JP2008221037A - Nitrogen-fixing material, manufacturing method thereof, and nitrogen-fixing method - Google Patents

Nitrogen-fixing material, manufacturing method thereof, and nitrogen-fixing method Download PDF

Info

Publication number
JP2008221037A
JP2008221037A JP2007058585A JP2007058585A JP2008221037A JP 2008221037 A JP2008221037 A JP 2008221037A JP 2007058585 A JP2007058585 A JP 2007058585A JP 2007058585 A JP2007058585 A JP 2007058585A JP 2008221037 A JP2008221037 A JP 2008221037A
Authority
JP
Japan
Prior art keywords
nitrogen
conductive polymer
solvent
anion
soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007058585A
Other languages
Japanese (ja)
Other versions
JP5401666B2 (en
Inventor
Katsuyoshi Hoshino
勝義 星野
Tomoshi Shiba
智志 柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
Original Assignee
Chiba University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC filed Critical Chiba University NUC
Priority to JP2007058585A priority Critical patent/JP5401666B2/en
Priority to PCT/JP2007/067977 priority patent/WO2008108016A1/en
Publication of JP2008221037A publication Critical patent/JP2008221037A/en
Application granted granted Critical
Publication of JP5401666B2 publication Critical patent/JP5401666B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3669Treatment with low-molecular organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • B01J37/0226Oxidation of the substrate, e.g. anodisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/342Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electric, magnetic or electromagnetic fields, e.g. for magnetic separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a contact composite material of a photocatalytically active inorganic oxide semiconductor and a conductive polymer, in which nitrogen-fixing efficiency is remarkably improved. <P>SOLUTION: A composite photocatalytic material prepared by contact composition of the inorganic oxide semiconductor having a photocatalytic function and the conductive polymer which is soluble in a solvent or is dispersible in the solvent is irradiated with a light beam and, thereby, nitrogen gas in air is fixed as ammonium salt and ammonia. When bringing the conductive polymer material into contact with the photocatalytically active inorganic oxide semiconductor, a coating method for suppressing a decrease of the number density of oxygen defect parts performing nitrogen-fixing reaction is used. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、窒素の固定化材料及びその製造方法並びに窒素固定化方法に関する。   The present invention relates to a nitrogen fixing material, a method for producing the same, and a nitrogen fixing method.

生物体は細胞から成り、細胞は炭素、水素、酸素及び窒素の4つの基本元素から成り立っている。炭素、水素及び酸素は植物の行う光合成の産物に由来する。一方、窒素は空気中の窒素ガスがその唯一の起源であり、地中のバクテリアがこの窒素を固定化し、窒素化合物を生産する(生物学的窒素固定)。また窒素を固定化する他の方法としては、空気中の窒素ガスと天然ガスから採取した水素ガスを高温高圧下で反応させアンモニアを作り出す人工窒素固定化法がある(ハーバーボッシュ法)。こうして2つの方法で作り出された窒素化合物は植物に与えられ、植物は自らの身体を形成する。そして動物は植物を摂取し身体を形成する。人間はその双方を摂取し、生命維持を行っている。   Living organisms are composed of cells, and cells are composed of four basic elements: carbon, hydrogen, oxygen and nitrogen. Carbon, hydrogen, and oxygen are derived from the products of photosynthesis performed by plants. On the other hand, nitrogen is the only source of nitrogen gas in the air, and bacteria in the ground fix this nitrogen and produce nitrogen compounds (biological nitrogen fixation). As another method for immobilizing nitrogen, there is an artificial nitrogen immobilization method that produces ammonia by reacting nitrogen gas in the air and hydrogen gas collected from natural gas under high temperature and high pressure (Haberbosch method). Nitrogen compounds produced in two ways are given to plants, which form their bodies. And animals ingest plants and form bodies. Humans ingest both of them and maintain their lives.

しかしながら、上記ハーバーボッシュ法は化石エネルギーを必要とするエネルギー浪費プロセスであり、化石燃料が枯渇した場合稼働しなくなるといった問題がある。石油が枯渇した場合、人類の1/3の生命維持が困難になるとの報告もある(例えばV.Smil、Scientific America誌、July 1997、pp58―63及びその日本語訳 V.Smil日経サイエンス誌、1997年12月号、104−110頁を参照)。従って、石油が枯渇する将来において前記生物体内で必要とされる窒素を供給するためには、ハーバーボッシュ法の代替プロセスの開発が急務であり、国際的な問題となっている。   However, the Harbor Bosch method is an energy waste process that requires fossil energy, and there is a problem that it does not operate when the fossil fuel is depleted. There are also reports that when oil is depleted, it is difficult to maintain 1/3 of human life (for example, V.Smil, Scientific America, July 1997, pp58-63 and its Japanese translation V.Smil Nikkei Science, (See December 1997, pages 104-110). Therefore, in order to supply the nitrogen required in the organism in the future when oil is depleted, the development of an alternative process for the Harbor Bosch method is an urgent issue and has become an international issue.

このような代替プロセスとしては、近年様々な手法が提案されている。例えば、下記非特許文献1には、還元処理を行ったメソポーラス酸化チタン材料を用いて空中窒素からアンモニアを形成する手法が開示されている。   In recent years, various methods have been proposed as such an alternative process. For example, Non-Patent Document 1 below discloses a method of forming ammonia from air nitrogen using a mesoporous titanium oxide material that has been subjected to a reduction treatment.

また、下記非特許文献2及び3には、FeTi光触媒材料を合成し、光照射を行い、空中窒素をアンモニア及び硝酸塩に変換する手法が開示されている。 Non-Patent Documents 2 and 3 below disclose a method of synthesizing a Fe 2 Ti 2 O 7 photocatalyst material, performing light irradiation, and converting air nitrogen to ammonia and nitrate.

また、下記非特許文献4には、溶融塩中で窒素還元を行ってN を形成し、水素ガスと反応させることによってアンモニアを得る手法が開示されている。 Non-Patent Document 4 below discloses a method for obtaining ammonia by performing nitrogen reduction in a molten salt to form N 3 and reacting with hydrogen gas.

また、下記非特許文献5には、C60とγシクロデキストリンの錯体を形成し、Naとともに水に投入した水溶液に可視光照射を行い、アンモニアを形成する手法が開示されている。 Non-Patent Document 5 below discloses a method of forming ammonia by forming a complex of C 60 and γ cyclodextrin and irradiating an aqueous solution charged with water with Na 2 S 2 O 4 to form visible light. Yes.

また、下記非特許文献6には、1−ブタノールのプラズマ重合反応において、空気中の窒素ガスを固定化しポリマー中に窒素化合物として取り込ませる手法が開示されている。   Non-Patent Document 6 below discloses a technique in which nitrogen gas in air is fixed and taken into the polymer as a nitrogen compound in the plasma polymerization reaction of 1-butanol.

また、本発明者らは、光触媒機能を有する酸化チタンと陰イオンをドーピングした導電性ポリマー材料を接触させて複合材料を形成し、水分と窒素ガスが存在する雰囲気下で複合材料に光照射を行うことによって空気中の窒素ガスをアンモニア及びアンモニウム塩へと物質変換する新たな空中窒素固定化法を提案している(下記特許文献1及び2並びに非特許文献7乃至11参照)。   In addition, the present inventors contact a titanium oxide having a photocatalytic function and a conductive polymer material doped with an anion to form a composite material, and irradiate the composite material with light in an atmosphere where moisture and nitrogen gas exist. A new air nitrogen immobilization method has been proposed in which nitrogen gas in the air is converted into ammonia and ammonium salts by performing the method (see Patent Documents 1 and 2 and Non-Patent Documents 7 to 11 below).

特開2001−72985号公報Japanese Patent Laid-Open No. 2001-72985 特開2003−200057号公報JP 2003-200057 A M.Vettraino、M.Trudeau、A.Y.H.Lo、R.W.Schurko、D.Antonelli、Journal of the American Chemical Society誌、124巻、9567頁、2002年M.M. Vettraino, M.M. Trudeau, A.M. Y. H. Lo, R.A. W. Schurko, D.C. Antonelli, Journal of the American Chemical Society, 124, 9567, 2002 O.Rusina、O.Linnik、A.Eremenko、H.Kisch、Chemistry of European Journal誌、9巻、561頁、2003年O. Rusina, O .; Linnik, A.M. Eremenko, H.M. Kisch, Chemistry of European Journal, Vol. 9, 561, 2003 O.Rusina、A.Eremenko、G.Frank、H.−P.Strunk、H.Kisch、AngewandteChemie International Edition誌、40巻、3993頁、2001年)O. Rusina, A.M. Eremenko, G.M. Frank, H.M. -P. Strunk, H.M. (Kisch, Angewante Chemie International Edition, 40, 3993, 2001) T.Murakami、T.Nishibayashi,T.Nishikiori、T.Nohira,Y.Ito、Journao of American Chemical Society誌、125巻、334頁、2003年T.A. Murakami, T .; Nishibayashi, T .; Nishikiori, T .; Nohira, Y. et al. Ito, Journal of American Chemical Society, 125, 334, 2003 Y.Nishibayashi、M.Saito,S.Uemura、S.Takekuma、H.Takekuma、Z.Yoshida、Nature誌、428巻、279頁、2004年Y. Nishibayashi, M .; Saito, S .; Uemura, S .; Takekuma, H .; Takekuma, Z. et al. Yoshida, Nature, 428, 279, 2004 H.Matsuura、T.Tanikawa、H.Takaba、Y.Fujiwara、Journal of Physical Chemistry B誌、108巻、17748頁、2004年H. Matsuura, T .; Tanikawa, H.C. Takaba, Y. et al. Fujiwara, Journal of Physical Chemistry B, 108, 17748, 2004 K.Hoshino、M.Inui、T.Kitamura、H.Kokado、Angewandte Chemie International Edition誌、39巻、2509頁、2000年K. Hoshino, M .; Inui, T .; Kitamura, H .; Kokado, Agewandte Chemie International Edition, 39, 2509, 2000 K.Hoshino、T.Kitamura、ChemistryLetters誌、1120頁、2000年K. Hoshino, T .; Kitamura, Chemistry Letters, 1120, 2000 K.Hoshino、Chemistry of European Journal誌、7巻、2727頁、2001年K. Hoshino, Chemistry of European Journal, Vol. 7, p. 2727, 2001 T.Ogawa、T.Kitamura、T.Shibuya、K.Hoshino、Electrochemistry Communications誌、6巻、55頁、2004年T.A. Ogawa, T .; Kitamura, T .; Shibuya, K .; Hoshino, Electrochemistry Communications, Vol. 6, p. 55, 2004 T.Ogawa、T.Igarashi、T.Kawanishi、T.Kitamura、K.Hoshino、Journal of Photopolymer Science and Technology誌、17巻、143頁、2004年T.A. Ogawa, T .; Igarashi, T .; Kawanishi, T .; Kitamura, K. et al. Hoshino, Journal of Photopolymer Science and Technology, 17, 143, 2004

しかしながら、上記文献に開示された手法ではいずれも使用する酸化チタン材料の窒素固定活性自体は高いものの、導電性ポリマーを接触させるプロセスにおいて著しく窒素固定活性が低下し、窒素固定収率が抑制されてしまうという課題があった。   However, in the methods disclosed in the above documents, the nitrogen fixing activity of the titanium oxide material used is high, but the nitrogen fixing activity is remarkably lowered in the process of contacting the conductive polymer, and the nitrogen fixing yield is suppressed. There was a problem of ending up.

そこで、本発明は、上記課題を解決し、より窒素固定収率の高い窒素固定化材料及びその製造方法、更にはこれを用いた窒素固定化方法を提供することを目的とする。   Then, this invention solves the said subject, and it aims at providing the nitrogen fixation material with a higher nitrogen fixation yield, its manufacturing method, and also the nitrogen fixation method using the same.

本発明者らは、上記課題について鋭意検討を行ったところ、従来技術の課題及びその解決について以下のように推察し、実際の材料を作製しその効果を確認することで本発明を完成させるに至った。   As a result of diligent investigations on the above problems, the present inventors inferred the problems of the prior art and their solutions as follows, and produced the actual materials and confirmed the effects to complete the present invention. It came.

