JP4901018B2 - Polypyrrole film, method for producing the same, and thermoelectric material comprising the same - Google Patents

Polypyrrole film, method for producing the same, and thermoelectric material comprising the same Download PDF

Info

Publication number
JP4901018B2
JP4901018B2 JP2001128364A JP2001128364A JP4901018B2 JP 4901018 B2 JP4901018 B2 JP 4901018B2 JP 2001128364 A JP2001128364 A JP 2001128364A JP 2001128364 A JP2001128364 A JP 2001128364A JP 4901018 B2 JP4901018 B2 JP 4901018B2
Authority
JP
Japan
Prior art keywords
polypyrrole film
same
polypyrrole
electrolytic treatment
thermoelectric material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001128364A
Other languages
Japanese (ja)
Other versions
JP2002322295A (en
Inventor
直樹 戸嶋
虎 厳
友子 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemipro Kasei Kaisha Ltd
Original Assignee
Chemipro Kasei Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemipro Kasei Kaisha Ltd filed Critical Chemipro Kasei Kaisha Ltd
Priority to JP2001128364A priority Critical patent/JP4901018B2/en
Publication of JP2002322295A publication Critical patent/JP2002322295A/en
Application granted granted Critical
Publication of JP4901018B2 publication Critical patent/JP4901018B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱電材料として有用なポリピロール類膜、その製造方法およびそれよりなる熱電材料に関する。
【0002】
【従来の技術】
本発明者らは、ポリアニリン類の膜が熱電材料として使用する可能性があることと、多層膜化や延伸処理によりその熱電特性が向上できることを見出した(特願平11−126301、特願2000−14831参照)。しかし、実用のためには、熱電特性の更なる向上だけではなく高い耐候性も必要であることが分った。
【0003】
【発明が解決しようとする課題】
本発明の目的は、従来の有機熱電材料並みの実用可能性がある熱電特性を有し、かつ高い耐候性を示すポリピロール類膜の製造方法、該製造方法によって得られるポリピロール類膜および該ポリピロール類膜よりなる熱電材料を提供する点にある。
【0004】
【課題を解決するための手段】
本発明の第は、ピロール類と有機スルフォン酸塩(溶液中で電流が流れるようにするための電解支持塩である)を含む水溶液を用いて電解重合を行い、得られたポリピロール類膜をさらに追加電解処理することを特徴とするポリピロール類膜の製造方法に関する。
本発明の第2は、請求項1記載の製造方法によって得られる、X線回折スペクトルに関して下記式を満足する結晶度を有することを特徴とするポリピロール類膜に関する。
【数2】

Figure 0004901018
本発明の第3は、請求項2記載のポリピロール類膜からなる熱電材料に関する。
【0006】
本発明における、電解重合法としては、定電位法(電位を一定とする)、サイクリックボルンタメトリー法、定電流法(電流を一定とする)などがあるが、定電位法が好ましい。それは、定電位法が生産性に優れているからである。電解重合は通常1時間以内、好ましくは35分以内とする。これ以上長い間電解重合を行うと電極上に品質のよいポリピロール類膜が形成されない。
【0007】
これにひきつづいて追加電解処理を行う。前記電解重合が電解液にピロール類と有機スルフォン酸塩が含まれているのに対して、追加電解処理における電解液には有機スルフォン酸塩しか含まれておらず、ピロール類の重合はおこらず、ポリピロール類膜が多少追加酸化されると思われる。
追加電解処理を行うと、ポリピロール類膜の導電率は処理時間の経過とともに次第に向上し、少なくとも15%以上、好ましくは20%以上向上する。そしてある段階、たとえば60%位向上した時点をピークにしてその後は処理時間の経過と共に導電率が低下の方向に向う。したがって工業的にはあらかじめ特定の電解処理条件における最適処理時間を求めておき、その時間が経過したら、追加電解処理を終了することが必要である。
【0008】
電解重合により得られたポリピロール類膜は、追加電解処理をしない段階でもある程度の結晶度をもつが、追加電解処理することにより結晶度が向上することは、図3に示すXRDスペクトル図から明らかである。導電率の向上という点では結晶質を多く含むことが好ましく、完全な結晶であれば最高の導電率を示す。
【0009】
結晶度の指標ともいうべき
【数3】
Figure 0004901018
の意味するところは、追加電解処理前の前記式の値が約0.4程度であったものが、0.5以上になったということを示しており、これは結晶度が向上したことを示すものである。本発明の実施例のものでは、この数値が約1になっており、大幅に結晶度が向上したことを示している。
【0010】
本発明のポリピロール類としては、下記式のものを挙げることができる。
【化1】
Figure 0004901018
式中、RとRは、水素、置換基を有することもあるアルキル基、アリール基、アルコキシ基、アシル基およびアルコキシカルボニル基などを挙げることができる。アルキル基としては、メチル、エチル、プロピル、ブチル、sec−ブチル、tert−ブチルなどを例示することができ、アリール基として、フェニル、ジフエニル、トルイルなどを例示することができる。nは50以上、このましくは100以上であり、条件によってはnを10000程度とすることができる。
【0011】
本発明で用いるドーピング剤や電解支持塩としては、ポリピロール類に対する機能性酸塩類とくに、トルエンスルフォン酸塩、ドデシルベンゼンスルフォン酸塩、ナフタレンスルフォン酸塩、カンファースルフォン酸塩などを挙げることができる。これらの塩は通常アルカリ金属やアンモニウムの塩であり、とくにNaの塩が一般的である。
【0012】
【実施例】
以下に実施例を挙げて本発明を説明するが、本発明はこれにより何等限定されるものでない。
【0013】
実施例1
ピロールの電解重合は、電極として平板状のITOガラス電極を、対極に白金電極を用いて、0.25mol dm−3のピロールと0.80mol dm−3のトルエンスルフォン酸ナトリウムを含む水溶液中で、窒素下に定電位800mV(vs.参考電極Ag/AgCl)を30分かけて行った。生成した膜は、蒸留水とアセトニトリルで洗浄し、60℃で一晩真空乾燥した。このようにしてポリピロール膜を得た。
【0014】
このポリピロール膜を0.80mol dm−3のトルエンスルフォン酸ナトリウムを含む水溶液中において、窒素下、定電位120mV(vs.参考電極Ag/AgCl)で0.5時間、2時間、3時間、5時間、7時間といろいろ時間を変えて電解処理を行った。電解処理した膜は、蒸留水とアセトニトリルで洗浄し、60℃で一晩真空乾燥した。このようにして図2(A)および図3の実施例1のグラフに示すような高い結晶度を有し、かつ図1に示す高い導電性をもつポリピロール膜を得た。なお、電解重合と追加電解処理は、いずれも室温(27℃)、1気圧で行った。
【0015】
比較例1
実施例1において、電解重合を行っただけで、ひきつづく電解処理を行わないポリピロール膜を比較例1とした。
【0016】
図1は、ポリピロール膜の導電率と電解処理時間の関係をプロット的に示したものであり、更なる電解処理を3時間行ったときにもっとも高い導電率のポリピロール膜が得られることが分かる。
【0017】
実施例1(電解処理時間3時間のもの)と比較例1のポリピロール膜を走査型電子顕微鏡(SEM)で観察すると、実施例1のポリピロール膜の方がよりち密であった(図2)。
【0018】
また、実施例1(電解処理時間3時間のもの)と比較例1のポリピロール膜をX線回折法(XRD)で調べると、実施例1のポリピロール膜の方がより結晶度が高かった(図3)。
【0019】
【発明の効果】
本発明により、ポリピロール類としてはじめて、熱電材料として使用可能な高い熱電特性をもつポリピロール類膜を提供できた。このポリピロール類膜に電流を流すと、発熱するのが避けられないデバイス、たとえばEL素子やLSIなどの冷却用膜として使用することができる。
【図面の簡単な説明】
【図1】実施例1で得られた膜の電解処理の時間による導電率(σ)の変化を示すグラフである。
【図2】(A)は実施例1(電解処理3時間のもの)で得られたポリピロール膜のSEM写真(3500倍)であり、(B)は比較例1のポリピロール膜のSEM写真(500倍)である。
【図3】実施例1(電解処理3時間のもの)と比較例1で得られたポリピロール膜のXRDスペクトルをしめす。図中、縦軸は強度I(単位はcounts per second=cps)であり、横軸は回折角度(2θ)であり、単位は度である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polypyrrole film useful as a thermoelectric material, a production method thereof, and a thermoelectric material comprising the same.
[0002]
[Prior art]
The present inventors have found that a polyaniline film may be used as a thermoelectric material and that its thermoelectric characteristics can be improved by forming a multilayer film or stretching (Japanese Patent Application No. 11-126301, Japanese Patent Application No. 2000). -14831). However, it has been found that for practical use, not only further improvement of thermoelectric properties but also high weather resistance is necessary.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing a polypyrrole film having thermoelectric properties as practical as conventional organic thermoelectric materials and exhibiting high weather resistance, a polypyrrole film obtained by the production method , and the polypyrrole It is in providing a thermoelectric material comprising a film .
[0004]
[Means for Solving the Problems]
In the first aspect of the present invention, an electropolymerization is performed using an aqueous solution containing pyrroles and an organic sulfonate (which is an electrolytic support salt for allowing current to flow in the solution), and the resulting polypyrrole membrane is obtained. Furthermore, the present invention relates to a method for producing a polypyrrole film characterized by performing an additional electrolytic treatment.
A second aspect of the present invention relates to a polypyrrole film obtained by the production method according to claim 1 and having a crystallinity satisfying the following formula with respect to an X-ray diffraction spectrum.
[Expression 2]
Figure 0004901018
A third aspect of the present invention relates to a thermoelectric material comprising the polypyrrole film according to claim 2.
[0006]
Examples of the electropolymerization method in the present invention include a constant potential method (constant potential), a cyclic voltammetry method, a constant current method (constant current), and the constant potential method is preferred. This is because the potentiostatic method is excellent in productivity. Electropolymerization is usually within 1 hour, preferably within 35 minutes. If the electropolymerization is carried out for a longer time, a high-quality polypyrrole film is not formed on the electrode.
[0007]
This is followed by additional electrolytic treatment. While the above-mentioned electrolytic polymerization contains pyrroles and organic sulfonates in the electrolytic solution, the electrolytic solution in the additional electrolytic treatment contains only organic sulfonates, and polymerization of pyrroles does not occur. It is considered that the polypyrrole film is somewhat further oxidized.
When the additional electrolytic treatment is performed, the conductivity of the polypyrrole film gradually improves with the lapse of the treatment time, and is improved by at least 15% or more, preferably 20% or more. Then, at a certain stage, for example, when the time of improvement of about 60% is reached as a peak, the conductivity decreases in the direction of the processing time. Therefore, industrially, it is necessary to obtain an optimum processing time under specific electrolytic treatment conditions in advance, and to end the additional electrolytic treatment when the time has elapsed.
[0008]
The polypyrrole film obtained by electropolymerization has a certain degree of crystallinity even at the stage where no additional electrolytic treatment is performed, but it is clear from the XRD spectrum diagram shown in FIG. 3 that the crystallinity is improved by additional electrolytic treatment. is there. In terms of improvement in electrical conductivity, it is preferable to contain a large amount of crystalline material, and the highest electrical conductivity is exhibited if it is a complete crystal.
[0009]
It should be called an index of crystallinity.
Figure 0004901018
This means that the value of the above formula before the additional electrolytic treatment was about 0.4, but became 0.5 or more, which means that the crystallinity was improved. It is shown. In the example of the present invention, this value is about 1, indicating that the crystallinity is greatly improved.
[0010]
Examples of the polypyrrole of the present invention include the following formulas.
[Chemical 1]
Figure 0004901018
In the formula, R 1 and R 2 may include hydrogen, an alkyl group that may have a substituent, an aryl group, an alkoxy group, an acyl group, and an alkoxycarbonyl group. Examples of the alkyl group include methyl, ethyl, propyl, butyl, sec-butyl, tert-butyl and the like, and examples of the aryl group include phenyl, diphenyl, toluyl and the like. n is 50 or more, preferably 100 or more, and n can be about 10,000 depending on conditions.
[0011]
Examples of the doping agent and electrolytic supporting salt used in the present invention include functional acid salts for polypyrroles, particularly toluene sulfonate, dodecylbenzene sulfonate, naphthalene sulfonate, camphor sulfonate, and the like. These salts are usually alkali metal and ammonium salts, and Na salts are particularly common.
[0012]
【Example】
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto.
[0013]
Example 1
Electropolymerization of pyrrole, a flat ITO glass electrode as the electrode, using a platinum electrode as a counter electrode, in an aqueous solution containing toluenesulfonic acid sodium 0.25 mol dm -3 pyrrole and 0.80 mol dm -3, A constant potential of 800 mV (vs. reference electrode Ag / AgCl) was applied over 30 minutes under nitrogen. The resulting membrane was washed with distilled water and acetonitrile and dried in vacuo at 60 ° C. overnight. In this way, a polypyrrole film was obtained.
[0014]
This polypyrrole film was placed in an aqueous solution containing 0.80 mol dm -3 sodium toluenesulfonate at a constant potential of 120 mV (vs. reference electrode Ag / AgCl) under nitrogen for 0.5 hour, 2 hours, 3 hours, 5 hours. The electrolytic treatment was performed at various times of 7 hours. The electrolytically treated membrane was washed with distilled water and acetonitrile and vacuum dried at 60 ° C. overnight. In this way, a polypyrrole film having a high crystallinity as shown in the graph of Example 1 in FIGS. 2A and 3 and having a high conductivity as shown in FIG. 1 was obtained. The electrolytic polymerization and the additional electrolytic treatment were both performed at room temperature (27 ° C.) and 1 atmosphere.
[0015]
Comparative Example 1
In Example 1, Comparative Example 1 was a polypyrrole film that was subjected to electrolytic polymerization and was not subjected to subsequent electrolytic treatment.
[0016]
FIG. 1 is a plot showing the relationship between the electrical conductivity of the polypyrrole film and the electrolytic treatment time, and it can be seen that the polypyrrole film having the highest electrical conductivity can be obtained when further electrolytic treatment is performed for 3 hours.
[0017]
When the polypyrrole film of Example 1 (with an electrolytic treatment time of 3 hours) and the polypyrrole film of Comparative Example 1 were observed with a scanning electron microscope (SEM), the polypyrrole film of Example 1 was denser (FIG. 2).
[0018]
Further, when the polypyrrole film of Example 1 (with an electrolytic treatment time of 3 hours) and the polypyrrole film of Comparative Example 1 were examined by X-ray diffraction (XRD), the polypyrrole film of Example 1 was higher in crystallinity (see FIG. 3).
[0019]
【Effect of the invention】
According to the present invention, a polypyrrole film having high thermoelectric properties that can be used as a thermoelectric material can be provided for the first time as a polypyrrole. When a current is passed through the polypyrrole film, it can be used as a cooling film for devices that cannot avoid heat generation, such as EL elements and LSIs.
[Brief description of the drawings]
1 is a graph showing a change in electrical conductivity (σ) with time of electrolytic treatment of a film obtained in Example 1. FIG.
2A is an SEM photograph (3500 times) of a polypyrrole film obtained in Example 1 (3 hours of electrolytic treatment), and FIG. 2B is an SEM photograph of a polypyrrole film of Comparative Example 1 (500 times). Times).
FIG. 3 shows XRD spectra of the polypyrrole films obtained in Example 1 (3 hours of electrolytic treatment) and Comparative Example 1. In the figure, the vertical axis represents intensity I (unit: counts per second = cps), the horizontal axis represents diffraction angle (2θ), and the unit is degree.

Claims (3)

ピロール類と有機スルフォン酸塩を含む水溶液を用いて電解重合を行い、得られたポリピロール類膜をさらに追加電解処理することを特徴とするポリピロール類膜の製造方法。  A method for producing a polypyrrole film, characterized in that an electropolymerization is performed using an aqueous solution containing pyrroles and an organic sulfonate, and the resulting polypyrrole film is further subjected to additional electrolytic treatment. 請求項1記載の製造方法によって得られる、X線回折スペクトルに関して下記式を満足する結晶度を有することを特徴とするポリピロール類膜。
Figure 0004901018
A polypyrrole film obtained by the production method according to claim 1 , having a crystallinity satisfying the following formula with respect to an X-ray diffraction spectrum.
Figure 0004901018
請求項記載のポリピロール類膜からなる熱電材料。A thermoelectric material comprising the polypyrrole film according to claim 2 .
JP2001128364A 2001-04-25 2001-04-25 Polypyrrole film, method for producing the same, and thermoelectric material comprising the same Expired - Fee Related JP4901018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001128364A JP4901018B2 (en) 2001-04-25 2001-04-25 Polypyrrole film, method for producing the same, and thermoelectric material comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001128364A JP4901018B2 (en) 2001-04-25 2001-04-25 Polypyrrole film, method for producing the same, and thermoelectric material comprising the same

Publications (2)

Publication Number Publication Date
JP2002322295A JP2002322295A (en) 2002-11-08
JP4901018B2 true JP4901018B2 (en) 2012-03-21

Family

ID=18977069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001128364A Expired - Fee Related JP4901018B2 (en) 2001-04-25 2001-04-25 Polypyrrole film, method for producing the same, and thermoelectric material comprising the same

Country Status (1)

Country Link
JP (1) JP4901018B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8617358D0 (en) * 1986-07-16 1986-08-20 Univ Durham Polymerisable heterocyclic monomers
JP2694670B2 (en) * 1989-06-15 1997-12-24 マルコン電子株式会社 Manufacturing method of tantalum solid electrolytic capacitor
JPH0371617A (en) * 1989-08-10 1991-03-27 Nichicon Corp Manufacture of solid electrolytic capacitor
JPH0371618A (en) * 1989-08-10 1991-03-27 Nichicon Corp Manufacture of solid electrolytic capacitor
FR2743371B1 (en) * 1996-01-08 1998-08-14 Atochem Elf Sa CONDUCTIVE CELLULOSE MICROFIBRILLES AND COMPOSITES INCORPORATING THEM
JP3102773B2 (en) * 1997-05-08 2000-10-23 利夫 功刀 Highly sensitive stretching method of pyrrole polymer film or fiber
JPH11185837A (en) * 1997-12-16 1999-07-09 Tamotsu Minami Heat recycling secondary battery
JP3694855B2 (en) * 1999-05-06 2005-09-14 学校法人東京理科大学 Organic thermoelectric material and method for producing the same
JP2001102258A (en) * 1999-09-29 2001-04-13 Nec Corp Method for manufacturing conductive polymer film

Also Published As

Publication number Publication date
JP2002322295A (en) 2002-11-08

Similar Documents

Publication Publication Date Title
Xu et al. Highly ordered MnO2 nanowire array thin films on Ti/Si substrate as an electrode for electrochemical capacitor
Tsai et al. Voltammetric study and electrodeposition of tellurium, lead, and lead telluride in room-temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate
JP2007070698A (en) Method for electrodepositing metal
JPWO2004023560A1 (en) Organic thin film transistor and method for producing organic thin film transistor
US7285441B2 (en) Field effect transistor and method of manufacturing the same
JP5170681B2 (en) Electric aluminum plating solution and aluminum plating film
JP2008221037A (en) Nitrogen-fixing material, manufacturing method thereof, and nitrogen-fixing method
US20170260125A1 (en) Organic-inorganic hybrid compound, amine hydrogen iodide salt, composition for photoelectric conversion element, and photoelectric conversion element
JP4901018B2 (en) Polypyrrole film, method for producing the same, and thermoelectric material comprising the same
KR20210084303A (en) Method for preparing organic halides for perovskite, and perovskite and solar cell prepared thereby
KR101787083B1 (en) Preparation method of perovskite nanostructures and the perovskite nanostructures thereby
JP2008150655A (en) Method for electrodepositing metal
JP2007169735A (en) Method of manufacturing porous titanium-titanium oxide composite
Fall et al. Role of surfactants in the electrosynthesis and the electrochemical and spectroscopic characteristics of poly (3-methoxythiophene) films in aqueous micellar media
JP4576001B2 (en) Aluminum foil for electrolytic capacitor electrode
Xiao et al. Tunnel morphology of aluminum foil etched by a two-step DC etching method
US7863081B2 (en) Field effect transistor and method of manufacturing the same
Ju et al. The growth and morphology of copper phthalocyanine on TiO2 nanotube arrays
EP1361244B1 (en) Poly(5-aminoquinoxalines); preparation and use thereof
Liu et al. In situ STM study of zinc electrodeposition on Au (111) from the ionic liquid 1-ethyl-3-methylimidazolium trifluoromethylsulfonate
EP0260223B1 (en) Process for the preparation of polycrystalline silicon layers by electrolytic deposition of silicon
JP2019024035A (en) Manufacturing method of photoelectric conversion element
JP2000204074A (en) Benzenesulfonic acid derivative compound and dopant
JPS63199727A (en) Organic semiconductor
JP2016166287A (en) π-CONJUGATED POLYMER FOR ORGANIC SEMICONDUCTOR, AND METHOD FOR THE PRODUCTION THEREOF AND USE THEREOF

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111227

R150 Certificate of patent or registration of utility model

Ref document number: 4901018

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees