JP4900820B2 - Ceramic honeycomb filter - Google Patents

Ceramic honeycomb filter Download PDF

Info

Publication number
JP4900820B2
JP4900820B2 JP2007170095A JP2007170095A JP4900820B2 JP 4900820 B2 JP4900820 B2 JP 4900820B2 JP 2007170095 A JP2007170095 A JP 2007170095A JP 2007170095 A JP2007170095 A JP 2007170095A JP 4900820 B2 JP4900820 B2 JP 4900820B2
Authority
JP
Japan
Prior art keywords
honeycomb filter
sealing portion
porosity
mullite
partition wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007170095A
Other languages
Japanese (ja)
Other versions
JP2009006262A (en
Inventor
雅一 許斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2007170095A priority Critical patent/JP4900820B2/en
Publication of JP2009006262A publication Critical patent/JP2009006262A/en
Application granted granted Critical
Publication of JP4900820B2 publication Critical patent/JP4900820B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ディーゼルエンジン等から排出される粒子状物質を含む排気ガスを浄化するのに使用されるセラミックハニカムフィルタに関する。   The present invention relates to a ceramic honeycomb filter used for purifying exhaust gas containing particulate matter discharged from a diesel engine or the like.

ディーゼルエンジンの排気ガス中には、炭素質からなる煤と高沸点炭化水素成分からなるSOF分(Soluble Organic Fraction:可溶性有機成分)とを主成分とするPM(Particulate Matter:粒子状物質)が含まれており、これが大気中に放出されると、人体や環境に悪影響を与える虞がある。このため、ディーゼルエンジンの排気管の途中に、PMを捕集するためのセラミックハニカムフィルタ(以下セラミックハニカムフィルタを略して「ハニカムフィルタ」という)を装着することが従来から行われている。図2は、排気ガス中のPMを捕集、浄化するハニカムフィルタの一例を示し、(a)は正面模式図、(b)は側断面模式図である。図2(a)、(b)において、ハニカムフィルタ10は、外周壁1と、この外周壁1の内側に各々直交する多孔性の隔壁2で仕切られた多数の流路3が、排気ガス流入側端面8と排気ガス流出側端面9にて交互に封止部6で封止されている。また、ハニカムフィルタの外周壁1は、金属メッシュあるいはセラミックス製のマットなどで形成された把持部材(図示せず)で使用中に動かないように把持され、金属製収納容器(図示せず)内に配置されている。   The exhaust gas of a diesel engine contains PM (Particulate Matter: particulate matter) whose main components are soot made of carbon and SOF content (soluble organic fraction) consisting of high-boiling hydrocarbon components. If it is released into the atmosphere, there is a risk of adverse effects on the human body and the environment. For this reason, a ceramic honeycomb filter for collecting PM (hereinafter referred to as “honeycomb filter” for short) has been conventionally mounted in the middle of the exhaust pipe of a diesel engine. FIG. 2 shows an example of a honeycomb filter that collects and purifies PM in exhaust gas, (a) is a schematic front view, and (b) is a schematic side sectional view. 2 (a) and 2 (b), the honeycomb filter 10 includes an outer peripheral wall 1 and a large number of flow paths 3 partitioned by porous partition walls 2 orthogonal to the inner side of the outer peripheral wall 1, respectively. The side end face 8 and the exhaust gas outflow side end face 9 are alternately sealed by the sealing portions 6. Further, the outer peripheral wall 1 of the honeycomb filter is gripped so as not to move during use by a gripping member (not shown) formed of a metal mesh or a ceramic mat or the like, and is placed in a metal storage container (not shown). Is arranged.

図2に示すハニカムフィルタ10において、排気ガスの浄化は以下の通り行われる。排気ガス(点線矢印で示す)は、排気ガス流入側端面8に開口している流路3から流入する。そして排気ガス中に含まれるPMは、隔壁2を通過する際に、詳しくは隔壁2の表面及び内部に存在する互いに連通した細孔により形成される連通孔を通過する際に捕集され、浄化された排気ガスは、排気ガス流出側端面9に開口している流路3から流出、大気中に放出される。   In the honeycomb filter 10 shown in FIG. 2, exhaust gas purification is performed as follows. Exhaust gas (indicated by a dotted arrow) flows from the flow path 3 that is open to the exhaust gas inflow side end face 8. The PM contained in the exhaust gas is collected and purified when passing through the partition wall 2, specifically when passing through the communication hole formed by the pores communicating with each other on the surface and inside of the partition wall 2. The exhaust gas thus discharged flows out of the flow path 3 opened in the exhaust gas outflow side end face 9 and is released into the atmosphere.

ハニカムフィルタは、PMの捕集効率が高いことと、圧力損失が小さいことが要求され、これらの要求を満足させるために、隔壁の気孔率が適切に設定されており、現在では凡そ45〜65%程度のものが多く使用されている。   The honeycomb filter is required to have a high PM collection efficiency and a small pressure loss. In order to satisfy these requirements, the porosity of the partition walls is appropriately set, and is currently about 45 to 65. % Is often used.

