Ni, Si, Ti ingot and B measured in an arc melting furnace can be produced.

1−2−2.均質化熱処理
次に,得られた試料に対して均質化熱処理を施す。均質化熱処理の条件は,特に限定されない。均質化熱処理は,例えば,真空中950〜1100℃で24〜48時間行うことができる。
1-2-2. Homogenization heat treatment Next, the obtained sample is subjected to homogenization heat treatment. The conditions for the homogenization heat treatment are not particularly limited. The homogenization heat treatment can be performed, for example, in vacuum at 950 to 1100 ° C. for 24 to 48 hours.

1−2−3.圧延及び焼鈍の繰り返し工程
次に,均質化熱処理の試料に対して圧延及び焼鈍を繰り返し行って試料を薄板に加工する。圧延後の焼鈍によって試料を再結晶化させて圧延による加工硬化を除去するとともに結晶粒を細粒化する工程を繰り返すことによって,比較的容易に薄板に加工することができる。
1-2-3. Rolling and Annealing Repeat Step Next, the sample is processed into a thin plate by repeatedly rolling and annealing the sample for homogenization heat treatment. By recrystallizing the sample by annealing after rolling to remove work hardening by rolling and refining the crystal grains, it can be processed into a thin plate relatively easily.

圧延は,例えば,350℃以下,好ましくは250〜350℃の温度で行うことができる。圧延は,1パスでの圧延率が0.5〜1.5%になるように行うことが好ましく,10〜20パスで行うことが好ましい。圧延は,圧延率が10%以上,好ましくは10〜50%,さらに好ましくは15〜30%になるように行うことが好ましい。なお,本明細書において,「1パスでの」と明示しない場合は,「圧延率」とは,複数パスでの圧延による厚さの総減少量の割合を意味する。   Rolling can be performed at a temperature of 350 ° C. or less, preferably 250 to 350 ° C., for example. Rolling is preferably performed so that the rolling rate in one pass is 0.5 to 1.5%, and is preferably performed in 10 to 20 passes. The rolling is preferably performed so that the rolling rate is 10% or more, preferably 10 to 50%, more preferably 15 to 30%. In the present specification, unless it is clearly indicated as “in one pass”, the “rolling rate” means the ratio of the total thickness reduction due to rolling in a plurality of passes.

焼鈍の条件は,試料を再結晶化させることができるものであればよい。焼鈍の温度は,例えば,900〜1100℃にすることができる。焼鈍の時間は,例えば0.5〜5時間にすることができる。   Any annealing condition may be used as long as the sample can be recrystallized. The annealing temperature can be set to 900 to 1100 ° C., for example. The annealing time can be 0.5 to 5 hours, for example.

圧延及び焼鈍は,所望の厚さ(例えば2mm以下)の薄板が得られるまで繰り返す。具体的には,圧延及び焼鈍は,3回以上,好ましくは4回以上繰り返す。   Rolling and annealing are repeated until a thin plate having a desired thickness (for example, 2 mm or less) is obtained. Specifically, rolling and annealing are repeated 3 times or more, preferably 4 times or more.

1−2−4.冷間圧延工程
次に,得られた試料に対して圧延率90%以上で冷間圧延を行う。この冷間圧延によって金属間化合物圧延箔が得られる。圧延及び焼鈍の繰り返し工程と冷間圧延工程は,得られる箔の厚さが200μm以下,例えば20〜200μm以下になるように実施することが好ましい。
1-2-4. Cold rolling step Next, the obtained sample is cold rolled at a rolling rate of 90% or more. By this cold rolling, an intermetallic compound rolled foil is obtained. The repeated rolling and annealing steps and the cold rolling step are preferably performed so that the thickness of the obtained foil is 200 μm or less, for example, 20 to 200 μm or less.

また,一度の冷間圧延によって所望の厚さの箔が得られない場合は,冷間圧延の後に焼鈍を行ってその後再度冷間圧延を行うことによって箔の厚さをさらに薄くすることができる。この際の焼鈍の温度は,例えば800〜1000℃にすることができる。焼鈍の時間は,例えば0.5〜2時間にすることができる。   In addition, if a foil with a desired thickness cannot be obtained by a single cold rolling, the thickness of the foil can be further reduced by performing annealing after cold rolling and then performing cold rolling again. . The annealing temperature at this time can be set to 800 to 1000 ° C., for example. The annealing time can be 0.5 to 2 hours, for example.

