JP4897500B2 - Cutting method of pure titanium material - Google Patents

Cutting method of pure titanium material Download PDF

Info

Publication number
JP4897500B2
JP4897500B2 JP2007013556A JP2007013556A JP4897500B2 JP 4897500 B2 JP4897500 B2 JP 4897500B2 JP 2007013556 A JP2007013556 A JP 2007013556A JP 2007013556 A JP2007013556 A JP 2007013556A JP 4897500 B2 JP4897500 B2 JP 4897500B2
Authority
JP
Japan
Prior art keywords
cutting
oxidation
pure titanium
titanium material
affected layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007013556A
Other languages
Japanese (ja)
Other versions
JP2008178933A (en
Inventor
真輔 益田
浩一 赤澤
宣宏 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007013556A priority Critical patent/JP4897500B2/en
Publication of JP2008178933A publication Critical patent/JP2008178933A/en
Application granted granted Critical
Publication of JP4897500B2 publication Critical patent/JP4897500B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Milling Processes (AREA)

Description

本発明は、純チタン材の切削加工方法に関するものである。   The present invention relates to a method for cutting a pure titanium material.

従来、酸素雰囲気下において所定の温度で加熱されたチタン材には、その表面近傍に母材よりも多くの酸素を含む酸化影響層が形成されることが知られている(例えば、特許文献1参照)。   Conventionally, it is known that an oxidation-affected layer containing more oxygen than a base material is formed near the surface of a titanium material heated at a predetermined temperature in an oxygen atmosphere (for example, Patent Document 1). reference).

ところで、純チタン材を鋳造する際には材料の熱処理が行われるが、この熱処理によって鋳造後の純チタン材の表面には、上記のような酸化影響層が形成される。この酸化影響層は、母材に比べて非常に硬く脆いため、鋳造した純チタン材を所定形状の製品に成形加工する際にその成形を妨げる要因となる。このため、純チタン材の成形加工の前段階で酸化影響層を切削加工により除去することが行われている。
特開平6−212393号公報
By the way, when casting a pure titanium material, heat treatment of the material is performed, and this heat treatment forms an oxidation-affected layer as described above on the surface of the pure titanium material after casting. This oxidation-affected layer is extremely hard and brittle compared to the base material, and therefore becomes a factor that hinders the forming of the cast pure titanium material when it is formed into a product having a predetermined shape. For this reason, the oxidation-affected layer is removed by cutting before the pure titanium material is formed.
JP-A-6-212393

しかしながら、酸化影響層は上記したように非常に硬いため、その除去工程において切削抵抗が大きく、切削工具の損耗が激しくなる。このため、酸化影響層の切削除去が困難になるという問題点がある。   However, since the oxidation-affected layer is very hard as described above, the cutting resistance is large in the removal process, and the wear of the cutting tool becomes severe. For this reason, there is a problem that it becomes difficult to remove the oxidation-affected layer by cutting.

本発明は、上記のような課題を解決するためになされたものであり、その目的は、純チタン材の表面に形成された酸化影響層の切削抵抗を低減して当該酸化影響層の切削除去を良好に行うことである。   The present invention has been made to solve the above-described problems, and its purpose is to reduce the cutting resistance of the oxidation-affected layer formed on the surface of the pure titanium material, thereby removing the oxidation-affected layer by cutting. To perform well.

上記目的を達成するために、本願発明者らは鋭意検討した結果、酸化影響層のうち切削工具によって削り取られる部分の厚みと、切削工具の切削刃のうち酸化影響層に接触して当該酸化影響層を削り取る機能を有する部分の長さとの関係が切削抵抗に大きな影響を及ぼしていることを見出した。すなわち、本発明による純チタン材の切削加工方法は、表面に酸化影響層が形成された純チタン材に対して、所定の軸回りに回転する切削刃を有する切削工具を用いてフライス加工する純チタン材の切削加工方法であって、前記切削工具の回転軸を前記純チタン材の表面に対して垂直に保持した状態で、前記切削工具をその軸方向に直交する方向に前記純チタン材に対して相対移動させながら前記酸化影響層の少なくとも一部を削り取る切削工程を備え、前記切削工程では、前記酸化影響層のうち前記切削工具によって削り取られる部分の厚みに対して、前記切削工具の切削刃のうち前記酸化影響層に接触して当該酸化影響層を削り取る機能を有する部分の長さが130%以上160%以下の値となるように設定する。   In order to achieve the above object, the present inventors have conducted intensive studies, and as a result, the thickness of the portion of the oxidation-affected layer to be scraped by the cutting tool and the oxidation-affecting layer in contact with the oxidation-affected layer of the cutting blade of the cutting tool. It was found that the relationship with the length of the part having the function of scraping the layer has a great influence on the cutting resistance. That is, the pure titanium material cutting method according to the present invention is a pure titanium material having a surface on which an oxidation-affected layer is formed. The pure titanium material is milled using a cutting tool having a cutting blade that rotates about a predetermined axis. A method of cutting a titanium material, wherein the cutting tool is placed on the pure titanium material in a direction perpendicular to the axial direction in a state in which the rotation axis of the cutting tool is held perpendicular to the surface of the pure titanium material. A cutting step of scraping at least a part of the oxidation-affected layer while relatively moving with respect to the thickness of a portion of the oxidation-affected layer that is scraped by the cutting tool. The length of a portion of the blade that has a function of contacting the oxidation-affected layer and scraping off the oxidation-affected layer is set to a value of 130% or more and 160% or less.

なお、本発明における「純チタン材」は、JIS(日本工業規格)に規定された1種から4種までの純チタン材を含むものであり、100%のチタンからなるものに限らず、微量の不純物を含有するものも含む概念である。また、本発明における「酸化影響層」は、純チタン材の表面が酸化されて形成されるチタン酸化物層のみならず、純チタン材の表面近傍に母材よりも多くの酸素が固溶した状態の層をも含む概念である。   The “pure titanium material” in the present invention includes 1 to 4 types of pure titanium materials specified in JIS (Japanese Industrial Standards), and is not limited to those made of 100% titanium, but a trace amount. It is also a concept including those containing impurities. In addition, the “oxidation-affected layer” in the present invention is not only a titanium oxide layer formed by oxidizing the surface of a pure titanium material, but also a larger amount of oxygen in the vicinity of the surface of the pure titanium material than a base material. It is a concept that includes a state layer.

本願発明者らは、上記のように切削工程において酸化影響層のうち切削工具によって削り取られる部分の厚みに対して、切削工具の切削刃のうち酸化影響層に接触して当該酸化影響層を削り取る機能を有する部分の長さが130%以上160%以下の値となるように設定することにより、純チタン材の表面に形成された酸化影響層の切削抵抗を低減可能であることを見出した。従って、上記のように酸化影響層の切削条件を設定することにより、純チタン材の表面に形成された酸化影響層の切削抵抗を低減して当該酸化影響層の切削除去を良好に行うことができる。   As described above, the inventors of the present invention cut the oxidation-affected layer in contact with the oxidation-affected layer of the cutting blade of the cutting tool with respect to the thickness of the portion of the oxidation-affected layer that is cut by the cutting tool in the cutting process as described above. It has been found that the cutting resistance of the oxidation-affected layer formed on the surface of the pure titanium material can be reduced by setting the length of the functional part to a value of 130% to 160%. Therefore, by setting the cutting conditions of the oxidation-affected layer as described above, the cutting resistance of the oxidation-affected layer formed on the surface of the pure titanium material can be reduced, and the oxidation-affected layer can be favorably removed by cutting. it can.

上記純チタン材の切削加工方法において、前記切削工程では、前記切削刃のうち前記酸化影響層に接触して当該酸化影響層を削り取る機能を有する部分が前記切削工具の軸方向に直線的に延びる直線部と、その直線部の端部から前記切削工具の軸方向における前記切削刃の前記酸化影響層側の端面に至るように円弧状に形成された円弧部とからなる前記切削工具を用いて前記酸化影響層を削り取ってもよい。   In the cutting method of the pure titanium material, in the cutting step, a portion of the cutting blade that has a function of contacting the oxidation-affected layer and scraping off the oxidation-affected layer extends linearly in the axial direction of the cutting tool. Using the cutting tool comprising a straight portion and an arc portion formed in an arc shape so as to reach the end surface on the oxidation-affected layer side of the cutting blade in the axial direction of the cutting tool from the end portion of the straight portion The oxidation-affected layer may be scraped off.

以上説明したように、本発明による純チタン材の切削加工方法によれば、純チタン材の表面に形成された酸化影響層の切削抵抗を低減して当該酸化影響層の切削除去を良好に行うことができる。   As described above, according to the cutting method of the pure titanium material according to the present invention, the cutting resistance of the oxidation-affected layer formed on the surface of the pure titanium material is reduced, and the removal of the oxidation-affected layer is favorably performed. be able to.

以下、本発明を実施するための最良の形態について図面を参照しながら詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings.

図1は、本発明の一実施形態による純チタン材1の切削加工方法を説明するための純チタン材1と切削工具11の配置状態を示した斜視図である。図2は、図1の切削工具11の切削刃17と純チタン材1の酸化影響層3との接触部分を局所的に示した断面図である。まず、図1と図2を参照して、本発明の一実施形態による純チタン材1の切削加工方法について説明する。   FIG. 1 is a perspective view showing an arrangement state of a pure titanium material 1 and a cutting tool 11 for explaining a cutting method of the pure titanium material 1 according to an embodiment of the present invention. FIG. 2 is a sectional view locally showing a contact portion between the cutting blade 17 of the cutting tool 11 of FIG. 1 and the oxidation-affected layer 3 of the pure titanium material 1. First, with reference to FIG. 1 and FIG. 2, the cutting method of the pure titanium material 1 by one Embodiment of this invention is demonstrated.