一方、封止部6の気孔率は、ハニカムフィルタの設計思想により、隔壁2の気孔率よりも大きくしたり、反対に隔壁2の気孔率よりも小さくする場合がある。例えば特許文献1には、封止部の気孔率を隔壁の気孔率よりも大きくすることで、隔壁のみならず封止部にも排気ガスが通過できるようにし、ハニカムフィルタ全体の圧力損失を低減すると共に、封止部の熱容量を小さくして、ハニカムフィルタの速熱性を向上したハニカムフィルタが記載されている。反対に、特許文献2や特許文献3には、封止部の気孔率を隔壁の気孔率よりも小さくしたハニカムフィルタが提案されている。隔壁2の材料としては、捕集したPMを燃焼させて浄化する際の、燃焼熱に耐えうる耐熱性セラミック材料、例えばコーディエライト、チタン酸アルミニウム、炭化珪素、窒化珪素、窒化アルミニウム等が用いられており、特に耐熱衝撃性に優れることから、低熱膨張係数を有するコーディエライト、チタン酸アルミニウムが好適とされている。   On the other hand, depending on the design concept of the honeycomb filter, the porosity of the sealing portion 6 may be larger than the porosity of the partition walls 2 or may be smaller than the porosity of the partition walls 2 on the contrary. For example, in Patent Document 1, by making the porosity of the sealing portion larger than the porosity of the partition wall, exhaust gas can pass through not only the partition wall but also the sealing portion, thereby reducing the pressure loss of the entire honeycomb filter. In addition, there is described a honeycomb filter in which the heat capacity of the sealing portion is reduced to improve the rapid heat property of the honeycomb filter. On the other hand, Patent Document 2 and Patent Document 3 propose a honeycomb filter in which the porosity of the sealing portion is smaller than the porosity of the partition walls. As the material of the partition wall 2, a heat-resistant ceramic material that can withstand the heat of combustion when the collected PM is burned and purified, such as cordierite, aluminum titanate, silicon carbide, silicon nitride, aluminum nitride, etc. is used. In particular, cordierite and aluminum titanate having a low thermal expansion coefficient are suitable because they are excellent in thermal shock resistance.

特開2003−236322号公報JP 2003-236322 A 特開2005−2972号公報Japanese Patent Laying-Open No. 2005-2972 WO04/052502号公報WO04 / 052502 Publication

ところが、好適に用いられているコーディエライトやチタン酸アルミニウムは、熱膨張係数の結晶異方性を有しマイクロクラックを内在させて低熱膨張を達成しているため、気孔率が大きくなると、マイクロクラック数が減少し、熱膨張係数が小さくなることがある。このため、隔壁の気孔率と封止部の気孔率が異なると、それぞれの熱膨張係数に差が発生するために、PM再生時にPMの燃焼熱によりハニカムフィルタの温度が上昇したときに、封止部や隔壁や封止部と隔壁との境界に割れが発生することがあった。特にコーディエライトに比べてマイクロクラックを多く発生させて低熱膨張係数を達成しているチタン酸アルミニウムを主成分とした隔壁と封止部を有するハニカムフィルタの場合は、マイクロクラックを起点として割れが発生する虞が大きかった。   However, cordierite and aluminum titanate, which are preferably used, have a crystal anisotropy of thermal expansion coefficient and a low thermal expansion due to the presence of microcracks. Therefore, when the porosity increases, The number of cracks may be reduced and the thermal expansion coefficient may be reduced. For this reason, if the porosity of the partition wall and the porosity of the sealing portion are different, a difference is generated between the respective thermal expansion coefficients. Therefore, when the temperature of the honeycomb filter rises due to the combustion heat of PM during PM regeneration, sealing is performed. Cracks sometimes occurred at the boundaries between the stoppers, the partition walls, the sealing part, and the partition walls. In particular, in the case of a honeycomb filter having a partition wall and a sealing portion mainly composed of aluminum titanate that has generated a low thermal expansion coefficient by generating more microcracks than cordierite, the cracks start from the microcracks. There was a high risk of occurrence.

従って本発明の目的は、隔壁と封止部の気孔率が異なる主としてチタン酸アルミニウムからなるハニカムフィルタにおいて、両者の熱膨張係数を略等しくすることで、上記割れの発生を防止することができるハニカムフィルタを提供することにある。   Accordingly, an object of the present invention is to provide a honeycomb filter made mainly of aluminum titanate having different porosity between the partition walls and the sealing portion, and by making the thermal expansion coefficients of the two substantially equal, the honeycomb can prevent the occurrence of the cracks. To provide a filter.

