JP4900818B2 - Overload prevention device for static reactive power compensator - Google Patents

Overload prevention device for static reactive power compensator Download PDF

Info

Publication number
JP4900818B2
JP4900818B2 JP2007149918A JP2007149918A JP4900818B2 JP 4900818 B2 JP4900818 B2 JP 4900818B2 JP 2007149918 A JP2007149918 A JP 2007149918A JP 2007149918 A JP2007149918 A JP 2007149918A JP 4900818 B2 JP4900818 B2 JP 4900818B2
Authority
JP
Japan
Prior art keywords
overload
output
reactive power
power compensator
limit value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007149918A
Other languages
Japanese (ja)
Other versions
JP2008305041A (en
Inventor
繁雄 藤井
茂之 鈴木
喜延 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Chugoku Electric Power Co Inc
Original Assignee
Meidensha Corp
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Chugoku Electric Power Co Inc filed Critical Meidensha Corp
Priority to JP2007149918A priority Critical patent/JP4900818B2/en
Publication of JP2008305041A publication Critical patent/JP2008305041A/en
Application granted granted Critical
Publication of JP4900818B2 publication Critical patent/JP4900818B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)
  • Inverter Devices (AREA)

Description

本発明は、静止形無効電力補償装置に係り、特に短時間定格を持つ装置の過負荷防止に関するものである。   The present invention relates to a static reactive power compensator, and particularly to prevention of overload of a device having a short-time rating.

配電系統には、電圧変動の抑制や電圧安定化を目的として、図4で示すような半導体素子を使用した静止形無効電力補償装置が設置されている。図4において、1は連系変圧器、2はリアクトル、3は半導体素子を使用した自励式インバータ、4はインバータ3を制御する制御回路である。このように構成した静止形無効電力補償装置は、電力半導体素子を使用していることから高価となることが多く、このため、小容量・短時間動作の静止形無効電力補償装置として構成され、既設のSVR(Step Voltage Regulator:自動電圧調整装置)に併設して協調動作をとる方法が行われている。   In the power distribution system, a static reactive power compensator using a semiconductor element as shown in FIG. 4 is installed for the purpose of suppressing voltage fluctuation and stabilizing the voltage. In FIG. 4, 1 is an interconnection transformer, 2 is a reactor, 3 is a self-excited inverter using a semiconductor element, and 4 is a control circuit for controlling the inverter 3. The static reactive power compensator configured in this way is often expensive because it uses a power semiconductor element, and is thus configured as a static reactive power compensator with a small capacity and short time operation, There is a method in which a cooperative operation is performed in combination with an existing SVR (Step Voltage Regulator).

静止形無効電力補償装置は、例えば、特許文献1で知られるように、過渡的な負荷変動が発生した場合、過渡的な負荷変動に伴う変動有効電流信号と変動無効電流信号を求め、求めた両電流信号を合成して補償電流指令を生成し、この信号に基づきPWMによるスイッチ制御信号を生成して自励式インバータを制御している。   The static reactive power compensator, for example, as known in Patent Document 1, when a transient load fluctuation occurs, obtains a fluctuation effective current signal and a fluctuation reactive current signal associated with the transient load fluctuation, A compensation current command is generated by synthesizing both current signals, and a switch control signal by PWM is generated based on this signal to control the self-excited inverter.

ところで、SVRと協調動作を実行するような短時間定格を持つ静止形無効電力補償装置では、短時間出力中に装置の温度上昇が発生することが懸念されるため、図5で示すような過負荷対策が採られている。すなわち、無効電力補償装置の出力電圧V、電流Iを検出して補償電圧演算部5に入力して補償電流指令を演算し、補償電流指令は第1のリミッタ7を介して電流制御部8に出力される。電流制御部8では、補償電流指令と検出された電流Iとの偏差信号に対応した自励式インバータ3の電圧指令を演算し、PWM制御回路9において電圧指令に基づくインバータのゲート信号を生成する。過負荷判定部6では、無効電力補償装置の定格が短時間定格となっていることにより、短時間出力中には装置の温度上昇が発生し、故障が生じないように検出した電流Iから過負荷発生の否かが判定される。過負荷と判定した場合には過負荷信号をリミッタ7に出力し、過負荷によるリミットをかけて電流指令値を制限する。
特開平9−233843
Incidentally, in a static reactive power compensator having a short-time rating that performs a cooperative operation with SVR, there is a concern that the temperature of the device may increase during a short-time output. Load measures are taken. That is, the output voltage V and current I of the reactive power compensator are detected and input to the compensation voltage calculation unit 5 to calculate a compensation current command. The compensation current command is sent to the current control unit 8 via the first limiter 7. Is output. The current control unit 8 calculates a voltage command of the self-excited inverter 3 corresponding to a deviation signal between the compensation current command and the detected current I, and a PWM control circuit 9 generates an inverter gate signal based on the voltage command. In the overload determination unit 6, since the reactive power compensator is rated for a short time, the temperature of the device increases during the short time output, and the overcurrent is detected from the detected current I so that no failure occurs. It is determined whether or not a load has occurred. If it is determined that there is an overload, an overload signal is output to the limiter 7 and the current command value is limited by applying a limit due to the overload.
JP 9-233843

図5で示す過負荷判定部6では、出力の過負荷判定は次のようにして行う。
インバータ3の各相電流を検出し、各相電流の中で最大出力電流をインバータの出力電流Iinvとする。また、インバータ3は制御によって短時間定格容量を超えないように出力電流制限Ilimitをかけているものとする。インバータの出力電流Iinvが連続定格出力に相当する電流Iconを超えた場合、超過した時間Δtにおける短時間出力積算値ΔPは式(1)で求める。
Δt×ΔIinv=ΔP(ただし、ΔIinv=Iinv−Iconとする。)……(1)
過負荷となる短時間出力積算値PsumはΔPnの積算とする。
また、Iinv<Iconの場合、逆に出力積算値をΔPnだけ減少させる。短時間出力積算値PsumがPmax(短時間出力に相当する電流Imax×短時間出力可能時間tmax)になった場合、出力過負荷となり装置保護のため出力電流は過負荷出力電流制限値Iolで制限される。
The overload determination unit 6 shown in FIG. 5 performs output overload determination as follows.
Each phase current of the inverter 3 is detected, and the maximum output current among the phase currents is set as the inverter output current Iinv. Further, it is assumed that the inverter 3 applies an output current limit Ilimit so as not to exceed the rated capacity for a short time by the control. When the output current Iinv of the inverter exceeds the current Icon corresponding to the continuous rated output, the short-time output integrated value ΔP in the excess time Δt is obtained by Expression (1).
Δt × ΔIinv = ΔP (where ΔIinv = Iinv−Icon) (1)
The short-time output integrated value Psum that becomes an overload is the integration of ΔPn.
If Iinv <Icon, the output integrated value is decreased by ΔPn. When the short-time output integrated value Psum reaches Pmax (current Imax corresponding to short-time output x short-time output possible time tmax), the output is overloaded and the output current is limited by the overload output current limit value Iol to protect the device. Is done.

図6は短時間出力期間と冷却期間の関係を示す波形図である。過負荷によるリミッタ7の出力は、Psum>PmaxのときにはIlimit-1=Iolであり、また、
Psum<PmaxのときにはIlimit-1=Imaxに設定される。Iinv=Imaxが出力される短時間出力期間t0〜t1後に、装置を冷却のための出力制限期間t1〜t2が必要となる。出力制限期間中には一定時間出力が連続定格出力未満に制限される場合がある。すなわち、短時間出力最大値Imax、連続出力最大値Icon、期間t1〜t2の出力制限値Iolとすると、Icon>Iolとなる。このような過負荷による温度上昇防止のためにインバータ出力が制限されることにより、出力制限期間中には、装置は電力系統に補償に必要な出力を出すことが出来なくなってしまう。
FIG. 6 is a waveform diagram showing the relationship between the short-time output period and the cooling period. The output of the limiter 7 due to overload is Ilimit-1 = Iol when Psum> Pmax,
When Psum <Pmax, Ilimit-1 = Imax is set. After a short output period t0 to t1 during which Iinv = Imax is output, output limit periods t1 to t2 for cooling the apparatus are required. During the output limitation period, the output may be limited to a value less than the continuous rated output for a certain period of time. That is, assuming that the short-time output maximum value Imax, the continuous output maximum value Icon, and the output limit value Iol for the period t1 to t2, Icon> Iol. When the inverter output is limited to prevent such a temperature rise due to overload, the device cannot output an output necessary for compensation to the power system during the output limitation period.