本実施形態による純チタン材1の切削加工方法は、純チタン材1の表面に形成された酸化影響層3の切削除去に用いられるものである。   The cutting method of the pure titanium material 1 according to the present embodiment is used for cutting and removing the oxidation-affected layer 3 formed on the surface of the pure titanium material 1.

一般に、スラブ鋼材等の純チタン材1が製造されるまでの過程では、材料の鋳造工程において熱処理が行われる。そして、この熱処理時には、酸素雰囲気によって純チタン材1の表面に酸化影響層3が形成される。酸化影響層3は、純チタン材1の最表面が酸化されることによって形成されるチタン酸化物層3aと、純チタン材1の表面近傍に内部の母材5よりも多くの酸素が固溶した層3bからなるものである。そして、このような表層に形成される酸化影響層3は、内部の母材5に比べて非常に硬く脆い性質を持つ。このため、純チタン材1を用いて種々の形状の製品を成形する際に酸化影響層3は成形を妨げる要因となるので、そのような製品の成形加工に先立って酸化影響層3を切削除去することが行われる。   Generally, in the process until the pure titanium material 1 such as slab steel material is manufactured, heat treatment is performed in the material casting process. At the time of this heat treatment, the oxidation influence layer 3 is formed on the surface of the pure titanium material 1 by the oxygen atmosphere. The oxidation-affected layer 3 includes a titanium oxide layer 3a formed by oxidizing the outermost surface of the pure titanium material 1, and a larger amount of oxygen in the vicinity of the surface of the pure titanium material 1 than in the inner base material 5. Layer 3b. And the oxidation influence layer 3 formed in such a surface layer has a very hard and brittle property compared with the inner base material 5. For this reason, since the oxidation influence layer 3 becomes a factor which obstructs shaping | molding when shape | molding the product of various shapes using the pure titanium material 1, the oxidation influence layer 3 is cut and removed prior to the shaping | molding process of such a product. To be done.

本実施形態による純チタン材1の切削加工方法では、図1に示すような切削工具11を用いてフライス加工することにより酸化影響層3の切削除去を行う。この切削工具11は、所定の軸回りに回転するものであって、軸部13と円盤部15と切削刃17とを有している。   In the cutting method of the pure titanium material 1 according to the present embodiment, the oxidation-affected layer 3 is removed by milling using a cutting tool 11 as shown in FIG. The cutting tool 11 rotates about a predetermined axis and includes a shaft portion 13, a disk portion 15, and a cutting blade 17.

前記軸部13は、切削工具11の回転軸となる部分であり、図示しない切削加工装置からこの軸部13に駆動が伝達されて切削工具11が回転するようになっている。   The shaft portion 13 is a portion that serves as a rotating shaft of the cutting tool 11, and the cutting tool 11 is rotated by driving transmitted from the cutting device (not shown) to the shaft portion 13.

前記円盤部15は、図1において軸部13の下端に結合している。この円盤部15は、その軸心が軸部13の軸心と同軸となるように配置されており、軸部13と一体となって回転する。   The disk portion 15 is coupled to the lower end of the shaft portion 13 in FIG. The disk portion 15 is arranged so that its axis is coaxial with the axis of the shaft portion 13, and rotates integrally with the shaft portion 13.

前記切削刃17は、円盤部15の周面から径方向外側に突出するように設けられているとともに、円盤部15の周方向に所定間隔で複数設けられている。そして、これら各切削刃17は、切削工具11の回転に伴って当該切削工具11の軸回りに回転しながら純チタン材1の酸化影響層3に接触して当該酸化影響層3の少なくとも一部の領域を削り取る。切削刃17としては、超硬チップや、コーティングチップ等が適用され、その材料として高速度鋼、サーメット、セラミックス、CBN(Cubic Boron Nitride)、ダイヤモンド等の切削加工で一般的なものが用いられる。   The cutting blades 17 are provided so as to protrude radially outward from the circumferential surface of the disk portion 15, and a plurality of cutting blades 17 are provided in the circumferential direction of the disk portion 15 at predetermined intervals. These cutting blades 17 come into contact with the oxidation affecting layer 3 of the pure titanium material 1 while rotating around the axis of the cutting tool 11 as the cutting tool 11 rotates, and at least part of the oxidation affecting layer 3. Scrap the area. As the cutting blade 17, a cemented carbide tip, a coating tip or the like is applied, and a material generally used for cutting such as high speed steel, cermet, ceramics, CBN (Cubic Boron Nitride), diamond or the like is used.