一般に、窒素固定が生じる場所は酸化チタン材料の中の酸素欠陥部位であると考えられている。そしてその欠陥部位に空中窒素が吸着すると当該窒素が活性化され、さらに当該窒素が光照射のエネルギーを得ると窒素還元が起こると考えられている(非特許文献8乃至11参照)。ところが、導電性ポリマーを酸化チタン上に被覆する処理は、ポリマー前駆体を酸化チタンの上にコーティングしたあと電気化学酸化又は化学酸化を施すものであるため、その際酸素欠陥部位も酸化してしまう。すなわち、この酸素欠陥部位が減少するとその数密度が必然的に減少し、窒素固定収率(固定化されるアンモニアやアンモニウム塩の収率)を著しく低下させてしまうのである。したがって、窒素固定収率を上げるためには、導電性ポリマーを接触複合化させる際に、酸化処理を行わず酸素欠陥部位の数密度を維持する必要がある。   In general, the place where nitrogen fixation occurs is considered to be an oxygen defect site in the titanium oxide material. It is considered that when nitrogen in the air is adsorbed to the defective portion, the nitrogen is activated, and further, nitrogen reduction occurs when the nitrogen obtains energy of light irradiation (see Non-Patent Documents 8 to 11). However, the process of coating the conductive polymer on titanium oxide involves applying a polymer precursor on the titanium oxide and then subjecting it to electrochemical oxidation or chemical oxidation. In this case, oxygen deficient sites are also oxidized. . That is, when the number of oxygen defect sites decreases, the number density inevitably decreases, and the nitrogen fixation yield (the yield of ammonia or ammonium salt to be immobilized) is significantly reduced. Therefore, in order to increase the nitrogen fixation yield, it is necessary to maintain the number density of oxygen defect sites without performing an oxidation treatment when the conductive polymer is contact-complexed.

すなわち、上記課題を解決するための一手段に係る窒素固定化材料は、光触媒機能を有する無機酸化物半導体層と、無機酸化物半導体層上に形成され、溶媒に可溶又は分散可能でありかつ陰イオンを含む導電性ポリマー層と、を有することを特徴の一つとする。   That is, a nitrogen fixing material according to one means for solving the above problems is formed on an inorganic oxide semiconductor layer having a photocatalytic function, an inorganic oxide semiconductor layer, and is soluble or dispersible in a solvent. And a conductive polymer layer containing an anion.

また本手段において、限定されるわけではないが、導電性ポリマーは、下記(1)、(2)若しくは(3)で示される化合物又はそれら誘導体の少なくともいずれかを含むことが好ましい。
(nは1以上の繰返し単位数を示す。Aは陰イオンを示す。XはN−H,S,O,Seのいずれかを示す。R(m=1〜12)は、水素原子又は置換基を示し、互いに同一であっても異なっていてもよく、互いに連結して環を形成してもよい。また、上記繰返し単位の間に溶媒可溶性単位を含んでいてもよい。)
(nは1以上の繰返し単位数を示す。Aは陰イオンを示す。XはN−H,S,O,Seのいずれかを示す。R(m=1〜12)は、水素原子又は置換基を示し、互いに同一であっても異なっていてもよく、互いに連結して環を形成してもよい。また、上記繰返し単位の間に溶媒可溶性単位を含んでいてもよい。)
(nは1以上の繰返し単位数を示す。Aは陰イオンを示す。Rm(m=1〜28)は、水素原子又は置換基を示し、互いに同一であっても異なっていてもよく、互いに連結して環を形成してもよい。また、上記繰返し単位の間に溶媒可溶性単位を含んでいてもよい。)
Moreover, in this means, although not necessarily limited, it is preferable that the conductive polymer contains at least one of the compounds represented by the following (1), (2) or (3) or derivatives thereof.
(N represents a repeating unit number of 1 or more. A represents an anion. X represents N—H, S, O, or Se. R m (m = 1 to 12) represents a hydrogen atom. Or a substituent, which may be the same or different from each other, may be linked to each other to form a ring, and a solvent-soluble unit may be included between the above repeating units.
(N represents a repeating unit number of 1 or more. A represents an anion. X represents N—H, S, O, or Se. R m (m = 1 to 12) represents a hydrogen atom. Or a substituent, which may be the same or different from each other, may be linked to each other to form a ring, and a solvent-soluble unit may be included between the above repeating units.
(N represents a repeating unit number of 1 or more. A represents an anion. Rm (m = 1 to 28) represents a hydrogen atom or a substituent, and may be the same or different from each other; They may be linked to each other to form a ring, and solvent-soluble units may be included between the repeating units.

また、上記課題を解決するための一手段にかかる窒素固定化材料の製造方法は、水分及び窒素ガスを含む雰囲気下において、光触媒機能を有する無機酸化物半導体上に、溶媒に可溶化又は分散可能でありかつ陰イオンを含む導電性ポリマーをコーティングする。   In addition, a method for producing a nitrogen-immobilized material according to one means for solving the above-described problem can be solubilized or dispersed in a solvent on an inorganic oxide semiconductor having a photocatalytic function in an atmosphere containing moisture and nitrogen gas. And a conductive polymer containing anions.

また、本手段において、限定されるわけではないが、導電性ポリマーは、下記(1)、(2)若しくは(3)で示される化合物又はそれら誘導体の少なくともいずれかを含むことが好ましい。
(nは1以上の繰返し単位数を示す。Aは陰イオンを示す。XはN−H,S,O,Seのいずれかを示す。R(m=1〜12)は、水素原子又は置換基を示し、互いに同一であっても異なっていてもよく、互いに連結して環を形成してもよい。また、上記繰返し単位の間に溶媒可溶性単位を含んでいてもよい。)
(nは1以上の繰返し単位数を示す。Aは陰イオンを示す。XはN−H,S,O,Seのいずれかを示す。R(m=1〜12)は、水素原子又は置換基を示し、互いに同一であっても異なっていてもよく、互いに連結して環を形成してもよい。また、上記繰返し単位の間に溶媒可溶性単位を含んでいてもよい。)
(nは1以上の繰返し単位数を示す。Aは陰イオンを示す。Rm(m=1〜28)は、水素原子又は置換基を示し、互いに同一であっても異なっていてもよく、互いに連結して環を形成してもよい。また、上記繰返し単位の間に溶媒可溶性単位を含んでいてもよい。)
Moreover, although not necessarily limited in this means, it is preferable that a conductive polymer contains at least any one of the compound shown by following (1), (2) or (3), or those derivatives.
(N represents a repeating unit number of 1 or more. A represents an anion. X represents N—H, S, O, or Se. R m (m = 1 to 12) represents a hydrogen atom. Or a substituent, which may be the same or different from each other, may be linked to each other to form a ring, and a solvent-soluble unit may be included between the above repeating units.
(N represents a repeating unit number of 1 or more. A represents an anion. X represents N—H, S, O, or Se. R m (m = 1 to 12) represents a hydrogen atom. Or a substituent, which may be the same or different from each other, may be linked to each other to form a ring, and a solvent-soluble unit may be included between the above repeating units.
(N represents a repeating unit number of 1 or more. A represents an anion. Rm (m = 1 to 28) represents a hydrogen atom or a substituent, and may be the same or different from each other; They may be linked to each other to form a ring, and solvent-soluble units may be included between the repeating units.

また、本手段において、限定されるわけではないが、酸化チタン表面上への前記導電性ポリマーのコーティングは、酸化物半導体の酸素欠陥部位の酸化を抑制しつつ導電性ポリマーの層を形成できる限りにおいて限定されることなく種々の方法を用いることができ、スピンコーティング法、ディップコーティング法、及びバーコート法があり、このいずれでも良いが、均一な膜厚を有する薄膜を得る際にはスピンコート法がより好ましい。   Further, in this means, the conductive polymer coating on the titanium oxide surface is not limited as long as the conductive polymer layer can be formed while suppressing the oxidation of the oxygen defect site of the oxide semiconductor. Various methods can be used without limitation, and there are a spin coating method, a dip coating method, and a bar coating method. Any of these methods may be used, but when a thin film having a uniform film thickness is obtained, spin coating is used. The method is more preferred.

本明細書において「塗布法」とは、上記(1)−(3)で示される導電性ポリマーを溶媒に溶解あるいは分散し、しかる後に光触媒活性無機酸化物半導体表面上に塗布することにより光触媒活性無機酸化物半導体と導電性ポリマーの接触複合化物を形成する手法をいう。   In the present specification, the “coating method” means photocatalytic activity by dissolving or dispersing the conductive polymer represented by the above (1)-(3) in a solvent and then coating the surface on the photocatalytically active inorganic oxide semiconductor surface. A technique for forming a contact composite of an inorganic oxide semiconductor and a conductive polymer.

また、本手段において、限定されるわけではないが、溶媒中への導電性ポリマーの分散は、撹拌による分散、超音波照射による分散、ボールミルによる分散により行われることが好ましい。なおその分散処理の場合、限定されるわけではないが、界面活性剤やポリエチレングリコールなどの分散剤を適宜加えてもよい。   In this means, although not limited, the conductive polymer is preferably dispersed in the solvent by dispersion by stirring, dispersion by ultrasonic irradiation, or dispersion by a ball mill. In the case of the dispersion treatment, a dispersant such as a surfactant or polyethylene glycol may be appropriately added, although not limited thereto.

また、上記課題を解決する他の手段にかかる窒素固定化方法は、光触媒機能を有する無機酸化物半導体層と、無機酸化物半導体層上に形成され、溶媒に可溶又は分散可能でありかつ陰イオンを含む導電性ポリマー層と、を有する窒素固定化材料を、水分及び窒素を含む雰囲気中に配置し、前記複合化空中窒素固定化材料に光照射を行うこととする。   In addition, a nitrogen fixing method according to another means for solving the above-described problem is an inorganic oxide semiconductor layer having a photocatalytic function, and an inorganic oxide semiconductor layer formed on the inorganic oxide semiconductor layer, which is soluble or dispersible in a solvent and is negative. A nitrogen fixing material having a conductive polymer layer containing ions is placed in an atmosphere containing moisture and nitrogen, and the composite air-borne nitrogen fixing material is irradiated with light.

以上、本発明により、より窒素固定収率の高い窒素固定化材料及びその製造方法、更にはこれを用いた窒素固定化方法となる。   As described above, according to the present invention, a nitrogen fixing material having a higher nitrogen fixing yield, a method for producing the same, and a nitrogen fixing method using the material are provided.

以下、本発明の実施の形態について、詳細に説明する。なお、本発明は多くの異なる形態による実施が可能であり、以下に示す実施形態、実施例に狭く限定されるものではない。   Hereinafter, embodiments of the present invention will be described in detail. Note that the present invention can be implemented in many different forms, and is not limited to the following embodiments and examples.

