JP2005095884A - Ceramic honeycomb structure and body for ceramic honeycomb structure extrusion molding - Google Patents

Ceramic honeycomb structure and body for ceramic honeycomb structure extrusion molding Download PDF

Info

Publication number
JP2005095884A
JP2005095884A JP2004250127A JP2004250127A JP2005095884A JP 2005095884 A JP2005095884 A JP 2005095884A JP 2004250127 A JP2004250127 A JP 2004250127A JP 2004250127 A JP2004250127 A JP 2004250127A JP 2005095884 A JP2005095884 A JP 2005095884A
Authority
JP
Japan
Prior art keywords
partition wall
ceramic honeycomb
honeycomb structure
pores
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004250127A
Other languages
Japanese (ja)
Inventor
Hirohisa Suwabe
博久 諏訪部
Osamu Tokutome
修 徳留
Kenichiro Sekiguchi
謙一郎 関口
Hideya Yamane
英也 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2004250127A priority Critical patent/JP2005095884A/en
Publication of JP2005095884A publication Critical patent/JP2005095884A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ceramic honeycomb structure suitable for a ceramic honeycomb filter which is high in initial particulate capturing efficiency, e.g., in an early stage of operation of a diesel engine or immediately after regeneration of a filter, can prevent harmful fine particles from being discharged in the early stage and can realize low pressure loss. <P>SOLUTION: The ceramic honeycomb structure has a number of passages partitioned by porous partition walls. The porosity of the partition wall is 55 to 75%, the average pore diameter Da on the surface of the partition wall is 5 to 30 μm, and the pore area ratio Sa on the surface of the partition wall is 10 to 30%. Further, the average value La of the opening part lengths at the surface of a plurality of pores open to the surface of the partition wall observed in a cut surface perpendicular to the surface of the partition wall and the average value Lb of the widths of the plurality of pores at a depth of La from the surface of the partition wall on the cut surface have a relationship represented by 1.1<Lb/La<5. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、主に、ディーゼル機関から排出されるカーボン微粒子等の粒子状物質を捕集、浄化する、セラミックハニカムフィルタとして好適に用いることができるセラミックハニカム構造体に関する。   The present invention mainly relates to a ceramic honeycomb structure that can be suitably used as a ceramic honeycomb filter that collects and purifies particulate matter such as carbon fine particles discharged from a diesel engine.

セラミックハニカム構造体の所定の流路端部を目封止し、主に該流路を区画する多孔質の隔壁に排気ガスを通過させることにより、ディーゼル機関から排出される排気ガス中の粒子状物質を隔壁で捕集し、その後所定位置に配置されたヒーターやバーナーにより加熱して燃焼除去する構造のセラミックハニカムフィルタが検討されてきた。このセラミックハニカムフィルタとしては、例えば特許文献1に記載の発明に示されるように、セラミックハニカムフィルタを構成するセラミックハニカム構造体の隔壁の表面の細孔径を規制し、隔壁表面への粒子状物質の捕集率を向上させることに着眼したものがある。   Particulate particles in exhaust gas discharged from a diesel engine by plugging the end of a predetermined flow path of the ceramic honeycomb structure and passing the exhaust gas through a porous partition wall that mainly partitions the flow path A ceramic honeycomb filter having a structure in which a substance is collected by a partition and then heated and removed by a heater or a burner arranged at a predetermined position has been studied. As this ceramic honeycomb filter, for example, as shown in the invention described in Patent Document 1, the pore diameter of the partition wall surface of the ceramic honeycomb structure constituting the ceramic honeycomb filter is regulated, and the particulate matter on the partition wall surface is regulated. Some have focused on improving the collection rate.

一方、近年、セラミックハニカムフィルタの方式として、セラミックハニカム構造体の隔壁に触媒物質を担持し、触媒反応により排気ガス中の粒子状物質を連続的に燃焼させる触媒再生型のセラミックハニカムフィルタの実用化が進められている。このような、触媒再生型のセラミックハニカムフィルタでは、粒子状物質と触媒物質との接触の確率を高めて粒子状物質の浄化効率を向上させるため、隔壁内部の細孔に担持された触媒物質と粒子状物質が接触し易くさせる必要があることから、特許文献2〜6に記載の発明では、以下のように排気ガスが流入する側の隔壁表面の細孔の開口径や、開口面積率を大きくしたセラミックハニカム構造体が開示されている。   On the other hand, in recent years, as a method of ceramic honeycomb filter, practical application of catalyst regeneration type ceramic honeycomb filter in which catalytic substance is supported on partition walls of ceramic honeycomb structure and particulate matter in exhaust gas is continuously burned by catalytic reaction Is underway. In such a catalyst regeneration type ceramic honeycomb filter, in order to increase the probability of contact between the particulate matter and the catalyst material and improve the purification efficiency of the particulate matter, the catalyst material supported in the pores inside the partition walls Since it is necessary to make the particulate matter easy to contact, in the inventions described in Patent Documents 2 to 6, the opening diameter and the opening area ratio of the pores on the partition wall surface into which the exhaust gas flows are set as follows. An enlarged ceramic honeycomb structure is disclosed.

特許文献2に記載の発明では、排気ガス流入側流路に面する隔壁の細孔の開口径を30μm以上とし、排気ガス流出側流路に面する隔壁の細孔の開口径を30μm未満として、流入側流路に面する隔壁の細孔の開口径を大きくしている。特許文献3に記載の発明では、隔壁表面に開口する細孔の開口合計面積を、隔壁の全表面積に対して30%以上とし、かつ開口した細孔のうち孔径が30μm以上の大きな細孔の開口面積の合計を、開口する細孔の全開口面積の50%以上としている。また、特許文献4に記載の発明では、隔壁の表面細孔量を20%以上としている。特許文献5に記載の発明では、隔壁の表面開口径が10μm以下の細孔による表面開口面積率を、全体の表面開口面積率の20%以下として、表面に開口した10μm以下の小さな細孔を少なくしている。特許文献6に記載の発明では、隔壁表面に露出した細孔の総面積が隔壁表面の総面積の35%以上としている。   In the invention described in Patent Document 2, the opening diameter of the pores of the partition walls facing the exhaust gas inflow side flow path is set to 30 μm or more, and the opening diameter of the pores of the partition walls facing the exhaust gas outflow side flow path is set to be less than 30 μm. The opening diameter of the pores of the partition wall facing the inflow side channel is increased. In the invention described in Patent Document 3, the total opening area of the pores opening on the partition wall surface is set to 30% or more with respect to the total surface area of the partition walls, and among the opened pores, the pore diameter is 30 μm or more. The total opening area is set to 50% or more of the total opening area of the opening pores. In the invention described in Patent Document 4, the surface pore amount of the partition walls is set to 20% or more. In the invention described in Patent Document 5, the surface opening area ratio due to pores having a surface opening diameter of 10 μm or less of the partition wall is set to 20% or less of the entire surface opening area ratio, and small pores of 10 μm or less opened on the surface are formed. Less. In the invention described in Patent Document 6, the total area of the pores exposed on the partition wall surface is 35% or more of the total area of the partition wall surface.

ただし、斯かる触媒再生型のセラミックハニカムフィルタを採用した場合であっても、排気ガス温度の低い運転領域では、触媒物質の活性度が低下するため、触媒反応による粒子状物質の処理量よりも捕集量が上回ることがあり、このような低い排気ガス温度での運転状態が続くと、隔壁内部の細孔に粒子状物質が堆積して排気ガスが通過する細孔の断面積が縮小したり閉塞したりすることにより、圧力損失が大きくなるため、例えば特許文献7に記載の発明では、粒子状物質の堆積量が増加してきた段階でセラミックハニカムフィルタより上流側の排気ガス中に燃料を添加してセラミックハニカムフィルタの強制再生を行うことが検討されている。   However, even when such a catalyst regeneration type ceramic honeycomb filter is adopted, the activity of the catalyst material is reduced in the operation region where the exhaust gas temperature is low, so that the amount of the particulate matter treated by the catalytic reaction is lower than If the amount of collected gas exceeds the limit, and the operation state at such a low exhaust gas temperature continues, particulate matter accumulates in the pores inside the partition walls, and the cross-sectional area of the pores through which the exhaust gas passes decreases. For example, in the invention described in Patent Document 7, fuel is introduced into the exhaust gas upstream of the ceramic honeycomb filter at the stage where the amount of particulate matter deposited has increased. Addition and forced regeneration of ceramic honeycomb filters are being studied.

特開平9−77573号公報JP-A-9-77573 特開2002−309921号公報JP 2002-309921 A 特開2002−349234号公報JP 2002-349234 A 特開2002−355511号公報JP 2002-355511 A 特開2003−120256号公報JP 2003-120256 A 特開2003−40687号公報JP 2003-40687 A 特開2003−155919号公報JP 2003-155919 A

しかしながら、粒子状物質の堆積による圧力損失の上昇を防止するために、上記触媒再生型のセラミックハニカムフィルタに強制再生を併用して粒子状物質の堆積を防ぎ、浄化する場合、特許文献2乃至6に記載の発明に開示されているような、排気ガスが流入する側の隔壁表面の細孔の開口径や開口面積率を大きくした従来技術のセラミックハニカム構造体を使用すると、粒子状物質捕集開始時の初期の捕集率が低下するとともに、粒子状物質の捕集が進むに従い、圧力損失の上昇が大きくなるという問題があった。   However, in order to prevent an increase in pressure loss due to the accumulation of particulate matter, forced regeneration is used in combination with the above-mentioned catalyst regeneration type ceramic honeycomb filter to prevent the particulate matter accumulation and purify, Patent Documents 2 to 6 When the ceramic honeycomb structure according to the prior art having a large opening diameter or opening area ratio of the pores on the surface of the partition wall into which the exhaust gas flows is used as disclosed in the invention described in the above, There was a problem that the initial collection rate at the time of start-up decreased and the increase in pressure loss increased as the collection of particulate matter progressed.

すなわち、従来技術の触媒再生型のセラミックハニカムフィルタに使用されるセラミックハニカム構造体では、粒子状物質が隔壁内部の細孔中に担持された触媒物質と接触し易くするために、多孔質の隔壁表面に開口した細孔の開口径や開口面積率を大きく形成していることから、特に排気ガス温度が低い運転領域で、且つ粒子状物質の堆積量が少ない初期の段階では、粒子状物質が隔壁表面の大きな開口径を有する細孔から容易に隔壁内に進入し、隔壁内を通過して未浄化のまま排出される場合がある。従って、従来技術の触媒再生型のセラミックハニカムフィルタに強制再生を併用した場合には、強制再生が行われる毎に堆積した粒子状物質が燃焼除去され、初期状態に回復されるため、粒子状物質が隔壁内部の細孔内に所定量堆積されるまでの間、粒子状物質の捕集率の低い状態が強制再生毎に繰り返し発生し、未浄化の粒子状物質が排出されるという問題点があった。また、一旦粒子状物質が隔壁内部の細孔内に堆積し始め、隔壁内部に存在する細孔内に粒子状物質が堆積、充填されるようになると、充填された粒子状物質によって捕集率は改善されてゆくものの、隔壁中で三次元的に連鎖した細孔内に粒子状物質が充填されることから、隔壁自体の圧力損失が大きくなり、セラミックハニカムフィルタの圧力損失が大きくなるという問題点も有していた。   That is, in the ceramic honeycomb structure used for the catalyst regeneration type ceramic honeycomb filter of the prior art, in order to make the particulate matter easily come into contact with the catalyst substance supported in the pores inside the partition wall, the porous partition wall Since the opening diameter and the opening area ratio of the pores opened on the surface are formed large, especially in the operation region where the exhaust gas temperature is low and the amount of particulate matter deposited is small, the particulate matter There are cases where the partition wall surface easily enters the partition wall through pores having a large opening diameter, passes through the partition wall, and is discharged without purification. Therefore, when the forced regeneration is used in combination with the conventional catalyst regeneration type ceramic honeycomb filter, the particulate matter deposited every time the forced regeneration is performed is removed by combustion and recovered to the initial state. Until a predetermined amount is deposited in the pores inside the partition walls, a state where the particulate matter collection rate is low is repeatedly generated every forced regeneration, and unpurified particulate matter is discharged. there were. In addition, once the particulate matter starts to deposit in the pores inside the partition walls, and the particulate matter is deposited and filled in the pores existing inside the partition walls, the collection rate is increased by the filled particulate matter. However, since the particulate matter is filled in the pores that are three-dimensionally linked in the partition wall, the pressure loss of the partition wall itself increases and the pressure loss of the ceramic honeycomb filter increases. Also had a point.

一方、特許文献1に記載のセラミックハニカム構造体では、55〜80%という高気孔率を有するセラミックハニカム構造体が得られるものの、隔壁表面に開口する細孔の隔壁内部の形態については何ら考慮されていないことから、粒子状物質の高捕集率と低圧力損失との両立が困難であった。   On the other hand, in the ceramic honeycomb structure described in Patent Document 1, although a ceramic honeycomb structure having a high porosity of 55 to 80% can be obtained, no consideration is given to the form inside the partition walls of the pores opening on the partition surface. Therefore, it was difficult to achieve both a high collection rate of particulate matter and a low pressure loss.

したがって本発明の目的は、上記問題を解決し、触媒再生型のセラミックハニカムフィルタに強制再生を併用した場合であっても、運転初期の段階から、粒子状物質の高捕集率を達成して、有害な粒子状物質を排出させないようにし、かつ粒子状物質の堆積量が多くなっても、低圧力損失特性が得られるセラミックハニカムフィルタに適したセラミックハニカム構造体を提供することにある。   Accordingly, an object of the present invention is to solve the above problems and achieve a high particulate matter collection rate from the initial stage of operation even when forced regeneration is used in combination with a catalyst regeneration type ceramic honeycomb filter. An object of the present invention is to provide a ceramic honeycomb structure suitable for a ceramic honeycomb filter that can prevent harmful particulate matter from being discharged and can obtain low pressure loss characteristics even when the amount of particulate matter deposited increases.

本発明者等は上記従来技術の問題について鋭意検討を行った。その結果、上記従来技術のセラミックハニカムフィルタの捕集初期段階での低捕集率の問題や、捕集が進んだ後の圧力損失の上昇の問題に対して、多孔質の隔壁の隔壁表面での細孔径を積極的に小さくするのと共に、隔壁内部での細孔径を大きくして、排気ガス中の粒子状物質が隔壁の細孔内部に充填されにくい細孔構造を採用すれば、初期の捕集率を向上させ、且つ捕集が進んだ後の圧力損失も低くできると考え、本発明に想到した。   The inventors of the present invention have intensively studied the above-described problems of the prior art. As a result, on the partition wall surface of the porous partition wall, the problem of the low collection rate at the initial stage of collection of the above-mentioned conventional ceramic honeycomb filter and the problem of increase in pressure loss after the collection progresses. If the pore size inside the partition wall is increased and the pore structure inside the partition wall is less likely to be filled with the particulate matter in the exhaust gas, The present inventors have conceived that the collection rate can be improved and the pressure loss after the collection has progressed can be reduced.

本発明のセラミックハニカム構造体は、多孔質の隔壁により仕切られた多数の流路を有するセラミックハニカム構造体であって、前記隔壁の気孔率が55〜75%であり、前記隔壁表面での平均細孔径Daが5〜30μm、前記隔壁表面での細孔面積率Saが10〜30%、かつ前記隔壁の表面に垂直な切断面に観察される、前記隔壁の表面に開口した複数の細孔の表面の開口部長さの平均値Laと、前記切断面上で前記隔壁の表面からLaの深さにおける前記複数の細孔の幅の平均値Lbとが、1.1<Lb/La<5の関係にあることを特徴とする。さらに前記隔壁の気孔率が58〜70%であることが好ましい。   The ceramic honeycomb structure of the present invention is a ceramic honeycomb structure having a large number of flow paths partitioned by porous partition walls, the partition walls having a porosity of 55 to 75%, and an average of the partition wall surfaces A plurality of pores opened on the surface of the partition wall, having a pore diameter Da of 5 to 30 μm, a pore area ratio Sa on the surface of the partition wall of 10 to 30%, and observed on a cut surface perpendicular to the surface of the partition wall The average value La of the opening lengths on the surface of the surface and the average value Lb of the widths of the plurality of pores at the depth La from the surface of the partition wall on the cut surface are 1.1 <Lb / La <5. It is characterized by having the relationship. Furthermore, it is preferable that the porosity of the partition wall is 58 to 70%.

本発明のセラミックハニカム構造体において、前記隔壁に触媒物質が担持されていることが好ましい。   In the ceramic honeycomb structure of the present invention, it is preferable that a catalyst material is supported on the partition walls.

また、本発明のセラミックハニカム構造体押出成形用坏土は、平均粒径が40μm以下のセラミックス原料粉末に、平均粒径40〜100μmの有機発泡剤、バインダー、水、及び必要に応じて成形助剤を添加して混練した、可塑性を有する坏土であって、該坏土の粘弾性特性試験において、測定周波数1rad/sにおける、貯蔵弾性率が、5×10〜1.4×10Paであり、複素粘性係数が1×10〜1×10Pa・sであることを特徴とする。 In addition, the ceramic honeycomb structure extrusion molding clay of the present invention is applied to a ceramic raw material powder having an average particle size of 40 μm or less, an organic foaming agent having an average particle size of 40 to 100 μm, a binder, water, and, if necessary, a molding aid. A kneaded clay that is kneaded by adding an agent, and has a storage elastic modulus of 5 × 10 4 to 1.4 × 10 6 at a measurement frequency of 1 rad / s in a viscoelastic property test of the kneaded material. Pa and the complex viscosity coefficient is 1 × 10 4 to 1 × 10 7 Pa · s.

次に、作用効果について説明する。多孔質の隔壁により仕切られた多数の流路を有するセラミックハニカム構造体であって、前記隔壁の気孔率が55〜75%であるにもかかわらず、前記隔壁表面での平均細孔径Daを5〜30μm、前記隔壁表面での細孔面積率Saを10〜30%とし、かつ前記隔壁の表面に垂直な切断面に観察される、前記隔壁の表面に開口した複数の細孔の表面の開口部長さ(以下、開口部長さと略す)の平均値Laと、前記切断面上で前記隔壁の表面からLaの深さにおける前記複数の細孔の幅(以下、内部幅と略す)の平均値Lbとを、1.1<Lb/La<5の関係にあるようにしていることから、低圧力損失を有すると共に、粒子状物質の捕集初期段階から、粒子状物質の捕集率を高く維持することができるという効果を有している。   Next, operational effects will be described. A ceramic honeycomb structure having a large number of flow paths partitioned by porous partition walls, and the average pore diameter Da on the partition wall surface is 5 despite the porosity of the partition walls being 55 to 75%. Opening of the surface of a plurality of pores opened on the surface of the partition wall, observed on a cut surface perpendicular to the surface of the partition wall, with a pore area ratio Sa on the partition wall surface of 10 to 30% The average value La of the part length (hereinafter abbreviated as the opening length) and the average value Lb of the widths (hereinafter abbreviated as internal widths) of the plurality of pores at the depth La from the surface of the partition wall on the cut surface And 1.1 <Lb / La <5, so that it has low pressure loss and maintains a high particulate matter collection rate from the initial stage of particulate matter collection. It has the effect that it can be done.

この理由について詳しく説明する。セラミックハニカム構造体の隔壁は焼成時のセラミック材料の架橋作用による細孔や造孔剤が消滅した後の細孔が3次元的に連通した細孔を有しており、前記細孔は隔壁の表面に開口し外部に連通しているものの他、隔壁内部で閉じている細孔も存在する。隔壁のその表面に垂直な切断面上には前記細孔が観察され、前記切断面上において隔壁表面に開口したnヶの細孔の各開口部長さを計測し平均を求めた値をLaとし、また、隔壁表面からの深さがLaの位置における前記隔壁表面に開口したnヶの細孔の幅寸法の合計をnで除したものをLbとしたとき、Lb/La>1.1とは、細孔の径が隔壁表面の開口部よりも隔壁内部において拡径していることを意味しており、前記細孔は所謂インクボトル形状を呈していることを意味する。ここで、隔壁表面からの深さがLaの位置における隔壁表面に開口した細孔の幅とは、前記切断面上で隔壁表面よりLa離れた隔壁表面に平行な線を描き、前記線が前記細孔内を通過する部分の長さをいう。次にこの隔壁中の細孔の形態を図1を用いて説明する。図1は、本発明のセラミックハニカム構造体の隔壁表面の模式断面図であり、図2は特許文献5に記載されている従来技術のセラミックハニカム構造体の隔壁表面の模式断面図である。図1及び図2の模式断面図の比較によれば、従来技術のセラミックハニカム構造体が、隔壁表面の細孔径と隔壁内部の細孔径がほぼ同等に形成されているのに対し、本発明のセラミックハニカム構造体は、隔壁内部での細孔径に対して隔壁表面での細孔径が小さい所謂インクボトル形態の細孔を有している。   The reason will be described in detail. The partition walls of the ceramic honeycomb structure have pores formed by cross-linking the ceramic material during firing and pores after the pore-forming agent has disappeared in a three-dimensional manner. In addition to those that open to the surface and communicate with the outside, there are pores that are closed inside the partition walls. The pores are observed on a cut surface perpendicular to the surface of the partition wall, and La is the value obtained by measuring the length of each opening of the n pores opened on the partition surface on the cut surface and calculating the average. In addition, when Lb is obtained by dividing the total width of n pores opened on the partition wall surface at a position where the depth from the partition wall surface is La by n, Lb / La> 1.1 Means that the diameter of the pore is larger in the inside of the partition than the opening on the surface of the partition, and the pore has a so-called ink bottle shape. Here, the width of the pores opened on the partition wall surface at a position where the depth from the partition wall surface is La is a line parallel to the partition wall surface separated by La from the partition wall surface on the cut surface, and the line is The length of the part that passes through the pores. Next, the form of the pores in the partition walls will be described with reference to FIG. FIG. 1 is a schematic cross-sectional view of the partition wall surface of the ceramic honeycomb structure of the present invention, and FIG. 2 is a schematic cross-sectional view of the partition wall surface of the conventional ceramic honeycomb structure described in Patent Document 5. According to the comparison of the schematic cross-sectional views of FIG. 1 and FIG. 2, the ceramic honeycomb structure according to the prior art has the pore diameter on the partition wall surface and the pore diameter inside the partition wall formed substantially equal. The ceramic honeycomb structure has so-called ink bottle-shaped pores in which the pore diameter on the partition wall surface is smaller than the pore diameter inside the partition wall.

このような細孔を有する隔壁に粒子状物質を含有する排気ガスを通過させようとすると、排気ガス中の粒子状物質の凝集力が強いこと、及び隔壁表面での細孔径Daを5〜30μmの小さい範囲としていることから、粒子状物質は隔壁内部の細孔へは侵入しにくく、隔壁表面での細孔の開口部入口で凝集し易くなるため、開口部入口は直ちに粒子状物質により覆われ、隔壁表面全体に亘って、粒子状物質からなる層が徐々に形成されるようになる。そして、隔壁表面への粒子状物質堆積量が多くなり、隔壁表面の粒子状物質からなる層が徐々に厚くなるにつれて、前記粒子状物質からなる層による圧力損失の上昇はあるものの、隔壁表面全体に層状に堆積しているため、隔壁内部に3次元的に連鎖した細孔に粒子状物質が堆積する場合と比較して、隔壁自体の圧力損失の上昇の程度は小さく、従来技術の排気ガス流入側隔壁表面の細孔の開口径を大きくしたセラミックハニカム構造体で発生する圧力損失上昇の問題を回避することができるのである。別の効果として、粒子状物質からなる層は、該層自体が所謂フィルタの機能をはたし、粒子状物質の捕集初期段階から、粒子状物質の捕集率を高く維持することが可能となり、更に、このフィルタ機能を有する粒子状物質からなる層は、粒径が100nm以下の微細粒子状物質から形成されていることから、層中の空隙寸法はnmオーダーとなるため、結果として本セラミックハニカム構造体を使用したセラミックハニカムフィルタはnmオーダーの粒子状物質をも捕集できるという効果もある。このように、隔壁表面での細孔径を小さくすると共に、隔壁表面に開口した細孔を隔壁内部で大きくした所謂インクボトル形状の細孔を備えた本発明のセラミックハニカム構造体によれば、細孔が隔壁表面直下で拡径するため、隔壁の圧力損失を大きくすることなく、また、排気ガス温度が触媒活性温度未満の温度であっても、初期段階における粒子状物質の高捕集率、且つ粒子状物質の捕集が進んだ段階における低圧力損失という相反する特性の両立ができるのである。ただしLb/Laが大きくなり過ぎると、すなわち細孔の開口部長さの平均値Laが過剰に小さくなると隔壁表面での細孔径が小さくなるため、隔壁の圧力損失が初期段階から高くなり、また細孔の内部幅の平均値Lbが過剰に大きくなると隔壁内部での細孔が大きくなるため、ハニカム構造体の強度が低下する。よってLb/La<5とする。より好ましくは、1.3<Lb/La<4.5である。   When exhaust gas containing particulate matter is allowed to pass through the partition wall having such pores, the cohesive force of the particulate matter in the exhaust gas is strong, and the pore diameter Da on the partition wall surface is 5 to 30 μm. Therefore, it is difficult for the particulate matter to enter the pores inside the partition wall, and it is easy to aggregate at the entrance of the pore opening on the partition wall surface, so that the opening entrance is immediately covered with the particulate matter. In other words, a layer composed of particulate matter is gradually formed over the entire partition wall surface. Then, as the amount of particulate matter deposited on the partition wall surface increases and the layer of particulate material on the partition wall surface gradually increases, the pressure loss due to the layer of particulate matter increases, but the entire partition wall surface As compared with the case where particulate matter is deposited in pores that are three-dimensionally linked inside the partition wall, the degree of increase in pressure loss of the partition wall itself is small, and the exhaust gas of the prior art It is possible to avoid the problem of an increase in pressure loss that occurs in the ceramic honeycomb structure in which the opening diameter of the pores on the inflow side partition wall surface is increased. As another effect, the layer made of particulate matter can function as a so-called filter, and can maintain a high collection rate of the particulate matter from the initial stage of collecting the particulate matter. Furthermore, since the layer made of the particulate material having the filter function is formed from a fine particulate material having a particle size of 100 nm or less, the void size in the layer is on the order of nm. A ceramic honeycomb filter using a ceramic honeycomb structure also has an effect that it can collect particulate matter in the order of nm. Thus, according to the ceramic honeycomb structure of the present invention having so-called ink bottle-shaped pores in which the pore diameter on the partition wall surface is reduced and the pores opened on the partition wall surface are enlarged inside the partition wall, Since the diameter of the hole expands directly below the partition wall surface, without increasing the pressure loss of the partition wall, and even when the exhaust gas temperature is lower than the catalyst activation temperature, the high collection rate of particulate matter in the initial stage, In addition, the contradictory characteristics of low pressure loss at the stage where the collection of particulate matter has advanced can be achieved. However, if Lb / La becomes too large, that is, if the average value La of the pore opening length becomes excessively small, the pore diameter on the partition wall surface becomes small, so the pressure loss of the partition wall increases from the initial stage, If the average value Lb of the internal width of the pores becomes excessively large, the pores inside the partition walls become large, so that the strength of the honeycomb structure decreases. Therefore, Lb / La <5. More preferably, 1.3 <Lb / La <4.5.

また本発明の特徴は、隔壁の気孔率が55%以上と大きいのにもかかわらず、隔壁表面での平均細孔径を5〜30μmと小さく、また隔壁表面での細孔面積率も10〜30%と小さくしたことにある。一般に気孔率を大きくすると、細孔容積が増えることから、隔壁表面に露出した細孔の面積率は大きくなる。例えば特許文献6に記載の従来の技術の場合、隔壁の気孔率が55%以上の場合には隔壁表面での細孔面積率は30%を超えてしまい、細孔の面積率30%以下を得るためには、気孔率を54%以下にしなければならない。本発明のセラミックハニカム構造体は、例えば本発明の押出成形用坏土に関する別の発明に記した坏土を使用することによって隔壁表面での細孔面積率を30%以下とすることが可能となる。隔壁表面での細孔面積率Saを10〜30%とするのは、隔壁表面での細孔面積率Saが10%を下回ると、隔壁表面に開口した細孔の数が少なくなるため、隔壁の初期段階での圧力損失が高くなるからであり、隔壁表面での細孔面積率Saが30%を越えると、セラミックハニカム構造体の機械的強度が低下するためである。この隔壁表面での細孔面積率の好ましい範囲は15〜25%である。また、隔壁表面での平均細孔径Daを5〜30μmとするのは、隔壁表面での平均細孔径Daが5μmを下回ると、隔壁表面に開口した細孔の径が小さくなるため、隔壁の圧力損失が初期段階から高くなるからであり、隔壁表面での細孔径Daが30μmを上回ると、排気ガス中の粒子状物質が隔壁内部に侵入しやすくなり、捕集開始初期の捕集率が低くなるのと共に、捕集量が多くなると圧力損失が大きくなり、さらにはハニカム構造体の強度も低下するからである。この隔壁表面での細孔径の好ましい範囲は、上記理由から15〜25μmである。   In addition, the present invention is characterized in that the average pore diameter on the partition wall surface is as small as 5 to 30 μm and the pore area ratio on the partition wall surface is 10 to 30 despite the porosity of the partition wall being as large as 55% or more. It is in making it small. In general, when the porosity is increased, the pore volume increases, so that the area ratio of the pores exposed on the partition wall surface increases. For example, in the case of the conventional technique described in Patent Document 6, when the porosity of the partition walls is 55% or more, the pore area ratio on the partition surface exceeds 30%, and the pore area ratio is 30% or less. In order to obtain it, the porosity must be 54% or less. The ceramic honeycomb structure of the present invention can have a pore area ratio of 30% or less on the partition wall surface by using, for example, the clay described in another invention relating to the extrusion molding clay of the present invention. Become. The pore area ratio Sa on the partition wall surface is set to 10 to 30% because the number of pores opened on the partition wall surface decreases when the pore area ratio Sa on the partition wall surface is less than 10%. This is because the pressure loss at the initial stage increases, and if the pore area ratio Sa on the partition wall surface exceeds 30%, the mechanical strength of the ceramic honeycomb structure decreases. The preferable range of the pore area ratio on the partition wall surface is 15 to 25%. Moreover, the average pore diameter Da on the partition wall surface is set to 5 to 30 μm because when the average pore diameter Da on the partition wall surface is less than 5 μm, the diameter of the pores opened on the partition wall surface becomes small. This is because the loss increases from the initial stage. When the pore diameter Da on the partition wall surface exceeds 30 μm, particulate matter in the exhaust gas easily enters the partition wall, and the collection rate at the beginning of the collection is low. In addition, as the amount of traps increases, the pressure loss increases, and the strength of the honeycomb structure also decreases. The preferable range of the pore diameter on the partition wall surface is 15 to 25 μm for the above reason.

また、隔壁の気孔率を55〜75%とするのは、隔壁中に存在する細孔の割合を増加させることにより、微粒子が捕集されていない初期段階での圧力損失を低く押さえることができるのと共に、実用上十分な強度を持たせるためであり、気孔率が55%を下回ると、初期の圧力損失が大きくなる場合があり、気孔率が75%を越えると、強度が低下し、セラミックハニカムフィルタとして実用できない場合もあるからである。より好ましい気孔率の範囲は58〜70%である。   Moreover, the porosity of the partition wall is 55 to 75% because the pressure loss at the initial stage where fine particles are not collected can be reduced by increasing the proportion of pores present in the partition wall. At the same time, if the porosity is less than 55%, the initial pressure loss may increase, and if the porosity exceeds 75%, the strength decreases, and the ceramic This is because it may not be practical as a honeycomb filter. A more preferable porosity range is 58 to 70%.

ここで、隔壁表面での平均細孔径Da及び面積率Saは、隔壁表面のSEM観察から得られた写真(倍率100倍、撮影視野1.1mm×0.8mm)の5視野分から、画像解析装置により求めた。平均細孔径Daは、個々の細孔の重心を通る径を2°刻みで測定した平均径を、撮影視野全体に存在する細孔の平均値として算出した。また、開口部長さの平均値Laと細孔の幅の平均値Lbは隔壁の切断面を上記と同じくSEM観察し、得られた写真((倍率100倍、撮影視野1.1mm×0.8mm)の5視野分から、画像解析装置により求めた。   Here, the average pore diameter Da and the area ratio Sa on the partition wall surface are obtained from five fields of the photograph (magnification 100 times, photographing field of view 1.1 mm × 0.8 mm) obtained from the SEM observation of the partition wall surface. Determined by The average pore diameter Da was calculated as the average diameter of pores existing in the entire field of view, which was obtained by measuring the diameter passing through the center of gravity of each pore in increments of 2 °. Further, the average value La of the opening length and the average value Lb of the pore width were obtained by observing the cut surface of the partition wall with the SEM in the same manner as described above (the magnification was 100 times, the field of view 1.1 mm × 0.8 mm). ) Was obtained by an image analyzer.

本発明のセラミックハニカム構造体において、隔壁に触媒物質が担持されていることが好ましいのは、本発明のセラミックハニカム構造体では、上述したように排気ガス中の粒子状物質が隔壁内部の細孔に侵入しにくい構造としているものの、微細な粒子状物質がこの層を通過して、隔壁内に浸入するようなことがあっても、細孔内に担持された触媒物質の作用により粒子状物質が容易に燃焼され、浄化され易いからである。   In the ceramic honeycomb structure of the present invention, it is preferable that the catalyst material is supported on the partition walls. In the ceramic honeycomb structure of the present invention, as described above, the particulate matter in the exhaust gas has pores inside the partition walls. Even though fine particulate matter may pass through this layer and infiltrate into the partition wall, the particulate matter is supported by the action of the catalyst substance supported in the pores. Is easily burned and easily purified.

本発明に係るセラミックハニカム構造体の隔壁厚は0.1〜0.5mmが好ましく、隔壁のピッチは1.2mm〜3mmが好ましい。隔壁厚が0.1mm未満では、隔壁が細孔を有する高気孔率の多孔質体であることからセラミックハニカム構造体の強度が低下し、好ましくないからである。一方、隔壁厚が0.5mmを超えると、如何に隔壁が高気孔率であっても、排気ガスに対する隔壁の通気抵抗が大きくなるため、セラミックハニカムフィルタの圧力損失が大きくなる場合もあるからである。上記観点から、より好ましい隔壁厚さは、0.2〜0.4mmである。また、隔壁のピッチが1.2mm未満であると、セラミックハニカム構造体の入口の開口面積が小さくなることから、セラミックハニカムフィルタ入口の圧力損失が大きくなる場合もあることから好ましくなく、隔壁のピッチが3mmを越えると、単位体積あたりのフィルタ面積が小さくなることから、セラミックハニカムフィルタの圧力損失が大きくなる場合もあるからで好ましくない。上記観点から、より好ましい隔壁のピッチは1.3〜1.8mmである。   The partition wall thickness of the ceramic honeycomb structure according to the present invention is preferably 0.1 to 0.5 mm, and the partition wall pitch is preferably 1.2 mm to 3 mm. When the partition wall thickness is less than 0.1 mm, the partition wall is a porous body having a high porosity and thus the strength of the ceramic honeycomb structure is lowered, which is not preferable. On the other hand, if the partition wall thickness exceeds 0.5 mm, the pressure loss of the ceramic honeycomb filter may increase because the ventilation resistance of the partition wall to the exhaust gas increases regardless of the high porosity of the partition wall. is there. From the above viewpoint, a more preferable partition wall thickness is 0.2 to 0.4 mm. Further, if the partition wall pitch is less than 1.2 mm, the opening area of the inlet of the ceramic honeycomb structure becomes small, which is not preferable because the pressure loss of the ceramic honeycomb filter inlet may increase. If the thickness exceeds 3 mm, the filter area per unit volume is reduced, and the pressure loss of the ceramic honeycomb filter may be increased. From the above viewpoint, a more preferable partition pitch is 1.3 to 1.8 mm.

本発明のセラミックハニカム構造体を構成する材料としては、本発明がディーゼルエンジンの排気ガス中の微粒子を除去するためのフィルタとして使用されるため、耐熱性に優れた材料を使用することが好ましく、コーディエライト、アルミナ、ムライト、チタン酸アルミニウム、窒化珪素、炭化珪素及びLASからなる群から選ばれた少なくとも1種を主結晶とするセラミックス材料を用いることが好ましい。中でも、コーディエライトを主結晶とするセラミックハニカムフィルタは、安価で耐熱性、耐食性に優れ、また低熱膨張であることから最も好ましい。   As a material constituting the ceramic honeycomb structure of the present invention, since the present invention is used as a filter for removing fine particles in exhaust gas of a diesel engine, it is preferable to use a material having excellent heat resistance, It is preferable to use a ceramic material whose main crystal is at least one selected from the group consisting of cordierite, alumina, mullite, aluminum titanate, silicon nitride, silicon carbide, and LAS. Among these, a ceramic honeycomb filter having cordierite as a main crystal is most preferable because it is inexpensive, excellent in heat resistance and corrosion resistance, and has low thermal expansion.

本発明のセラミックハニカム構造体押出成形用坏土は、平均粒径が40μm以下のセラミックス原料粉末に、平均粒径40〜100μmの有機発泡剤、バインダー、水、及び必要に応じて成形助剤を添加して混練した、可塑性を有する坏土であって、該坏土の粘弾性特性試験において、測定周波数1rad/sにおける、貯蔵弾性率が、5×10〜1.4×10Paであり、複素粘性係数が1×10〜1×10Pa・sであることを特徴としている。これにより、坏土を公知のハニカム構造体押出成形用口金のスリットから排出させてハニカム構造の成形体を得ることができると共に、その後、焼成を行うことにより、隔壁内部での細孔の内部幅の平均値Lb/細孔の開口部長さの平均値La>1.1、即ち図1に模式図を示すような、隔壁表面に開口した所謂インクボトル形状の細孔を得ることができる。 In the ceramic honeycomb structure extrusion molding clay of the present invention, an organic foaming agent having an average particle size of 40 to 100 μm, a binder, water, and, if necessary, a forming aid are added to a ceramic raw material powder having an average particle size of 40 μm or less. A kneaded clay that has been added and kneaded and has a plasticity, and in the viscoelastic property test of the kneaded clay, the storage elastic modulus at a measurement frequency of 1 rad / s is 5 × 10 4 to 1.4 × 10 6 Pa. The complex viscosity coefficient is 1 × 10 4 to 1 × 10 7 Pa · s. Thus, the kneaded material can be discharged from the slits of the known honeycomb structure extrusion molding die to obtain a honeycomb structure formed body, and then the inner width of the pores inside the partition walls by firing. Average value Lb / average opening length length La> 1.1, that is, so-called ink bottle-shaped pores opened on the partition wall surface as shown in the schematic diagram of FIG.

この理由は、上記セラミックス粉末及び有機発泡剤の粒径を上記組み合わせとすることにより、且つ、可塑性を有する坏土の粘弾性特性試験において、測定周波数1rad/sにおける貯蔵弾性率を5×10〜1.4×10Pa、複素粘性係数を1×10〜1×10Pa・sと、比較的柔らかな坏土で、且つ保形性を有する坏土とすることにより、坏土を押出成形用口金スリットを通過させる際の圧力によっても、平均粒径40〜100μmの有機発泡剤が有する略球状の形態を損なわずに焼成体中に略球状の細孔を残存させることが可能となるとともに、平均粒径40μm以下のセラミックス原料粉末間で形成される小さな細孔を通じて略球状の細孔を隔壁表面に開口させ、隔壁表面の細孔径が小さく、隔壁内部で拡径する図1に示すような所謂インクボトル形状を呈したLb/La>1.1である細孔を得ることができるのとともにハニカム構造のセラミック成形体を得ることができるからである。 This is because the storage elastic modulus at a measurement frequency of 1 rad / s is 5 × 10 4 in the viscoelastic property test of the clay having plasticity by combining the particle sizes of the ceramic powder and the organic foaming agent with the above combination. By using a relatively soft clay and a shape-retaining clay with a complex viscosity coefficient of ~ 1.4 × 10 6 Pa and a complex viscosity coefficient of 1 × 10 4 to 1 × 10 7 Pa · s, It is possible to leave substantially spherical pores in the fired body without damaging the substantially spherical form of the organic foaming agent having an average particle size of 40 to 100 μm even by the pressure at the time of passing through the die slit for extrusion molding In addition, substantially spherical pores are opened on the partition wall surface through small pores formed between ceramic raw material powders having an average particle size of 40 μm or less, and the pore diameter on the partition wall surface is small and the diameter is expanded inside the partition wall. This is because it is possible to obtain a ceramic formed body of the honeycomb structure with can be obtained pores is Lb / La> 1.1 which exhibited a so-called ink bottle shape as shown.

ここで、セラミックス原料粉末の平均粒径を40μm以下とするのは、平均粒径が40μmを越えると、セラミックス原料粉末間で形成される、細孔の寸法が大きくなり、Lb/La>1.1が達成しにくくなるからであり、有機発泡剤の平均粒径を40〜100μmとしているのは、有機発泡剤の平均粒径が40μm未満であると、隔壁内部での細孔径が小さくなるため、Lb/La>1.1が達成しにくくなるからであり、有機発泡剤の平均粒径が100μmを越えると、セラミックハニカム構造体の隔壁中に形成される細孔の寸法が大きくなるためハニカム構造体の機械的強度が低下するからである。また、坏土の粘弾性特性試験において、測定周波数1rad/sにおける貯蔵弾性率を、5×10〜1.4×10Pa、複素粘性係数を1×10〜1×10Pa・sとするのは、貯蔵弾性率が、5×10未満、又は複素粘性係数が1×10Pa・s未満であると成形体の保形性が低下し、ハニカム構造体の成形〜乾燥時に変形が発生して所定の寸法のハニカム構造体が得られないからであり、貯蔵弾性率が1.5×10Paを越え、又は複素粘性係数が1×10Pa・sを越えると、坏土の硬度が高くなるため、略球状の有機発泡剤が成形時の圧力により変形して隔壁表面での開口径が大きくなり、略球状で無くなるものもあり、Lb/La>1.1が達成しにくくなるからである。この貯蔵弾性率の好ましい範囲は1×10〜1×10Paである。ここで、有機発泡剤のように略球状でない、例えばグラファイトなどの扁平形状の造孔剤を用いると、造孔剤の扁平面が隔壁表面に沿って配置されるため、Lb/La>1.1である細孔を得ることが難しくなる。この坏土の粘弾性特性試験における貯蔵弾性率を5×10〜1.4×10Pa、複素粘性係数を1×10〜1×10Pa・sの達成をより確実にするには、上記に加え、バインダ−の種類、添加量、水の添加量、必要に応じて潤滑剤等の成形助剤を添加、調整する。特に、バインダーとして、2%水溶液粘度(20℃)で5Pa・s以下のメチルセルロース(M)と、2%水溶液粘度(20℃)で20Pa・s以上のヒドロキシプロピルメチルセルロース(H)を、前記メチルセルロース(M)と前記ヒドロキシプロピルメチルセルロース(H)の質量比(M/H)を50/50を越え90/10以下の範囲で配合すると共に、前記メチルセルロース(M)と前記ヒドロキシプロピルメチルセルロース(H)をセラミックス粉末100質量部に対して総量で7〜12質量部配合することが好ましい。 Here, the average particle size of the ceramic raw material powder is set to 40 μm or less. When the average particle size exceeds 40 μm, the size of pores formed between the ceramic raw material powders increases, and Lb / La> 1. 1 is difficult to achieve, and the average particle size of the organic foaming agent is set to 40 to 100 μm. When the average particle size of the organic foaming agent is less than 40 μm, the pore diameter inside the partition walls becomes small. Lb / La> 1.1 is difficult to achieve, and when the average particle size of the organic foaming agent exceeds 100 μm, the size of the pores formed in the partition walls of the ceramic honeycomb structure becomes large. This is because the mechanical strength of the structure is lowered. Further, in the viscoelastic property test of the clay, the storage elastic modulus at a measurement frequency of 1 rad / s is 5 × 10 4 to 1.4 × 10 6 Pa, and the complex viscosity coefficient is 1 × 10 3 to 1 × 10 7 Pa ·. The reason for s is that when the storage elastic modulus is less than 5 × 10 4 or the complex viscosity coefficient is less than 1 × 10 4 Pa · s, the shape retention of the molded body is lowered, and the honeycomb structure is molded to dried. This is because deformation sometimes occurs and a honeycomb structure having a predetermined size cannot be obtained. When the storage elastic modulus exceeds 1.5 × 10 6 Pa or the complex viscosity coefficient exceeds 1 × 10 7 Pa · s. Since the hardness of the clay is increased, the substantially spherical organic foaming agent is deformed by the pressure at the time of molding, and the opening diameter on the partition wall surface is increased, and there are also those that are not substantially spherical, Lb / La> 1.1 This is because it becomes difficult to achieve. A preferable range of the storage elastic modulus is 1 × 10 5 to 1 × 10 6 Pa. Here, when a flat pore-forming agent such as graphite, which is not substantially spherical like an organic foaming agent, is used, the flat surface of the pore-forming agent is arranged along the partition wall surface, so that Lb / La> 1. It becomes difficult to obtain pores that are 1. To more reliably achieve the storage elastic modulus of 5 × 10 4 to 1.4 × 10 6 Pa and the complex viscosity coefficient of 1 × 10 3 to 1 × 10 7 Pa · s in the viscoelastic property test of this clay. In addition to the above, the type of binder, the amount added, the amount of water added, and, if necessary, a molding aid such as a lubricant is added and adjusted. In particular, 2% aqueous solution viscosity (20 ° C.) of 5 Pa · s or less methylcellulose (M) and 2% aqueous solution viscosity (20 ° C.) of 20 kPa or more hydroxypropyl methylcellulose (H) are used as the binder. M) and the hydroxypropyl methylcellulose (H) in a mass ratio (M / H) of 50/50 to 90/10 or less, and the methylcellulose (M) and the hydroxypropylmethylcellulose (H) are ceramics. It is preferable to mix 7 to 12 parts by mass with respect to 100 parts by mass of the powder.

また、本発明のセラミックハニカム構造体を構成する材料がコーディエライトの場合、本発明のセラミックハニカム構造体押出成形用坏土は、コーディエライトセラミックス原料中のタルク原料の平均粒径を20μm以下、シリカ原料の平均粒径を30μm以下、アルミナ原料の平均粒径を20μm以下に制御すると、セラミックス原料のコーディエライト合成過程で形成される細孔の寸法を小さくすることができることから、平均粒径の大きな略球状造孔剤の形態を効果的に反映させた細孔が形成され、Lb/La>1.1である細孔細孔を、より容易に形成させることが可能となる。   When the material constituting the ceramic honeycomb structure of the present invention is cordierite, the ceramic honeycomb structure extrusion molding clay of the present invention has an average particle size of talc raw material in the cordierite ceramic raw material of 20 μm or less. When the average particle size of the silica raw material is controlled to 30 μm or less and the average particle size of the alumina raw material is controlled to 20 μm or less, the size of the pores formed in the cordierite synthesis process of the ceramic raw material can be reduced. Fine pores that effectively reflect the shape of the substantially spherical pore-forming agent having a large diameter are formed, and pores with Lb / La> 1.1 can be more easily formed.

上記のように本発明のセラミックハニカム構造体及びセラミックハニカム構造体押出成形用坏土を用いたセラミックハニカムフィルタによれば、隔壁が細孔の開口部長さの平均値Laと細孔の内部幅の平均値Lbが1.1<Lb/La<5である、所謂インクボトル形状の細孔を有しており、且つ隔壁表面での細孔径を小さく、細孔面積率を適切な範囲としていることから、ディーゼル機関の運転開始当初やフィルタが再生された直後等の、初期段階においても、微粒子の捕集率を高く維持できると共に、粒子状物質の捕集が進み、堆積量が多くなっても、低圧力損失が達成できる。   As described above, according to the ceramic honeycomb structure of the present invention and the ceramic honeycomb filter using the ceramic honeycomb structure extrusion molding clay, the partition wall has an average value La of pore opening length and an internal width of the pore. It has so-called ink bottle-shaped pores whose average value Lb is 1.1 <Lb / La <5, the pore diameter on the partition wall surface is small, and the pore area ratio is in an appropriate range. From the beginning of diesel engine operation and immediately after the filter is regenerated, the particulate collection rate can be maintained high, and the collection of particulate matter proceeds and the amount of sediment increases. Low pressure loss can be achieved.

以下、本発明の実施の形態を実施例に基き詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail based on examples.

平均粒径40μm以下のカオリン、タルク、アルミナ、水酸化アルミ、シリカ等の原料粉末を調整して、化学組成が質量比でSiO2 :48〜52%、Al23:33〜37%、MgO:12〜15%、CaO:0〜0.05%、Na2O :0〜0.05%、K2O :0〜0.05%、TiO2 :0〜1.0%、Fe23:0〜1.0%、PbO:0〜0.1%、P25:0〜0.2%を含むコーディエライト化原料粉末とした。このコーディエライト化原料粉末に対し、平均粒径65μmの有機発泡剤、メチルセルロースを添加して混合した後、水を加えて混練し、可塑性のあるコーディエライト化原料からなるセラミック坏土を作製した。この得られた坏土を押出成形口金を使用し、ハニカム構造の成形体が得られるように押出成形し、乾燥後、バッチ式焼成炉にて200時間のスケジュール、最高温度1400℃の条件で焼成して、外径267mm、全長304mmで、隔壁のピッチ1.57mm、隔壁の厚さ0.32mmである試験NO.1〜12のセラミックハニカム構造体を得た。この時、表1に示す、坏土の貯蔵弾性率、複素粘性係数、多孔質の隔壁の気孔率、隔壁表面での細孔径Da、隔壁表面での細孔面積率Sa、細孔の開口部長さの平均値Laと細孔の内部幅の平均値Lbの比Lb/Laが得られるように、タルク粉末、シリカ粉末、カオリン粉末、アルミナ粉末、水酸化アルミニウム粉末、造孔剤、成形助剤の粒径及び添加量、水及びバインダーの添加量、混練条件、押出成形条件、焼成条件等の製造条件を適宜選択した。 A raw material powder such as kaolin, talc, alumina, aluminum hydroxide, silica having an average particle size of 40 μm or less is prepared, and the chemical composition is SiO 2 : 48 to 52%, Al 2 O 3 : 33 to 37% by mass ratio, MgO: 12 to 15%, CaO: 0 to 0.05%, Na 2 O: 0 to 0.05%, K 2 O: 0 to 0.05%, TiO 2 : 0 to 1.0%, Fe 2 A cordierite-forming raw material powder containing O 3 : 0 to 1.0%, PbO: 0 to 0.1%, and P 2 O 5 : 0 to 0.2% was obtained. To this cordierite forming raw material powder, an organic foaming agent having an average particle size of 65 μm and methyl cellulose are added and mixed, and then water is added and kneaded to produce a ceramic clay made of a plastic cordierite forming raw material. did. The obtained kneaded material is extruded using an extrusion die so that a honeycomb structure is obtained, dried, and then fired in a batch firing furnace at a maximum temperature of 1400 ° C. for a schedule of 200 hours. The test No. 1 has an outer diameter of 267 mm, an overall length of 304 mm, a partition wall pitch of 1.57 mm, and a partition wall thickness of 0.32 mm. 1 to 12 ceramic honeycomb structures were obtained. At this time, as shown in Table 1, storage modulus of clay, complex viscosity coefficient, porosity of porous partition wall, pore diameter Da on partition wall surface, pore area ratio Sa on partition wall surface, pore opening length Talc powder, silica powder, kaolin powder, alumina powder, aluminum hydroxide powder, pore former, molding aid so that the ratio Lb / La of the average value La and the average value Lb of the internal width of the pores can be obtained The production conditions such as the particle size and addition amount, the addition amount of water and binder, kneading conditions, extrusion molding conditions, and firing conditions were appropriately selected.

ここで、坏土の貯蔵弾性率及び複素粘性係数は、レオメトリック・サイエンティフィック社製のダイナミックスペクトロメーターRDSを使用して、測定周波数1rad/s、測定温度10℃の条件で測定した。   Here, the storage elastic modulus and complex viscosity coefficient of the clay were measured under the conditions of a measurement frequency of 1 rad / s and a measurement temperature of 10 ° C. using a dynamic spectrometer RDS manufactured by Rheometric Scientific.

次いで、これらのセラミックハニカム構造体に対して、セラミックハニカム構造体の流路端部を交互に目封止がなされるように公知の技術により、コーディエライト化原料からなる目封止材スラリーを充填した後、目封止材スラリーの乾燥、焼成を行い、試験NO1〜12の各種コーディエライト質セラミックハニカムフィルタを得た。ここで流路の目封止材の長さは7〜10mmとなるよう調整した。   Next, plugging material slurry made of a cordierite forming raw material is applied to these ceramic honeycomb structures by a known technique so that the flow path ends of the ceramic honeycomb structures are alternately plugged. After filling, the plugging material slurry was dried and fired to obtain various cordierite ceramic honeycomb filters of Test Nos. 1 to 12. Here, the length of the plugging material of the flow path was adjusted to 7 to 10 mm.

得られた試験NO1〜12のセラミックハニカムフィルタに対して、粒子状物質捕集率の評価、圧力損失の評価、及びアイソスタティック強度の評価を行った。結果を表1に示す。ここで微粒子の捕集率は、圧力損失テストスタンドにて、セラミックハニカムフィルタに空気流量10Nm/minで、粒径0.042μmのカーボン粉を3g/hの投入速度で投入し、17g(カーボン粉1g/フィルタ容積1L)投入した後の、カーボン粉投入量及び捕集量から所謂初期の捕集率を算出した。そして、捕集率が90%以上であれば合格(○)とし、更に好ましい95%以上を(◎)、90%未満を不合格(×)として判定した。 Evaluation of the particulate matter collection rate, pressure loss, and isostatic strength were performed on the obtained ceramic honeycomb filters of Test Nos. 1 to 12. The results are shown in Table 1. Here, the collection rate of the fine particles is 17 g (carbon loss) at a pressure loss test stand at a flow rate of 3 g / h with carbon powder having a particle size of 0.042 μm and a ceramic honeycomb filter at an air flow rate of 10 Nm 3 / min. The so-called initial collection rate was calculated from the input amount of carbon powder and the collected amount after 1 g of powder / filter volume 1 L). If the collection rate was 90% or more, it was judged as pass (◯), more preferably 95% or more was judged as (◎), and less than 90% was judged as reject (x).

また、圧力損失は、同様に圧力テストスタンドで、流入側と流出側の差圧を圧力損失(mmAq)として測定して、カーボン粉投入前の圧力損失に対する上昇率を算出した。圧力損失上昇率=100×{(カーボン1g/L投入後の圧力損失)−(カーボン投入前の圧力損失)}/(カーボン投入前の圧力損失)(%)。その結果、圧力損失上昇率20%以下であれば合格(○)とし、更に好ましい15%以下を(◎)、20%を越える場合を不合格(×)として圧力損失を評価した。   Similarly, the pressure loss was measured on the pressure test stand by measuring the differential pressure between the inflow side and the outflow side as the pressure loss (mmAq), and the rate of increase relative to the pressure loss before the carbon powder was charged was calculated. Pressure loss increase rate = 100 × {(pressure loss after charging carbon 1 g / L) − (pressure loss before charging carbon)} / (pressure loss before charging carbon) (%). As a result, the pressure loss was evaluated as a pass (◯) if the rate of increase in pressure loss was 20% or less, more preferably 15% or less (◎), and a case where it exceeded 20% was rejected (×).

また、アイソスタティック強度試験は、社団法人自動車技術会発行の自動車規格(JASO)M505−87に基づき、セラミックハニカム構造体の軸方向両端面に厚さ20mmのアルミ板を当接して両端を密閉するとともに、外壁部表面を厚さ2mmのゴムで密着したものを、圧力容器に入れ、圧力容器内に水を導入して、外壁部表面から静水圧を加え、破壊したときの圧力を測定して、アイソスタティック強度とした。そして、アイソスタティック強度が1.5MPa以上の好ましい場合を合格(○)とし、さらに1.8MPa以上の好ましい場合を(◎)とし、1.5MPa未満の場合を不合格(×)で示した。   In addition, the isostatic strength test is based on the automobile standard (JASO) M505-87 issued by the Japan Society of Automotive Engineers, and the both ends of the ceramic honeycomb structure are brought into contact with both axial ends of the ceramic honeycomb structure to seal both ends. At the same time, put the outer wall surface in close contact with 2 mm thick rubber into a pressure vessel, introduce water into the pressure vessel, apply hydrostatic pressure from the outer wall surface, and measure the pressure when destroyed The isostatic strength was used. And the case where isostatic strength was 1.5 MPa or more was set to pass ((circle)), the case where 1.8 MPa or more was preferable was set to ((double-circle)), and the case where it was less than 1.5 MPa was shown by rejection (x).

そして、総合判定として、捕集率、圧力損失、アイソスタティック強度のいずれも合格の(○)または(◎)であるものを(○)、すべてが(◎)であるものを(◎)、いずれかに(×)があるものを(×)で評価した。   Then, as a comprehensive judgment, all of the collection rate, pressure loss, and isostatic strength are (◯) or (◎) that pass (○), all that are (◎), (◎) Those with crab (x) were evaluated with (x).

更に、アイソスタティック強度試験で破壊したセラミックハニカムフィルタの多孔質の隔壁から試験片を切り出し、気孔率、細孔の内部幅の平均値Lb/細孔の開口部長さの平均値Laの測定結果を、表1に示す。ここで気孔率は、水銀圧入法によりMicromeritics社製オートポアIIIを使用して行った。   Further, a test piece was cut out from the porous partition wall of the ceramic honeycomb filter destroyed in the isostatic strength test, and the measurement result of the porosity, the average value Lb of the pore internal width / the average value La of the pore opening length was obtained. Table 1 shows. Here, the porosity was measured using an Autopore III manufactured by Micromeritics by the mercury intrusion method.

また、多孔質の隔壁表面での細孔径Da及び細孔面積率Sa、細孔の開口部長さの平均値La及び細孔の内部幅の平均値Lbは、隔壁表面及び隔壁表面に垂直な切断面の100倍のSEM写真から、画像解析により求めた。ここで、細孔径Daは、個々の細孔の重心を通る径を2°刻みで測定した平均径を、撮影視野全体に存在する細孔の平均値として算出した。   In addition, the pore diameter Da and pore area ratio Sa on the porous partition wall surface, the average value La of the pore opening length, and the average value Lb of the internal width of the pore are cut perpendicular to the partition wall surface and the partition surface. It calculated | required by image analysis from the SEM photograph 100 times the surface. Here, the pore diameter Da was calculated as the average diameter of the pores existing in the entire field of view, which was obtained by measuring the diameter passing through the center of gravity of each pore in increments of 2 °.

表1より、本発明例である試験NO.1〜12のセラミックハニカムフィルタは、前記隔壁表面での細孔径Daが5〜30μm、前記隔壁表面での細孔面積率Saが10〜30%、細孔の開口部長さの平均値Laと細孔の内部幅の平均値Lbとが1.1<Lb/La<5.0の関係であることから、微粒子の捕集率、圧力損失、アイソスタティック強度とも合格判定の(○)又は(◎)となり、総合判定は合格(○)であった。中でも試験NO.3,5,8及び9のセラミックハニカムフィルタは、多孔質の隔壁表面での細孔径、細孔面積率及びLb/Laの値が共に好ましい範囲である、細孔径Da15〜25μm、面積率15〜25%、Lb/La3〜4.5であるため、総合判定は更に好ましい(◎)であった。   From Table 1, test NO. In the ceramic honeycomb filters 1 to 12, the pore diameter Da on the partition wall surface is 5 to 30 μm, the pore area ratio Sa on the partition wall surface is 10 to 30%, and the average value La of the pore opening length is small. Since the average value Lb of the internal widths of the holes is in a relationship of 1.1 <Lb / La <5.0, the collection rate of fine particles, pressure loss, and isostatic strength are both acceptable (◯) or (◎ The overall judgment was a pass (◯). Above all, test NO. The ceramic honeycomb filters of 3, 5, 8 and 9 have a pore diameter Da of 15 to 25 μm and an area ratio of 15 to 15 in which the pore diameter on the porous partition wall surface, the pore area ratio, and the value of Lb / La are all preferred ranges. Since it is 25% and Lb / La3 to 4.5, the comprehensive judgment is more preferable (◎).

(比較例)
次に、試験NO.1のセラミックハニカムフィルタと同様の方法を用いたが、セラミック構造体押出成形用坏土の貯蔵弾性率が2×10Pa、複素粘性係数が2×107Pa・sとなるよう坏土を調整して、試験NO.13のセラミックハニカムフィルタを、また、有機発泡剤の平均粒径を20μm及び120μmとして、試験NO14及び15のセラミックハニカムフィルタを、有機発泡剤の添加量を調整して試験NO16及び17のセラミックハニカムフィルタを、更にセラミック構造体押出成形用坏土の貯蔵弾性率を5×10Pa、複素粘性係数が1×104Pa・sとし、かつ有機発泡剤の平均粒径を120μmとして試験No18のセラミックハニカムフィルタを得た。これら比較例である試験NO.13〜18のセラミックハニカムフィルタに対して、実施例と同様、初期の捕集率、圧力損失、及びアイソスタティック強度の評価を行った。本発明の比較例である、試験NO.13のセラミックハニカムフィルタは、細孔の開口部長さの平均値Laと細孔の内部幅の平均値Lbとの関係Lb/Laが1以下であったため、微粒子の捕集率と圧力損失の評価結果が(×)となり、総合判定は(×)であった。また、本発明の比較例である試験NO.14のセラミックハニカムフィルタは、隔壁表面での細孔径Daが10μm未満であったことから、圧力損失の評価が(×)となり、試験NO.15のセラミックハニカムフィルタは、隔壁表面での細孔径Daが30μmを超えたため、捕集率、圧力損失、アイソスタティック強度共に評価が(×)となり、いずれも総合判定は(×)であった。また、本発明の比較例である試験NO.16のセラミックハニカムフィルタは、隔壁表面での細孔面積率Saが10%未満であることから、圧力損失の評価が(×)となり、試験NO.17のセラミックハニカムフィルタは、隔壁表面での細孔面積率Saが30%を超えることから、アイソスタティック強度の評価が(×)となり、総合判定はいずれも(×)であった。また、本発明の比較例である試験NO.18のセラミックハニカムフィルタは、隔壁表面での細孔面積率Saが10%未満であり、隔壁表面での細孔径Daが10μm未満であり、かつ細孔の開口部長さの平均値Laと細孔の内部幅の平均値Lbとの関係Lb/Laが5以上であったため、圧力損失の評価が(×)となり、アイソスタティック強度の評価が(×)となり、総合判定は(×)であった。
(Comparative example)
Next, test NO. The same method as that of the ceramic honeycomb filter 1 was used, but the clay was extruded so that the storage elastic modulus of the ceramic structure extrusion molding clay was 2 × 10 6 Pa and the complex viscosity coefficient was 2 × 10 7 Pa · s. Adjust test NO. The ceramic honeycomb filter of No. 13 and the average particle diameter of the organic foaming agent are 20 μm and 120 μm, the ceramic honeycomb filter of Test Nos. 14 and 15 are adjusted, and the addition amount of the organic foaming agent is adjusted, and the ceramic honeycomb filter of Test Nos. 16 and 17 Furthermore, the storage elastic modulus of the clay for extruding the ceramic structure is 5 × 10 4 Pa, the complex viscosity coefficient is 1 × 10 4 Pa · s, and the average particle size of the organic foaming agent is 120 μm. A honeycomb filter was obtained. Test NO. For the 13-18 ceramic honeycomb filters, the initial collection rate, pressure loss, and isostatic strength were evaluated in the same manner as in the Examples. Test No. 1, which is a comparative example of the present invention. In the ceramic honeycomb filter No. 13, since the relationship Lb / La between the average value La of the opening lengths of the pores and the average value Lb of the internal widths of the pores was 1 or less, evaluation of the collection rate of fine particles and pressure loss The result was (x), and the overall judgment was (x). Further, test NO. No. 14 ceramic honeycomb filter had a pore diameter Da of less than 10 μm on the partition wall surface, and therefore the evaluation of the pressure loss was (x), and the test NO. In the ceramic honeycomb filter No. 15, since the pore diameter Da on the partition wall surface exceeded 30 μm, the collection rate, pressure loss, and isostatic strength were evaluated as (x), and the overall judgment was (x). Further, test NO. In the ceramic honeycomb filter No. 16, the pore area ratio Sa on the partition wall surface is less than 10%, and therefore, the evaluation of the pressure loss is (x), and the test NO. In No. 17 ceramic honeycomb filter, the pore area ratio Sa on the partition wall surface exceeded 30%. Therefore, the evaluation of isostatic strength was (x), and the overall judgment was (x). Further, test NO. In the 18th ceramic honeycomb filter, the pore area ratio Sa on the partition wall surface is less than 10%, the pore diameter Da on the partition wall surface is less than 10 μm, and the average value La and the pore opening length Since the relationship Lb / La with the average value Lb of the internal width was 5 or more, the evaluation of pressure loss was (x), the evaluation of isostatic strength was (x), and the overall judgment was (x). .

Figure 2005095884
Figure 2005095884

本発明のセラミックハニカム構造体の隔壁の模式断面図である。It is a schematic cross section of the partition of the ceramic honeycomb structure of the present invention. 従来のセラミックハニカム構造体の隔壁の模式断面図である。It is a schematic cross section of the partition of the conventional ceramic honeycomb structure.

符号の説明Explanation of symbols

1 隔壁、
2 隔壁表面、
3 細孔
4 開口部長さ
5 内部幅
1 bulkhead,
2 partition surface,
3 Pore 4 Opening length 5 Internal width

Claims (4)

多孔質の隔壁により仕切られた多数の流路を有するセラミックハニカム構造体であって、前記隔壁の気孔率が55〜75%、前記隔壁表面での平均細孔径Daが5〜30μm、前記隔壁表面での細孔面積率Saが10〜30%であり、かつ前記隔壁の表面に垂直な切断面に観察される、前記隔壁の表面に開口した複数の細孔の表面の開口部長さの平均値Laと、前記切断面上で前記隔壁の表面からLaの深さにおける前記複数の細孔の幅の平均値Lbとが、1.1<Lb/La<5の関係にあることを特徴とするセラミックハニカム構造体。 A ceramic honeycomb structure having a number of flow paths partitioned by porous partition walls, wherein the partition wall has a porosity of 55 to 75%, an average pore diameter Da on the partition wall surface of 5 to 30 μm, and the partition wall surface The average value of the opening lengths of the surface of the plurality of pores opened on the surface of the partition wall, which is observed on a cut surface perpendicular to the surface of the partition wall, with a pore area ratio Sa of 10 to 30% La and an average value Lb of widths of the plurality of pores at a depth La from the surface of the partition wall on the cut surface have a relationship of 1.1 <Lb / La <5. Ceramic honeycomb structure. 前記隔壁の気孔率が58〜70%であることを特徴とする請求項1に記載のセラミックハニカム構造体。 The ceramic honeycomb structure according to claim 1, wherein a porosity of the partition walls is 58 to 70%. 前記隔壁に触媒物質が担持されていることを特徴とする請求項1乃至2記載のセラミックハニカム構造体。 3. The ceramic honeycomb structure according to claim 1, wherein a catalyst material is supported on the partition walls. 平均粒径が40μm以下のセラミックス原料粉末に、平均粒径40〜100μmの有機発泡剤、バインダー、水、及び必要に応じて成形助剤を添加して混練した、可塑性を有する坏土であって、該坏土の粘弾性特性試験において、測定周波数1rad/sにおける貯蔵弾性率が5×10〜1.4×10Paであり、複素粘性係数が1×10〜1×10Pa・sであることを特徴とするセラミックハニカム構造体押出成形用坏土。
A ceramic clay having an average particle size of 40 μm or less, kneaded by adding an organic foaming agent having an average particle size of 40 to 100 μm, a binder, water, and a molding aid as necessary. In the viscoelastic property test of the clay, the storage elastic modulus at a measurement frequency of 1 rad / s is 5 × 10 4 to 1.4 × 10 6 Pa, and the complex viscosity coefficient is 1 × 10 4 to 1 × 10 7 Pa. A ceramic honeycomb structure extrusion molding clay characterized by being s.
JP2004250127A 2003-08-29 2004-08-30 Ceramic honeycomb structure and body for ceramic honeycomb structure extrusion molding Pending JP2005095884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004250127A JP2005095884A (en) 2003-08-29 2004-08-30 Ceramic honeycomb structure and body for ceramic honeycomb structure extrusion molding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003306260 2003-08-29
JP2004250127A JP2005095884A (en) 2003-08-29 2004-08-30 Ceramic honeycomb structure and body for ceramic honeycomb structure extrusion molding

Publications (1)

Publication Number Publication Date
JP2005095884A true JP2005095884A (en) 2005-04-14

Family

ID=34467363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004250127A Pending JP2005095884A (en) 2003-08-29 2004-08-30 Ceramic honeycomb structure and body for ceramic honeycomb structure extrusion molding

Country Status (1)

Country Link
JP (1) JP2005095884A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010516466A (en) * 2007-01-31 2010-05-20 ビーエーエスエフ、カタリスツ、エルエルシー Gas catalyst with porous wall honeycomb
JP2010167366A (en) * 2009-01-22 2010-08-05 Ngk Insulators Ltd Honeycomb catalytic article
WO2011102487A1 (en) * 2010-02-22 2011-08-25 日立金属株式会社 Ceramic honeycomb structure and process for producing same
JP2013053594A (en) * 2011-09-06 2013-03-21 Ngk Insulators Ltd Honeycomb catalyst body
JP2013202503A (en) * 2012-03-28 2013-10-07 Ngk Insulators Ltd Honeycomb structure and method of manufacturing the same
JP5315997B2 (en) * 2006-09-28 2013-10-16 日立金属株式会社 Ceramic honeycomb structure and method for manufacturing ceramic honeycomb structure
JP2013212500A (en) * 2012-03-06 2013-10-17 Ngk Insulators Ltd Honeycomb structure and honeycomb catalyst body
JP2015530345A (en) * 2012-08-16 2015-10-15 ダウ グローバル テクノロジーズ エルエルシー Method for preparing highly porous ceramic materials
JP2016130184A (en) * 2015-01-13 2016-07-21 日本碍子株式会社 Honeycomb structure, method for manufacturing the same, and canning structure
WO2016170976A1 (en) * 2015-04-23 2016-10-27 株式会社デンソー Honeycomb structure
WO2021020015A1 (en) * 2019-07-29 2021-02-04 株式会社デンソー Exhaust gas purification filter
WO2021020014A1 (en) * 2019-07-29 2021-02-04 株式会社デンソー Exhaust gas purification filter
DE102021000799A1 (en) 2020-03-31 2021-09-30 NGK lnsulators, Ltd. Ceramic filter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121084A (en) * 2000-10-06 2002-04-23 Hitachi Metals Ltd Cordierite-based ceramic honeycomb structure
JP2002309921A (en) * 2001-04-16 2002-10-23 Denso Corp Exhaust emission purifier and its manufacturing method
JP2002355511A (en) * 2001-05-30 2002-12-10 Denso Corp Exhaust gas purifying filter and producing method thereof
JP2003040687A (en) * 2000-06-30 2003-02-13 Ngk Insulators Ltd Honeycomb structured ceramic compact and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003040687A (en) * 2000-06-30 2003-02-13 Ngk Insulators Ltd Honeycomb structured ceramic compact and its manufacturing method
JP2002121084A (en) * 2000-10-06 2002-04-23 Hitachi Metals Ltd Cordierite-based ceramic honeycomb structure
JP2002309921A (en) * 2001-04-16 2002-10-23 Denso Corp Exhaust emission purifier and its manufacturing method
JP2002355511A (en) * 2001-05-30 2002-12-10 Denso Corp Exhaust gas purifying filter and producing method thereof

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5315997B2 (en) * 2006-09-28 2013-10-16 日立金属株式会社 Ceramic honeycomb structure and method for manufacturing ceramic honeycomb structure
KR101536012B1 (en) * 2007-01-31 2015-07-13 바스프 카탈리스트 엘엘씨 Gas catalysts comprising porous wall honeycombs
JP2010516466A (en) * 2007-01-31 2010-05-20 ビーエーエスエフ、カタリスツ、エルエルシー Gas catalyst with porous wall honeycomb
JP2010167366A (en) * 2009-01-22 2010-08-05 Ngk Insulators Ltd Honeycomb catalytic article
WO2011102487A1 (en) * 2010-02-22 2011-08-25 日立金属株式会社 Ceramic honeycomb structure and process for producing same
KR101894341B1 (en) * 2010-02-22 2018-10-04 히타치 긴조쿠 가부시키가이샤 Ceramic honeycomb structure and process for producing same
US9353015B2 (en) 2010-02-22 2016-05-31 Hitachi Metals, Ltd. Ceramic honeycomb structure and its production method
US8636821B2 (en) 2010-02-22 2014-01-28 Hitachi Metals, Ltd. Ceramic honeycomb structure and its production method
JP5673665B2 (en) * 2010-02-22 2015-02-18 日立金属株式会社 Ceramic honeycomb structure and manufacturing method thereof
JP2015042613A (en) * 2010-02-22 2015-03-05 日立金属株式会社 Method of producing ceramic honeycomb structure
JP2013053594A (en) * 2011-09-06 2013-03-21 Ngk Insulators Ltd Honeycomb catalyst body
JP2013212500A (en) * 2012-03-06 2013-10-17 Ngk Insulators Ltd Honeycomb structure and honeycomb catalyst body
JP2013202503A (en) * 2012-03-28 2013-10-07 Ngk Insulators Ltd Honeycomb structure and method of manufacturing the same
JP2015530345A (en) * 2012-08-16 2015-10-15 ダウ グローバル テクノロジーズ エルエルシー Method for preparing highly porous ceramic materials
JP2016130184A (en) * 2015-01-13 2016-07-21 日本碍子株式会社 Honeycomb structure, method for manufacturing the same, and canning structure
WO2016170976A1 (en) * 2015-04-23 2016-10-27 株式会社デンソー Honeycomb structure
JP2016204208A (en) * 2015-04-23 2016-12-08 株式会社デンソー Honeycomb structure
JP7002503B2 (en) 2019-07-29 2022-02-04 株式会社Soken Exhaust gas purification filter
WO2021020014A1 (en) * 2019-07-29 2021-02-04 株式会社デンソー Exhaust gas purification filter
JP2021020175A (en) * 2019-07-29 2021-02-18 株式会社Soken Exhaust emission control filter
JP2021021378A (en) * 2019-07-29 2021-02-18 株式会社Soken Exhaust emission control filter
CN113557352A (en) * 2019-07-29 2021-10-26 株式会社电装 Exhaust gas purifying filter
JP7002504B2 (en) 2019-07-29 2022-02-04 株式会社Soken Exhaust gas purification filter
WO2021020015A1 (en) * 2019-07-29 2021-02-04 株式会社デンソー Exhaust gas purification filter
CN113557352B (en) * 2019-07-29 2023-10-31 株式会社电装 Exhaust gas purifying filter
DE102021000799A1 (en) 2020-03-31 2021-09-30 NGK lnsulators, Ltd. Ceramic filter
JP2021159867A (en) * 2020-03-31 2021-10-11 日本碍子株式会社 Ceramic filter
US11331613B2 (en) 2020-03-31 2022-05-17 Ngk Insulators, Ltd. Ceramic filter
JP7234180B2 (en) 2020-03-31 2023-03-07 日本碍子株式会社 ceramic filter

Similar Documents

Publication Publication Date Title
KR100865101B1 (en) Porous honeycomb filter
JP5444716B2 (en) Ceramic honeycomb filter and manufacturing method thereof
JP3756721B2 (en) Exhaust gas purification filter
JP5272733B2 (en) Ceramic honeycomb filter and manufacturing method thereof
JP5419505B2 (en) Method for manufacturing honeycomb structure and method for manufacturing honeycomb catalyst body
JP4495152B2 (en) Honeycomb structure and manufacturing method thereof
JP4737594B2 (en) Ceramic honeycomb filter
US20110036080A1 (en) Low back pressure porous honeycomb and method
JP5997026B2 (en) Honeycomb catalyst body
JP2002357114A (en) Exhaust gas cleaning filter and manufacturing method therefor
JP5997025B2 (en) Honeycomb catalyst body
JP2011179501A (en) Honeycomb structural body
JPWO2008047558A1 (en) Ceramic honeycomb structure and method for manufacturing ceramic honeycomb structure
JP4991778B2 (en) Honeycomb structure
JP5218056B2 (en) Ceramic honeycomb filter
JP2010221154A (en) Honeycomb catalyst
JP2008037722A (en) Method of manufacturing honeycomb structure
JPWO2007094499A1 (en) Ceramic honeycomb filter and exhaust gas purification device
JP2005095884A (en) Ceramic honeycomb structure and body for ceramic honeycomb structure extrusion molding
JP3506334B2 (en) Ceramic honeycomb filter
JP4577752B2 (en) Ceramic honeycomb filter
JP4900820B2 (en) Ceramic honeycomb filter
JP2004167482A (en) Honeycomb filter for exhaust gas cleaning, and its production method
JP4600826B2 (en) Ceramic honeycomb filter
JP2005324154A (en) Ceramic honeycomb structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100716