本実施形態の切削加工方法では、切削工具11の回転軸を純チタン材1の表面に対して垂直に保持した状態で、切削工具11をその軸方向に直交する方向に純チタン材1に対して移動させながら酸化影響層3を回転する切削刃17で削り取っていく。この際、切削刃17は、その刃先の所定の部分のみが酸化影響層3に接触して当該酸化影響層3を削り取る。具体的には、図2に示すように、切削刃17のうち酸化影響層3に接触して当該酸化影響層3を削り取る接触部17aは、切削刃17の刃先の下端近傍の部分である。そして、接触部17aは切削工具11の軸方向に直線的に延びる直線部17bと、その直線部17bの下端から切削刃17の下面に至るように円弧状に形成された円弧部17cとによって構成されている。前記円弧部17cは、直線部17bと切削刃17の下面との間に構成される角部が円弧状に丸められた形状を有しており、その形状は中心角が90度の4分の1円弧となっている。   In the cutting method of the present embodiment, the cutting tool 11 is held with respect to the pure titanium material 1 in a direction perpendicular to the axial direction in a state where the rotation axis of the cutting tool 11 is held perpendicular to the surface of the pure titanium material 1. The oxidation-affected layer 3 is scraped off by the rotating cutting blade 17 while being moved. At this time, only the predetermined part of the cutting edge 17 of the cutting blade 17 comes into contact with the oxidation influence layer 3 and scrapes off the oxidation influence layer 3. Specifically, as shown in FIG. 2, the contact portion 17 a that contacts the oxidation-affected layer 3 and scrapes the oxidation-affected layer 3 in the cutting blade 17 is a portion near the lower end of the cutting edge of the cutting blade 17. And the contact part 17a is comprised by the linear part 17b linearly extended in the axial direction of the cutting tool 11, and the circular arc part 17c formed in circular arc shape so that it may reach the lower surface of the cutting blade 17 from the lower end of the linear part 17b. Has been. The arc portion 17c has a shape in which a corner portion formed between the straight portion 17b and the lower surface of the cutting blade 17 is rounded into an arc shape, and the shape has a central angle of 90 degrees. It is one arc.

そして、本実施形態による酸化影響層3の切削工程では、酸化影響層3のうち切削工具11の切削刃17によって削り取られる部分の厚み(以下、切込み量という)に対して、切削刃17のうち酸化影響層3に接触して当該酸化影響層3を削り取る接触部17aの長さ(以下、実切削刃長という)が130%以上160%以下の値となるように設定する。   And in the cutting process of the oxidation influence layer 3 by this embodiment, it is among the cutting blades 17 with respect to the thickness (henceforth the cutting amount) of the part cut off by the cutting blade 17 of the cutting tool 11 among the oxidation influence layers 3. The length of the contact portion 17a that contacts the oxidation-affected layer 3 and scrapes the oxidation-affected layer 3 (hereinafter referred to as the actual cutting blade length) is set to be 130% or more and 160% or less.

本願発明者らは、酸化影響層3の切削抵抗を低減するために切削工具11の酸化影響層3に対する切込み量と切削刃17の実切削刃長との関係に着目し、以下に説明する実験を行って鋭意検討した結果、上記の切込み量に対する実切削刃長の設定条件を見出した。   The inventors of the present application pay attention to the relationship between the cutting depth of the cutting tool 11 with respect to the oxidation-affected layer 3 and the actual cutting blade length of the cutting blade 17 in order to reduce the cutting resistance of the oxidation-affected layer 3, and the experiments described below. As a result of conducting intensive studies, the conditions for setting the actual cutting blade length with respect to the above-described cutting amount were found.