ここで、出力制限期間中に必要な補償量をIconvとすると、補償効果の低下率をkとすると式(2)で表わされる。
k=(Iconv−Iol)/Iconv×(t2−t1)……(2)
式(2)から過負荷防止により出力制限され場合には、出力制限値Iolが大きいほど、出力制限期間(t2−t1)が長いほど補償効果が低下する。また、補償中に過負荷による急な出力制限動作が実行された場合、Iconv−Iolだけ補償量がなくなるため、低下した分が逆に電力系統や負荷などの補償対象に対して悪影響をあたえるという問題を有している。
Here, when the amount of compensation required during the output restriction period is Iconv, and the reduction rate of the compensation effect is k, it is expressed by Equation (2).
k = (Iconv−Iol) / Iconv × (t2−t1) (2)
When the output is limited by overload prevention from the equation (2), the compensation effect decreases as the output limit value Iol increases and the output limit period (t2-t1) increases. In addition, when a sudden output limiting operation due to overload is executed during compensation, the amount of compensation is lost by Iconv-Iol, so that the reduced amount adversely affects the compensation target such as the power system and load. Have a problem.

そこで本発明が目的とするとこは、過負荷時の出力制限による補償出力の低下を抑制した無効電力補償装置における過負荷防止装置を提供することにある。   Accordingly, an object of the present invention is to provide an overload prevention device in a reactive power compensator that suppresses a decrease in compensation output due to output limitation during overload.

本発明の請求項1は、電力系統に設置される静止形無効電力補償装置であって、過負荷判定部を設け、過負荷時に静止形無効電力補償装置におけるインバータに対する電流指令値をリミッタにより制限して過負荷防止するものにおいて、
前記過負荷による第1のリミッタの前段に、過負荷防止による第2のリミッタを設けると共に、過負荷発生直前に前記第2のリミッタを上限出力制限値Imaxから下限出力制限値Iclimに演算する過負荷防止演算部を設けたことを特徴としたものである。
Claim 1 of the present invention is a static reactive power compensator installed in an electric power system, which is provided with an overload determination unit and restricts a current command value for an inverter in the static reactive power compensator by a limiter during an overload. In order to prevent overload,
A second limiter for preventing overload is provided before the first limiter due to overload, and the second limiter is calculated from the upper limit output limit value Imax to the lower limit output limit value Iclim immediately before the overload occurs. This is characterized in that a load prevention calculation unit is provided.

本発明の請求項2は、前記過負荷防止演算部は、過負荷発生時の電流制限値をIolとし、連続定格出力相当電流をIconとしたとき、前記下限出力制限値IclimをIcon>Iclim>Iolに演算し、設定することを特徴としたものである。   According to a second aspect of the present invention, the overload prevention calculation unit sets the lower limit output limit value Iclim to Icon> Iclim>, where Iol is a current limit value when overload occurs and Icon is a current corresponding to a continuous rated output. It is characterized by calculating and setting to Iol.