本実施形態に係る窒素固定化方法は、光触媒活性無機酸化物半導体と陰イオンがドーピングされた可溶性又は分散性の導電性ポリマーを接触複合化し、光照射を行うことによって空中窒素をアンモニウム塩あるいはアンモニアとして固定化する材料とシステムに関する。ここで可溶性導電性ポリマーとは、基本骨格だけでは溶媒不溶性である導電性ポリマーに、アルキルキ等の置換基を結合することにより、あるいは溶媒可溶性の高いポリオキシエチレンユニット等を共重合させることにより溶媒に可溶性とした導電性ポリマーを示す。また分散性導電性ポリマーとは、基本骨格だけでは超音波等の分散処理を講じても溶媒に分散されないポリマーを、やはり置換基の導入や溶媒可溶性のユニットの共重合により良分散性としたポリマーを示す。次に、この複合材料を洗浄・乾燥し、光照射を行うと、光触媒活性無機酸化物半導体と導電性ポリマーが接触する界面で空中窒素が還元され、アンモニアが生成する。より正確には、接触部分の無機酸化物半導体表面に存在する酸素欠陥部位において、まず光生成電子による吸着水の還元が生じ、原子状水素が形成される。そして原子状水素が吸着窒素分子を還元し、アンモニアが形成される。一方、導電性ポリマー表面及び内部では光を吸収して、導電性ポリマーにドーピングされていた負イオンが脱ドープ(ポリマーから放出される)される。そして、光触媒活性無機酸化物半導体と導電性ポリマーが接触する界面で生成されたアンモニアの一部が脱ドープされた陰イオンと結合してアンモニウム塩となる。以上の過程により、窒素固定化物としてアンモニウム塩及びアンモニアを得ることができる。図1に、本発明の窒素ガスを光化学反応によりアンモニウム塩及びアンモニアとして固定化する原理を示す。なお、この図では一例として酸化チタンも導電性ポリマーも板状の形態を有するが、板状形態でなくても良い。   The nitrogen immobilization method according to this embodiment is a method in which a photocatalytically active inorganic oxide semiconductor and a soluble or dispersible conductive polymer doped with anions are contact-complexed, and light is irradiated to convert nitrogen in the air into ammonium salt or ammonia. As to materials and systems to be immobilized. Here, the soluble conductive polymer is a solvent obtained by bonding a substituent such as an alkyl group to a conductive polymer that is insoluble in a solvent only by the basic skeleton, or by copolymerizing a polyoxyethylene unit having high solvent solubility. The conductive polymer made soluble in is shown. A dispersible conductive polymer is a polymer that is not dispersible in a solvent even if it is subjected to a dispersion treatment such as ultrasonic waves only with a basic skeleton, and is made highly dispersible by introducing substituents or copolymerizing solvent-soluble units. Indicates. Next, when this composite material is washed and dried and irradiated with light, air nitrogen is reduced at the interface between the photocatalytically active inorganic oxide semiconductor and the conductive polymer, and ammonia is generated. More precisely, at an oxygen defect site present on the surface of the inorganic oxide semiconductor at the contact portion, first, reduction of adsorbed water by photogenerated electrons occurs, and atomic hydrogen is formed. Atomic hydrogen then reduces adsorbed nitrogen molecules and ammonia is formed. On the other hand, light is absorbed on and inside the conductive polymer, and negative ions doped in the conductive polymer are dedoped (released from the polymer). And a part of ammonia produced | generated in the interface which a photocatalytic active inorganic oxide semiconductor and a conductive polymer contact is couple | bonded with the dedope anion, and turns into an ammonium salt. Through the above process, an ammonium salt and ammonia can be obtained as a nitrogen-immobilized product. FIG. 1 shows the principle of immobilizing the nitrogen gas of the present invention as an ammonium salt and ammonia by a photochemical reaction. In this figure, as an example, both titanium oxide and the conductive polymer have a plate-like form, but they need not have a plate-like form.

導電性ポリマー膜を形成する工程は、種々の塗布法により作製することができ、限定されるわけではないが、まずスピンコート法により得る方法が好適である。特にスピンコート法は、常温・常圧下で行うことができ、種々のポリマー溶液及び分散液に対して適用できる簡便な手法であるのでより好適に用いることができる。   The step of forming the conductive polymer film can be prepared by various coating methods, and is not limited, but a method obtained by a spin coating method is preferable. In particular, the spin coating method can be performed at room temperature and normal pressure, and can be more suitably used because it is a simple technique applicable to various polymer solutions and dispersions.

スピンコート法とは、ポリマーの溶液あるいは分散液を種々の対象物上に滴下し、一定時間、一定回転速度で対象物を回転させることによって対象物表面上にポリマーの均一な被覆膜を形成する手法である。スピンコート法としては限定されるわけではないが、例えば、吉野勝美、小野田光宣、高分子エレクトロニクス、コロナ社、1996年、195頁に記載の方法を採用できる。   Spin coating is a method in which a polymer solution or dispersion is dropped onto various objects and the object is rotated at a constant rotation speed for a certain period of time to form a uniform coating film on the surface of the object. It is a technique to do. The spin coating method is not limited. For example, the method described in Katsumi Yoshino, Mitsunori Onoda, Polymer Electronics, Corona, 1996, page 195 can be employed.

スピンコート法において、ターンテーブルに固定した対象物(ここでは光触媒活性無機酸化物の基板や粉体)にポリマーの溶液あるいは分散液を滴下した後、ターンテーブルを回転させる、あるいは回転している対象物にポリマーの溶液あるいは分散液を滴下すると、溶媒は飛散、蒸発して対象物上に導電性ポリマーの被膜を形成することができる。なお、この方法で良質な被膜を作製するためには、導電性ポリマーの濃度、ターンテーブルの回転数および回転時間などを良く検討する必要がある。例えば、(1)の分類に含まれるポリ(3,4−エチレンジオキシチオフェン)―ブロック―ポリエチレングリコールの製膜は、濃度1重量%のニトロメタン溶液を用い、250rpmの回転数で20秒程度で行える。この場合、一回のスピンコートにより得られる膜の膜厚は57nmであり、スピンコートの繰り返し回数に比例して膜厚は増大する。すなわち、70回のスピンコートを繰り返し行うことで対象物上に4μmのポリマー皮膜を形成することができる。   In spin coating method, a polymer solution or dispersion is dropped on an object (here, photocatalytically active inorganic oxide substrate or powder) fixed on a turntable, and then the turntable is rotated or the object is rotating When a polymer solution or dispersion is dropped onto an object, the solvent is scattered and evaporated to form a conductive polymer film on the object. In order to produce a high-quality film by this method, it is necessary to carefully examine the concentration of the conductive polymer, the rotation speed of the turntable, the rotation time, and the like. For example, a poly (3,4-ethylenedioxythiophene) -block-polyethylene glycol film included in the category (1) uses a nitromethane solution with a concentration of 1% by weight and takes about 20 seconds at a rotation speed of 250 rpm. Yes. In this case, the film thickness obtained by one spin coating is 57 nm, and the film thickness increases in proportion to the number of spin coating repetitions. That is, a polymer film having a thickness of 4 μm can be formed on the object by repeating the spin coating 70 times.

導電性ポリマーが種々の溶媒に難溶性・難分散性の場合には、種々の分散剤を添加する。分散剤は、溶媒に十分溶解するものが好ましく、限定されるわけではないが、四級アンモニウム塩等のカチオン性界面活性剤、硫酸塩あるいはカルボン酸塩などの陰イオン性界面活性剤、ポリオキシエチレングリコールを有するような非イオン性界面活性剤が好適に用いられる。分散剤の濃度は、限定されるわけではないが0.001重量%以上溶解度以下であることが好ましく、0.1重量%以上60重量%以下であることがより好ましい。   When the conductive polymer is hardly soluble / dispersible in various solvents, various dispersants are added. The dispersant is preferably one that sufficiently dissolves in the solvent, and is not limited, but includes a cationic surfactant such as quaternary ammonium salt, an anionic surfactant such as sulfate or carboxylate, polyoxy A nonionic surfactant having ethylene glycol is preferably used. The concentration of the dispersant is not limited, but is preferably 0.001% by weight or more and not more than solubility, and more preferably 0.1% by weight or more and 60% by weight or less.

導電性ポリマーの分散に用いられる溶媒としては、限定されるわけではないが、クロロホルム、塩化メチレン、アセトンなどの蒸気圧の高い溶媒を採用できる。また、種々の溶媒の混合溶媒も好ましい。   A solvent used for dispersion of the conductive polymer is not limited, but a solvent having a high vapor pressure such as chloroform, methylene chloride, and acetone can be used. A mixed solvent of various solvents is also preferable.

本実施形態において用いられる導電性ポリマーは、チオフェン、ピロール、フラン、セレノフェン、カルバゾール、アニリンを基本骨格とするものであり、特段に限定されず、市販されているものも使用することができる。チオフェン、ピロール、フラン、セレノフェンの一般式を(1)及び(2)に、カルバゾールの一般式を(3)に記す。
(nは1以上の繰返し単位数を示す。Aは陰イオンを示す。XはN−H,S,O,Seのいずれかを示す。R(m=1〜12)は、水素原子又は置換基を示し、互いに同一であっても異なっていてもよく、互いに連結して環を形成してもよい。また、上記繰返し単位の間に溶媒可溶性単位を含んでいてもよい。)
(nは1以上の繰返し単位数を示す。Aは陰イオンを示す。XはN−H,S,O,Seのいずれかを示す。R(m=1〜12)は、水素原子又は置換基を示し、互いに同一であっても異なっていてもよく、互いに連結して環を形成してもよい。また、上記繰返し単位の間に溶媒可溶性単位を含んでいてもよい。)
(nは1以上の繰返し単位数を示す。Aは陰イオンを示す。Rm(m=1〜28)は、水素原子又は置換基を示し、互いに同一であっても異なっていてもよく、互いに連結して環を形成してもよい。また、上記繰返し単位の間に溶媒可溶性単位を含んでいてもよい。)
The conductive polymer used in the present embodiment has thiophene, pyrrole, furan, selenophene, carbazole, and aniline as a basic skeleton, and is not particularly limited, and commercially available polymers can also be used. The general formulas of thiophene, pyrrole, furan, and selenophene are shown in (1) and (2), and the general formula of carbazole is shown in (3).
(N represents a number of repeating units of 1 or more. A represents an anion. X represents N—H, S, O, or Se. R m (m = 1 to 12) represents a hydrogen atom. Or a substituent, which may be the same or different from each other, may be linked to each other to form a ring, and a solvent-soluble unit may be included between the above repeating units.
(N represents a number of repeating units of 1 or more. A represents an anion. X represents N—H, S, O, or Se. R m (m = 1 to 12) represents a hydrogen atom. Or a substituent, which may be the same or different from each other, may be linked to each other to form a ring, and a solvent-soluble unit may be included between the above repeating units.
(N represents the number of repeating units of 1 or more. A represents an anion. Rm (m = 1 to 28) represents a hydrogen atom or a substituent, and may be the same or different from each other; They may be linked to each other to form a ring, and solvent-soluble units may be included between the repeating units.

塗布法で用いられる導電性ポリマーの溶液あるいは分散液中における濃度は、限定されるわけではないが、0.1重量%以上溶解度以下であることが好ましく、1重量%以上60重量%以下であることがより好ましい。   The concentration of the conductive polymer used in the coating method in the solution or dispersion is not limited, but is preferably 0.1% by weight or more and not more than solubility, and preferably 1% by weight or more and 60% by weight or less. It is more preferable.

本実施形態で用いる光触媒活性無機酸化物半導体は、限定されるわけではないが酸化チタンおよび酸化亜鉛およびその誘導体を用いることが望ましい。そして、光触媒活性無機酸化物半導体製造法としては各種のものがあるが、大きく分けて、金属を加熱して酸化物とする焼成法(藤島 昭、現代化学、1984年10月号、64頁)、金属板を電解する方法(特許文献1、2、非特許文献1−5、及び山口靖英、山崎正敏、吉原左知雄、白樫高史、DENKI KAGAKU誌、64巻、1996年、373頁)、ゾル・ゲル法により調製する方法(横尾俊信、神谷寛一、作花済夫、窯業学会誌、95巻、150頁、1987年)そして空気中で自然に形成される自然酸化膜を利用する方法(V.V.Andreeva、Corrosion誌、20巻、35t頁、1964年)が挙げられる。そして、本発明の方法で用いる光触媒活性無機酸化物半導体には、窒素固定の反応場である酸素欠陥部位の存在が不可欠であり、酸素欠陥部位は空気中での熱処理によりその数密度が低下することを考慮すると、熱処理を要しない手法である電解法および自然酸化膜を利用する方法が望ましい。   The photocatalytically active inorganic oxide semiconductor used in the present embodiment is not limited, but it is desirable to use titanium oxide, zinc oxide and derivatives thereof. There are various methods for producing photocatalytically active inorganic oxide semiconductors, which are roughly divided into calcination methods by heating metals to form oxides (Akira Fujishima, Hyundai Chemical, October 1984 issue, page 64). , Methods for Electrolyzing Metal Plates (Patent Documents 1 and 2, Non-Patent Documents 1-5, and Yamaguchi Yasuhide, Yamazaki Masatoshi, Yoshihara Satoshi, Shirasagi Takafumi, DENKI KAKAKU, 64, 1996, 373)・ A method prepared by gel method (Toshinobu Yokoo, Kanichi Kamiya, Saio Sakuhana, Journal of Ceramic Society, Vol. 95, 150, 1987) and a method using a natural oxide film formed naturally in air (V V. Andreeva, Corrosion, Vol. 20, p. 35t (1964)). In addition, in the photocatalytically active inorganic oxide semiconductor used in the method of the present invention, the presence of an oxygen defect site, which is a nitrogen-fixed reaction field, is indispensable, and the oxygen defect site has its number density lowered by heat treatment in air. In view of this, an electrolytic method that does not require heat treatment and a method that uses a natural oxide film are desirable.