この実験では、切削工具11による切込み量(純チタン材1表面からの切込み深さ)に対する切削刃17の実切削刃長の比を変化させながら純チタン材1の酸化影響層3を実際に切削することにより、酸化影響層3の切削抵抗がどのように変化するかについて調べた。この実験の切削に供する純チタン材1としては、長さ50mm、幅30mm、厚み50mmの角材状で、その表面に約5mm厚の酸化影響層3が形成されたものを用いた。そして、切削工具11を用いて酸化影響層3の表層部分を上記の切削加工方法に基づいて切削除去した。この際、潤滑のための切削油を切削箇所に供給しながら切削を行った。なお、この実験では、切削刃17が円盤部15の周面に1つのみ設けられた切削工具11を用いて切削を行った。酸化影響層3の切削は、純チタン材1を動力計100(図1参照)の上に載せた状態で行い、その動力計100によって酸化影響層3の切削抵抗を測定した。そして、この実験の切削条件は、以下の表1に示す各条件に設定した。   In this experiment, the oxidation-affected layer 3 of the pure titanium material 1 was actually cut while changing the ratio of the actual cutting blade length of the cutting blade 17 to the depth of cut by the cutting tool 11 (the depth of cut from the surface of the pure titanium material 1). As a result, it was examined how the cutting resistance of the oxidation-affected layer 3 changes. As the pure titanium material 1 used for cutting in this experiment, a square material having a length of 50 mm, a width of 30 mm, and a thickness of 50 mm and having an oxidation-affected layer 3 having a thickness of about 5 mm formed on the surface thereof was used. And the surface layer part of the oxidation influence layer 3 was cut and removed using the cutting tool 11 based on said cutting method. At this time, cutting was performed while supplying a cutting oil for lubrication to the cutting portion. In this experiment, cutting was performed using the cutting tool 11 in which only one cutting blade 17 was provided on the peripheral surface of the disk portion 15. The oxidation-affected layer 3 was cut with the pure titanium material 1 placed on a dynamometer 100 (see FIG. 1), and the cutting resistance of the oxidation-affected layer 3 was measured with the dynamometer 100. The cutting conditions of this experiment were set to the conditions shown in Table 1 below.

Figure 0004897500
Figure 0004897500

この実験では、上記表1に示すように、各切削条件で切削幅、切込み量、切削速度及び1刃当たり送り量を一定にした状態で切削を行った。ここで言う1刃当たり送り量は、1回転当たりに切削工具11が切削方向へ移動する距離(送り量)を切削刃17の数で割ったものである。この実験では、切削刃17が1つしか設けられていないので、1刃当たり送り量は切削工具11が1回転当たりに切削方向へ移動する距離となる。切込み量は、純チタン材1の上面に切削工具11の下面が接触した位置から切削工具11を下方へ移動させた距離に基づいて設定した。具体的には、切削開始前の条件設定において、切削工具11を純チタン材1上で下方に移動させながら純チタン材1の上面に切削工具11の下面が接触したことを図略の加工装置のタッチセンサで検知し、その接触した位置を基準としてその位置から下方へ切削工具11を移動させた距離によって切込み量を設定した。なお、上記のように切削幅と切削速度を各切削条件で一定としたのは、これらの値は1刃当たりの切削抵抗にほぼ影響を与えないためである。また、切込み量と1刃当たり送り量は、切削抵抗の絶対値に影響を与えるものの、後述するように各切削条件の切削抵抗を相対比較すれば、切削抵抗の絶対値への影響に係らず、切削抵抗の低減に対する各切削条件の有効性について妥当な判断を行えるため、これら切込み量と1刃当たり送り量についても一定の値に固定した条件で実験を行った。   In this experiment, as shown in Table 1 above, cutting was performed with the cutting width, depth of cut, cutting speed, and feed amount per tooth being constant under each cutting condition. The feed amount per blade referred to here is the distance (feed amount) by which the cutting tool 11 moves in the cutting direction per rotation divided by the number of cutting blades 17. In this experiment, since only one cutting blade 17 is provided, the feed amount per blade is the distance that the cutting tool 11 moves in the cutting direction per rotation. The depth of cut was set based on the distance by which the cutting tool 11 was moved downward from the position where the lower surface of the cutting tool 11 was in contact with the upper surface of the pure titanium material 1. Specifically, in the condition setting before the start of cutting, it is shown that the lower surface of the cutting tool 11 is in contact with the upper surface of the pure titanium material 1 while moving the cutting tool 11 downward on the pure titanium material 1. The amount of cutting was set according to the distance by which the cutting tool 11 was moved downward from that position with reference to the contact position. The reason why the cutting width and the cutting speed are constant in each cutting condition as described above is that these values do not substantially affect the cutting resistance per tooth. In addition, although the depth of cut and the feed amount per tooth affect the absolute value of the cutting resistance, as will be described later, if the cutting resistance of each cutting condition is relatively compared, regardless of the influence on the absolute value of the cutting resistance. In order to make a reasonable judgment as to the effectiveness of each cutting condition for reducing the cutting force, the experiment was performed under the condition that the cutting amount and the feed amount per blade were fixed to a constant value.

そして、この実験では、切込み量に対する実切削刃長の比を117.3%〜190.1%の間で変化させた各条件で切削抵抗を測定した。ただし、上記のように切込み量は一定の値に固定しているので、切削刃17の実切削刃長を変化させることによって切込み量に対する実切削刃長の比を変化させた。詳細には、円弧部17cの円弧半径がそれぞれ異なる切削刃17を用いることにより、円弧部17cの長さL1を変化させるとともに直線部17bの長さL2を変化させて切削刃17の実切削刃長を変化させた。そして、切削加工は、図1に示すように、純チタン材1の長さ方向Fxに切削工具11の送り方向を設定した場合と、純チタン材1の幅方向Fyに切削工具11の送り方向を設定した場合とについてそれぞれ行った。この実験の結果が図3に示されている。なお、図3には、切込み量に対する実切削刃長の比が190.1%の場合の切削抵抗値を100%として、それに対する各条件での切削抵抗値を比率で表している。   In this experiment, the cutting resistance was measured under various conditions in which the ratio of the actual cutting blade length to the cutting depth was changed between 117.3% and 190.1%. However, since the cutting amount is fixed to a constant value as described above, the ratio of the actual cutting blade length to the cutting amount is changed by changing the actual cutting blade length of the cutting blade 17. Specifically, by using the cutting blades 17 having different arc radii of the arc portion 17c, the length L1 of the arc portion 17c and the length L2 of the linear portion 17b are changed to change the actual cutting blade of the cutting blade 17. The length was changed. Then, as shown in FIG. 1, the cutting is performed when the feed direction of the cutting tool 11 is set in the length direction Fx of the pure titanium material 1 and in the width direction Fy of the pure titanium material 1. And was done for each. The result of this experiment is shown in FIG. In FIG. 3, the cutting resistance value when the ratio of the actual cutting blade length to the cutting depth is 190.1% is assumed to be 100%, and the cutting resistance value under each condition is expressed as a ratio.

図3の結果から判るように、切込み量に対する実切削刃長の比を約130%以上約160%以下の範囲に設定することによって、酸化影響層3の切削抵抗が切込み量に対する実切削刃長の比を約190%に設定した場合の切削抵抗に対して約71%〜約78%の値に減少することが判る。そして、切込み量に対する実切削刃長の比をさらに小さくして約120%に設定すると、切込み量に対する実切削刃長の比を約130%以上約160%以下の範囲に設定した場合に比べて逆に切削抵抗が増大することが判る。従って、この実験結果から切込み量に対する実切削刃長の比を約130%以上約160%以下の範囲内に設定することによって、酸化影響層3の切削抵抗を低減させることができ、その結果、酸化影響層3を良好に切削除去可能であることが判明した。また、図3から、切込み量に対する実切削刃長の比を約130%以上約160%以下の範囲内に設定すると切削抵抗が比較的安定することが判る。すなわち、切込み量に対する実切削刃長の比が約130%以上約160%以下の範囲内に収まる程度であれば、切込み量に対する実切削刃長の比が他の範囲にある場合よりも実切削刃長と切込み量の変動が切削抵抗に与える影響は少ないと考えられる。   As can be seen from the results of FIG. 3, by setting the ratio of the actual cutting blade length to the cutting amount in the range of about 130% to about 160%, the cutting resistance of the oxidation-affected layer 3 is set to the actual cutting blade length with respect to the cutting amount. It can be seen that the cutting force decreases to a value of about 71% to about 78% with respect to the cutting resistance when the ratio is set to about 190%. When the ratio of the actual cutting blade length to the cutting depth is further reduced to about 120%, the ratio of the actual cutting blade length to the cutting depth is set to a range of about 130% to about 160%. Conversely, it can be seen that the cutting resistance increases. Therefore, the cutting resistance of the oxidation-affected layer 3 can be reduced by setting the ratio of the actual cutting blade length to the cutting amount within the range of about 130% or more and about 160% or less from this experimental result. It was found that the oxidation-affected layer 3 can be satisfactorily removed by cutting. 3 that the cutting resistance is relatively stable when the ratio of the actual cutting blade length to the cutting depth is set within a range of about 130% to about 160%. That is, as long as the ratio of the actual cutting blade length to the cutting depth is within a range of about 130% or more and about 160% or less, the actual cutting blade length to cutting depth ratio is more than that in other ranges. It is considered that the influence of the variation of the blade length and the cutting depth on the cutting force is small.

以上説明したように、本実施形態による純チタン材1の切削加工方法では、切削工程において酸化影響層3のうち切削工具11によって削り取られる部分の厚み(切込み量)に対して、切削刃17のうち酸化影響層3に接触して当該酸化影響層3を削り取る接触部17aの長さ(実切削刃長)が130%以上160%以下の値となるように設定することにより、純チタン材1の表面に形成された酸化影響層3の切削抵抗を低減して当該酸化影響層3の切削除去を良好に行うことができる。   As described above, in the cutting method of the pure titanium material 1 according to the present embodiment, the cutting blade 17 has a thickness (cutting amount) of the portion of the oxidation-affected layer 3 that is scraped by the cutting tool 11 in the cutting process. By setting the length (actual cutting blade length) of the contact portion 17a that contacts the oxidation-affected layer 3 and scrapes off the oxidation-affected layer 3 to be a value of 130% or more and 160% or less, the pure titanium material 1 Thus, the cutting resistance of the oxidation-affected layer 3 formed on the surface can be reduced, and the oxidation-affected layer 3 can be cut and removed satisfactorily.

なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれる。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and further includes meanings equivalent to the scope of claims for patent and all modifications within the scope.

例えば、上記実施形態の切削加工方法は、純チタン材のスラブ鋼材以外にも種々の形状のものに適用することができる。例えば、純チタン材のビレットやその他ブロック状の純チタン材等に本発明による切削加工方法を適用してもよい。   For example, the cutting method of the above embodiment can be applied to various shapes other than pure titanium slab steel. For example, the cutting method according to the present invention may be applied to a billet of pure titanium material or other block-like pure titanium material.

また、上記実施形態では、切削工具11側を純チタン材1に対して移動させて切削を行ったが、これに限らず、切削工具11側を固定してそれに対して純チタン材1側を移動させることにより切削を行ってもよい。   Moreover, in the said embodiment, although the cutting tool 11 side was moved with respect to the pure titanium material 1, and it cut, it is not restricted to this, The cutting tool 11 side is fixed and the pure titanium material 1 side is set with respect to it. You may cut by moving.

また、上記実施形態では、切削工具11をその回転軸が上下方向に沿うように配置するとともに、この切削工具11によって純チタン材1の上面に形成された酸化影響層3を切削する例を示したが、これに限らず、酸化影響層3が形成された純チタン材1の表面に対して切削工具11の回転軸が垂直に配置されていれば、上記以外の構成で切削工具11と純チタン材1を配置して酸化影響層3の切削を行ってもよい。例えば、側面に酸化影響層が存在する状態の純チタン材を、その側面に対して回転軸が垂直になるように配置した切削工具によって切削してもよい。   Moreover, in the said embodiment, while arrange | positioning the cutting tool 11 so that the rotating shaft may follow an up-down direction, the example which cuts the oxidation influence layer 3 formed in the upper surface of the pure titanium material 1 with this cutting tool 11 is shown. However, the present invention is not limited to this, and if the rotation axis of the cutting tool 11 is disposed perpendicular to the surface of the pure titanium material 1 on which the oxidation-affected layer 3 is formed, the cutting tool 11 and the pure The titanium material 1 may be disposed and the oxidation-affected layer 3 may be cut. For example, a pure titanium material having an oxidation-affected layer on the side surface may be cut with a cutting tool arranged so that the rotation axis is perpendicular to the side surface.

本発明の一実施形態による純チタン材の切削加工方法を説明するための純チタン材と切削工具の配置状態を示した斜視図である。It is the perspective view which showed the arrangement | positioning state of the pure titanium material and cutting tool for demonstrating the cutting method of the pure titanium material by one Embodiment of this invention. 図1の切削工具の切削刃と純チタン材の酸化影響層との接触部分を局所的に示した断面図である。It is sectional drawing which showed locally the contact part of the cutting blade of the cutting tool of FIG. 1, and the oxidation influence layer of a pure titanium material. 切削工具の酸化影響層への切込み量に対する切削刃の実切削刃長の比と切削抵抗との関係を調べた実験結果を示した図である。It is the figure which showed the experimental result which investigated the relationship between the ratio of the actual cutting blade length of the cutting blade with respect to the cutting depth to the oxidation influence layer of a cutting tool, and cutting resistance.

符号の説明Explanation of symbols

1 純チタン材
3 酸化影響層
11 切削工具
17 切削刃
17b 直線部
17c 円弧部
DESCRIPTION OF SYMBOLS 1 Pure titanium material 3 Oxidation influence layer 11 Cutting tool 17 Cutting blade 17b Straight line part 17c Arc part

Claims (2)