本発明の請求項3は、前記過負荷防止演算部は、前記過負荷判定部による過負荷判定時に、短時間出力積算値Psumと、予め定められた過負荷となる最大の短時間出力積算値Pmaxが、Psum ≒Pmaxとなったときに前記下限出力制限値Iclimまで徐々に出力電流制限値Ilimitを下げ、短時間出力積算値Psum=0時には出力電流制限値Ilimitを前記最大の短時間出力積算値Pmaxまで徐々に上昇させることを特徴としたものである。   According to a third aspect of the present invention, the overload prevention calculation unit is configured to output a short-time output integrated value Psum and a maximum short-time output integrated value that is a predetermined overload when the overload determination unit determines overload. When Pmax becomes Psum ≒ Pmax, the output current limit value Ilimit is gradually lowered to the lower limit output limit value Iclim. It is characterized by gradually increasing to the value Pmax.

以上のとおり、本発明によれば、過負荷による出力制限の前段に、出力制御により出力制限をかけたことにより、過負荷による出力制限に伴う補償出力の持続的な低減を防止し、全体的な補償効果の向上が図れるものである。また、出力制御をゆっくりと減少または上昇させたことにより、過負荷による急な出力制限が防止されて電力系統、または負荷への悪影響を低減することが可能となるものである。   As described above, according to the present invention, since the output limit is applied by the output control before the output limit due to the overload, the continuous reduction of the compensation output due to the output limit due to the overload is prevented, and the overall Thus, the compensation effect can be improved. Further, by slowly decreasing or increasing the output control, it is possible to prevent a sudden output limitation due to overload and to reduce adverse effects on the power system or the load.

図1は、本発明の実施例を示す構成図で、図4との同一部分、若しくは相当する部分に同一符号を付してその説明を省略する。すなわち、本発明は補償電圧演算部5と第1のリミッタ7との間に第2のリミッタ11を介挿すると共に、過負荷防止演算部10を設け、過負荷判定部6から過負荷判定信号をこの過負荷防止演算部10に出力するよう構成したものである。過負荷判定部6では、Psumの検出、演算を実行し、第1のリミッタ7における過負荷出力の電流制限値Iolによるリミッタ値の設定、判定を行って電流制御部8への補償電流指令を制限する。   FIG. 1 is a block diagram showing an embodiment of the present invention. The same or corresponding parts as those in FIG. That is, according to the present invention, the second limiter 11 is inserted between the compensation voltage calculation unit 5 and the first limiter 7, the overload prevention calculation unit 10 is provided, and the overload determination unit 6 receives the overload determination signal. Is output to the overload prevention calculation unit 10. The overload determination unit 6 detects and calculates Psum, sets and determines the limiter value based on the current limit value Iol of the overload output in the first limiter 7, and issues a compensation current command to the current control unit 8. Restrict.

過負荷防止演算部10は、過負荷による制限とは別に、過負荷出力の電流制限値Iolと短時間定格出力の最大電流値Imaxとの間のIlimit-2(t)に下限出力制限値Iclimを設定する。つまり、下限出力制限値Iclimは、Icon>Iclim>Iolにより設定する。また、過負荷防止演算部10には、図2で示す過負荷防止のための制御モードを実行するために、入力された短時間定格出力の積算値Psum の変化状態を判別し、その積算値Psumの挙動状態に応じて、例えば期間t0〜t1(Psum <Pmax)、期間t1〜t2、期間t2〜t3、及び期間t3〜t4の各期間領域に対応した各別の演算手段を有している。   The overload prevention calculation unit 10 sets the lower limit output limit value Iclim to Ilimit-2 (t) between the current limit value Iol of the overload output and the maximum current value Imax of the short-time rated output separately from the limit due to the overload. Set. That is, the lower limit output limit value Iclim is set by Icon> Iclim> Iol. The overload prevention calculation unit 10 determines the change state of the integrated value Psum of the input short-time rated output in order to execute the control mode for preventing overload shown in FIG. In accordance with the behavior state of Psum, for example, there are different calculation means corresponding to each period region of period t0 to t1 (Psum <Pmax), period t1 to t2, period t2 to t3, and period t3 to t4. Yes.

図3は、過負荷防止制御のためのフローチャートである。
先ず、図2で示す時刻t0において過負荷状態が発生(ステップS1)すると、過負荷判定部6では、Ilimit-1=Imaxの信号を第1のリミッタ7に出力して電流制御部8への補償電流指令を制限する。同時に過負荷防止演算部10にも検出したPsumを出力する。過負荷防止演算部10は、Psum< Pmaxの期間中である時刻t0〜t1ではステップS2で示すようにIlimit-2=Imaxとして特にリミッタ11に対する設定値の変更は行わない。
FIG. 3 is a flowchart for overload prevention control.
First, when an overload condition occurs at time t0 shown in FIG. 2 (step S1), the overload determination unit 6 outputs a signal of Ilimit-1 = Imax to the first limiter 7 to the current control unit 8. Limit the compensation current command. At the same time, the detected Psum is output to the overload prevention calculation unit 10. The overload prevention calculation unit 10 does not change the set value especially for the limiter 11 as Ilimit-2 = Imax as shown in step S2 at times t0 to t1 during the period of Psum <Pmax.

時刻t1が経過してステップS3でPsum ≒Pmaxになると、過負荷防止演算部10はステップ4で(3)式を演算してリミット値Ilimit-2(t)を算出する。
Ilimit-2(t)=Imax−a1(Imax−Iclim)t …… (3)
a1は係数で、この係数a1はリミッタ11の出力制限によって出力が減少している期間中にPsum= Pmaxとならない値とし、また、補償対象に可能な限り影響を与えないような小さな値にされる。ここでは、Ilimit-2(t)の下限出力値は Iclimとする。
求められたIlimit-2(t)に基づいてリミッタ11は出力値を制御し、Ilimit-2(t)が下限の出力制限値Iclimになる時刻t2までランプ関数により徐々に下げる。
When time t1 has elapsed and Psum≈Pmax is reached in step S3, the overload prevention calculation unit 10 calculates the limit value Ilimit-2 (t) by calculating equation (3) in step 4.
Ilimit-2 (t) = Imax−a1 (Imax−Iclim) t (3)
a1 is a coefficient, and the coefficient a1 is set to a value that does not become Psum = Pmax during the period in which the output is reduced due to the output limit of the limiter 11, and is set to a small value that does not affect the compensation target as much as possible The Here, the lower limit output value of Ilimit-2 (t) is Iclim.
Based on the obtained Ilimit-2 (t), the limiter 11 controls the output value and gradually decreases it by the ramp function until time t2 when Ilimit-2 (t) becomes the lower limit output limit value Iclim.

時刻t2〜t3までの期間は、Icon>Iclimとして設定されていることによりPsumはΔPnで減算され、時刻t3のステップS5でPsum=0と判断されると、ステップS6で(4)式を演算する。
Ilimit-2(t)=Iclim+a2(Imax−Iclim)t …… (4)
a2は係数で、a1とどうように設定される。また、ここで、Ilimit-2(t)の上限値はImaxとする。
すなわち、Psum=0まで減算した時刻t3となると、Ilimit-2(t)をランプ関数で徐々にImaxまで上昇させる。
During the period from time t2 to t3, Psum is subtracted by ΔPn because Icon> Iclim is set, and if it is determined that Psum = 0 in step S5 at time t3, formula (4) is calculated in step S6. To do.
Ilimit-2 (t) = Iclim + a2 (Imax−Iclim) t (4)
a2 is a coefficient and is set in the same manner as a1. Here, the upper limit value of Ilimit-2 (t) is Imax.
That is, at time t3 after subtraction to Psum = 0, Ilimit-2 (t) is gradually raised to Imax by a ramp function.

本発明によれば、過負荷による無効電力補償装置の保護はリミッタ7により従来と同様にして保護し、出力制限に伴う補償出力の低下、及び電力系統や負荷への悪影響に対しては過負荷防止演算部10とリミッタ11のルートで改善可能となるものである。   According to the present invention, protection of the reactive power compensator due to overload is protected by the limiter 7 in the same manner as in the prior art, and overload against a decrease in compensation output due to output limitation and adverse effects on the power system and load. This can be improved by the route of the prevention calculation unit 10 and the limiter 11.

本発明の実施形態を示す制御回路の構成図。The block diagram of the control circuit which shows embodiment of this invention. 過負荷防止制御による制御モード図。The control mode figure by overload prevention control. 過負荷防止制御のための演算フロー図。The calculation flow figure for overload prevention control. 静止形無効電力補償装置の概略構成図。1 is a schematic configuration diagram of a static reactive power compensator. 従来の過負荷防止の制御回路の構成図。The block diagram of the conventional control circuit of overload prevention. 短時間出力期間と冷却期間の説明図。Explanatory drawing of a short output period and a cooling period.

符号の説明Explanation of symbols

1… 連系変圧器
2… リアクトル
3… 自励式インバータ
4… 制御回路
5… 補償電圧演算部
6… 過負荷判定部
7… 第1のリミッタ
8… 電流制御部
9… PWM制御回路
10… 過負荷防止演算部
11… 第2のリミッタ
DESCRIPTION OF SYMBOLS 1 ... Interconnection transformer 2 ... Reactor 3 ... Self-excited inverter 4 ... Control circuit 5 ... Compensation voltage calculating part 6 ... Overload determination part 7 ... 1st limiter 8 ... Current control part 9 ... PWM control circuit 10 ... Overload Prevention calculation unit 11 ... second limiter

Claims (3)

電力系統に設置される静止形無効電力補償装置であって、過負荷判定部を設け、過負荷時に静止形無効電力補償装置におけるインバータに対する電流指令値をリミッタにより制限して過負荷防止するものにおいて、
前記過負荷による第1のリミッタの前段に、過負荷防止による第2のリミッタを設けると共に、過負荷発生直前に前記第2のリミッタを上限出力制限値Imaxから下限出力制限値Iclimに演算する過負荷防止演算部を設けたことを特徴とした静止形無効電力補償装置の過負荷防止装置。
A static reactive power compensator installed in an electric power system, provided with an overload determination unit, which restricts the current command value for the inverter in the static reactive power compensator with a limiter during overload to prevent overload ,
A second limiter for preventing overload is provided before the first limiter due to overload, and the second limiter is calculated from the upper limit output limit value Imax to the lower limit output limit value Iclim immediately before the overload occurs. An overload prevention device for a static reactive power compensator characterized by comprising a load prevention arithmetic unit.
前記過負荷防止演算部は、過負荷発生時の電流制限値をIolとし、連続定格出力相当電流をIconとしたとき、前記下限出力制限値IclimをIcon>Iclim>Iolに演算し、設定することを特徴とした請求項1記載の静止形無効電力補償装置の過負荷防止装置。 The overload prevention calculation unit calculates and sets the lower limit output limit value Iclim as Icon> Iclim> Iol when the current limit value at the time of overload occurrence is Iol and the current corresponding to the continuous rated output is Icon. The overload preventing device for a static reactive power compensator according to claim 1. 前記過負荷防止演算部は、前記過負荷判定部による過負荷判定時に、短時間出力積算値Psumと、予め定められた過負荷となる最大の短時間出力積算値Pmaxが、Psum≒ Pmaxとなったときに前記下限出力制限値Iclimまで徐々に出力電流制限値Ilimitを下げ、短時間出力積算値Psum=0時には出力電流制限値Ilimitを前記最大の短時間出力積算値Pmaxまで徐々に上昇させることを特徴とした請求項1又は2記載の静止形無効電力補償装置の過負荷防止装置。
When the overload determination unit determines an overload, the overload prevention calculation unit has a short-time output integrated value Psum and a maximum short-time output integrated value Pmax that becomes a predetermined overload, such that Psum≈Pmax. The output current limit value Ilimit is gradually reduced to the lower limit output limit value Iclim, and when the short-time output integrated value Psum = 0, the output current limit value Ilimit is gradually increased to the maximum short-term output integrated value Pmax. The overload prevention device for a static reactive power compensator according to claim 1 or 2.
JP2007149918A 2007-06-06 2007-06-06 Overload prevention device for static reactive power compensator Active JP4900818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007149918A JP4900818B2 (en) 2007-06-06 2007-06-06 Overload prevention device for static reactive power compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007149918A JP4900818B2 (en) 2007-06-06 2007-06-06 Overload prevention device for static reactive power compensator

Publications (2)

Publication Number Publication Date
JP2008305041A JP2008305041A (en) 2008-12-18
JP4900818B2 true JP4900818B2 (en) 2012-03-21

Family

ID=40233738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007149918A Active JP4900818B2 (en) 2007-06-06 2007-06-06 Overload prevention device for static reactive power compensator

Country Status (1)

Country Link
JP (1) JP4900818B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101149203B1 (en) * 2010-07-01 2012-05-25 한국전력공사 Apparatus and method for Restricting current of STATCOMstatic compensator
JP6258806B2 (en) * 2014-07-28 2018-01-10 東芝三菱電機産業システム株式会社 Power converter for grid connection
JP6662278B2 (en) * 2016-12-12 2020-03-11 オムロン株式会社 Power converter
JP7102776B2 (en) * 2018-02-26 2022-07-20 富士電機株式会社 Static VAR compensator and its control circuit
EP4235350A4 (en) * 2020-10-21 2023-12-06 Mitsubishi Electric Corporation Reactive power supplementing device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302731A (en) * 1987-05-30 1988-12-09 Toshiba Corp Controller for ac/dc converter
JPH0270234A (en) * 1988-09-06 1990-03-09 Toshiba Corp Reactive power compensator
JP2888605B2 (en) * 1990-05-29 1999-05-10 株式会社東芝 Reactive power compensator
JPH0670466A (en) * 1992-08-11 1994-03-11 Toyo Electric Mfg Co Ltd Controller of harmonic reactive power compensator
JPH0965588A (en) * 1995-08-24 1997-03-07 Hitachi Ltd Electric power storage system
JPH11143561A (en) * 1997-11-13 1999-05-28 Toshiba Corp Voltage variation suppressing device
JP2000069672A (en) * 1998-08-25 2000-03-03 Toshiba Corp Power system stabilizing apparatus and recording medium for storing processing program of the apparatus

Also Published As

Publication number Publication date
JP2008305041A (en) 2008-12-18

Similar Documents

Publication Publication Date Title
US20080285184A1 (en) Power converters with operating efficiency monitoring for fault detection
JP4900818B2 (en) Overload prevention device for static reactive power compensator
GB2486356A (en) Power converter with rate of change of current monitoring for fault detection
JP4284879B2 (en) Power converter
US8552696B2 (en) Self-excited reactive power compensation apparatus
JP2005073381A (en) Motor drive controller
EP3319218A1 (en) Power converter control device
JP3795783B2 (en) Voltage stabilization control method
JP2006271070A (en) Thyristor controlled reactor based svc device
JP4720619B2 (en) Variable speed drive device for motor
JP4488846B2 (en) Control method of static reactive power compensator
JP6312558B2 (en) DC feeding system
JP2007215378A (en) Uninterruptible power unit
JP2017221025A (en) Inverter and inverter device
JP6666295B2 (en) Thyristor type automatic voltage regulator
JP2007267582A (en) Step-up/step-down chopper device and driving method therefor
WO2008139285A2 (en) Power converters with component stress monitoring for fault prediction
JP2001037236A (en) Voltage control apparatus of power converting apparatus
JP6366970B2 (en) Anti-corrosion power supply
JP2005086946A (en) Distributed power supply device
JP4062704B2 (en) Control method and control device for private power generation auxiliary generator
KR20200068389A (en) Apparatus and method for controlloing low voltage dc-dc converter of vehicle
JP3425327B2 (en) Inverter device
JP5690218B2 (en) Electric motor drive system
JP6958387B2 (en) Control method of DC power supply and DC power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091111

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111222

R150 Certificate of patent or registration of utility model

Ref document number: 4900818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250