電解法のための電解セルとしては、光触媒活性無機酸化物半導体膜形成のための動作電極、動作電極と対峙する対向電極及び電位の基準となる参照電極の3本の電極を用いる3電極式セル、または、動作電極と対向電極だけを用いる2電極式セルを用いることができる。なお、動作電極の電位を基準となる参照電極に対して厳密に規定することのできる3電極式セルは、電解重合膜を再現性良く作製することができる点においてより好ましい。   As an electrolysis cell for the electrolysis method, a three-electrode cell using three electrodes: a working electrode for forming a photocatalytically active inorganic oxide semiconductor film, a counter electrode facing the working electrode, and a reference electrode serving as a potential reference Alternatively, a two-electrode cell using only the working electrode and the counter electrode can be used. Note that a three-electrode cell in which the potential of the working electrode can be strictly defined with respect to a reference electrode serving as a reference is more preferable in that an electrolytic polymerization film can be manufactured with good reproducibility.

本実施形態における酸化チタンの作製法では、2電極式セルを用いる。まず水性媒体あるいは有機媒体中に支持電解質を入れて、攪拌機により十分に溶解せしめ、その後得られた電解溶液を静置したままあるいは若干の撹拌加えながらチタン板の電極を用いて電解処理する。また電解条件は、各種状況に応じて適宜選択すればよいが、通常は液温0〜70℃、好ましくは10〜30℃、印加電圧0.1〜500V、好ましくは5〜300Vとする。このような電解処理により、陽極のチタン板上に所望する酸化チタンの薄膜が形成される。ここで用いる支持電解質は、水性媒体あるいは有機媒体の電気伝導度を調節するために加えるものである。この場合、支持電解質の種類は媒体中に溶解し、媒体の電気伝導度を調節しうるものであれば、特に制限はない。また本発明の方法で用いる電極は、チタンを含有する金属もしくは導電体であればよい。具体的には各種形状のチタン金属、およびパラジウム、ニッケル、ルテニウム、タンタル、モリブデン、バナジウム、アルミニウム、ジルコニウム、鉄、ビスマス、ストロンチウムとのチタン合金などが挙げられる。   In the manufacturing method of titanium oxide in this embodiment, a two-electrode cell is used. First, the supporting electrolyte is put in an aqueous medium or an organic medium and sufficiently dissolved by a stirrer. Then, the obtained electrolytic solution is subjected to electrolytic treatment using an electrode of a titanium plate while being left still or with slight stirring. The electrolysis conditions may be appropriately selected according to various situations. Usually, the liquid temperature is 0 to 70 ° C., preferably 10 to 30 ° C., and the applied voltage is 0.1 to 500 V, preferably 5 to 300 V. By such electrolytic treatment, a desired titanium oxide thin film is formed on the anode titanium plate. The supporting electrolyte used here is added to adjust the electric conductivity of an aqueous medium or an organic medium. In this case, the type of the supporting electrolyte is not particularly limited as long as it is soluble in the medium and can adjust the electric conductivity of the medium. The electrode used in the method of the present invention may be any metal or conductor containing titanium. Specific examples include titanium metals of various shapes, and titanium alloys with palladium, nickel, ruthenium, tantalum, molybdenum, vanadium, aluminum, zirconium, iron, bismuth, and strontium.

本実施形態における酸化亜鉛の作製法では、2電極式セルを用いる方法と3電極式セルを用いる方法がある。2電極セルを用いる方法では、まず水性媒体あるいは有機媒体中に支持電解質を入れて、攪拌機により十分に溶解せしめ、その後得られた電解溶液を静置したままあるいは若干の撹拌を加えながら亜鉛板の電極を用いて電解処理する。また電解条件は、各種状況に応じて適宜選択すればよいが、通常は液温0〜70℃、好ましくは10〜30℃、印加電圧0.1〜100V、好ましくは5〜90Vとする。このような電解処理により、陽極の亜鉛板上に所望する酸化亜鉛の薄膜が形成される。ここで用いる支持電解質は、水性媒体あるいは有機媒体の電気伝導度を調節するために加えるものである。この場合、支持電解質の種類は媒体中に溶解し、媒体の電気伝導度を調節しうるものであれば、特に制限はない。3電極セルを用いる方法では、塩化亜鉛の電解還元による酸化亜鉛形成反応を利用する。まず、塩化亜鉛と支持電解質を水に投入し、攪拌機により十分に溶解せしめ、その後得られた電解溶液を静置したままあるいは若干の撹拌加えながら種々の材質の電極を用いて塩化亜鉛の電解還元反応を行う。Zn2++1/2O+2e→ZnOに従って陰極上に酸化亜鉛を得ることができる。また電解条件は、各種状況に応じて適宜選択すればよいが、通常は液温0〜90℃、好ましくは15〜75℃、印加電圧は参照電極である飽和カロメル電極(SCEと略記する)に対して0〜−2V、好ましくは−0.8〜−1.5Vとする。このような電解処理により、陰極の電極基板上に所望する酸化亜鉛の薄膜が形成される。ここで用いる支持電解質は、水性媒体あるいは有機媒体の電気伝導度を調節するために加えるものである。この場合、支持電解質の種類は媒体中に溶解し、媒体の電気伝導度を調節しうるものであれば、特に制限はない。なお、陰極としては白金板、金板、酸化インジウムスズコートガラス(ITO)板、酸化錫が塗布された透明ガラス電極、カーボンシート、ステンレス、炭素鋼板など負電位領域で電気化学反応を受けない材質の基板であれば特に制限無く使用することができる。また、対向電極としては、それらと同じ電極材料用いることができる。また参照電極は、限定されるわけではないが例えば銀・塩化銀電極(Ag/AgCl電極)、飽和カロメル電極(SCE)を好適に用いることができる。 There are two methods for producing zinc oxide in this embodiment: a method using a two-electrode cell and a method using a three-electrode cell. In the method using a two-electrode cell, first, a supporting electrolyte is put in an aqueous medium or an organic medium and sufficiently dissolved by a stirrer, and then the obtained electrolytic solution is allowed to stand still or with slight stirring while the zinc plate is added. Electrolytic treatment is performed using electrodes. The electrolysis conditions may be appropriately selected according to various situations, but the liquid temperature is usually 0 to 70 ° C, preferably 10 to 30 ° C, and the applied voltage 0.1 to 100V, preferably 5 to 90V. By such electrolytic treatment, a desired zinc oxide thin film is formed on the anode zinc plate. The supporting electrolyte used here is added to adjust the electric conductivity of an aqueous medium or an organic medium. In this case, the type of the supporting electrolyte is not particularly limited as long as it is soluble in the medium and can adjust the electric conductivity of the medium. In the method using a three-electrode cell, a zinc oxide formation reaction by electrolytic reduction of zinc chloride is used. First, zinc chloride and the supporting electrolyte are poured into water and sufficiently dissolved with a stirrer, and then the electrolytic solution of the zinc chloride is electroreduced using electrodes of various materials while the obtained electrolytic solution is left still or a little stirred. Perform the reaction. Zn 2+ + 1 / 2O 2 + 2e → Zinc oxide can be obtained on the cathode according to ZnO. The electrolysis conditions may be appropriately selected according to various conditions. Usually, the liquid temperature is 0 to 90 ° C., preferably 15 to 75 ° C., and the applied voltage is applied to a saturated calomel electrode (abbreviated as SCE) as a reference electrode. On the other hand, 0 to -2V, preferably -0.8 to -1.5V. By such electrolytic treatment, a desired zinc oxide thin film is formed on the cathode electrode substrate. The supporting electrolyte used here is added to adjust the electric conductivity of an aqueous medium or an organic medium. In this case, the type of the supporting electrolyte is not particularly limited as long as it is soluble in the medium and can adjust the electric conductivity of the medium. Materials that do not undergo an electrochemical reaction in the negative potential region such as platinum plate, gold plate, indium tin oxide coated glass (ITO) plate, transparent glass electrode coated with tin oxide, carbon sheet, stainless steel, carbon steel plate as the cathode Any substrate can be used without particular limitation. Further, as the counter electrode, the same electrode material can be used. The reference electrode is not limited, but for example, a silver / silver chloride electrode (Ag / AgCl electrode) or a saturated calomel electrode (SCE) can be preferably used.

本実施形態にかかる方法では、上述した酸化チタン及び酸化亜鉛を形成せしめ、その後上述の塗布法により導電性ポリマーを酸化チタンに付着させることにより光触媒活性無機酸化物半導体と導電性ポリマーの接触複合化物を得ることができる。   In the method according to this embodiment, the above-described titanium oxide and zinc oxide are formed, and then the conductive polymer is attached to the titanium oxide by the above-described coating method, whereby the photo-catalytically active inorganic oxide semiconductor and the conductive polymer are contact composites. Can be obtained.

本実施形態に係る方法では、まず空気中あるいは窒素ガス中等の窒素ガスを含む媒体中に、上記の光触媒活性無機酸化物半導体と導電性ポリマーの接触複合化物を設置し、光照射を行う。光照射の光源としては、接触複合化物が紫外可視全域に吸収をもち窒素固定活性を持つことから、特に制限はなく各種状況に応じて適宜選択すればよいが、通常はキセノンランプ、水銀ランプ、タングステンランプ、ハロゲンランプ、蛍光灯、太陽光を使用する。光照射条件は、各種状況に応じて適宜選択すればよいが、通常は媒体温度−70〜300℃、好ましくは0〜100℃とする。また湿度は10〜100RH%、好ましくは40〜100RH%とする。また光強度は特に制限はなく、強度を大きくすればするほど窒素固定化の速度が増大する。   In the method according to this embodiment, first, the contact composite of the photocatalytically active inorganic oxide semiconductor and the conductive polymer is placed in a medium containing nitrogen gas such as air or nitrogen gas, and light irradiation is performed. As a light source for light irradiation, since the contact composite has absorption in the entire ultraviolet and visible region and has nitrogen fixing activity, it is not particularly limited and may be appropriately selected according to various situations. Usually, a xenon lamp, a mercury lamp, Use tungsten lamps, halogen lamps, fluorescent lamps and sunlight. Light irradiation conditions may be appropriately selected according to various situations, but are usually set to a medium temperature of −70 to 300 ° C., preferably 0 to 100 ° C. The humidity is 10 to 100 RH%, preferably 40 to 100 RH%. The light intensity is not particularly limited, and as the intensity is increased, the rate of nitrogen fixation increases.

以上、本方法により、窒素固定反応を担い窒素固定の反応場となる光触媒活性無機酸化物半導体中の酸素欠陥部位の数密度を低減させることなく導電性ポリマーとの複合化が可能となり、高い窒素固定活性を示す光触媒活性無機酸化物半導体と導電性ポリマーの接触複合化物を形成することが可能となった。   As described above, the present method enables complexing with a conductive polymer without reducing the number density of oxygen defect sites in the photocatalytically active inorganic oxide semiconductor, which is responsible for nitrogen fixation reaction and serves as a nitrogen fixation reaction field. It has become possible to form a contact composite of a photocatalytically active inorganic oxide semiconductor exhibiting fixing activity and a conductive polymer.

上記実施形態に係る高い窒素固定可能を有する光触媒活性無機酸化物半導体/導電性ポリマー接触複合化物の製造方法を用い、実際に複合化物を作製し、本発明の効果を確認した。以下説明する。   Using the method for producing a photocatalytically active inorganic oxide semiconductor / conductive polymer contact composite having high nitrogen fixability according to the above embodiment, a composite was actually produced, and the effect of the present invention was confirmed. This will be described below.

(実施例1)
本実施例では、陽極酸化法によって形成した酸化チタン膜上に、スピンコート法を用いてポリ(3,4−エチレンジオキシチオフェン)―ブロック―ポリエチレングリコール(以降PEDOTと略す)膜を積層して接触複合化物を形成し、光照射を行うことにより窒素固定化実験を行った。
(Example 1)
In this embodiment, a poly (3,4-ethylenedioxythiophene) -block-polyethylene glycol (hereinafter abbreviated as PEDOT) film is laminated on a titanium oxide film formed by an anodic oxidation method using a spin coating method. Nitrogen fixation experiment was performed by forming a contact composite and irradiating with light.