2.水素製造方法
本発明の水素製造方法は、上記記載の水素製造用触媒を400〜700℃の温度に加熱し、加熱された触媒に対してガス状のメタノールを接触させることによって前記メタノールを分解して水素を生成する工程を備える。
2. Hydrogen production method The hydrogen production method of the present invention comprises heating the above-described hydrogen production catalyst to a temperature of 400 to 700 ° C., and contacting the heated catalyst with gaseous methanol to decompose the methanol. A step of generating hydrogen.

水素製造用触媒の温度は、400〜700℃であり、例えば、440〜600℃である。この温度は、具体的には、例えば、400,410,420,430、440,450,460,470,480,490,500,510,520,530,540,550,560,570,580,590,600,610,620,630,640,650,660,670,680,690又は700℃である。この温度は、ここで例示した数値の何れか2つの間の範囲内であってもよい。   The temperature of the catalyst for hydrogen production is 400 to 700 ° C, for example, 440 to 600 ° C. Specifically, this temperature is, for example, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590. , 600, 610, 620, 630, 640, 650, 660, 670, 680, 690 or 700 ° C. This temperature may be within a range between any two of the numerical values exemplified herein.

ガス状のメタノールは、液体状のメタノールを加熱することによって得られる。液体状のメタノールの供給速度LHSV(liquid hourly space velocity、1時間に供給される液体の体積/触媒の幾何学的表面積)は、特に限定されないが、例えば、0.001〜0.02m3-1-2であり、具体的には、例えば、0.001,0.002,0.003,0.004,0.005,0.006,0.007,0.008,0.009,0.010,0.011,0.012,0.013,0.014,0.015,0.016,0.017,0.018,0.019又は0.020m3-1-2である。メタノールの供給速度LHSVは、ここで例示した数値の何れか2つの間の範囲内であってもよい。 Gaseous methanol is obtained by heating liquid methanol. The liquid methanol supply rate LHSV (liquid hourly space velocity, volume of liquid supplied per hour / geometric surface area of the catalyst) is not particularly limited, but is, for example, 0.001 to 0.02 m 3 h −. 1 m −2 , specifically, for example, 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.010, 0.011, 0.012, 0.013, 0.014, 0.015, 0.016, 0.017, 0.018, 0.019 or 0.020 m 3 h −1 m −2 It is. The methanol supply rate LHSV may be within a range between any two of the numerical values exemplified here.

また、ガス状のメタノールは、キャリアガスとともに触媒に接触させることが好ましい。キャリアガスの種類は、特に限定されないが、窒素等の不活性ガスが好ましい。   Moreover, it is preferable to make gaseous methanol contact a catalyst with carrier gas. The type of carrier gas is not particularly limited, but an inert gas such as nitrogen is preferable.

水素は、CH3OH→2H2+COという反応によってメタノールが分解されることによって得られるので、分解反応によって得られるガスは少なくとも水素と一酸化炭素を含む混合ガスである。混合ガスからの水素の分離方法は、特に限定されないが、一例では、混合ガスに水素透過フィルターを通過させることによって水素を分離することができる。 Since hydrogen is obtained by decomposing methanol by a reaction of CH 3 OH → 2H 2 + CO, the gas obtained by the decomposition reaction is a mixed gas containing at least hydrogen and carbon monoxide. The method for separating hydrogen from the mixed gas is not particularly limited. In one example, hydrogen can be separated by passing the mixed gas through a hydrogen permeation filter.

3.水素製造装置
図1を用いて、本発明の一実施形態の水素製造装置について説明する。図1は、本実施形態の水素製造装置の構成を示す。
本実施形態の水素製造装置は、上記記載の水素製造用触媒1と、触媒1を加熱する加熱部3と、触媒1に対してガス状メタノールを供給するメタノール供給部5とを備える。この装置を用いることによって上記の水素製造方法を容易に実施することができる。
3. Hydrogen production apparatus The hydrogen production apparatus of one Embodiment of this invention is demonstrated using FIG. FIG. 1 shows the configuration of the hydrogen production apparatus of this embodiment.
The hydrogen production apparatus of the present embodiment includes the above-described hydrogen production catalyst 1, a heating unit 3 that heats the catalyst 1, and a methanol supply unit 5 that supplies gaseous methanol to the catalyst 1. By using this apparatus, the above hydrogen production method can be easily carried out.