本発明は、多孔質セラミックハニカム構造体の所望の流路を封止部で目封止することによりハニカム構造体の隔壁に排気ガスを通過させる構造のセラミックハニカムフィルタであって、前記隔壁と前記封止部は主成分としてチタン酸アルミニウムからなるとともにムライトを含有し、前記隔壁と前記封止部のうち、気孔率の小さい方のムライト含有率が気孔率の大きい方のムライト含有率よりも大きいことを特徴とする。   The present invention is a ceramic honeycomb filter having a structure in which exhaust gas is allowed to pass through partition walls of a honeycomb structure by plugging a desired flow path of the porous ceramic honeycomb structure with a sealing portion. The sealing part is composed of aluminum titanate as a main component and contains mullite. Among the partition wall and the sealing part, the mullite content ratio of the smaller porosity is larger than the mullite content ratio of the larger porosity. It is characterized by that.

また本発明は、前記隔壁と前記封止部のうち、ムライト含有率が小さい方のムライト含有率が5%以上であることが好ましい。   In the present invention, it is preferable that the mullite content of the partition wall and the sealing portion having a smaller mullite content is 5% or more.

また本発明は、前記隔壁と前記封止部のうち、ムライト含有率が大きい方のムライト含有率が35%以下であることが好ましい。   In the present invention, it is preferable that the mullite content ratio of the partition wall and the sealing portion having a larger mullite content ratio is 35% or less.

(本発明の作用効果)
本発明の作用と効果を、図を用いて説明する。図1は本発明のハニカムフィルタの封止部6近傍における流路方向断面の一例を示す模式拡大図であり、隔壁2の気孔率が封止部6の気孔率よりも大きい例を示している。そして、隔壁2と封止部6は共にチタン酸アルミニウムを主成分としている。
(Operational effect of the present invention)
The operation and effect of the present invention will be described with reference to the drawings. FIG. 1 is a schematic enlarged view showing an example of a cross section in the flow path direction in the vicinity of the sealing portion 6 of the honeycomb filter of the present invention, and shows an example in which the porosity of the partition wall 2 is larger than the porosity of the sealing portion 6. . And both the partition 2 and the sealing part 6 have aluminum titanate as a main component.

図1に示すように、隔壁2の気孔率が封止部6の気孔率よりも大きい場合は、気孔率が大きいほどマイクロクラックの数が減少し熱膨張係数が大きくなるため、例えばPM再生時のようにハニカムフィルタの温度が上昇するに従い、封止部6に比べて隔壁2が大きく膨張しようとする。その結果、封止部6には引張の応力、隔壁2には圧縮の応力が加わることになり、封止部6と隔壁2との境界上や、封止部6に割れが発生することがある。ときとして隔壁2に割れが発生することもある。   As shown in FIG. 1, when the porosity of the partition wall 2 is larger than the porosity of the sealing portion 6, the larger the porosity, the smaller the number of microcracks and the larger the thermal expansion coefficient. Thus, as the temperature of the honeycomb filter increases, the partition wall 2 tends to expand more than the sealing portion 6. As a result, tensile stress is applied to the sealing part 6 and compressive stress is applied to the partition wall 2, and cracks may occur on the boundary between the sealing part 6 and the partition wall 2 or in the sealing part 6. is there. Occasionally, the partition wall 2 may be cracked.

本発明の特徴は、上記の割れの発生を隔壁2のムライト含有量と封止部6のムライト含有量とを異ならせることで防止する点にある。チタン酸アルミニウムを主成分とするセラミックにムライトを含有させることは、強度の向上とチタン酸アルミニウムがチタニアとアルミナとに分解することの防止に有効であることが知られている。一方、チタン酸アルミニウムを主成分とするセラミック中にムライトを含有させると、その含有量の増加に応じて、熱膨張係数が大きくなる。従って、ハニカムフィルタ10の隔壁2の気孔率が封止部6の気孔率よりも大きいことで、隔壁2の熱膨張係数が封止部6の熱膨張係数よりも大きくなるときには、封止部6のムライト含有率を隔壁2のムライト含有率より大きくすることで、封止6部の熱膨張係数を隔壁2の熱膨張と同程度に大きくし、上記割れの発生を防止することができる。また反対に、ハニカムフィルタ10の隔壁2の気孔率が封止部6の気孔率よりも小さいことで、封止部6の熱膨張係数が隔壁2の熱膨張係数よりも大きくなるときには、隔壁2のムライト含有率を封止部6の含有率よりも大きくすることで、隔壁2の熱膨張係数を封止部6の熱膨張と同程度に大きくし、上記割れの発生を防止することができる。特に封止部の気孔率(a%)と隔壁の気孔率(b%)との値の差(a−b)が10%以上(|a−b|≦10)であるときに上記割れの発生の防止効果が顕著になる。   A feature of the present invention is that the occurrence of the above-described cracking is prevented by making the mullite content of the partition wall 2 different from the mullite content of the sealing portion 6. It is known that inclusion of mullite in a ceramic mainly composed of aluminum titanate is effective in improving strength and preventing aluminum titanate from being decomposed into titania and alumina. On the other hand, when mullite is contained in the ceramic mainly composed of aluminum titanate, the thermal expansion coefficient increases as the content thereof increases. Accordingly, when the porosity of the partition wall 2 of the honeycomb filter 10 is larger than the porosity of the sealing portion 6, the sealing portion 6 is formed when the thermal expansion coefficient of the partition wall 2 is larger than the thermal expansion coefficient of the sealing portion 6. By making the mullite content of the mullite larger than the mullite content of the partition wall 2, the thermal expansion coefficient of the sealing portion 6 can be made as large as the thermal expansion of the partition wall 2, thereby preventing the occurrence of the cracks. Conversely, when the porosity of the partition wall 2 of the honeycomb filter 10 is smaller than the porosity of the sealing portion 6, the thermal expansion coefficient of the sealing portion 6 is larger than the thermal expansion coefficient of the partition wall 2. By making the mullite content rate of this material larger than the content rate of the sealing portion 6, the thermal expansion coefficient of the partition wall 2 can be increased to the same extent as the thermal expansion of the sealing portion 6, and the occurrence of the cracks can be prevented. . In particular, when the difference (ab) between the porosity (a%) of the sealing portion and the porosity (b%) of the partition wall is 10% or more (| ab− ≦ 10), The effect of preventing the occurrence becomes remarkable.

また、上記のようにチタン酸アルミニウムを主成分とするセラミック中にムライトを含有することで、強度の向上に効果があると共に、チタニアとアルミナとへの分解を防止する効果があり、隔壁2のムライト含有率を5%以上とすることで、隔壁2に対する上記両効果が大きく表れ好ましい。11%以上であることが特に好ましい。また同様に、封止部6のムライト含有率も5%以上とすることで、封止部6に対する上記両効果が大きく表れ好ましい。   In addition, the inclusion of mullite in the ceramic mainly composed of aluminum titanate as described above has an effect of improving strength and an effect of preventing decomposition into titania and alumina. It is preferable that the mullite content is 5% or more because both of the above-described effects on the partition walls 2 are significant. It is particularly preferably 11% or more. Similarly, it is preferable that the mullite content of the sealing portion 6 is 5% or more because both of the above effects on the sealing portion 6 appear greatly.

一方、ムライトの含有率が過剰に大きくなると焼成体の強度が低下し割れの発生確率が大きくなる傾向にある。これは、ムライトの含有率が大きくなることで、チタン酸アルミニウムの粒子同士の接触確率が低下するためと思われる。このため、隔壁2および封止部6のムライト含有率を35%以下とすることで、割れの発生をより防止することができ好ましい。   On the other hand, when the content of mullite becomes excessively large, the strength of the fired body tends to decrease, and the probability of occurrence of cracks tends to increase. This is presumably because the contact probability between the aluminum titanate particles decreases as the mullite content increases. For this reason, generation | occurrence | production of a crack can be prevented more by making the mullite content rate of the partition 2 and the sealing part 6 into 35% or less, and it is preferable.

本発明の作用効果について、チタン酸アルミニウム及びムライトを含有した隔壁及び封止部からなるセラミックハニカムフィルタを用いて説明したが、本発明の作用効果からすれば、チタン酸アルミニウムは、本発明の作用効果を発揮する範囲で、公知のFe、Mg、Si等を固溶したチタン酸アルミニウムであってもよく、ムライト中にTi、Mg等を含んでも良い。また、チタン酸アルミニウムおよびムライト以外にも、SiO2を主成分とするガラス相、アルカリ長石、Sr長石などを含有してもよく、未反応のTiO及びAlを含んでいても良い。 The operational effects of the present invention have been described using a ceramic honeycomb filter comprising partition walls and sealing portions containing aluminum titanate and mullite, but according to the operational effects of the present invention, aluminum titanate has the functions of the present invention. As long as the effect is exhibited, it may be a known aluminum titanate in which Fe, Mg, Si or the like is dissolved, and mullite may contain Ti, Mg or the like. In addition to aluminum titanate and mullite, a glass phase mainly composed of SiO 2, alkali feldspar, Sr feldspar, and the like may be contained, and unreacted TiO 2 and Al 2 O 3 may be contained.

また本発明のハニカムフィルタの隔壁の気孔率は、50〜70%であることが好ましく、気孔率を50%以上とすることで隔壁の通気度を大きくでき、70%以下とすることでハニカムフィルタの強度を大きくすることができる。55〜65%であることがより好ましい。封止部は、封止部の通気度を大きくし、または封止部の速熱性の向上を設計思想とした場合には、その気孔率は隔壁の気孔率よりも大きく、例えば60%以上とすることが好ましく、封止部の強度を大きくするために75%以下とすることが好ましい。一方封止部の熱容量を大きくすることを設計思想とした場合には、封止部の気孔率は隔壁の気孔率よりも小さく、例えば20〜45%とすることが好ましい。   The porosity of the partition walls of the honeycomb filter of the present invention is preferably 50 to 70%. By setting the porosity to 50% or more, the permeability of the partition walls can be increased, and by setting the porosity to 70% or less, the honeycomb filter The strength of can be increased. More preferably, it is 55 to 65%. The sealing part has a porosity larger than that of the partition wall, for example, 60% or more, when the air permeability of the sealing part is increased or the improvement in quick heat property of the sealing part is set as a design philosophy. It is preferable to make it 75% or less in order to increase the strength of the sealing portion. On the other hand, when the design concept is to increase the heat capacity of the sealing portion, the porosity of the sealing portion is smaller than the porosity of the partition wall, and is preferably 20 to 45%, for example.

本発明により、隔壁と封止部の気孔率が異なる主としてチタン酸アルミニウムからなるハニカムフィルタにおいて、両者の熱膨張係数を略等しくすることで、上記割れの発生を防止することができるハニカムフィルタを得ることができる。   According to the present invention, in a honeycomb filter mainly composed of aluminum titanate having different porosity between the partition walls and the sealing portion, a honeycomb filter capable of preventing the occurrence of the cracks is obtained by making the thermal expansion coefficients of both substantially equal. be able to.

次に本発明を実施例により具体的に説明するが、これら実施例により本発明が限定されるものではない。
(実施例1)
本実施例では、以下のように材料粉末等を混合混練して、まず隔壁となる坏土を得る。平均粒径が1μmであるルチル型チタニア粉末と平均粒径が11μmであるアルミナ粉末とを、チタニアのモル%/アルミナのモル%が50/50になるように秤量したもの97質量部に対して、平均粒径が8μmであるムライト粉末を3質量部添加し、さらに発泡済み有機発泡剤を12質量部、バインダー、その他の添加剤を加えて、混合した後、水を加えて混練し、可塑性坏土を作成する。次に、押出し成形用金型を用いて上記坏土を押出し成形し、切断して、ハニカム構造を有する成形体とする。次にこの成形体を、乾燥、焼成し、チタン酸アルミニウム質セラミックハニカム構造体を得る。このセラミックハニカム構造体は、外径は50mm、長さは130mm、隔壁の厚さは0.3mm、隔壁ピッチは1.5mmである。次に以下のように材料粉末等を混合混練して、封止部となるスラリーを得る。平均粒径が1μmであるルチル型チタニア粉末と平均粒径が11μmであるアルミナ粉末とを、チタニアのモル%/アルミナのモル%が50/50になるように秤量したもの95質量部に対して、平均粒径が8μmであるムライト粉末を5質量部添加し、さらに発泡済み有機発泡剤を6質量部加えて混合した後、水を加えて混練し、封止部用スラリーを得る。この封止部用スラリーを上記のチタン酸アルミニウム質セラミックハニカム構造体の流路に公知の方法で挿入した後、乾燥焼成し、流路の一端を封止部で目封止したハニカムフィルタを得る。
EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these Examples.
Example 1
In the present embodiment, the material powder and the like are mixed and kneaded as follows to obtain a clay that becomes partition walls first. A rutile-type titania powder having an average particle diameter of 1 μm and an alumina powder having an average particle diameter of 11 μm weighed so that the mol% of titania / mol% of alumina is 50/50, based on 97 parts by mass 3 parts by weight of mullite powder having an average particle diameter of 8 μm, 12 parts by weight of a foamed organic foaming agent, a binder and other additives are added and mixed. Create dredged soil. Next, the kneaded material is extruded using an extrusion molding die and cut to form a formed body having a honeycomb structure. Next, the formed body is dried and fired to obtain an aluminum titanate ceramic honeycomb structure. This ceramic honeycomb structure has an outer diameter of 50 mm, a length of 130 mm, a partition wall thickness of 0.3 mm, and a partition wall pitch of 1.5 mm. Next, the material powder and the like are mixed and kneaded as follows to obtain a slurry that becomes a sealing portion. 95 parts by mass of rutile-type titania powder having an average particle diameter of 1 μm and alumina powder having an average particle diameter of 11 μm so that mol% of titania / mol% of alumina is 50/50 Then, 5 parts by mass of mullite powder having an average particle size of 8 μm is added, and 6 parts by mass of a foamed organic foaming agent is added and mixed, and then water is added and kneaded to obtain a slurry for sealing part. The sealing portion slurry is inserted into the flow path of the aluminum titanate ceramic honeycomb structure by a known method, and then dried and fired to obtain a honeycomb filter in which one end of the flow path is plugged with the sealing portion. .

上記の方法にて実施例1のハニカムフィルタを2ヶ製造し、内1ヶを切断して隔壁の気孔率測定用のテストピースを作成し、水銀圧入法により隔壁の気孔率を測定する。また、上記封止部用スラリーを用いて封止部の気孔率測定用のテストピースを成形し、この成形体を上記ハニカムフィルタの焼成と同条件で焼成して、封止部の気孔率測定用のテストピースを作成し、水銀圧入法により封止部の気孔率を測定する。また、本実施例では添加するムライト粉末の質量部を隔壁または封止部のムライト含有率とするが、他の方法としてハニカムフィルタよりムライト含有率測定用のテストピースを作成し、X線回折装置により封止部と隔壁の各ムライト含有率を測定することもできる。また切断したハニカムフィルタより隔壁の熱膨張係数測定用のテストピース(長さ50mm)を作成し、40〜800℃における流路方向の平均線膨張係数を測定して、これを隔壁の熱膨張係数とする。また上記封止部用スラリーを用いて、上記封止部の気孔率測定用のテストピースと同様に熱膨張係数測定用のテストピース(長さ50mm)作成し、40〜800℃における平均線膨張係数を測定して、これを封止部の熱膨張係数とする。実施例1における、封止部と隔壁の各気孔率、各ムライト含有率、各熱膨張係数を表1に記す。   Two honeycomb filters of Example 1 are manufactured by the above method, one of them is cut to prepare a test piece for measuring the porosity of the partition wall, and the porosity of the partition wall is measured by a mercury intrusion method. Further, a test piece for measuring the porosity of the sealing portion is molded using the slurry for the sealing portion, and the molded body is fired under the same conditions as the firing of the honeycomb filter, thereby measuring the porosity of the sealing portion. A test piece is prepared, and the porosity of the sealed portion is measured by mercury porosimetry. Further, in this example, the mass part of the added mullite powder is the mullite content of the partition wall or the sealing part, but as another method, a test piece for measuring the mullite content is prepared from the honeycomb filter, and an X-ray diffraction apparatus It is also possible to measure each mullite content of the sealing part and the partition wall. Further, a test piece (length: 50 mm) for measuring the thermal expansion coefficient of the partition wall is prepared from the cut honeycomb filter, and the average linear expansion coefficient in the flow channel direction at 40 to 800 ° C. is measured. And In addition, using the slurry for the sealing part, a test piece for measuring the thermal expansion coefficient (length: 50 mm) was prepared in the same manner as the test piece for measuring the porosity of the sealing part, and the average linear expansion at 40 to 800 ° C. A coefficient is measured and this is made into the thermal expansion coefficient of a sealing part. Table 1 shows the porosity, the mullite content, and the thermal expansion coefficient of the sealing portion and the partition wall in Example 1.

次に、上記の残りのハニカムフィルタ1ヶを用いて、ハニカムフィルタの高温時の割れ発生状態を調査する。まず、排気ガス流入側端面8側より微粒子発生器により空気流量2Nm/minで、粒径0.042μmのカーボン粉を3g/hで1時間投入し、ハニカムフィルタの隔壁にカーボン粉を堆積させる。次にハニカムフィルタの排気ガス流入側端面8側より800℃の空気を0.1Nm/minで5分間流し、カーボン粉を燃焼させる。次にハニカムフィルタの排気ガス流入側端面8側より50℃の空気を0.1Nm/minで5分間流しハニカムフィルタを冷却する。上記カーボン粉の投入、燃焼、冷却をさらに20回同様に繰り返した後、ハニカムフィルタを切断して割れの有無を確認する。結果を表1に示す。なお、表1において評価は、割れを確認できないものを◎、実使用に影響がない程度の割れを確認したものを○、実使用に影響のある割れを確認したものを×として示す。 Next, the crack generation state at the time of high temperature of the honeycomb filter is investigated using the remaining one honeycomb filter. First, carbon powder having an air flow rate of 2 Nm 3 / min and a particle size of 0.042 μm is charged at 3 g / h for 1 hour from the exhaust gas inflow side end face 8 side to deposit carbon powder on the partition walls of the honeycomb filter. . Next, air at 800 ° C. is allowed to flow at 0.1 Nm 3 / min for 5 minutes from the exhaust gas inflow side end face 8 side of the honeycomb filter to burn carbon powder. Next, the honeycomb filter is cooled by flowing air at 50 ° C. from the exhaust gas inflow side end face 8 side of the honeycomb filter at 0.1 Nm 3 / min for 5 minutes. The carbon powder is charged, burned, and cooled in the same manner 20 times, and then the honeycomb filter is cut to check for cracks. The results are shown in Table 1. In Table 1, the evaluation is indicated by ◎ for those in which cracks cannot be confirmed, ◯ for those in which cracks that do not affect actual use are confirmed, and × in which cracks that have an effect on actual use are confirmed.

Figure 0004900820
Figure 0004900820

(実施例2〜8、比較例1〜4)
実施例2〜4は、実施例1に対して、隔壁となる坏土に混合される発泡済み有機発泡剤とムライトの重量を変化させ、さらに、封止部となるスラリーへ混合されるムライトの重量を変化させる以外は同一である。また、実施例5〜8、および比較例1〜4は、実施例1に対して、隔壁となる坏土に混合される発泡済み有機発泡剤とムライトの重量を変化させ、さらに、封止部となるスラリーへ発泡済み有機発泡剤を添加重量を変更しつつ混合すると共に、スラリーへ混合されるムライトの重量を変化させる以外は同一である。実施例1と同様に隔壁と封止部の気孔率、ムライト含有率、熱膨張係数の測定結果、ハニカムフィルタの高温時の割れ発生状態を調査結果を表1に記す。
(Examples 2-8, Comparative Examples 1-4)
Examples 2 to 4 are different from Example 1 in that the weight of the foamed organic foaming agent and mullite mixed in the kneaded clay serving as the partition wall is changed, and the mullite mixed into the slurry serving as the sealing portion. The same except that the weight is changed. Moreover, Examples 5-8 and Comparative Examples 1-4 change the weight of the foamed organic foaming agent and mullite mixed with the clay used as a partition with respect to Example 1, and also a sealing part. It is the same except that the foamed organic foaming agent is mixed into the slurry to be changed while changing the weight of addition and the weight of mullite mixed into the slurry is changed. As in Example 1, the measurement results of the porosity and mullite content of the partition walls and the sealing portion, the thermal expansion coefficient, and the cracking state at high temperature of the honeycomb filter are shown in Table 1.

表1より、本発明の実施例1〜8のハニカムフィルタにおいては、ハニカムフィルタの高温時の割れ発生状態が○または◎判定となっている。これに対して比較例1〜2では、隔壁の気孔率が封止部の気孔率よりも大きく、かつ、隔壁のムライト含有率が封止部のムライト含有率と同じかあるいはより大きいために、割れが発生し、比較例3〜4では、封止部の気孔率が隔壁の気孔率よりも大きく、かつ、封止部のムライト含有率が隔壁のムライト含有率と同じかあるいはより大きいために、割れが発生している。上記より本発明のハニカムフィルタの有意性が確認できる。   From Table 1, in the honeycomb filters of Examples 1 to 8 of the present invention, the crack occurrence state at high temperature of the honeycomb filter is judged as ◯ or ◎. On the other hand, in Comparative Examples 1 and 2, because the porosity of the partition wall is larger than the porosity of the sealing portion, and the mullite content rate of the partition wall is the same as or larger than the mullite content rate of the sealing portion, Cracks occurred, and in Comparative Examples 3 to 4, the porosity of the sealing part was larger than the porosity of the partition wall, and the mullite content of the sealing part was the same as or larger than the mullite content of the partition wall , Cracks have occurred. From the above, the significance of the honeycomb filter of the present invention can be confirmed.

本発明のハニカムフィルタの構造の一例を示す断面拡大図である。It is a cross-sectional enlarged view showing an example of the structure of the honeycomb filter of the present invention. ハニカムフィルタの構造を示す模式図である。It is a schematic diagram which shows the structure of a honey-comb filter.

符号の説明Explanation of symbols

1:外周壁
2:隔壁
3:流路
6:封止部
8:排気ガス流入側端面
9:排気ガス流出側端面
10:ハニカムフィルタ
15:気孔
1: outer peripheral wall 2: partition wall 3: flow path 6: sealing portion 8: exhaust gas inflow side end surface 9: exhaust gas outflow side end surface 10: honeycomb filter 15: pores

Claims (3)

多孔質セラミックハニカム構造体の所望の流路を封止部で目封止することによりハニカム構造体の隔壁に排気ガスを通過させる構造のセラミックハニカムフィルタであって、前記隔壁と前記封止部は主成分としてチタン酸アルミニウムからなるとともにムライトを含有し、前記隔壁と前記封止部のうち、気孔率の小さい方のムライト含有率が気孔率の大きい方のムライト含有率よりも大きいことを特徴とするセラミックハニカムフィルタ。   A ceramic honeycomb filter having a structure in which exhaust gas is allowed to pass through partition walls of a honeycomb structure by plugging a desired flow path of a porous ceramic honeycomb structure with a sealing portion, wherein the partition walls and the sealing portion are It comprises aluminum titanate as a main component and contains mullite, and the mullite content of the smaller porosity of the partition walls and the sealing portion is larger than the mullite content of the larger porosity. Ceramic honeycomb filter. 前記隔壁と前記封止部のうち、ムライト含有率が小さい方のムライト含有率が5%以上であることを特徴とする請求項1に記載のセラミックハニカムフィルタ。   2. The ceramic honeycomb filter according to claim 1, wherein, of the partition walls and the sealing portion, the mullite content ratio with a smaller mullite content ratio is 5% or more. 前記隔壁と前記封止部のうち、ムライト含有率が大きい方のムライト含有率が35%以下であることを特徴とする請求項1〜2のいずれかに記載のセラミックハニカムフィルタ。   The ceramic honeycomb filter according to any one of claims 1 to 2, wherein a mullite content ratio of the partition wall and the sealing portion having a larger mullite content ratio is 35% or less.
JP2007170095A 2007-06-28 2007-06-28 Ceramic honeycomb filter Active JP4900820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007170095A JP4900820B2 (en) 2007-06-28 2007-06-28 Ceramic honeycomb filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007170095A JP4900820B2 (en) 2007-06-28 2007-06-28 Ceramic honeycomb filter

Publications (2)

Publication Number Publication Date
JP2009006262A JP2009006262A (en) 2009-01-15
JP4900820B2 true JP4900820B2 (en) 2012-03-21

Family

ID=40321915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007170095A Active JP4900820B2 (en) 2007-06-28 2007-06-28 Ceramic honeycomb filter

Country Status (1)

Country Link
JP (1) JP4900820B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9623360B2 (en) 2013-05-20 2017-04-18 Corning Incorporated Porous ceramic article and method of manufacturing the same
US9908260B2 (en) 2013-05-20 2018-03-06 Corning Incorporated Porous ceramic article and method of manufacturing the same
US9376347B2 (en) 2013-05-20 2016-06-28 Corning Incorporated Porous ceramic article and method of manufacturing the same
CN109219589B (en) 2016-05-31 2022-04-26 康宁股份有限公司 Porous article and method of making same
US11591265B2 (en) 2017-10-31 2023-02-28 Corning Incorporated Batch compositions comprising pre-reacted inorganic particles and methods of manufacture of green bodies therefrom

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3484756B2 (en) * 1994-05-13 2004-01-06 松下電器産業株式会社 Aluminum titanate low thermal expansion porous ceramic body and method for producing the same
JPH10299454A (en) * 1997-04-30 1998-11-10 Matsushita Electric Ind Co Ltd Exhaust gas filter and manufacture thereof, and sealant for exhaust gas filter used therein
JP4222588B2 (en) * 2000-11-24 2009-02-12 日本碍子株式会社 Honeycomb filter and manufacturing method thereof
US6849181B2 (en) * 2002-07-31 2005-02-01 Corning Incorporated Mullite-aluminum titanate diesel exhaust filter
JP2005349269A (en) * 2004-06-09 2005-12-22 Ngk Insulators Ltd Sealed honeycomb structure and method for producing the same
US7071135B2 (en) * 2004-09-29 2006-07-04 Corning Incorporated Ceramic body based on aluminum titanate and including a glass phase
JP2008006398A (en) * 2006-06-30 2008-01-17 Tokyo Yogyo Co Ltd Method for sealing honeycomb structure

Also Published As

Publication number Publication date
JP2009006262A (en) 2009-01-15

Similar Documents

Publication Publication Date Title
JP4495152B2 (en) Honeycomb structure and manufacturing method thereof
JP5725265B2 (en) Ceramic honeycomb structure and manufacturing method thereof
JP6654085B2 (en) Porous material, method for producing porous material, and honeycomb structure
JP6506993B2 (en) Honeycomb filter
JPWO2009063997A1 (en) Aluminum titanate ceramic honeycomb structure, method for producing the same, and raw material powder for producing the same
JPWO2008066167A1 (en) Ceramic honeycomb filter and manufacturing method thereof
EP1493724A1 (en) Porous material and method for production thereof
JP2011521877A (en) Low back pressure porous honeycomb and manufacturing method thereof
JP5997026B2 (en) Honeycomb catalyst body
JP5218056B2 (en) Ceramic honeycomb filter
JP6231910B2 (en) Plugged honeycomb structure
JP4900820B2 (en) Ceramic honeycomb filter
JP6231908B2 (en) Plugged honeycomb structure
JP7289813B2 (en) CERAMIC POROUS BODY, MANUFACTURING METHOD THEREOF, AND FILTER FOR DUST COLLECTION
US10882796B2 (en) Ceramic porous body and method for producing the same, and dust collecting filter
JP2003236322A (en) Ceramic honeycomb filter
JP2018167200A (en) Honeycomb filter
US7781053B2 (en) Porous object based on silicon carbide and process for producing the same
JP2005095884A (en) Ceramic honeycomb structure and body for ceramic honeycomb structure extrusion molding
JP3935159B2 (en) Ceramic honeycomb filter
JP2004167482A (en) Honeycomb filter for exhaust gas cleaning, and its production method
JP7002388B2 (en) Honeycomb structure
JP2012030219A (en) Honeycomb structure and gas treatment apparatus using the same
JP2009011994A (en) Ceramic filter and its manufacturing method
JP6483468B2 (en) Honeycomb structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111222

R150 Certificate of patent or registration of utility model

Ref document number: 4900820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350