脱脂、フッ酸による不純物・酸化物除去を行ったチタン板(住友金属社製、純度99.5%)を陽極とし、0.85重量%リン酸水溶液(関東化学社製、特級)中で白金板を対向電極(陰極)として、白金板に対して10Vの電解電圧をかけて酸化し、チタン板上に酸化チタン膜を形成した。電解温度は20℃である。酸化チタン層は、不純物除去・脱脂のため、トリクロロエチレン、アセトン、エタノール中にてそれぞれ10分間の超音波洗浄を行った。断面の透過型電子顕微鏡観察により、膜厚は30nm、電子線回折パターンの測定により結晶形はアモルファスであることが判明した。   Platinum plate in 0.85 wt% phosphoric acid aqueous solution (Kanto Chemical Co., Ltd., special grade) with titanium plate (Sumitomo Metals, 99.5% purity) after degreasing and removing impurities and oxides by hydrofluoric acid as anode Using the plate as a counter electrode (cathode), the plate was oxidized by applying an electrolytic voltage of 10 V to form a titanium oxide film on the titanium plate. The electrolysis temperature is 20 ° C. The titanium oxide layer was subjected to ultrasonic cleaning for 10 minutes in trichloroethylene, acetone, and ethanol for removing impurities and degreasing. Observation of the cross section with a transmission electron microscope revealed that the film thickness was 30 nm, and the measurement of the electron diffraction pattern revealed that the crystal form was amorphous.

次に、前記酸化チタン膜上にPEDOT膜をスピンコート法により形成した。PEDOT濃度1重量%のニトロメタン溶液(アルドリッチ社製)を用い、250rpmの回転数で20秒のスピンコートを行った。一度のスピンコート操作により57nmのPEDOT膜が形成されるので、所望の膜厚になるまでスピンコートを繰り返し積層を行った。なお、PEDOT中には過塩素酸イオンがドーピングされており、そのドープ量は、X線光電子分光分析測定により、PEDOT膜を1μm形成した場合2.0mmol/mであった。 Next, a PEDOT film was formed on the titanium oxide film by spin coating. Using a nitromethane solution (manufactured by Aldrich) having a PEDOT concentration of 1% by weight, spin coating was performed for 20 seconds at a rotation speed of 250 rpm. Since a 57 nm PEDOT film was formed by a single spin coating operation, the spin coating was repeated until a desired film thickness was obtained. In addition, perchlorate ion was doped in PEDOT, and the amount of doping was 2.0 mmol / m 2 when the PEDOT film was formed to 1 μm by X-ray photoelectron spectroscopic analysis.

酸化チタン/PEDOT接触複合化物が光化学的に窒素ガスを過塩素酸アンモニウム及びアンモニアとして固定化する効果を以下の方法により確認した。
(1)前記作製した接触複合化物を外部から光照射可能で、窒素ガスの水分を制御できるシールドボックス装置内に設置し、シールドボックス内の相対湿度を40〜60%、温度を23〜28℃に制御し、外部から石英板の窓を通して光照射を行った。光源は疑似太陽光灯(セリック社製XC−100)であり、光強度は260W/mである。なお、ボックス内の接触複合化物の温度が上昇するのを回避するため、赤外カットフィルター(セリック社製BFIRC)を介して光照射を行った。
(2)一定時間露光後、前記接触複合化物中に窒素固定化物(過塩素酸アンモニウムおよびアンモニア)が形成された。窒素固定化物を水に溶解し、インドナフトール法(森田弥左衛門、木暮幸全、日本化学雑誌、84巻、1963年、816頁)を用いて窒素固定化物収量を測定した。
The effect of the titanium oxide / PEDOT contact composite photochemically immobilizing nitrogen gas as ammonium perchlorate and ammonia was confirmed by the following method.
(1) The produced contact composite can be irradiated with light from the outside and installed in a shield box device capable of controlling the moisture of nitrogen gas, the relative humidity in the shield box is 40 to 60%, and the temperature is 23 to 28 ° C. The light was irradiated from the outside through a quartz plate window. The light source is a pseudo-sunlight (XC-100 manufactured by Celic), and the light intensity is 260 W / m 2 . In addition, in order to avoid that the temperature of the contact compound in a box raises, light irradiation was performed through the infrared cut filter (BFIRC by Celic).
(2) After exposure for a certain time, nitrogen fixed products (ammonium perchlorate and ammonia) were formed in the contact composite. The nitrogen fixed product was dissolved in water, and the yield of the nitrogen fixed product was measured using the Indonaphthol method (Miyata Yazaemon, Kogure Kozen, Nihon Kagaku Kagaku, 84, 1963, 816).

酸化チタン膜形成の際の陽極酸化電位と窒素固定収量(過塩素酸アンモニウム塩とアンモニアの収量の合計)の関係を図2に示す。露光時間は1週間であり、露光雰囲気は、温度28℃、湿度60RH%である。図中のAは本発明の方法における酸化チタン/PEDOT接触複合化物のデータであり、図中のBは従来法により形成された酸化チタン/ポリ(3−メチルチオフェン)(以降P3MeTと略す)接触複合体のデータである。PEDOTの膜厚は2μmであり、スピンコートを34回繰り返すことで作製した。また、P3MeT膜は以下のようにして作製した。陽極酸化処理によって形成された酸化チタン膜を陽極とし、支持電解質である過塩素酸テトラブチルアンモニウムを0.1mol/Lと3−メチルチオフェンを0.1mol/Lを溶解したジクロロメタン溶液を電解液とし、白金板を陰極として白金板に対して70Vの電解電圧をかけて3−メチルチオフェンを電解酸化重合し、前記酸化チタン膜上に過塩素酸イオンを封入した(ドーピングした)P3MeT膜を形成した。この時の通電電気量は400mC/cmであり、膜厚は1.2μmである。本発明における酸化チタン/PEDOT接触複合化物は、従来の酸化チタン/P3MeTに比べて著しく窒素固定収量が増大し、窒素固定収量が2倍以上に増大した。これは、従来接触複合化物では、P3MeTを接触させる際の電解重合操作によって窒素固定の場となる酸素欠陥部位の数密度が減少し、窒素固定化能が低下したためであると推測される。また、データ曲線AにおいてもBにおいても陽極酸化電位の最適値、すなわち窒素固定収量の最大を示す陽極酸化電位が存在した。曲線Aでは5Vが最適であり、5V以下では酸化チタンの膜厚が薄く、従って酸素欠陥部位の数密度が低い。5V以上では、陽極酸化電位が大きくなるにつれてチタン板がより激しく酸化され、化学量論的なTiOに構造が近づく、換言すれば酸素欠陥部位の密度が小さな酸化チタンに近づくために窒素固定収量が減少する。曲線Bにおける陽極酸化の最適値は10Vとなった。5Vで窒素固定収量が低下したのは、5Vで形成された酸化チタン上にはP3MeTの堆積があまり進行せず、非常に薄い膜しか形成されなかったためである。すなわち膜厚が薄いP3MeT膜中には封入された過塩素酸イオンが少ないので窒素固定化物の一つである過塩素酸アンモニウムの収量が抑制されたためである。 FIG. 2 shows the relationship between the anodic oxidation potential and the nitrogen fixed yield (the total yield of ammonium perchlorate and ammonia) during the formation of the titanium oxide film. The exposure time is one week, and the exposure atmosphere is a temperature of 28 ° C. and a humidity of 60 RH%. A in the figure is data of a titanium oxide / PEDOT contact composite in the method of the present invention, and B in the figure is a titanium oxide / poly (3-methylthiophene) (hereinafter abbreviated as P3MeT) contact formed by a conventional method. Data of the complex. The film thickness of PEDOT was 2 μm, and was prepared by repeating spin coating 34 times. The P3MeT film was produced as follows. A titanium oxide film formed by anodization treatment is used as an anode, and a dichloromethane solution in which 0.1 mol / L of tetrabutylammonium perchlorate as a supporting electrolyte and 0.1 mol / L of 3-methylthiophene are dissolved is used as an electrolyte. Then, an electrolytic voltage of 70V was applied to the platinum plate using the platinum plate as a cathode, and 3-methylthiophene was subjected to electrolytic oxidation polymerization, and a P3MeT film in which perchlorate ions were encapsulated (doped) was formed on the titanium oxide film. . The amount of electricity applied at this time is 400 mC / cm 2 and the film thickness is 1.2 μm. The titanium oxide / PEDOT contact composite in the present invention significantly increased the nitrogen fixation yield as compared with the conventional titanium oxide / P3MeT, and the nitrogen fixation yield increased more than twice. This is presumably because, in the conventional contact composite, the number density of oxygen defect sites serving as nitrogen fixation fields is reduced by the electrolytic polymerization operation when P3MeT is brought into contact, and the nitrogen fixation ability is reduced. Further, in both the data curve A and B, there was an optimum value of the anodic oxidation potential, that is, the anodic oxidation potential showing the maximum nitrogen fixed yield. In curve A, 5V is optimal, and below 5V, the thickness of titanium oxide is thin, and therefore the number density of oxygen defect sites is low. Above 5 V, the titanium plate is more intensely oxidized as the anodic oxidation potential increases, and the structure approaches to stoichiometric TiO 2 , in other words, the density of oxygen defect sites approaches that of titanium oxide with a small density, so that the fixed nitrogen yield. Decrease. The optimum value of anodization in curve B was 10V. The reason why the nitrogen fixation yield decreased at 5 V was that the deposition of P3MeT did not progress much on the titanium oxide formed at 5 V, and only a very thin film was formed. That is, the yield of ammonium perchlorate, which is one of the nitrogen immobilization products, is suppressed because there are few perchlorate ions enclosed in the thin P3MeT film.

(実施例2)
実施例1において、酸化チタンを形成する際の陽極酸化電位を固定化し、導電性ポリマーの膜厚を変えて実施例1と同様の操作を行った。導電性ポリマー膜の膜厚と窒素固定収量の関係を図3に示す。露光時間は1週間であり、露光雰囲気は、温度23℃、湿度45RH%である。図中のAは本発明の方法における酸化チタン/PEDOT接触複合化物のデータであり、図中のBは従来法により形成された酸化チタン/ポリ(3−メチルチオフェン)(以降P3MeTと略す)接触複合体のデータである。図2のデータに基づき、Aの場合の酸化チタンの陽極酸化電位は5V、Bの場合の陽極酸化電位は10Vである。酸化チタン/PEDOT接触複合化物を用いた場合、PEDOT膜厚が4.6μmで最大窒素固定収量5.6mmol/mが得られ、これは従来の酸化チタン/P3MeT接触複合体の最大収量2.5mmol/mを大きく上回る。また、従来の酸化チタン/P3MeT接触複合体を用いた場合、窒素固定反応が起きるP3MeT膜の膜厚領域が極めて狭いのに対し、本発明の酸化チタン/PEDOT接触複合化物では極めて広いPEDOT膜厚に渡って高い窒素固定収量が得られている。
(Example 2)
In Example 1, the same operation as in Example 1 was performed by fixing the anodic oxidation potential when forming titanium oxide and changing the film thickness of the conductive polymer. FIG. 3 shows the relationship between the film thickness of the conductive polymer film and the nitrogen fixation yield. The exposure time is one week, and the exposure atmosphere is a temperature of 23 ° C. and a humidity of 45 RH%. A in the figure is data of a titanium oxide / PEDOT contact composite in the method of the present invention, and B in the figure is a titanium oxide / poly (3-methylthiophene) (hereinafter abbreviated as P3MeT) contact formed by a conventional method. Data of the complex. Based on the data of FIG. 2, the anodic oxidation potential of titanium oxide in the case of A is 5V, and the anodic oxidation potential in the case of B is 10V. When the titanium oxide / PEDOT contact composite was used, a maximum nitrogen fixed yield of 5.6 mmol / m 2 was obtained at a PEDOT film thickness of 4.6 μm, which is the maximum yield of the conventional titanium oxide / P3MeT contact composite. It greatly exceeds 5 mmol / m 2 . Further, when the conventional titanium oxide / P3MeT contact composite is used, the film thickness region of the P3MeT film in which the nitrogen fixation reaction occurs is extremely narrow, whereas the titanium oxide / PEDOT contact composite of the present invention has an extremely wide PEDOT film thickness. A high nitrogen fixation yield is obtained.

(実施例3)
実施例1における酸化チタンの陽極酸化電位を一定とし、また実施例2における導電性ポリマーの膜厚を一定として、露光時間を変え、実施例1及び2と同様な操作を行った。露光時間と窒素固定収量の関係を図4に示す。露光雰囲気は、温度23℃、湿度60RH%である。図中のAは本発明の方法における酸化チタン/PEDOT接触複合化物のデータであり、図中のBは従来法により形成された酸化チタン/P3MeT接触複合体のデータである。図2のデータに基づき、Aの場合の酸化チタンの陽極酸化電位は5V、Bの場合の陽極酸化電位は10Vである。また、PEDOTの膜厚は2μmであり、P3MeTの膜厚は0.82μmである。プロットの初期の傾きは、単位時間当たりに生成される窒素固定化物の収量、すなわち窒素固定化速度を示すが、Aの窒素固定化速度はBの窒素固定加速度の約2倍の値を示した。ただし、Aの場合、露光時間が一週間を超えると窒素固定収量が減少に転じた。これは、露光時間を一週間以上行った場合、窒素固定化物であるアンモニアあるいは過塩素酸アンモニウムがインドナフトール法では検出されない窒素酸化物へ物質変換されるためであり、見かけの窒素固定収量が減少して見えたものと推測される。
(Example 3)
The same operation as in Examples 1 and 2 was performed while changing the exposure time with the anodic oxidation potential of titanium oxide in Example 1 being constant and the film thickness of the conductive polymer in Example 2 being constant. FIG. 4 shows the relationship between exposure time and nitrogen fixation yield. The exposure atmosphere is a temperature of 23 ° C. and a humidity of 60 RH%. A in the figure is data of the titanium oxide / PEDOT contact composite in the method of the present invention, and B in the figure is data of the titanium oxide / P3MeT contact composite formed by the conventional method. Based on the data of FIG. 2, the anodic oxidation potential of titanium oxide in the case of A is 5V, and the anodic oxidation potential in the case of B is 10V. The film thickness of PEDOT is 2 μm, and the film thickness of P3MeT is 0.82 μm. The initial slope of the plot indicates the yield of nitrogen immobilization product produced per unit time, that is, the nitrogen fixation rate. The nitrogen fixation rate of A showed a value about twice the nitrogen fixation acceleration of B. . However, in the case of A, when the exposure time exceeded one week, the nitrogen fixed yield started to decrease. This is because when the exposure time is longer than one week, ammonia or ammonium perchlorate, which is a nitrogen immobilization product, is converted into nitrogen oxides that cannot be detected by the indonaphthol method, and the apparent nitrogen fixation yield decreases. It is speculated that it was seen.

(実施例4)
実施例3において、光照射を7日間行った酸化チタン/PEDOT接触複合化物(A)及び酸化チタン/P3MeT接触複合体(B)の表面の走査型電子顕微鏡写真を図5に示す。双方に窒素固定化物である過塩素酸アンモニウム結晶が観察された。後者の場合、結晶形状は針状結晶であり、その数密度は低い。しかしながら後者の場合、固定化物形状は一部粒子状であるが、固定化物はPEDOT膜表面全体を覆っており窒素固定効率の高さを反映する結果となった。
Example 4
In Example 3, scanning electron micrographs of the surfaces of the titanium oxide / PEDOT contact composite (A) and the titanium oxide / P3MeT contact composite (B) subjected to light irradiation for 7 days are shown in FIG. On both sides, ammonium perchlorate crystals that were nitrogen-fixed were observed. In the latter case, the crystal shape is a needle crystal and its number density is low. However, in the latter case, the shape of the immobilized product is partly particulate, but the immobilized product covers the entire surface of the PEDOT film, which reflects the high nitrogen fixation efficiency.

(実施例5)
本実施例では、電解合成法によって形成した酸化亜鉛膜上に、スピンコート法を用いてポリ(3,4−エチレンジオキシチオフェン)―ブロック―ポリエチレングリコール(以降PEDOTと略す)膜を積層して接触複合化物を形成し、光照射を行うことにより窒素固定化実験を行った。
(Example 5)
In this embodiment, a poly (3,4-ethylenedioxythiophene) -block-polyethylene glycol (hereinafter abbreviated as PEDOT) film is laminated on a zinc oxide film formed by electrolytic synthesis using a spin coating method. Nitrogen fixation experiment was performed by forming a contact composite and irradiating with light.

トリクロロエチレン、アセトン及びエタノール中で超音波洗浄による不純物除去を行ったITO(ジオマテック社製、10Ω/sq)を陰極とし、塩化亜鉛と支持電解質である0.1mol/Lの塩化カリウムを溶解した水溶液中で白金板を対向電極(陽極)そして参照電極をSCEとして、SCEに対して−0.9V〜−1.3Vの電位を印加し、ITO上に酸化亜鉛膜の堆積を行った。通電電気量は250〜2500mC/cmとした。また電解温度は、18〜73℃である。塩化亜鉛の電解液中の濃度は、1〜10mmol/Lとした。得られた酸化亜鉛層は、不純物除去・脱脂のため、トリクロロエチレン、アセトン、エタノール中にてそれぞれ10分間の超音波洗浄を行った。 In an aqueous solution in which zinc chloride and 0.1 mol / L potassium chloride as a supporting electrolyte were dissolved, using ITO (manufactured by Geomatic Corp., 10Ω / sq), which had been subjected to impurity removal by ultrasonic cleaning in trichlorethylene, acetone and ethanol as the cathode. Then, with the platinum plate as the counter electrode (anode) and the reference electrode as the SCE, a potential of -0.9 V to -1.3 V was applied to the SCE, and a zinc oxide film was deposited on the ITO. The amount of electricity supplied was 250 to 2500 mC / cm 2 . Moreover, electrolysis temperature is 18-73 degreeC. The concentration of zinc chloride in the electrolyte was 1 to 10 mmol / L. The obtained zinc oxide layer was subjected to ultrasonic cleaning for 10 minutes in trichloroethylene, acetone, and ethanol for removing impurities and degreasing, respectively.

次に、前記酸化亜鉛膜上にPEDOT膜をスピンコート法により形成した。PEDOT濃度1重量%のニトロメタン溶液(アルドリッチ社製)を用い、250rpmの回転数で20秒のスピンコートを行った。実施例1で述べたスピンコート操作を27回繰り返し、PEDOTの膜厚を1.5μmとした。   Next, a PEDOT film was formed on the zinc oxide film by a spin coating method. Using a nitromethane solution (manufactured by Aldrich) having a PEDOT concentration of 1% by weight, spin coating was performed for 20 seconds at a rotation speed of 250 rpm. The spin coating operation described in Example 1 was repeated 27 times, and the PEDOT film thickness was set to 1.5 μm.

酸化亜鉛/PEDOT接触複合化物が光化学的に窒素ガスを過塩素酸アンモニウム及びアンモニアとして固定化する効果を以下の方法により確認した。
(1)前記作製した接触複合化物を外部から光照射可能で、窒素ガスの水分を制御できるシールドボックス装置内に設置し、シールドボックス内の相対湿度を40〜50%、温度を24℃に制御し、外部から石英板の窓を通して光照射を行った。光源は疑似太陽光灯(セリック社製XC−100)であり、光強度は260W/mである。なお、ボックス内の接触複合化物の温度が上昇するのを回避するため、赤外カットフィルター(セリック社製BFIRC)を介して光照射を行った。
(2)一定時間露光後、前記接触複合化物中に窒素固定化物(過塩素酸アンモニウムおよびアンモニア)が形成された。窒素固定化物を水に溶解し、インドナフトール法(森田弥左衛門、木暮幸全、日本化学雑誌、84巻、1963年、816頁)を用いて窒素固定化物収量を測定した。
The effect of the zinc oxide / PEDOT contact composite to photochemically fix nitrogen gas as ammonium perchlorate and ammonia was confirmed by the following method.
(1) The produced contact composite can be irradiated with light from the outside and installed in a shield box device that can control the moisture of nitrogen gas, and the relative humidity in the shield box is controlled to 40 to 50% and the temperature is controlled to 24 ° C. Then, light was irradiated from the outside through the window of the quartz plate. The light source is a pseudo-sunlight (XC-100 manufactured by Celic), and the light intensity is 260 W / m 2 . In addition, in order to avoid that the temperature of the contact compound in a box raises, light irradiation was performed through the infrared cut filter (BFIRC by Celic).
(2) After exposure for a certain time, nitrogen fixed products (ammonium perchlorate and ammonia) were formed in the contact composite. The nitrogen fixed product was dissolved in water, and the yield of the nitrogen fixed product was measured using the Indonaphthol method (Miyata Yazaemon, Kogure Kozen, Nihon Kagaku Kagaku, 84, 1963, 816).

酸化亜鉛の電解合成電位と窒素固定収量の関係を図6に示す。電解合成時の電解温度は70℃であり、通電電気量は1500mC/cmとした。また、電解合成時の塩化亜鉛濃度は5mmol/Lである。また、露光時間は一週間である。−1.0Vよりも正の電位では高い窒素固定収量が得られたが、−1.1Vよりも負の電位では窒素固定収量が大きく減少した。これは、−1.0〜−1.1Vの間電位で酸化亜鉛の化学量論比が大きく変化し、その電位よりも正の電位では、窒素固定の反応場となる酸素欠陥部位の数密度が大きく、その電位よりも負の電位では酸素欠陥部位の数密度が小さいことを示唆するものである。 FIG. 6 shows the relationship between the electrolytic synthesis potential of zinc oxide and the nitrogen fixation yield. The electrolysis temperature at the time of electrolytic synthesis was 70 ° C., and the amount of electricity supplied was 1500 mC / cm 2 . Moreover, the zinc chloride concentration at the time of electrolytic synthesis is 5 mmol / L. The exposure time is one week. A high nitrogen fixation yield was obtained at a positive potential above -1.0 V, but the nitrogen fixation yield was greatly reduced at a negative potential above -1.1 V. This is because the stoichiometric ratio of zinc oxide changes greatly at a potential between −1.0 and −1.1 V, and the number density of oxygen defect sites that become a nitrogen fixation reaction field at a potential more positive than that potential. This suggests that the number density of oxygen defect sites is small at a negative potential higher than that potential.

(実施例6)
実施例1において、酸化亜鉛の電解合成電位を−1.0Vに固定し、酸化亜鉛を形成する際の通電電気量を変えたこと以外は実施例1と同様の操作を行った。通電電気量と窒素固定収量の関係を図7に示す。露光時間は1週間である。通電電気量1500mC/cmのときに窒素固定収量は最大となった。電解合成電位は、−1.0V一定であるので、反応の場である酸素欠陥部位の数密度は同じはずである。そこで、酸化亜鉛の表面形態と通電電気量の関係を検討した。図8に、500(A)、1500(B),2500mC/cm(C)の通電電気量で形成された酸化亜鉛膜表面の走査型電子顕微鏡写真を示す。500mC/cmにおいては、酸化亜鉛皮膜は比較的平滑であるが、150mC/cmでは酸化亜鉛の微結晶が多数形成された。しかしながら、通電電気量を2500mC/cmとすると微結晶同士が結合し、再度表面平滑性が高くなった。以上の結果より、通電電気量を増大させると、1500mC/cmまでは酸化亜鉛結晶が増大するにつれポリマー膜と接合する界面形成の実面積が増え収量が向上するが(窒素固定の初期反応が界面の酸化チタン上に存在する酸素欠陥部位であることに注意されたい)、1500mC/cmを越えると結晶の成長・凝集のため平面平滑性が向上し、界面形成面積が低下して収量が減少するものと解釈される。
(Example 6)
In Example 1, the same operation as in Example 1 was performed except that the electrolytic synthesis potential of zinc oxide was fixed at −1.0 V and the amount of electricity supplied was changed when forming zinc oxide. FIG. 7 shows the relationship between the amount of electricity supplied and the yield of nitrogen fixation. The exposure time is one week. The nitrogen fixation yield was maximized when the amount of electricity supplied was 1500 mC / cm 2 . Since the electrolytic synthesis potential is constant at −1.0 V, the number density of oxygen defect sites which are reaction fields should be the same. Thus, the relationship between the surface form of zinc oxide and the amount of electricity was examined. FIG. 8 shows a scanning electron micrograph of the surface of the zinc oxide film formed with a current of 500 (A), 1500 (B), and 2500 mC / cm 2 (C). At 500 mC / cm 2 , the zinc oxide film was relatively smooth, but at 150 mC / cm 2 , many zinc oxide microcrystals were formed. However, when the amount of electricity supplied was 2500 mC / cm 2 , the microcrystals were bonded together, and the surface smoothness was increased again. From the above results, when the amount of electricity supplied is increased, the actual area of interface formation bonded to the polymer film increases as the zinc oxide crystal increases up to 1500 mC / cm 2, and the yield is improved (the initial reaction of nitrogen fixation is improved). (Note that this is an oxygen defect site on the titanium oxide at the interface.) If it exceeds 1500 mC / cm 2 , the planar smoothness is improved due to crystal growth and aggregation, the interface formation area is reduced, and the yield is reduced. It is interpreted as decreasing.