加熱部3の構成は、特に限定されないが、一例では、加熱部3には、アルミニウムブロック炉を用いることができる。加熱部3は、触媒1を440〜700℃に加熱することができる。
メタノール供給部5は、触媒1に対してガス状のメタノールを供給できるものであればその構成は特に限定されないが、一例では、液体状のメタノールを収容するメタノール収容部7と、メタノール収容部7から液体状のメタノールを送り出すポンプ9と、液体状のメタノールを蒸発させてガス状のメタノールにする蒸発器11を備える。蒸発器11には、ガス化されたメタノールを触媒1に向けて搬送するキャリアガスを供給するキャリアガス供給部13が接続されていてもよい。
さらに、触媒1よりも下流側には水素透過フィルター15が配置されていてもよい。この場合、メタノールが分解されて生成される混合ガスにこのフィルターを通過させることによって水素を分離することができる。
Although the structure of the heating part 3 is not specifically limited, For example, an aluminum block furnace can be used for the heating part 3. The heating unit 3 can heat the catalyst 1 to 440 to 700 ° C.
The configuration of the methanol supply unit 5 is not particularly limited as long as gaseous methanol can be supplied to the catalyst 1, but in one example, a methanol storage unit 7 that stores liquid methanol and a methanol storage unit 7 are provided. A pump 9 for feeding liquid methanol from the gas generator, and an evaporator 11 for evaporating the liquid methanol into gaseous methanol. The evaporator 11 may be connected to a carrier gas supply unit 13 that supplies a carrier gas that transports the gasified methanol toward the catalyst 1.
Further, a hydrogen permeation filter 15 may be disposed downstream of the catalyst 1. In this case, hydrogen can be separated by passing this filter through a mixed gas produced by decomposition of methanol.

4.効果実証実験
本発明の水素製造用触媒を用いてメタノールを分解して水素を製造することによって本発明の水素製造用触媒が優れた触媒性能を有していることを実証した。
4). Effect Verification Experiment It was demonstrated that the hydrogen production catalyst of the present invention has excellent catalytic performance by decomposing methanol using the hydrogen production catalyst of the present invention to produce hydrogen.

4−1.Ni3(Si,Ti)箔からなる水素製造用触媒の作製
以下の方法で,Ni3(Si,Ti)箔からなる水素製造用触媒を作製した。
4-1. In Ni 3 (Si, Ti) Preparation following method of the hydrogen production catalyst consisting of a foil, to prepare a Ni 3 (Si, Ti) made of foil for hydrogen production catalyst.

4−1−1.鋳塊作製工程
まず,表2に示す組成になるようにNi,Si,Tiの地金(それぞれ純度99.9重量%)とBを秤量したものをアーク溶解炉で溶解,鋳造した厚さ10mmの鋳塊からなる試料を作製した。アーク溶解炉の雰囲気は,まず,溶解室内を真空排気し,その後不活性ガス(アルゴンガス)に置換した。電極は,非消耗タングステン電極を用い,鋳型には水冷式銅ハースを使用した。
4-1-1. Ingot preparation process First, Ni, Si, Ti ingots (purity 99.9% by weight) and B were weighed and melted in an arc melting furnace to have the composition shown in Table 2 and cast to a thickness of 10 mm. A sample made of an ingot was prepared. The arc melting furnace was first evacuated and then replaced with an inert gas (argon gas). The electrode was a non-consumable tungsten electrode and the mold was a water-cooled copper hearth.

4−1−2.均質化熱処理工程
次に,鋳造偏析を解消し,上記試料を均質化するために,1050℃で48時間保持の真空熱処理(炉冷)を行った。
4-1-2. Homogenization heat treatment step Next, vacuum heat treatment (furnace cooling) was performed at 1050 ° C. for 48 hours in order to eliminate casting segregation and homogenize the sample.

4−1−3.温間圧延及び焼鈍工程
次に,上記工程で得られた試料に対して,温間圧延と焼鈍を5度繰り返すことにより厚さ2mmの薄板を作製した。
4-1-3. Warm rolling and annealing process Next, a thin plate having a thickness of 2 mm was prepared by repeating the warm rolling and annealing for the sample obtained in the above process 5 times.