表面に酸化影響層が形成された純チタン材に対して、所定の軸回りに回転する切削刃を有する切削工具を用いてフライス加工する純チタン材の切削加工方法であって、
前記切削工具の回転軸を前記純チタン材の表面に対して垂直に保持した状態で、前記切削工具をその軸方向に直交する方向に前記純チタン材に対して相対移動させながら前記酸化影響層の少なくとも一部を削り取る切削工程を備え、
前記切削工程では、前記酸化影響層のうち前記切削工具によって削り取られる部分の厚みに対して、前記切削工具の切削刃のうち前記酸化影響層に接触して当該酸化影響層を削り取る機能を有する部分の長さが130%以上160%以下の値となるように設定する、純チタン材の切削加工方法。
For a pure titanium material having an oxidation-affected layer formed on the surface, a cutting method of the pure titanium material that is milled using a cutting tool having a cutting blade that rotates about a predetermined axis,
The oxidation-affected layer while moving the cutting tool relative to the pure titanium material in a direction orthogonal to the axial direction in a state where the rotation axis of the cutting tool is held perpendicular to the surface of the pure titanium material. A cutting process for scraping at least a part of
In the cutting step, a portion having a function of scraping the oxidation-affected layer in contact with the oxidation-affected layer in a cutting blade of the cutting tool with respect to a thickness of a portion of the oxidation-affected layer to be cut by the cutting tool A method for cutting a pure titanium material, in which the length of the material is set to a value of 130% to 160%.
前記切削工程では、前記切削刃のうち前記酸化影響層に接触して当該酸化影響層を削り取る機能を有する部分が前記切削工具の軸方向に直線的に延びる直線部と、その直線部の端部から前記切削工具の軸方向における前記切削刃の前記酸化影響層側の端面に至るように円弧状に形成された円弧部とからなる前記切削工具を用いて前記酸化影響層を削り取る、請求項1に記載の純チタン材の切削加工方法。   In the cutting step, a portion of the cutting blade that has a function of contacting the oxidation-affected layer and scraping off the oxidation-affected layer is linearly extended in the axial direction of the cutting tool, and an end of the linear portion The said oxidation influence layer is scraped off using the said cutting tool which consists of the circular arc part formed in circular arc shape so that it may reach the end surface by the side of the said oxidation influence layer of the said cutting blade in the axial direction of the said cutting tool. A method for cutting a pure titanium material as described in 1.
JP2007013556A 2007-01-24 2007-01-24 Cutting method of pure titanium material Expired - Fee Related JP4897500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007013556A JP4897500B2 (en) 2007-01-24 2007-01-24 Cutting method of pure titanium material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007013556A JP4897500B2 (en) 2007-01-24 2007-01-24 Cutting method of pure titanium material

Publications (2)

Publication Number Publication Date
JP2008178933A JP2008178933A (en) 2008-08-07
JP4897500B2 true JP4897500B2 (en) 2012-03-14

Family

ID=39723219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007013556A Expired - Fee Related JP4897500B2 (en) 2007-01-24 2007-01-24 Cutting method of pure titanium material

Country Status (1)

Country Link
JP (1) JP4897500B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110587237A (en) * 2019-09-20 2019-12-20 西安飞机工业(集团)有限责任公司 Numerical control machining method for thin-wall curved surface edge strip structural part of airplane

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213206A1 (en) * 2019-04-18 2020-10-22 Jfeスチール株式会社 Slab surface maintenance method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3240500B2 (en) * 1995-10-12 2001-12-17 新日本製鐵株式会社 Metal slab surface care method
JPH09220236A (en) * 1996-02-15 1997-08-26 Technol Res Assoc Of Medical & Welfare Apparatus Shape working device and production of dental prosthetic appliance
JP2004001171A (en) * 2003-01-10 2004-01-08 Kobe Steel Ltd Milling-cutter blade for surface cutting and surface cutting method for cooper and copper alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110587237A (en) * 2019-09-20 2019-12-20 西安飞机工业(集团)有限责任公司 Numerical control machining method for thin-wall curved surface edge strip structural part of airplane

Also Published As

Publication number Publication date
JP2008178933A (en) 2008-08-07

Similar Documents

Publication Publication Date Title
JP5764181B2 (en) Hard film coated cutting tool
JP4219945B2 (en) Cutter foil for glass cutting
JP6357746B2 (en) Scribing wheel, holder unit, scribing device, scribing wheel manufacturing method and scribing method
CN109963677B (en) Circular saw blade with blade tip
JP2009113120A (en) Cutting tool, and cutting method using the same
JP2014091168A (en) End mill and manufacturing method for the same
JP4897500B2 (en) Cutting method of pure titanium material
JP6879668B2 (en) Cutting method
WO2017199911A1 (en) Dimple forming method using rotary cutting tool
JP5353375B2 (en) Cutting method
JP6060027B2 (en) Cutting tool and design method thereof
JP2010269437A (en) Cemented carbide end mill
JP2014195863A (en) End mill
JP7236108B2 (en) Milling device and milling method
JP5953173B2 (en) Cutting tools
JP6182334B2 (en) Manufacturing method of scribing wheel
EP2644305B1 (en) Shaving tool
JP6376121B2 (en) Cutter wheel
TWI443072B (en) A wheel retainer and a method of manufacturing the same, and a cutter wheel holding mechanism using a wheel retainer
JP2008100298A (en) Multi-wire saw apparatus, and method for adjusting multi-wire saw apparatus
JP2002254231A (en) Cutting method
JP6335654B2 (en) Fine tool
JP2013013962A (en) Cbn end mill
JP5939687B2 (en) Cutting tools
JP7460135B2 (en) Cutting method and cutting device using throw-away tip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111222

R150 Certificate of patent or registration of utility model

Ref document number: 4897500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees