JP3822022B2 - Hydrocarbon decomposition material and hydrocarbon decomposition apparatus - Google Patents

Hydrocarbon decomposition material and hydrocarbon decomposition apparatus Download PDF

Info

Publication number
JP3822022B2
JP3822022B2 JP2000145573A JP2000145573A JP3822022B2 JP 3822022 B2 JP3822022 B2 JP 3822022B2 JP 2000145573 A JP2000145573 A JP 2000145573A JP 2000145573 A JP2000145573 A JP 2000145573A JP 3822022 B2 JP3822022 B2 JP 3822022B2
Authority
JP
Japan
Prior art keywords
hydrogen
gas
hydrocarbon
separator
decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000145573A
Other languages
Japanese (ja)
Other versions
JP2001321670A (en
Inventor
俊樹 兜森
俊男 高橋
孝央 河野
洋一 佐久間
実 横澤
司 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Inter University Research Institute Corp National Institute of Natural Sciences
Original Assignee
Japan Steel Works Ltd
Inter University Research Institute Corp National Institute of Natural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Inter University Research Institute Corp National Institute of Natural Sciences filed Critical Japan Steel Works Ltd
Priority to JP2000145573A priority Critical patent/JP3822022B2/en
Publication of JP2001321670A publication Critical patent/JP2001321670A/en
Application granted granted Critical
Publication of JP3822022B2 publication Critical patent/JP3822022B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Description

【0001】
【産業上の利用技術】
この発明は、炭化水素を構成する成分である水素または水素同位体を該炭化水素から分離させる炭化水素分解材料及びこの炭化水素分解材料を用いた炭化水素分解装置に関するものである。
【0002】
【従来の技術】
核融合炉においては、核融合材料であり放射性物質でもあるトリチウムと炉材との反応により、様々なガスが発生し、その処分のために様々な手段が講じられている。特に炉材の一部に使われる炭素とトリチウムが反応して生成されるメタン、エタン等の炭化水素は、放射性物質として処分に苦慮しているのが実情である。従来は、核融合炉から発生する、トリチウム化したメタンやエタンは、分子吸着材料を用いた回収や水蒸気改質のように高温蒸気と反応させてメタノールとして液体化して回収し、その後、放射性廃棄物として処分することが考えられている。
また、地球上では様々な有機物の分解によってメタンガスが多量に発生しており、将来石油等の化石燃料が枯渇した場合の燃料候補として期待が持たれている。しかし、メタンの状態では燃焼させて使用する用途しか期待できないため、利用に先立ってメタンを分解し、それによって得られる水素を利用することによって燃料とするだけでなく、様々な形態のエネルギーとして利用することが考えられている。産業用としてのメタンの分解は、上記した核融合分野と同様に水蒸気改質による方法が一般的である。この場合、水蒸気改質の方法としては、触媒を用いて高温高圧の水蒸気と反応させ、水素と一酸化炭素(CO)とに分解させている。
【0003】
【発明が解決しようとする課題】
しかし、核融合炉から発生する、トリチウム化したメタンやエタンを吸着材を用いて回収するにしろ、蒸気改質によりメタノールやエタノールにして液化して回収するにしろ、これらの方法ではいずれも放射性廃棄物が多量に発生する。現在原子力分野においては多量の放射性廃棄物が発生しその貯蔵施設が満杯になりつつあり、その処分に苦慮しているのが実情であり、核融合分野においてもできるだけ放射性廃棄物を排出しないような方法を探って行かなければならない。
また、産業用のメタンの分解においても、水蒸気改質に際し高温高圧に耐える非常に大きな反応容器が必要になることと、副生ガスとして猛毒のCOが排出され、これを無毒化するために酸化してCOに変換するための余分なプロセスも必要になる。さらに、COはそのまま大気中に排出せざるを得ず、現在問題となっている地球温暖化の原因とされる大気中CO濃度を高める結果にもつながる。
【0004】
本発明は上記事情を背景としてなされたものであり、触媒として炭化水素から水素または水素同位体を効率的に分離させることができる炭化水素分解材料及びこの材料を用いた炭化水素分解装置を提供することを目的とし、特に核融合の分野では核融合炉から発生するトリチウム化したメタンやエタン等の炭化水素からトリチウムを分離回収することを可能にし、また、産業用のメタンの分解の分野では、高圧用の大掛かりな反応容器を必要とすることなく常圧でも水素を分離することを可能にする材料及びこの材料を用いた装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記課題を解決するため本発明の炭化水素分解材料のうち第1の発明は、水素または水素同位体を構成成分とする炭化水素から水素または水素同位体を分離させるための材料及びこの材料を用いた装置であって、その基本組成がTi1−xZrNiからなり、xが0≦x<0.7、yが0.4≦y≦3の範囲にあることを特徴とする。
【0007】
また、本発明の炭化水素分解装置は、炭化水素を含むガスを移送するガス移送路と、該ガス移送路が連結され該ガス移送路を通して導入されたガスから水素を分離して該水素と残ガスとを分別する水素分離器と、該水素分離器の水素ガス排出側に接続され、該水素分離器から排出された水素を回収する水素回収器と、前記水素分離器の残ガス排出側に接続され、水素または水素同位体を構成成分とする炭化水素から水素または水素同位体を分離させるための材料であって基本組成がTi 1−x Zr Ni からなり、xが0≦x<0.7、yが0.4≦y≦3の範囲にある炭化水素分解材料または基本組成がCa Ni からなり、zが1≦z≦6の範囲にある炭化水素分解材料を収容して、該材料の機能によって該残ガス中の炭化水素を分解して水素を分離し、その水素及びその他のガスを排出する炭化水素分解反応器と、該炭化水素分解反応器のガス排出側に一端側が接続され、他端側が上記水素分離器のガス導入側に接続されたガス返送路とを備えていることを特徴とする。
【0008】
【発明の実施形態】
本発明の炭化水素分解材料は常法により製造することができ、本発明範囲の組成に調整して溶製する。本発明はTi、Zrよって構成されており、これら成分が適切な量比を有する組成において優れた特性を発揮する。
すなわち、本発明によれば、メタンやエタン等の炭化水素を直接水素と炭素とに高効率で分解することができる。この理由としては、合金表面において炭化水素が解離し、得られた水素原子が本発明の材料中に透過することによって水素と炭素の再結合が阻止されるために起こるものと考えられる。さらに本発明材料が必須の元素とする、Tiは、炭素と結合しやすく、炭素が合金表面のこれらの金属点に吸着される力が強いことから、水素と炭素との再結合を防いでいることも一つ要因となっているものと考えられる。これらによって、単に炭化水素の熱分解温度が必要とされ、より低温での分解が可能となる。これらの作用は、上記元素以外に、Zr、La、Hf等の材料においても多少は認められるが、本発明材料に必須元素である、Tiにおいて顕著な作用が認められる。また、Tiの一部をZrで置換することによっても同様の作用が得られる。
ここで、Tiの一部をZr(量比x)で置換する際のxの限定理由は以下のとおりである。すなわち、Tiの一部をZrで置換することによりTiNiの特性を損なうことなくTiNiと同様の作用が得られる。しかし、置換量xが大きくなりすぎると、分解反応効率が置換量とともに低下するため、上限を0.7未満とする。なお、同様の理由で上限を0.5とするのが一層望ましい。
【0009】
さらに、合金中にNiを含有させることによって、分解の効率が高まるとともに、合金の寿命が向上することがわかった。これは、Niが非常に安定な元素であるとともに触媒作用もあることから、分解材料が炭素と化合物を形成をすることを阻止し、さらに触媒作用によって炭化水素の分解を助長させるためと思われる。
ここで、Niの構成比であるyまたはzの限定理由は以下のとおりである。すなわち、Niが多すぎると分解した水素を分解材料内に取り込む量、あるいは速度が遅くなり、それによって炭化水素の分解効率が低下する。またこの効率を高めようとすると反応温度を高くしなければならなくなる。一方、Niが少ないと合金中のCa、Ti、Zr等と炭素との反応が進み、炭化物を形成しやすくなって、合金中のこれらの金属元素の消費が進むとともに寿命が低下してくる。
したがってNiの量比y、zを適切な範囲に限定する必要があるが、その量はNiとともに分解材料を構成する他成分の種別によって異なってくる。すなわち、NiとTi(Zrによる一部置換を含む)を基本成分とする場合には、上記理由により量比の下限は0.4、上限は3とする必要がある。なお、同様の理由で下限を0.5、上限を2とするのが望ましい。また、NiとCaを基本組成とする場合には、上記理由により量比の下限は1、上限は6とする必要がある。なお、同様の理由で下限を2、上限を5とするのが望ましい。
【0010】
本発明の炭化水素分解材料は、固形、粉末等の適宜の形態で使用することができ、炭化水素との接触により上記作用を果たすことができる。なお、本発明材料の使用方法は特に限定されるものではなく、適宜の設備、使用条件において使用することができる。本発明の分解材料を使用すれば、炭化水素を分解させるための温度を比較的低くすることができ、また常圧環境で分解することができる。
すなわち炭化水素の分解を本発明材料を用いた直接反応により行うことができ、白金系の高価な触媒がいらなくなること、これらの触媒を使わない場合でも反応温度を低下させることができ、装置の簡略化が期待される。また、常圧での分解が可能となり、高圧用の大掛かりな反応容器が不必要となる。ただし、本発明としては、使用温度、雰囲気圧力が上記に限定されるものではないことは勿論である。
【0011】
さらに、本発明の分解材料では炭化水素を直接分解させることから水素を有効に利用することができ、核融合の分野では、トリチウムを再び核融合炉の燃料系にリサイクルさせることができ、燃料効率も向上し、さらに放射性廃棄物を一切排出することもない。さらに、炭素成分を炭素の形で回収することができることから、メタン等の産業用炭化水素の分解において二酸化炭素の排出もなくすることが可能となる。
なお、本発明の適用は、上記したように核融合分野や産業用メタンの分解に好適であるが、本発明の適用分野はこれらに限定されるものではなく、炭化水素から水素または水素同位体を分離させるあらゆる分野に適用が可能である。
【0012】
上記分解材料の使用方法については特に限定されるものではなく、例えば、密閉容器に上記分解材料を収容し、この容器内に炭化水素を含むガスを導入して、該分解材料の作用によって炭化水素を分解することができる。この容器では、容器内雰囲気を高温に保って炭化水素の分解がなされるように、ヒータ等の適宜の加熱手段を用いる。この密閉容器を分解反応器として用いた分解装置を図1に基づいて説明する。
【0013】
ガス供給源(図示しない)に、ガス移送路としてガス移送管1が接続されており、その他端は、水素分離器であるPd分離器2に接続されている。なお、該ガス移送管1の中途には、バッファ槽3、ポンプ4および加熱器5が配置、接続されている。Pd分離器2は、パラジウム触媒の作用により、導入されたガスから水素を分離するものであり、水素と残ガスとを分別して排出することができる。Pd分離器2は、水素排出部2aと残ガス排出部2bとを有しており、水素排出部2aに水素回収管8が接続され、残ガス排出部に残ガス移送管9が接続されている。なお、本発明としては、水素分離器がPd分離器に限定されるものではなく、ガス中の水素を分離できるものであればよい。
【0014】
上記水素回収管8には、その中途に冷却器10およびポンプ11が配置、接続されており、水素回収管8の端部側は、二方に分岐して、弁12a、12bを介して水素回収器13a、13bに接続されている。水素回収器13a、13b内には、適宜の水素吸蔵材料を収容しておき、この材料に回収した水素を吸蔵させるものである。
【0015】
一方、残ガス移送管9は、上記第1または第2の発明で説明した炭化水素分解材料を収容した分解反応器15に接続されている。分解反応器15では、残ガス移送管9から導入されるガスが炭化水素分解材料と接触しながら通過できるように構成されており、さらに反応器15内部を高温に加熱するための加熱手段(図示しない)を備えている。
また、分解反応器15のガス排出側には、ガス返送路であるガス返送管16が接続されており、該ガス返送管16は、加熱器5の手前位置でガス移送管1に連結されている。また、ガス返送管16の中途には、冷却器17、ポンプ18、循環ガス槽19が順次、配置、接続されており、循環ガス槽19には、弁20を設けた排気管21が取り付けられている。
なお、この実施形態では、ガス返送路(ガス返送管)をガス移送管に連結したが、本発明としては、ガス分離器のガス導入側に直接接続するものであってもよい。
【0016】
次に、上記した炭化水素分解装置の動作プロセスについて説明する。
ガス供給源から炭化水素を含むインプットガスがガス移送管1に送られると、先ず、バッファ槽3に蓄えられ、適時、ポンプ4によってPd分離器2側に移送される。この際には、水素の分離を促進するため、ガスは加熱器5によって適宜の温度にまで加熱される。Pd分離器5では、導入されたガス中の水素をパラジウム膜によって吸収、分離し、この水素を水素排出部2aに排出し、一方、炭化水素を含む残ガスは残ガス排出部2bに排出する。水素排出部2aに送られた水素は、ポンプ11の動作により水素回収管8を通して水素回収器13a、13b側に移送される。この際に、水素ガスは冷却器10で冷却され、さらに弁12a、12bの切換により、回収器13a、13bのいずれか、または両方に送られる。回収器13a、13bに導入された水素は、該回収器13a、13b内に貯蔵され、適宜、外部に取り出して、所望の目的に利用したり、容器に収容したりすることができる。一方、Pd分離器5の残ガス排出部2bから排出された、その他のガスは、分解反応器15に移送され、その内部で高温に加熱され、かつ炭化水素分解材料と接触する。この結果、炭化水素分解材料の作用によりガス中の炭化水素が分解して、水素とその他のガスになる。これらの混合ガス(分解された水素、その他のガス成分、未分解ガス)は、ポンプ18の動作によりガス返送管16を通して循環ガス槽19に移送される。なお、移送の際には、冷却器17によってガスは冷却される。循環ガス槽に収容したガスは、さらに、ガス返送管16を通してガス移送管1へと送られ、再度、加熱器5で加熱された後、Pd分離器2へと送られる。Pd分離器2では上記と同様に、ガス中の水素が分離されて、水素回収器13a、13bへと移送され、残ガスは、再度、分解反応器15へと移送される。この動作を繰り返してガスを循環させることにより、炭化水素は確実に分解され、また、分解により得られた水素が効率的に分離、回収される。上記動作を繰り返して、十分に炭化水素の分解がなされた後は、分解反応器15から循環ガス槽19に移送されたガスを、排気ガスとして処理する。すなわち、弁20を開けて排気管21を通して循環ガス槽19内からガスを取り出して適宜の処理を行う。上記の分解装置では、例えば、排気ガス中に含まれるトリチウム量を、比においてインプットガス中のトリチウム量の10−7以下にすることができる。
【0017】
【実施例】
以下に、本発明の実施例を説明する。
Ti、Zrとの合金を、表1に示す組成となるように配合し、これらをアーク溶解炉で溶解した。得られた合金インゴットを大気中において70〜200メッシュに粉砕し、約5gの粉末合金を分解反応容器に封入した。反応容器を400℃にて約1時間程度真空脱ガスした後、反応容器を600℃に保持した。炭化水素としてはメタンを用い、これをHeガスを用いて約1%程度に希釈し、圧力0.1MPa、流量35cc/minにて分解反応容器に導入した。そして反応容器から排出されるHeガス中のメタン濃度、水素濃度をガスクロマトグラフにて計測し、メタンの分解量を調べ、分解材料1モルあたりのメタン分解モル量を表1に示した。
表1から明らかなように、本発明の水素吸蔵合金は、単体でのNi、Zr、Tiに比べ、これらを適切な量比で合金化することによって、メタンを効率よく分解することがわかった。
【0018】
【表1】

Figure 0003822022
【0019】
また、TiNiおよびCaNiについてy、zの量比を変えて上記と同様に分解材料1モルあたりのメタン分解モル量を測定し、y、zをパラメータとしてメタン分解モル量の変化を図2に示した。
図から明らかなように、Niの量比を適切な範囲に定めることによりメタンの分解量が顕著に増大することが分かる。
【0020】
【発明の効果】
以上説明したように、本発明の炭化水素分解材料によれば、水素または水素同位体を構成成分とする炭化水素から水素または水素同位体を分離させるための材料であって、その基本組成がTi1−xZrNi(ただし、0≦x<0.7、0.4≦y≦3)からなるもので、炭化水素を直接分解して水素または水素同位体を二酸化炭素、一酸化炭素等の副生物の発生を招くことなく効率よく分離することができ、水素の有効利用や水素同位体の効率的な回収が可能になる。しかも、比較的低い温度、圧力での分離が可能になるので装置の簡略化が可能になる。
【0021】
また、本発明の炭化水素分解装置によれば、炭化水素を含むガスを移送するガス移送路と、該ガス移送路が連結され該ガス移送路を通して導入されたガスから水素を分離して該水素と残ガスとを分別する水素分離器と、該水素分離器の水素ガス排出側に接続され、該水素分離器から排出された水素を回収する水素回収器と、前記水素分離器の残ガス排出側に接続され、水素または水素同位体を構成成分とする炭化水素から水素または水素同位体を分離させるための材料であって基本組成がTi 1−x Zr Ni からなり、xが0≦x<0.7、yが0.4≦y≦3の範囲にある炭化水素分解材料または基本組成がCa Ni からなり、zが1≦z≦6の範囲にある炭化水素分解材料を収容して、該材料の機能によって該残ガス中の炭化水素を分解して水素を分離し、その水素及びその他のガスを排出する炭化水素分解反応器と、該炭化水素分解反応器のガス排出側に一端側が接続され、他端側が上記水素分離器のガス導入側に接続されたガス返送路とを備えているので、炭化水素を効率的かつ確実に分解して、炭化水素を構成している水素または水素同位体を効率的に回収することができる。
【図面の簡単な説明】
【図1】 本発明の分解装置の一実施形態を示す概略図である。
【図2】 本発明の一実施例におけるNi量比とメタン分解量との関係を示すグラフである。[0001]
[Industrial application technology]
The present invention relates to a hydrocarbon cracking material for separating hydrogen or a hydrogen isotope, which is a component constituting a hydrocarbon, from the hydrocarbon, and a hydrocarbon cracking apparatus using the hydrocarbon cracking material.
[0002]
[Prior art]
In a nuclear fusion reactor, various gases are generated by the reaction between tritium, which is a fusion material and also a radioactive substance, and the reactor material, and various measures are taken for its disposal. In particular, hydrocarbons such as methane and ethane produced by the reaction of carbon and tritium used as part of the furnace material are difficult to dispose of as radioactive substances. Conventionally, tritiated methane and ethane generated from fusion reactors are recovered by reacting with high-temperature steam and liquefied as methanol, such as recovery using molecular adsorption materials and steam reforming, and then radioactive waste It is considered to be disposed of as a thing.
In addition, a large amount of methane gas is generated on the earth due to the decomposition of various organic substances, and it is expected as a fuel candidate when fossil fuel such as oil is depleted in the future. However, in the state of methane, it can only be expected to be used by burning it, so methane is decomposed prior to use and not only used as fuel by using the hydrogen obtained thereby, but also used as various forms of energy It is considered to be. The decomposition of methane for industrial use is generally performed by steam reforming as in the above-described nuclear fusion field. In this case, as a method of steam reforming, a catalyst is used to react with steam at high temperature and high pressure to decompose into hydrogen and carbon monoxide (CO).
[0003]
[Problems to be solved by the invention]
However, regardless of whether the tritiated methane or ethane generated from the fusion reactor is recovered using an adsorbent, or liquefied and recovered as methanol or ethanol by steam reforming, both of these methods are radioactive. A large amount of waste is generated. At present, a large amount of radioactive waste is generated in the nuclear field, and its storage facilities are becoming full, and it is actually difficult to dispose of it. In the nuclear fusion field, radioactive waste is not emitted as much as possible. You have to go find a way.
Also, in the decomposition of industrial methane, a very large reaction vessel that can withstand high temperature and high pressure is required for steam reforming, and highly toxic CO is discharged as a by-product gas, which is oxidized to detoxify it. An extra process for converting to CO 2 is also required. Furthermore, CO 2 must be discharged into the atmosphere as it is, leading to a result of increasing the atmospheric CO 2 concentration, which is the cause of global warming, which is currently a problem.
[0004]
The present invention has been made in view of the above circumstances, and provides a hydrocarbon cracking material capable of efficiently separating hydrogen or a hydrogen isotope from a hydrocarbon as a catalyst and a hydrocarbon cracking apparatus using the material. In particular, in the field of fusion, it is possible to separate and recover tritium from hydrocarbons such as tritiated methane and ethane generated from fusion reactors, and in the field of industrial methane decomposition, It is an object of the present invention to provide a material capable of separating hydrogen even at normal pressure without requiring a large reaction vessel for high pressure, and an apparatus using this material.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the first invention among the hydrocarbon decomposition materials of the present invention uses a material for separating hydrogen or a hydrogen isotope from a hydrocarbon containing hydrogen or a hydrogen isotope as a constituent, and uses this material. The basic composition is Ti 1-x Zr x Ni y , and x is in the range of 0 ≦ x <0.7 and y is in the range of 0.4 ≦ y ≦ 3.
[0007]
In addition, the hydrocarbon cracking apparatus of the present invention separates hydrogen from a gas transfer path for transferring a gas containing hydrocarbons, and a gas introduced through the gas transfer path by connecting the gas transfer path. A hydrogen separator for separating gas, a hydrogen recovery unit connected to a hydrogen gas discharge side of the hydrogen separator, recovering hydrogen discharged from the hydrogen separator, and a residual gas discharge side of the hydrogen separator A material for separating hydrogen or hydrogen isotope from hydrogen or hydrogen isotope as a constituent component, the basic composition is Ti 1-x Zr x Ni y , and x is 0 ≦ x < A hydrocarbon cracking material in which 0.7 and y are in the range of 0.4 ≦ y ≦ 3 or a hydrocarbon cracking material in which the basic composition is Ca 1 Ni z and z is in the range of 1 ≦ z ≦ 6 is accommodated. Depending on the function of the material, A hydrocarbon decomposition reactor that separates hydrogen and discharges hydrogen and other gases; one end side of the hydrocarbon decomposition reactor is connected to the gas discharge side of the hydrocarbon decomposition reactor, and the other end side is the gas of the hydrogen separator And a gas return path connected to the introduction side.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The hydrocarbon cracking material of the present invention can be produced by a conventional method, and adjusted to a composition within the range of the present invention and melted. The present invention is Ti, are thus configured to Zr, these components exhibit excellent characteristics in the composition having a suitable ratio.
That is, according to the present invention, hydrocarbons such as methane and ethane can be decomposed directly into hydrogen and carbon with high efficiency. This is considered to occur because hydrocarbons dissociate on the alloy surface and hydrogen atoms obtained permeate into the material of the present invention to prevent recombination of hydrogen and carbon. Further, the present invention material is an indispensable element. Ti is easy to bond with carbon and has a strong ability to adsorb carbon to these metal points on the alloy surface, thus preventing recombination of hydrogen and carbon. This is also considered to be one factor. These simply require the thermal decomposition temperature of the hydrocarbon and enable decomposition at lower temperatures. In addition to the above elements, these effects are somewhat observed in materials such as Zr, La, and Hf, but a significant effect is recognized in Ti , which is an essential element for the material of the present invention. A similar effect can be obtained by substituting part of Ti with Zr.
Here, the reason for limiting x when substituting a part of Ti with Zr (quantity ratio x) is as follows. That is, by replacing part of Ti with Zr, the same effect as TiNi can be obtained without impairing the properties of TiNi. However, if the substitution amount x becomes too large, the decomposition reaction efficiency decreases with the substitution amount, so the upper limit is made less than 0.7. For the same reason, it is more desirable to set the upper limit to 0.5.
[0009]
Furthermore, it has been found that inclusion of Ni in the alloy increases the decomposition efficiency and improves the life of the alloy. This seems to be because Ni is a very stable element and also has a catalytic action, so that the decomposition material is prevented from forming a compound with carbon and further promotes the decomposition of hydrocarbons by the catalytic action. .
Here, the reasons for limiting y or z, which is the composition ratio of Ni, are as follows. That is, if there is too much Ni, the amount or speed of taking decomposed hydrogen into the cracked material will be slowed, thereby reducing the hydrocarbon cracking efficiency. In order to increase this efficiency, the reaction temperature must be increased. On the other hand, when Ni is small, the reaction of Ca, Ti, Zr, etc. in the alloy with carbon proceeds, and it becomes easier to form carbides, and consumption of these metal elements in the alloy progresses and the lifetime decreases.
Therefore, it is necessary to limit the amount ratios y and z of Ni to an appropriate range, but the amount varies depending on the type of other components constituting the decomposition material together with Ni. That is, when Ni and Ti (including partial substitution with Zr) are used as basic components, the lower limit of the quantitative ratio needs to be 0.4 and the upper limit is 3 for the above reason. For the same reason, it is desirable to set the lower limit to 0.5 and the upper limit to 2. Further, when Ni and Ca are used as the basic composition, the lower limit of the quantity ratio needs to be 1 and the upper limit must be 6 for the above reason. For the same reason, it is desirable to set the lower limit to 2 and the upper limit to 5.
[0010]
The hydrocarbon cracking material of the present invention can be used in an appropriate form such as solid or powder, and can achieve the above-described action by contact with the hydrocarbon. In addition, the usage method of this invention material is not specifically limited, It can use in an appropriate installation and use conditions. If the decomposition material of the present invention is used, the temperature for decomposing hydrocarbons can be made relatively low, and it can be decomposed in a normal pressure environment.
That is, hydrocarbons can be decomposed by direct reaction using the material of the present invention, eliminating the need for platinum-based expensive catalysts, and reducing the reaction temperature even when these catalysts are not used. Simplification is expected. Moreover, decomposition at normal pressure is possible, and a large reaction vessel for high pressure is not necessary. However, as a matter of course, the operating temperature and the atmospheric pressure are not limited to the above in the present invention.
[0011]
Furthermore, since the cracking material of the present invention directly decomposes hydrocarbons, hydrogen can be used effectively. In the field of fusion, tritium can be recycled again into the fuel system of the fusion reactor, resulting in fuel efficiency. In addition, no radioactive waste is emitted. Furthermore, since the carbon component can be recovered in the form of carbon, it is possible to eliminate the emission of carbon dioxide in the decomposition of industrial hydrocarbons such as methane.
The application of the present invention is suitable for the fusion field and the decomposition of industrial methane as described above, but the field of application of the present invention is not limited to these, and hydrocarbons to hydrogen or hydrogen isotopes It can be applied to any field that separates
[0012]
The method of using the cracking material is not particularly limited. For example, the cracking material is accommodated in a closed container, a gas containing hydrocarbon is introduced into the container, and the hydrocarbon is produced by the action of the cracking material. Can be disassembled. In this container, an appropriate heating means such as a heater is used so that the atmosphere in the container is kept at a high temperature and hydrocarbons are decomposed. A decomposition apparatus using this sealed container as a decomposition reactor will be described with reference to FIG.
[0013]
A gas transfer pipe 1 is connected as a gas transfer path to a gas supply source (not shown), and the other end is connected to a Pd separator 2 which is a hydrogen separator. In the middle of the gas transfer pipe 1, a buffer tank 3, a pump 4, and a heater 5 are arranged and connected. The Pd separator 2 separates hydrogen from the introduced gas by the action of a palladium catalyst, and can separate and discharge hydrogen and residual gas. The Pd separator 2 has a hydrogen discharge part 2a and a residual gas discharge part 2b. A hydrogen recovery pipe 8 is connected to the hydrogen discharge part 2a, and a residual gas transfer pipe 9 is connected to the residual gas discharge part. Yes. In the present invention, the hydrogen separator is not limited to the Pd separator, and any hydrogen separator that can separate hydrogen in the gas may be used.
[0014]
A cooler 10 and a pump 11 are arranged and connected to the hydrogen recovery pipe 8 in the middle of the hydrogen recovery pipe 8, and the end of the hydrogen recovery pipe 8 branches in two directions, and hydrogen is supplied through valves 12a and 12b. The collectors 13a and 13b are connected. An appropriate hydrogen storage material is accommodated in the hydrogen recovery units 13a and 13b, and the recovered hydrogen is stored in this material.
[0015]
On the other hand, the residual gas transfer pipe 9 is connected to the cracking reactor 15 containing the hydrocarbon cracking material described in the first or second invention. The cracking reactor 15 is configured so that the gas introduced from the residual gas transfer pipe 9 can pass through in contact with the hydrocarbon cracking material, and further, heating means for heating the inside of the reactor 15 to a high temperature (illustrated). Not).
Further, a gas return pipe 16 that is a gas return path is connected to the gas discharge side of the decomposition reactor 15, and the gas return pipe 16 is connected to the gas transfer pipe 1 at a position before the heater 5. Yes. In the middle of the gas return pipe 16, a cooler 17, a pump 18, and a circulating gas tank 19 are sequentially arranged and connected, and an exhaust pipe 21 provided with a valve 20 is attached to the circulating gas tank 19. ing.