(実施例7)
実施例1において、酸化亜鉛の電解合成電位を−1.0V一定、また実施例2における通電電気量を1500mC/cm一定として、電解合成時の塩化亜鉛の仕込み濃度を変え、実施例1及び2と同様の操作を行った。塩化亜鉛の仕込み濃度と窒素固定収量の関係を図9に示す。塩化亜鉛仕込み濃度が5mmol/Lのときに窒素固定収量が最大となった。酸化亜鉛層の結晶形態は電解合成時の塩化亜鉛濃度により大きな影響を受け、塩化亜鉛濃度1mmol/Lでは丸い粒状の結晶形(図10のA参照)、5mmol/Lでは粒状及び六角柱状の結晶形(図10B)、10mmol/Lでは六角柱状や結晶同士が凝集したような形態となった(図10C)。この場合も、PEDOTとの接触界面の実表面積を考慮することによって図9の収量依存性を解釈することができる。すなわち、図10の形態観察結果から明らかなように、塩化亜鉛5mmol/Lで形成された酸化亜鉛表面の実面積が最も大きく、従ってPEDOTと積層した場合に、窒素固定化活性部位である酸化亜鉛/PEDOT界面の実面積が最も大きくなるので、最も大きな収量が得られたものと解釈することができる。
(Example 7)
In Example 1, the electrolytic synthesis potential of zinc oxide was kept constant at −1.0 V, and the amount of energized electricity in Example 2 was kept constant at 1500 mC / cm 2 , and the charge concentration of zinc chloride at the time of electrolytic synthesis was changed. The same operation as 2 was performed. FIG. 9 shows the relationship between the charged concentration of zinc chloride and the nitrogen fixed yield. The nitrogen fixation yield was maximized when the zinc chloride charge concentration was 5 mmol / L. The crystal form of the zinc oxide layer is greatly influenced by the zinc chloride concentration at the time of electrolytic synthesis. When the zinc chloride concentration is 1 mmol / L, the crystal form is round and granular (see A in FIG. 10). In the shape (FIG. 10B), 10 mmol / L, the hexagonal columnar shape and the crystal were aggregated (FIG. 10C). In this case as well, the yield dependency of FIG. 9 can be interpreted by considering the actual surface area of the contact interface with PEDOT. That is, as apparent from the morphological observation results of FIG. 10, the actual area of the zinc oxide surface formed with zinc chloride 5 mmol / L is the largest, and therefore, when laminated with PEDOT, zinc oxide which is a nitrogen-fixed active site Since the actual area of the / PEDOT interface is the largest, it can be interpreted that the largest yield was obtained.

(実施例8)
実施例1において、酸化亜鉛の電解合成電位を−1.0V一定、実施例2における通電電気量を1500mC/cm一定、そして実施例3における塩化亜鉛の仕込み濃度を5mmol/L一定として、露光実験時の露光時間を変え、実施例1、2及び3と同様の操作を行った。窒素固定収量の露光時間依存性を図11に示す。収量は時間経過とともに増加していき、露光時間7日間でピークをむかえ以降減少するという結果となった。この結果より露光を行い続けることによって窒素固定化物(過塩素酸アンモニウム及びアンモニア)が別の物質に変化していることが示唆される。露光時間7日間を過ぎると生成したアンモニアおよびアンモニウム塩が光生成ホールによって酸化され窒素酸化物に物質変換されることが予想される。そして、窒素酸化物は本発明で用いた定量法(インドナフトール法)では検知されないので見かけの収量が低下して見えるものと推測される。
(Example 8)
In Example 1, exposure was performed with the electrolytic synthesis potential of zinc oxide constant at −1.0 V, the amount of electricity supplied in Example 2 constant at 1500 mC / cm 2 , and the charged concentration of zinc chloride in Example 3 constant at 5 mmol / L. The same operation as in Examples 1, 2, and 3 was performed while changing the exposure time during the experiment. The dependence of the nitrogen fixation yield on the exposure time is shown in FIG. The yield increased with the passage of time, and reached a peak after an exposure time of 7 days. This result suggests that the nitrogen immobilization product (ammonium perchlorate and ammonia) is changed to another substance by continuing the exposure. When the exposure time exceeds 7 days, the generated ammonia and ammonium salts are expected to be oxidized by the photogenerated holes and converted into nitrogen oxides. Nitrogen oxides are not detected by the quantitative method (Indonaphthol method) used in the present invention, so it is presumed that the apparent yield appears to be reduced.

以上、実施例1乃至8により、導電性ポリマーを光触媒活性無機酸化物半導体に接触複合化する際に、溶媒に可溶あるいは分散可能な導電性ポリマー材料を用いた塗布法を用いれば高い窒素固定活性を示す光触媒活性無機酸化物半導体/導電性ポリマー接触複合体を形成することができることがわかった。   As described above, according to Examples 1 to 8, when a conductive polymer is contact-composited with a photocatalytically active inorganic oxide semiconductor, high nitrogen fixation can be achieved by using a coating method using a conductive polymer material that is soluble or dispersible in a solvent. It has been found that photocatalytically active inorganic oxide semiconductor / conductive polymer contact composites exhibiting activity can be formed.

以上述べたように、本発明で確立した窒素ガスをアンモニウム塩及びアンモニアとして固定化する光触媒活性無機酸化物半導体/導電性ポリマー接触複合体を作製する方法を採用することにより、従来接触複合体と比べて窒素固定化効率が格段に向上した接触複合体を提供することができた、という優れた作用・効果がもたらされた。 As described above, by adopting a method for producing a photocatalytically active inorganic oxide semiconductor / conductive polymer contact composite in which nitrogen gas established in the present invention is immobilized as an ammonium salt and ammonia, Compared to this, an excellent action and effect was achieved in that it was possible to provide a contact complex having a significantly improved nitrogen fixation efficiency.

以上の如く、本発明の方法によれば、空気中の窒素ガスを化石燃料を消費することなく太陽エネルギーの力だけで、しかも常温常圧下でアンモニウム塩及びアンモニアへとこれまで以上の効率で固定化できる。従って、現存の人工窒素固定化法であるハーバーボッシュ法の代替法として期待される。しかも本発明の方法で得られる固定化物の一つ(過塩素酸アンモニウム)は、現在スペースシャトルなどのロケット推進時に使用されている燃料であり、また陰イオンを硫酸イオンに代えたときの窒素固定化物は肥料(硫酸アンモニウム)となるので、エネルギー及び食糧問題を解決する技術の一つになるものと考えられる。   As described above, according to the method of the present invention, nitrogen gas in the air is fixed to ammonium salt and ammonia at a normal temperature and normal pressure without using fossil fuel, and at a higher efficiency than ever. Can be Therefore, it is expected as an alternative to the Harbor Bosch method, which is an existing artificial nitrogen fixation method. Moreover, one of the immobilization products (ammonium perchlorate) obtained by the method of the present invention is a fuel that is currently used for propulsion of rockets such as a space shuttle, and nitrogen fixation when anions are replaced with sulfate ions. Since the chemical becomes fertilizer (ammonium sulfate), it is considered to be one of the technologies to solve energy and food problems.

本発明の窒素ガスをアンモニウム塩及びアンモニアとして固定化する光触媒活性無機酸化物半導体/導電性ポリマー接触複合体材料による窒素固定の原理。The principle of nitrogen fixation by the photocatalytically active inorganic oxide semiconductor / conductive polymer contact composite material in which the nitrogen gas of the present invention is immobilized as an ammonium salt and ammonia. 実施例1により得た酸化チタンの陽極酸化電位と窒素固定収量の関係である。A:酸化チタン/PEDOT接触複合化物。B:酸化チタン/P3MeT接触複合体。4 is a relationship between the anodic oxidation potential of titanium oxide obtained in Example 1 and the nitrogen fixed yield. A: Titanium oxide / PEDOT contact composite. B: Titanium oxide / P3MeT contact composite. 実施例2により得た導電性ポリマー膜の膜厚と窒素固定収量の関係である。A:酸化チタン/PEDOT接触複合化物。B:酸化チタン/P3MeT接触複合体。4 is a relationship between the film thickness of the conductive polymer film obtained in Example 2 and the yield of nitrogen fixation. A: Titanium oxide / PEDOT contact composite. B: Titanium oxide / P3MeT contact composite. 実施例3により得た露光時間と窒素固定収量の関係である。A:酸化チタン/PEDOT接触複合化物。B:酸化チタン/P3MeT接触複合体。4 is a relationship between exposure time and nitrogen fixation yield obtained in Example 3. A: Titanium oxide / PEDOT contact composite. B: Titanium oxide / P3MeT contact composite. 実施例4により得た酸化チタン/PEDOT接触複合化物(A)及び酸化チタン/P3MeT接触複合体(B)の表面の走査型電子顕微鏡写真(図面代用)である。写真下のバーはすべて1μmの長さを示す。4 is a scanning electron micrograph (drawing substitute) of the surfaces of the titanium oxide / PEDOT contact composite (A) and the titanium oxide / P3MeT contact composite (B) obtained in Example 4. FIG. All bars below the photo show a length of 1 μm. 実施例5により得た酸化亜鉛の電解合成電位と窒素固定収量の関係である。5 is a relationship between the electrolytic synthesis potential of zinc oxide obtained in Example 5 and the nitrogen fixation yield. 実施例6より得た通電電気量と窒素固定収量の関係である。It is the relationship between the electricity supply amount obtained from Example 6 and the nitrogen fixed yield. 実施例6により得た酸化亜鉛膜表面の走査型電子顕微鏡写真(図面代用)である。A:500mC/cm。B:1500mC/cm。C:2500mC/cm。写真下のバーはすべて1μmの長さを示す。6 is a scanning electron micrograph (drawing substitute) of the surface of the zinc oxide film obtained in Example 6. FIG. A: 500 mC / cm 2 . B: 1500 mC / cm 2 . C: 2500 mC / cm 2 . All bars below the photo show a length of 1 μm. 実施例7により得た塩化亜鉛の仕込み濃度と窒素固定収量の関係である。FIG. 4 is a relationship between the charged concentration of zinc chloride obtained in Example 7 and the nitrogen fixed yield. FIG. 実施例7における酸化亜鉛膜表面の走査型電子顕微鏡写真(図面代用)である。A:1mmol/L。B:5mmol/L。C:10mmol/L。7 is a scanning electron micrograph (drawing substitute) of the surface of the zinc oxide film in Example 7. FIG. A: 1 mmol / L. B: 5 mmol / L. C: 10 mmol / L. 実施例8により得た窒素固定収量と露光時間の関係である。It is the relationship between the nitrogen fixed yield obtained by Example 8 and exposure time.

Claims (6)

光触媒機能を有する無機酸化物半導体層と、
該無機酸化物半導体層上に形成され、溶媒に可溶又は分散可能でありかつ陰イオンを含む導電性ポリマー層と、を有する窒素固定化材料。
An inorganic oxide semiconductor layer having a photocatalytic function;
And a conductive polymer layer formed on the inorganic oxide semiconductor layer and soluble or dispersible in a solvent and containing an anion.
前記導電性ポリマーは、下記(1)、(2)若しくは(3)で示される化合物又はそれら誘導体の少なくともいずれかを含む請求項1記載の窒素固定化材料。
(nは1以上の繰返し単位数を示す。Aは陰イオンを示す。XはN−H,S,O,Seのいずれかを示す。R(m=1〜12)は、水素原子又は置換基を示し、互いに同一であっても異なっていてもよく、互いに連結して環を形成してもよい。また、上記繰返し単位の間に溶媒可溶性単位を含んでいてもよい。)
(nは1以上の繰返し単位数を示す。Aは陰イオンを示す。XはN−H,S,O,Seのいずれかを示す。R(m=1〜12)は、水素原子又は置換基を示し、互いに同一であっても異なっていてもよく、互いに連結して環を形成してもよい。また、上記繰返し単位の間に溶媒可溶性単位を含んでいてもよい。)
(nは1以上の繰返し単位数を示す。Aは陰イオンを示す。Rm(m=1〜28)は、水素原子又は置換基を示し、互いに同一であっても異なっていてもよく、互いに連結して環を形成してもよい。また、上記繰返し単位の間に溶媒可溶性単位を含んでいてもよい。)
2. The nitrogen fixing material according to claim 1, wherein the conductive polymer contains at least one of a compound represented by the following (1), (2) or (3) or a derivative thereof.
(N represents a repeating unit number of 1 or more. A represents an anion. X represents N—H, S, O, or Se. R m (m = 1 to 12) represents a hydrogen atom. Or a substituent, which may be the same or different from each other, may be linked to each other to form a ring, and a solvent-soluble unit may be included between the above repeating units.
(N represents a repeating unit number of 1 or more. A represents an anion. X represents N—H, S, O, or Se. R m (m = 1 to 12) represents a hydrogen atom. Or a substituent, which may be the same or different from each other, may be linked to each other to form a ring, and a solvent-soluble unit may be included between the above repeating units.
(N represents a repeating unit number of 1 or more. A represents an anion. Rm (m = 1 to 28) represents a hydrogen atom or a substituent, and may be the same or different from each other; They may be linked to each other to form a ring, and solvent-soluble units may be included between the repeating units.
水分及び窒素ガスを含む雰囲気下において、光触媒機能を有する無機酸化物半導体上に、溶媒に可溶化又は分散可能でありかつ陰イオンを含む導電性ポリマーをコーティングする窒素固定化材料の製造方法。   A method for producing a nitrogen fixing material, wherein an inorganic oxide semiconductor having a photocatalytic function is coated with a conductive polymer that can be solubilized or dispersed in a solvent and contains an anion in an atmosphere containing moisture and nitrogen gas. 前記導電性ポリマーは、下記(1)、(2)若しくは(3)で示される化合物又はそれら誘導体の少なくともいずれかを含む請求項1記載の窒素固定化材料の製造方法。
(nは1以上の繰返し単位数を示す。Aは陰イオンを示す。XはN−H,S,O,Seのいずれかを示す。R(m=1〜12)は、水素原子又は置換基を示し、互いに同一であっても異なっていてもよく、互いに連結して環を形成してもよい。また、上記繰返し単位の間に溶媒可溶性単位を含んでいてもよい。)
(nは1以上の繰返し単位数を示す。Aは陰イオンを示す。XはN−H,S,O,Seのいずれかを示す。R(m=1〜12)は、水素原子又は置換基を示し、互いに同一であっても異なっていてもよく、互いに連結して環を形成してもよい。また、上記繰返し単位の間に溶媒可溶性単位を含んでいてもよい。)
(nは1以上の繰返し単位数を示す。Aは陰イオンを示す。Rm(m=1〜28)は、水素原子又は置換基を示し、互いに同一であっても異なっていてもよく、互いに連結して環を形成してもよい。また、上記繰返し単位の間に溶媒可溶性単位を含んでいてもよい。)
The method for producing a nitrogen fixing material according to claim 1, wherein the conductive polymer contains at least one of a compound represented by the following (1), (2) or (3) or a derivative thereof.
(N represents a repeating unit number of 1 or more. A represents an anion. X represents N—H, S, O, or Se. R m (m = 1 to 12) represents a hydrogen atom. Or a substituent, which may be the same or different from each other, may be linked to each other to form a ring, and a solvent-soluble unit may be included between the above repeating units.
(N represents a repeating unit number of 1 or more. A represents an anion. X represents N—H, S, O, or Se. R m (m = 1 to 12) represents a hydrogen atom. Or a substituent, which may be the same or different from each other, may be linked to each other to form a ring, and a solvent-soluble unit may be included between the above repeating units.
(N represents a repeating unit number of 1 or more. A represents an anion. Rm (m = 1 to 28) represents a hydrogen atom or a substituent, and may be the same or different from each other; They may be linked to each other to form a ring, and solvent-soluble units may be included between the repeating units.
酸化チタン表面上への前記導電性ポリマーのコーティングは、塗布法により行われる請求項3記載の窒素固定化材料の製造方法。   The method for producing a nitrogen fixing material according to claim 3, wherein the coating of the conductive polymer on the surface of titanium oxide is performed by a coating method. 請求項1に記載の複合化空中窒素固定化材料を、水分及び窒素を含む雰囲気中に配置し、前記複合化空中窒素固定化材料に光照射を行う窒素固定化方法。
A nitrogen fixing method in which the composite air nitrogen fixing material according to claim 1 is disposed in an atmosphere containing moisture and nitrogen, and the composite air nitrogen fixing material is irradiated with light.
JP2007058585A 2007-03-08 2007-03-08 Nitrogen fixing material, method for producing the same, and nitrogen fixing method Active JP5401666B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007058585A JP5401666B2 (en) 2007-03-08 2007-03-08 Nitrogen fixing material, method for producing the same, and nitrogen fixing method
PCT/JP2007/067977 WO2008108016A1 (en) 2007-03-08 2007-09-14 Nitrogen-fixing material, process for producing the same, and method of fixing nitrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007058585A JP5401666B2 (en) 2007-03-08 2007-03-08 Nitrogen fixing material, method for producing the same, and nitrogen fixing method

Publications (2)

Publication Number Publication Date
JP2008221037A true JP2008221037A (en) 2008-09-25
JP5401666B2 JP5401666B2 (en) 2014-01-29

Family

ID=39737918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007058585A Active JP5401666B2 (en) 2007-03-08 2007-03-08 Nitrogen fixing material, method for producing the same, and nitrogen fixing method

Country Status (2)

Country Link
JP (1) JP5401666B2 (en)
WO (1) WO2008108016A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027864A1 (en) 2009-09-04 2011-03-10 国立大学法人北海道大学 Photoreduction catalyst, method for synthesizing ammonia using same, and method for decreasing nitrogen oxide in water using same
JP2012030144A (en) * 2010-07-28 2012-02-16 National Applied Research Lab Composite material capable of expanding optical absorption range of original structural material
JP2012055786A (en) * 2010-09-03 2012-03-22 Chiba Univ Nitrogen fixation material and nitrogen fixation method using the same
WO2012093632A1 (en) * 2011-01-07 2012-07-12 サスティナブル・テクノロジー株式会社 Method for protection of surface of base body
JP2014151290A (en) * 2013-02-12 2014-08-25 Denso Corp Ammonia-producing catalyst
JP2014151291A (en) * 2013-02-12 2014-08-25 Denso Corp Ammonia-producing catalyst
US9592495B2 (en) 2013-12-24 2017-03-14 Denso Corporation Ammonia synthesis catalyst

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015139737A (en) * 2014-01-28 2015-08-03 株式会社デンソー nitrogen immobilization material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001072985A (en) * 1999-09-02 2001-03-21 Katsuyoshi Hoshino Method for fixing atmospheric nitrogen using composite material of titanium oxide and conductive polymer
JP2003200057A (en) * 2002-01-11 2003-07-15 Japan Science & Technology Corp High efficiency atmospheric nitrogen fixation compounded photocatalytic material composed of visible ray responsible titanium oxide/conductive polymer compounded material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169124A (en) * 1980-05-30 1981-12-25 Toray Ind Inc Synthesizing method for ammonia
JP3401557B2 (en) * 1999-12-13 2003-04-28 独立行政法人産業技術総合研究所 Pollutant removal method using photocatalyst

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001072985A (en) * 1999-09-02 2001-03-21 Katsuyoshi Hoshino Method for fixing atmospheric nitrogen using composite material of titanium oxide and conductive polymer
JP2003200057A (en) * 2002-01-11 2003-07-15 Japan Science & Technology Corp High efficiency atmospheric nitrogen fixation compounded photocatalytic material composed of visible ray responsible titanium oxide/conductive polymer compounded material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027864A1 (en) 2009-09-04 2011-03-10 国立大学法人北海道大学 Photoreduction catalyst, method for synthesizing ammonia using same, and method for decreasing nitrogen oxide in water using same
US8986514B2 (en) 2009-09-04 2015-03-24 National University Corporation Hokkaido University Photoreduction catalyst, and method for synthesizing ammonia and method for decreasing nitrogen oxides in water using the same
JP2012030144A (en) * 2010-07-28 2012-02-16 National Applied Research Lab Composite material capable of expanding optical absorption range of original structural material
JP2012055786A (en) * 2010-09-03 2012-03-22 Chiba Univ Nitrogen fixation material and nitrogen fixation method using the same
WO2012093632A1 (en) * 2011-01-07 2012-07-12 サスティナブル・テクノロジー株式会社 Method for protection of surface of base body
JP5936132B2 (en) * 2011-01-07 2016-06-15 サスティナブル・テクノロジー株式会社 Method for protecting substrate surface
JP2014151290A (en) * 2013-02-12 2014-08-25 Denso Corp Ammonia-producing catalyst
JP2014151291A (en) * 2013-02-12 2014-08-25 Denso Corp Ammonia-producing catalyst
US9592495B2 (en) 2013-12-24 2017-03-14 Denso Corporation Ammonia synthesis catalyst

Also Published As

Publication number Publication date
WO2008108016A1 (en) 2008-09-12
JP5401666B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
JP5401666B2 (en) Nitrogen fixing material, method for producing the same, and nitrogen fixing method
Marimuthu et al. Electrochemical synthesis of one-dimensional ZnO nanostructures on ZnO seed layer for DSSC applications
Chiang et al. Process intensification in the production of photocatalysts for solar hydrogen generation
Sutiono et al. Facile synthesis of [101]-oriented rutile TiO2 nanorod array on FTO substrate with a tunable anatase–rutile heterojunction for efficient solar water splitting
Chao et al. Ferroelectric polarization-enhanced photocatalytic properties and photo-induced charge carrier behavior of Au/BaTiO3
Pourmortazavi et al. Evaluation of photocatalytic and supercapacitor potential of nickel tungstate nanoparticles synthesized by electrochemical method
Zhao et al. Fabrication and photoelectrochemical properties of porous ZnWO4 film
Tajabadi et al. Electrodeposition of flower-like platinum on electrophoretically grown nitrogen-doped graphene as a highly sensitive electrochemical non-enzymatic biosensor for hydrogen peroxide detection
Han et al. Worm-like FeS2/TiO2 nanotubes for photoelectrocatalytic reduction of CO2 to methanol under visible light
Hu et al. High-performance 1D type-II TiO2@ ZnO core-shell nanorods arrays photoanodes for photoelectrochemical solar fuel production
JP2005263580A (en) Titania having shape of nanotube and its producing method
Patel et al. Photocurrent enhancement by a rapid thermal treatment of nanodisk-shaped SnS photocathodes
Zhan et al. In situ formation of WO3-based heterojunction photoanodes with abundant oxygen vacancies via a novel microbattery method
Yang et al. New understanding on photocatalytic mechanism of nitrogen-doped graphene quantum dots-decorated BiVO4 nanojunction photocatalysts
Zheng et al. Improved photocathodic protection performance of g-C3N4/rGO/ZnS for 304 stainless steel
Li et al. TiO 2 nanotube arrays modified with nanoparticles of platinum group metals (Pt, Pd, Ru): Enhancement on photoelectrochemical performance
Bhat et al. Photoelectrochemically active surfactant free single step hydrothermal mediated titanium dioxide nanorods
Zhu et al. Electrochemically synthesized tungsten trioxide nanostructures for photoelectrochemical water splitting: Influence of heat treatment on physicochemical properties, photocurrent densities and electron shuttling
Ghani et al. Simple and inexpensive electrodeposited silver/polyaniline composite counter electrodes for dye-sensitized solar cells
Chen et al. Sulfur vacancy-rich ZnIn2S4 nanosheet arrays for visible-light-driven water splitting
Yin et al. Synergetic effect of piezoelectricity and heterojunction on photocatalytic performance
Gomes et al. Annealed Ti/Zn-TiO 2 nanocomposites tested as photoanodes for the degradation of Ibuprofen
Hongxing et al. Preparation of nanoporous BiVO4/TiO2/Ti film through electrodeposition for photoelectrochemical water splitting
Carrera-Crespo et al. Improving the contact properties of CdS-decorated TiO 2 nanotube arrays using an electrochemical/thermal/chemical approach
Joudi et al. Enhancement of photoelectrochemical performance of CdSe sensitized seeded TiO2 films

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001