温間圧延では,試料を大気中で300℃に加熱し,2段圧延機を用いて,1パスの圧下量を約0.1mmとして,10〜20パスの圧延を行った。試料は,1パス毎に加熱した。焼鈍は,真空中で1000℃,5時間(炉冷)の条件で行った。   In the warm rolling, the sample was heated to 300 ° C. in the atmosphere, and rolling was performed for 10 to 20 passes using a two-high rolling mill with a reduction amount of one pass being about 0.1 mm. The sample was heated every pass. Annealing was performed in a vacuum at 1000 ° C. for 5 hours (furnace cooling).

4−1−4.冷間圧延及び焼鈍工程
次に,上記工程で得られた薄板に対して,室温で冷間圧延を行った。冷間圧延は,途中で焼鈍を行わずに圧延率が90%となるように行った。冷間圧延は,加工が進むにつれて,大径2段圧延機→小径2段圧延機の順に圧延機を変えて行った。冷間圧延後の試料の厚さは,0.2mmであった。
4-1-4. Cold Rolling and Annealing Step Next, the thin plate obtained in the above step was cold rolled at room temperature. Cold rolling was performed so that the rolling rate would be 90% without annealing. Cold rolling was performed by changing the rolling mill in the order of large diameter two-high rolling mill → small diameter two-high rolling mill as the processing progressed. The thickness of the sample after cold rolling was 0.2 mm.

次に、冷間圧延後の試料に対して焼鈍を行った。焼鈍は、真空中で1000℃,1時間(炉冷)の条件で行った。   Next, the sample after cold rolling was annealed. The annealing was performed in a vacuum at 1000 ° C. for 1 hour (furnace cooling).

次に、焼鈍後の試料に対して室温で冷間圧延を行い、厚さ40μmの箔を得た。この箔をそのまま水素製造用触媒として用いた。冷間圧延は,途中で焼鈍を行わずに圧延率が80%となるように行った。冷間圧延は,小径2段圧延機を用いて行った。   Next, the sample after annealing was cold-rolled at room temperature to obtain a foil having a thickness of 40 μm. This foil was used as a hydrogen production catalyst. Cold rolling was performed so that the rolling rate would be 80% without annealing. Cold rolling was performed using a small diameter two-high rolling mill.

4−2.メタノール分解実験
次に、作製したNi3(Si,Ti)箔を水素製造用触媒として用いてメタノールを分解させて水素を製造する実験を行った。この実験は、図2に示す固定床流通式触媒反応装置を用いて行った。
4-2. Methanol decomposition experiment Next, an experiment was performed in which hydrogen was produced by decomposing methanol using the produced Ni 3 (Si, Ti) foil as a catalyst for hydrogen production. This experiment was conducted using the fixed bed flow type catalytic reaction apparatus shown in FIG.

4−2−1.温度依存性試験
以下の方法で温度依存性試験を行った。
まず、2枚の6mm×63.5mm×40μmのNi3(Si,Ti)箔をそれぞれ図3に示すように渦巻状に変形させ、その後、これらの箔を石英チューブ内に配置して500℃に加熱し、その状態で水素のみを流量30ml/分で1時間流して、Ni3(Si,Ti)箔の表面の還元処理を行った。
4-2-1. Temperature dependency test A temperature dependency test was performed by the following method.
First, two 6 mm × 63.5 mm × 40 μm Ni 3 (Si, Ti) foils were each deformed into a spiral shape as shown in FIG. 3, and then these foils were placed in a quartz tube and placed at 500 ° C. In this state, hydrogen alone was allowed to flow at a flow rate of 30 ml / min for 1 hour to reduce the surface of the Ni 3 (Si, Ti) foil.

次に、水素の供給を停止させ、Ni3(Si,Ti)箔の温度を240℃に下げ、その後、窒素のみを流量30ml/分で30分流して、反応装置内部の水素を窒素で置換した。 Next, the supply of hydrogen is stopped, the temperature of the Ni 3 (Si, Ti) foil is lowered to 240 ° C., and then only nitrogen is flowed at a flow rate of 30 ml / min for 30 minutes to replace the hydrogen inside the reactor with nitrogen. did.

次に、ポンプの作用によりLHSVが0.00412m3-1-2となるように液体状のメタノールをメタノール収容部から蒸発器に供給し、蒸発器で蒸発させてガス化し、ガス状のメタノールを窒素(キャリアガスとして機能する。)と共に石英チューブ内に導入し、ガス状のメタノールとNi3(Si,Ti)箔と接触させ、石英チューブからの排出ガスの成分をガスクロマトグラフで測定し、排出ガスの全流量をソープバブルメーターで測定した。Ni3(Si,Ti)箔の温度は、30分ごとに40℃ずつ上昇させた。 Next, liquid methanol is supplied from the methanol container to the evaporator so that LHSV is 0.00412 m 3 h −1 m −2 by the action of the pump, and is evaporated and gasified by the evaporator. Methanol is introduced into the quartz tube together with nitrogen (which functions as a carrier gas), brought into contact with gaseous methanol and Ni 3 (Si, Ti) foil, and the components of the exhaust gas from the quartz tube are measured with a gas chromatograph. The total flow rate of the exhaust gas was measured with a soap bubble meter. The temperature of the Ni 3 (Si, Ti) foil was increased by 40 ° C. every 30 minutes.

この測定によって得られた結果を図4及び図5に示す。図4は、反応温度(Ni3(Si,Ti)箔の温度)とメタノール転化率との関係を示すグラフであり、図5は、反応温度と、各種ガスの生成速度との関係を示すグラフである。 The results obtained by this measurement are shown in FIGS. FIG. 4 is a graph showing the relationship between the reaction temperature (temperature of the Ni 3 (Si, Ti) foil) and the methanol conversion rate, and FIG. 5 is a graph showing the relationship between the reaction temperature and the production rates of various gases. It is.

図4を参照すると、480℃以上ではメタノールの分解が起こり、温度が上がるにつれて転化率が高くなったことが分かる。また、図5を参照すると、全ての温度域でH2O,CH4,CO2は、ほとんど生成されず、480℃以上の温度では、H2とCOがほぼ2:1で生成したことが分かる。このことは、CH3OH→2H2+COという反応によってメタノールが分解される割合が極めて高かったことを示している。 Referring to FIG. 4, it can be seen that the decomposition of methanol occurred at 480 ° C. or higher, and the conversion rate increased as the temperature increased. Referring to FIG. 5, almost no H 2 O, CH 4 , or CO 2 is generated in all temperature ranges, and H 2 and CO are generated at a ratio of about 2: 1 at a temperature of 480 ° C. or higher. I understand. This indicates that the rate at which methanol is decomposed by the reaction of CH 3 OH → 2H 2 + CO is extremely high.

4−2−2.時間依存性試験
以下の方法で時間依存性試験を行った。
まず、2枚の6mm×31.8mm×40μmのNi3(Si,Ti)箔をそれぞれ図3に示すように渦巻状に変形させ、その後、これらの箔を石英チューブ内に配置して500℃に加熱し、その状態で水素のみを流量30ml/分で1時間流して、Ni3(Si,Ti)箔の表面の還元処理を行った。
4-2-2. Time dependency test A time dependency test was performed by the following method.
First, two 6 mm × 31.8 mm × 40 μm Ni 3 (Si, Ti) foils were each deformed into a spiral shape as shown in FIG. 3, and then these foils were placed in a quartz tube and placed at 500 ° C. In this state, hydrogen alone was allowed to flow at a flow rate of 30 ml / min for 1 hour to reduce the surface of the Ni 3 (Si, Ti) foil.

次に、水素の供給を停止させ、Ni3(Si,Ti)箔の温度を440℃、480℃、520℃の何れかに設定した。同時に、窒素のみを流量30ml/分で流して、実験装置内部の水素を窒素で置換した。 Next, the supply of hydrogen was stopped, and the temperature of the Ni 3 (Si, Ti) foil was set to either 440 ° C., 480 ° C., or 520 ° C. At the same time, only nitrogen was flowed at a flow rate of 30 ml / min to replace the hydrogen inside the experimental apparatus with nitrogen.

次に、ポンプの作用によりLHSVが0.00412m3-1-2となるように液体メタノールをメタノール収容部から蒸発器に供給し、蒸発器で蒸発させてガス化し、ガス状のメタノールを窒素と共に石英チューブ内に導入し、ガス状のメタノールとNi3(Si,Ti)箔と接触させ、石英チューブからの排出ガスの成分をガスクロマトグラフで測定し、排出ガスの全流量をソープバブルメーターで測定した。Ni3(Si,Ti)箔の温度は、上記の設定温度で一定に保った。 Next, liquid methanol is supplied from the methanol container to the evaporator so that the LHSV is 0.00412 m 3 h −1 m −2 by the action of the pump, and vaporized by the evaporator to be gasified. It is introduced into the quartz tube together with nitrogen, brought into contact with gaseous methanol and Ni 3 (Si, Ti) foil, the components of the exhaust gas from the quartz tube are measured with a gas chromatograph, and the total flow rate of the exhaust gas is measured with a soap bubble meter. Measured with The temperature of the Ni 3 (Si, Ti) foil was kept constant at the above set temperature.

この測定によって得られた結果を図6及び図7(a)〜(c)に示す。図6は、反応温度が440℃、480℃、520℃のそれぞれの場合についての反応時間とメタノール転化率との関係を示すグラフであり、図7(a)〜(c)は、それぞれ、反応温度が440℃、480℃、520℃の場合についての、反応時間と各種ガスの生成速度との関係を示すグラフである。   The results obtained by this measurement are shown in FIGS. 6 and 7A to 7C. FIG. 6 is a graph showing the relationship between the reaction time and the methanol conversion for each case where the reaction temperature is 440 ° C., 480 ° C., and 520 ° C., and FIGS. It is a graph which shows the relationship between reaction time and the production rate of various gases about the case where temperature is 440 degreeC, 480 degreeC, and 520 degreeC.

図6を参照すると、何れの温度の場合でも時間が経過するに従ってメタノール転化率が上昇したことが分かる。このことは、Ni3(Si,Ti)箔からなる触媒の性能が使用中に向上したことを意味している。また、図7(a)〜(c)を参照すると、何れの温度の場合でも、長時間経過後もCH4やCO2の生成速度が極めて0に近いままであり、長時間が経過してもCH3OH→2H2+COという反応によってメタノールが分解される割合が極めて高かったことを示している。 Referring to FIG. 6, it can be seen that the methanol conversion increased as time passed at any temperature. This means that the performance of the catalyst made of Ni 3 (Si, Ti) foil was improved during use. Further, referring to FIGS. 7A to 7C, at any temperature, the generation rate of CH 4 or CO 2 remains very close to 0 even after a long time has passed, and a long time has passed. This also shows that the rate of decomposition of methanol by the reaction of CH 3 OH → 2H 2 + CO was extremely high.

本発明の一実施形態の水素製造装置を示す構成図である。It is a block diagram which shows the hydrogen production apparatus of one Embodiment of this invention. 本発明の効果検証実験でのメタノール分解実験で用いた固定床流通式触媒反応装置を示す構成図である。It is a block diagram which shows the fixed bed flow-type catalyst reaction apparatus used in the methanol decomposition | disassembly experiment in the effect verification experiment of this invention. 図2の固定床流通式触媒反応装置の石英チューブ内に配置するNi3(Si,Ti)箔の形状を示す写真である。Ni 3 (Si, Ti) be placed in a quartz tube of a fixed bed flow catalytic reactor of FIG. 2 is a photograph showing the shape of the foil. 本発明の効果検証実験での温度依存性試験の結果を示す、反応温度とメタノール転化率との関係を示すグラフである。It is a graph which shows the relationship between reaction temperature and methanol conversion which shows the result of the temperature dependence test in the effect verification experiment of this invention. 本発明の効果検証実験での温度依存性試験の結果を示す、反応温度と、各種ガスの生成速度との関係を示すグラフである。It is a graph which shows the relationship between the reaction temperature and the production | generation rate of various gas which shows the result of the temperature dependence test in the effect verification experiment of this invention. 本発明の効果検証実験での時間依存性試験の結果を示す、反応温度が440℃、480℃、520℃のそれぞれの場合についての、反応時間とメタノール転化率との関係を示すグラフである。It is a graph which shows the relationship between reaction time and methanol conversion rate in each case of reaction temperature 440 degreeC, 480 degreeC, and 520 degreeC which shows the result of the time dependence test in the effect verification experiment of this invention. (a)〜(c)は、本発明の効果検証実験での時間依存性試験の結果を示す、反応時間と、各種ガスの生成速度との関係を示すグラフであり、(a)〜(c)は、それぞれ、反応温度が440℃、480℃、520℃の場合に対応する。(A)-(c) is a graph which shows the relationship between reaction time and the production rate of various gas which shows the result of the time dependence test in the effect verification experiment of this invention, (a)-(c ) Corresponds to cases where the reaction temperature is 440 ° C., 480 ° C., and 520 ° C., respectively.

Claims (6)

Si:7.5〜12.5原子%,Ti:9.0〜11.5原子%,残部はNiからなる組成の合計重量に対してB:25〜500重量ppmを含むNi3(Si,Ti)系金属間化合物からなることを特徴とするメタノールからの水素製造用触媒。 Si: 7.5 to 12.5 atomic%, Ti: 9.0 to 11.5 atomic%, and the balance is Ni 3 (Si, containing B: 25 to 500 ppm by weight with respect to the total weight of the composition made of Ni. A catalyst for producing hydrogen from methanol, comprising a Ti) -based intermetallic compound. Si:10.0〜12.0原子%,Ti:9.0〜10.0原子%である請求項1に記載の触媒。 The catalyst according to claim 1, wherein Si is 10.0 to 12.0 atomic%, and Ti is 9.0 to 10.0 atomic%. 前記金属間化合物は、厚さが20〜200μmの箔である請求項1又は2に記載の触媒。 The catalyst according to claim 1 or 2, wherein the intermetallic compound is a foil having a thickness of 20 to 200 µm. 請求項1〜3の何れか1つに記載の触媒を400〜700℃の温度に加熱し、
加熱された触媒に対してガス状のメタノールを接触させることによって前記メタノールを分解して水素を生成する工程を備える水素製造方法。
Heating the catalyst according to any one of claims 1 to 3 to a temperature of 400 to 700 ° C;
A method for producing hydrogen, comprising a step of decomposing the methanol to produce hydrogen by bringing gaseous methanol into contact with the heated catalyst.
前記温度は、440℃〜600℃である請求項4に記載の方法。 The method according to claim 4, wherein the temperature is 440 ° C. to 600 ° C. 請求項1〜3の何れか1つに記載の触媒と、前記触媒を加熱する加熱部と、前記触媒に対してガス状のメタノールを供給するメタノール供給部とを備える水素製造装置。 A hydrogen production apparatus comprising: the catalyst according to claim 1; a heating unit that heats the catalyst; and a methanol supply unit that supplies gaseous methanol to the catalyst.
JP2007192525A 2007-07-24 2007-07-24 Catalyst for hydrogen production from methanol comprising Ni3 (Si, Ti) intermetallic compound, hydrogen production method, hydrogen production apparatus Expired - Fee Related JP4918646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007192525A JP4918646B2 (en) 2007-07-24 2007-07-24 Catalyst for hydrogen production from methanol comprising Ni3 (Si, Ti) intermetallic compound, hydrogen production method, hydrogen production apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007192525A JP4918646B2 (en) 2007-07-24 2007-07-24 Catalyst for hydrogen production from methanol comprising Ni3 (Si, Ti) intermetallic compound, hydrogen production method, hydrogen production apparatus

Publications (2)

Publication Number Publication Date
JP2009028583A JP2009028583A (en) 2009-02-12
JP4918646B2 true JP4918646B2 (en) 2012-04-18

Family

ID=40399729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007192525A Expired - Fee Related JP4918646B2 (en) 2007-07-24 2007-07-24 Catalyst for hydrogen production from methanol comprising Ni3 (Si, Ti) intermetallic compound, hydrogen production method, hydrogen production apparatus

Country Status (1)

Country Link
JP (1) JP4918646B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5900894B2 (en) * 2011-03-14 2016-04-06 公立大学法人大阪府立大学 Hydrogen production catalyst containing Ni3Si intermetallic compound, method for activating the catalyst, hydrogen production method and apparatus using the catalyst
JP5798425B2 (en) * 2011-09-26 2015-10-21 トヨタ自動車株式会社 Exhaust gas purification catalyst and method for producing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2918405A1 (en) * 1979-05-08 1980-11-20 Metallgesellschaft Ag METHOD FOR PRODUCING CARBON MONOXIDE AND HYDROGEN FROM METHANOL
JPS58125603A (en) * 1982-01-20 1983-07-26 Toyo Eng Corp Preparation of gaseous mixture containing hydrogen and carbon monoxide by decomposition of methanol
JPS62176545A (en) * 1986-01-31 1987-08-03 Idemitsu Kosan Co Ltd Catalyst for reforming methanol
JPH03267325A (en) * 1990-03-16 1991-11-28 Nippon Stainless Steel Co Ltd Production of ni3 (si, ti) intermetallic compound-based material by melting
JP3822022B2 (en) * 2000-05-17 2006-09-13 株式会社日本製鋼所 Hydrocarbon decomposition material and hydrocarbon decomposition apparatus
JP4701455B2 (en) * 2005-09-16 2011-06-15 独立行政法人物質・材料研究機構 Catalyst for hydrogen production, method for producing the same, and method for producing hydrogen
JP4756974B2 (en) * 2005-09-26 2011-08-24 公立大学法人大阪府立大学 Ni3 (Si, Ti) -based foil and method for producing the same
JP4973301B2 (en) * 2007-04-24 2012-07-11 公立大学法人大阪府立大学 Ni3 (Si, Ti) intermetallic compound excellent in oxidation resistance and corrosion resistance, the intermetallic compound rolled foil, and a method for producing the intermetallic compound rolled foil

Also Published As

Publication number Publication date
JP2009028583A (en) 2009-02-12

Similar Documents

Publication Publication Date Title
US11713495B2 (en) Tantalum based alloy that is resistant to aqueous corrosion
Kumar et al. High performance FeTi–3.1 mass% V alloy for on board hydrogen storage solution
CN111235454A (en) AlCoCrFeMn high-entropy alloy with unequal atomic ratio and preparation method thereof
JP2005336617A5 (en)
JP4918646B2 (en) Catalyst for hydrogen production from methanol comprising Ni3 (Si, Ti) intermetallic compound, hydrogen production method, hydrogen production apparatus
JP2010070818A (en) Pd-Cu BASED ALLOY SUPERIOR IN HYDROGEN PERMEABILITY
Li et al. Development of dual-phase V90Fe5Al5/Cu alloys for enhanced malleability and sustainable hydrogen permeability
Huang et al. Double regulation of Mg95Ni5 hydride in suppressing ammonia and promoting hydrogen evolution for Mg (BH4) 2· 2NH3
JP2010236084A (en) Hydrogen storage alloy, method of preparing the same and hydrogen storage device
JP5900894B2 (en) Hydrogen production catalyst containing Ni3Si intermetallic compound, method for activating the catalyst, hydrogen production method and apparatus using the catalyst
JP2017008358A (en) Hydrogen storage alloy and manufacturing method therefor
EP1721666B1 (en) INTERMETALLIC COMPOUND Ni3Al CATALYST FOR METHANOL REFORMING AND METHOD FOR REFORMING METHANOL USING SAME
Hoseinpur et al. Boron removal from silicon melt by gas blowing technique
JPWO2020036026A1 (en) Manufacturing method of tungsten hexafluoride
JP4042095B2 (en) High purity metal powder manufacturing method and high purity metal powder manufacturing apparatus
JP5199760B2 (en) Hydrogen permeation separation thin film with excellent hydrogen permeation separation performance
JPS5935898B2 (en) Simultaneous production of cyclopentene and camphor
Kondo et al. Surface Properties of Air-Exposed α-Ti–Pd Alloys via XPS and Cross-Coupling Reaction
WO2017047709A1 (en) Laves phase intermetallic compound, catalyst using intermetallic compound, and method for producing ammonia
JP6330715B2 (en) Hydrogen gas generation method
Goto et al. Synthesis of new hydrides with cubic structures in Mg-Ca-Ni systems by using high pressure
Tran et al. Outstanding performance of FeNiCoCr-based high entropy alloys: The role of grain orientation and microsegregation
JP2000038622A (en) Purification and refinement of transition metal
JP6447996B2 (en) Catalyst containing Ni-based intermetallic compound, method for producing the same, and method for producing hydrogen using the same
Matviychuk et al. A modified Kroll process via production of TiH2-thermochemical reduction of TiCl4 using hydrogen and Mg

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111208

R150 Certificate of patent or registration of utility model

Ref document number: 4918646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

LAPS Cancellation because of no payment of annual fees