In this embodiment, the gas return path (gas return pipe) is connected to the gas transfer pipe. However, the present invention may be directly connected to the gas introduction side of the gas separator.
[0016]
Next, the operation process of the above hydrocarbon cracking apparatus will be described.
When the input gas containing hydrocarbons is sent from the gas supply source to the gas transfer pipe 1, it is first stored in the buffer tank 3, and is transferred to the Pd separator 2 side by the pump 4 when appropriate. At this time, the gas is heated to an appropriate temperature by the heater 5 in order to promote the separation of hydrogen. In the Pd separator 5, the hydrogen in the introduced gas is absorbed and separated by the palladium membrane, and this hydrogen is discharged to the hydrogen discharge part 2a, while the residual gas containing hydrocarbons is discharged to the residual gas discharge part 2b. . The hydrogen sent to the hydrogen discharge unit 2a is transferred to the hydrogen recovery units 13a and 13b through the hydrogen recovery pipe 8 by the operation of the pump 11. At this time, the hydrogen gas is cooled by the cooler 10 and further sent to one or both of the collectors 13a and 13b by switching the valves 12a and 12b. The hydrogen introduced into the collectors 13a and 13b is stored in the collectors 13a and 13b, and can be taken out to the outside and used for a desired purpose or stored in a container. On the other hand, the other gas discharged from the residual gas discharge portion 2b of the Pd separator 5 is transferred to the cracking reactor 15, heated to a high temperature therein, and comes into contact with the hydrocarbon cracking material. As a result, the hydrocarbons in the gas are decomposed by the action of the hydrocarbon decomposition material, and become hydrogen and other gases. These mixed gases (decomposed hydrogen, other gas components, and undecomposed gas) are transferred to the circulating gas tank 19 through the gas return pipe 16 by the operation of the pump 18. In the transfer, the gas is cooled by the cooler 17. The gas accommodated in the circulating gas tank is further sent to the gas transfer pipe 1 through the gas return pipe 16, heated again by the heater 5, and then sent to the Pd separator 2. In the Pd separator 2, similarly to the above, hydrogen in the gas is separated and transferred to the hydrogen recovery units 13a and 13b, and the remaining gas is transferred to the cracking reactor 15 again. By repeating this operation and circulating the gas, hydrocarbons are reliably decomposed, and hydrogen obtained by the decomposition is efficiently separated and recovered. After the above operation is repeated and the hydrocarbons are sufficiently decomposed, the gas transferred from the decomposition reactor 15 to the circulation gas tank 19 is treated as exhaust gas. That is, the valve 20 is opened and the gas is taken out from the circulating gas tank 19 through the exhaust pipe 21 to perform appropriate processing. In the above-described decomposition apparatus, for example, the amount of tritium contained in the exhaust gas can be made 10 −7 or less of the amount of tritium in the input gas in the ratio.
[0017]
【Example】
Examples of the present invention will be described below.
An alloy with Ti and Zr was blended so as to have the composition shown in Table 1, and these were melted in an arc melting furnace. The obtained alloy ingot was pulverized to 70 to 200 mesh in the atmosphere, and about 5 g of the powder alloy was sealed in a decomposition reaction vessel. After the reaction vessel was vacuum degassed at 400 ° C. for about 1 hour, the reaction vessel was kept at 600 ° C. Methane was used as the hydrocarbon, which was diluted to about 1% using He gas, and introduced into the decomposition reaction vessel at a pressure of 0.1 MPa and a flow rate of 35 cc / min. The methane concentration and hydrogen concentration in the He gas discharged from the reaction vessel were measured with a gas chromatograph, the amount of methane decomposed was examined, and the amount of methane decomposition mol per mol of decomposition material is shown in Table 1.
As is apparent from Table 1, it was found that the hydrogen storage alloy of the present invention decomposes methane efficiently by alloying them at an appropriate quantitative ratio as compared with Ni, Zr, and Ti alone. .
[0018]
[Table 1]
Figure 0003822022
[0019]
Further, with regard to TiNi y and CaNi z , the amount ratio of y and z was changed to measure the methane decomposition molar amount per mol of the cracking material in the same manner as described above, and the change in the methane decomposition molar amount was shown by using y and z as parameters. It was shown to.
As can be seen from the figure, the amount of methane decomposed markedly increases when the amount ratio of Ni is set within an appropriate range.
[0020]
【The invention's effect】
As described above, according to the hydrocarbon cracking material of the present invention, it is a material for separating hydrogen or a hydrogen isotope from a hydrocarbon containing hydrogen or a hydrogen isotope as a constituent component, and its basic composition is Ti. 1-x Zr x Ni y (however, 0 ≦ x <0.7,0.4 ≦ y ≦ 3) or Ranaru those, carbon dioxide or hydrogen isotopes by decomposing hydrocarbons directly monoxide Separation can be performed efficiently without causing by-products such as carbon, and hydrogen can be effectively used and hydrogen isotopes can be efficiently recovered. In addition, since the separation can be performed at a relatively low temperature and pressure, the apparatus can be simplified.
[0021]
Further, according to the hydrocarbon cracking apparatus of the present invention, a hydrogen gas is separated from a gas transfer path for transferring a gas containing hydrocarbons, and a gas introduced through the gas transfer path by connecting the gas transfer path. And a hydrogen separator that separates the residual gas, a hydrogen recovery unit that is connected to a hydrogen gas discharge side of the hydrogen separator and collects hydrogen discharged from the hydrogen separator, and a residual gas discharge of the hydrogen separator Is a material for separating hydrogen or a hydrogen isotope from a hydrocarbon having hydrogen or a hydrogen isotope as a constituent component, the basic composition is Ti 1-x Zr x Ni y , and x is 0 ≦ A hydrocarbon cracking material in which x <0.7 and y is in the range of 0.4 ≦ y ≦ 3 or a hydrocarbon cracking material in which the basic composition is Ca 1 Ni z and z is in the range of 1 ≦ z ≦ 6. Contained in the residual gas by the function of the material A hydrocarbon cracking reactor that decomposes hydrogen fluoride to separate hydrogen and discharges the hydrogen and other gases; one end side is connected to the gas discharge side of the hydrocarbon cracking reactor, and the other end side is the hydrogen separator A gas return path connected to the gas introduction side of the gas, so that hydrocarbons can be efficiently and reliably decomposed and hydrogen or hydrogen isotopes constituting the hydrocarbons can be efficiently recovered. it can.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an embodiment of a decomposition apparatus of the present invention.
FIG. 2 is a graph showing the relationship between the Ni amount ratio and the amount of methane decomposition in one example of the present invention.

Claims (2)

水素または水素同位体を構成成分とする炭化水素から水素または水素同位体を分離させるための材料であって、その基本組成がTi1−xZrNiからなり、xが0≦x<0.7、yが0.4≦y≦3の範囲にあることを特徴とする炭化水素分解材料 A material for separating hydrogen or a hydrogen isotope from hydrogen or a hydrogen isotope as a constituent component, the basic composition of which is Ti 1-x Zr x Ni y , and x is 0 ≦ x <0 .7, and y is in the range of 0.4 ≦ y ≦ 3 . 炭化水素を含むガスを移送するガス移送路と、該ガス移送路が連結され該ガス移送路を通して導入されたガスから水素を分離して該水素と残ガスとを分別する水素分離器と、該水素分離器の水素ガス排出側に接続され、該水素分離器から排出された水素を回収する水素回収器と、前記水素分離器の残ガス排出側に接続され、水素または水素同位体を構成成分とする炭化水素から水素または水素同位体を分離させるための材料であって基本組成がTi 1−x Zr Ni からなり、xが0≦x<0.7、yが0.4≦y≦3の範囲にある炭化水素分解材料または基本組成がCa Ni からなり、zが1≦z≦6の範囲にある炭化水素分解材料を収容して、該材料の機能によって該残ガス中の炭化水素を分解して水素を分離し、その水素及びその他のガスを排出する炭化水素分解反応器と、該炭化水素分解反応器のガス排出側に一端側が接続され、他端側が上記水素分離器のガス導入側に接続されたガス返送路とを備えていることを特徴とする炭化水素分解装置 A gas transfer path for transferring a gas containing hydrocarbons, a hydrogen separator connected to the gas transfer path for separating hydrogen from the gas introduced through the gas transfer path, and separating the hydrogen and residual gas; Connected to the hydrogen gas discharge side of the hydrogen separator and recovers the hydrogen discharged from the hydrogen separator, and connected to the residual gas discharge side of the hydrogen separator to form hydrogen or a hydrogen isotope as a constituent component A material for separating hydrogen or a hydrogen isotope from a hydrocarbon having a basic composition of Ti 1-x Zr x Ni y , where x is 0 ≦ x <0.7 and y is 0.4 ≦ y A hydrocarbon decomposition material in the range of ≦ 3 or a hydrocarbon decomposition material in which the basic composition is Ca 1 Ni z and z is in the range of 1 ≦ z ≦ 6 is accommodated in the residual gas depending on the function of the material The hydrocarbons are decomposed to separate the hydrogen, and the hydrogen A hydrocarbon cracking reactor for discharging gas and other gases, and a gas return path having one end connected to the gas discharge side of the hydrocarbon cracking reactor and the other end connected to the gas inlet side of the hydrogen separator. A hydrocarbon cracking apparatus characterized by comprising .
JP2000145573A 2000-05-17 2000-05-17 Hydrocarbon decomposition material and hydrocarbon decomposition apparatus Expired - Lifetime JP3822022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000145573A JP3822022B2 (en) 2000-05-17 2000-05-17 Hydrocarbon decomposition material and hydrocarbon decomposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000145573A JP3822022B2 (en) 2000-05-17 2000-05-17 Hydrocarbon decomposition material and hydrocarbon decomposition apparatus

Publications (2)

Publication Number Publication Date
JP2001321670A JP2001321670A (en) 2001-11-20
JP3822022B2 true JP3822022B2 (en) 2006-09-13

Family

ID=18652061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000145573A Expired - Lifetime JP3822022B2 (en) 2000-05-17 2000-05-17 Hydrocarbon decomposition material and hydrocarbon decomposition apparatus

Country Status (1)

Country Link
JP (1) JP3822022B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2545879C (en) * 2003-11-21 2011-09-20 Statoil Asa Method for conversion of hydrocarbons
JP4608657B2 (en) * 2005-09-09 2011-01-12 三菱マテリアル株式会社 Hydrogen separation and permeation membrane that exhibits excellent hydrogen separation and permeation function over a long period of time by high pressure operation of high purity hydrogen purifier
JP4918646B2 (en) * 2007-07-24 2012-04-18 公立大学法人大阪府立大学 Catalyst for hydrogen production from methanol comprising Ni3 (Si, Ti) intermetallic compound, hydrogen production method, hydrogen production apparatus
JP2010066114A (en) * 2008-09-10 2010-03-25 Mitsubishi Heavy Ind Ltd Nuclear transformation system and method
JP5811856B2 (en) * 2011-03-08 2015-11-11 株式会社デンソー Steam reforming catalyst and reforming catalyst body
JP7291191B2 (en) * 2021-10-29 2023-06-14 三菱重工業株式会社 Method for producing fine metal particles
JP7469354B2 (en) * 2022-03-30 2024-04-16 三菱重工業株式会社 Method for producing fine metal particles

Also Published As

Publication number Publication date
JP2001321670A (en) 2001-11-20

Similar Documents

Publication Publication Date Title
JP3766063B2 (en) Hydrogen supply method, apparatus, and portable hydrogen supply cassette
JP5346693B2 (en) Fuel cell system using ammonia as fuel
Machida et al. Efficient catalytic decomposition of sulfuric acid with copper vanadates as an oxygen-generating reaction for solar thermochemical water splitting cycles
US20060127718A1 (en) Fuel cell, operating method thereof, sintering furnace, and power generator
EP1670090B1 (en) Molten carbonate fuel cell, operating method thereof, sintering furnace, and power generator
JP2010159194A (en) Ammonia synthesis method
US20120028145A1 (en) Arrangement and method for generating hydrogen from hydrocarbon fuel
US20130255153A1 (en) Method of Gas Purification, Coal Gasification Plant, and Shift Catalyst
JP3822022B2 (en) Hydrocarbon decomposition material and hydrocarbon decomposition apparatus
Gude et al. Towards the development of materials for chemically stable carbonate-ceramic membranes to be used for CO2 separation in water-gas-shift reactors
JP2023500816A (en) Process for producing high-purity hydrogen by combining pyrolysis of hydrocarbons and electrochemical separation processes
JP2017521353A (en) Method for producing hydrogen
FR2620849A1 (en) PROCESS FOR THE DECONTAMINATION OF THE RESIDUAL GAS OF A NUCLEAR FUSION REACTOR
JP2005272856A (en) Ammonia synthesizer, ammonia synthesis method and system including combustion apparatus
Słowiński Some technical issues of zero-emission coal technology
JPH0757756A (en) Fuel cell power generation system
JP2009269983A (en) Fuel-cost-saving apparatus of eliminating carbon dioxide
EP0871537B1 (en) Method and system for heat transfer using a material for the unmixed combustion of fuel and air
JP2680489B2 (en) Catalyst for recombiners of radioactive gas waste treatment facilities
Willms et al. Performance of a palladium membrane reactor using an Ni catalyst for fusion fuel impurities processing
Perevezentsev et al. Operational experience with the JET impurity processing system during and after DTE1
JP2005255505A (en) Hydrogen supply method
JP4795741B2 (en) Nitrogen gas generator and fuel cell power generation system using the same
Joshi et al. Perspectives in advance technologies/strategies for combating rising CO2 levels in the atmosphere via CO2 utilisation: A review
Mehta et al. Low-Pressure Ammonia Production

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060412

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060621

R150 Certificate of patent or registration of utility model

Ref document number: 3822022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140630

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term