JP4895379B2 - Lever excitation mechanism and scanning probe microscope - Google Patents

Lever excitation mechanism and scanning probe microscope Download PDF

Info

Publication number
JP4895379B2
JP4895379B2 JP2007038813A JP2007038813A JP4895379B2 JP 4895379 B2 JP4895379 B2 JP 4895379B2 JP 2007038813 A JP2007038813 A JP 2007038813A JP 2007038813 A JP2007038813 A JP 2007038813A JP 4895379 B2 JP4895379 B2 JP 4895379B2
Authority
JP
Japan
Prior art keywords
lever
vibration
sample
cantilever
support member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007038813A
Other languages
Japanese (ja)
Other versions
JP2008203058A (en
Inventor
雅次 繁野
明 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2007038813A priority Critical patent/JP4895379B2/en
Publication of JP2008203058A publication Critical patent/JP2008203058A/en
Application granted granted Critical
Publication of JP4895379B2 publication Critical patent/JP4895379B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば先端に探針を有するカンチレバー等のレバーを所定の周波数及び振幅で加振可能なレバー加振機構、及び該レバー加振機構を有する走査型プローブ顕微鏡に関するものである。   The present invention relates to a lever vibration mechanism that can vibrate a lever such as a cantilever having a probe at a tip at a predetermined frequency and amplitude, and a scanning probe microscope having the lever vibration mechanism.

従来、例えば金属、半導体、セラミック、樹脂、高分子、生体材料、絶縁物等の試料を微小領域にて測定し、試料の表面形状、粘弾性などの物性情報の観察等を行う装置として、走査型プローブ顕微鏡(SPM:Scanning Probe Microscope)が知られている(例えば、特許文献1参照)。
この走査型プローブ顕微鏡では、測定対象物に応じて多様な測定モードがあり、例えばカンチレバーホルダに装着したカンチレバーのレバーを振動させて、測定を行う振動モードSPMが知られている。
Conventionally, as a device for measuring samples such as metals, semiconductors, ceramics, resins, polymers, biomaterials, insulators, etc. in a micro area and observing physical property information such as sample surface shape and viscoelasticity, scanning A scanning probe microscope (SPM) is known (for example, see Patent Document 1).
In this scanning probe microscope, there are various measurement modes depending on the object to be measured. For example, a vibration mode SPM for performing measurement by vibrating a lever of a cantilever mounted on a cantilever holder is known.

この振動モードSPMとしては、例えば、共振させたレバーの振動振幅が一定になるように探針と試料との間の距離を制御しながら走査を行うDFM(共振モード測定−原子間力顕微鏡:Dynamic Force Mode Microscope)や、AFM(Atomic Force Mode)動作中に、試料を試料表面に垂直なZ方向に微小振動させて、又はレバーを試料表面に垂直なZ方向に微小振動させて、周期的な力を加え、この際のレバーの撓み振幅や、sin成分、cos成分を検出することで粘弾性分布を測定するVE−AFM(マイクロ粘弾性測定−原子間力顕微鏡:Viscoelastic AFM)や、AFM動作中に、試料を試料表面に平行な水平方向に横振動させ、又はレバーを試料表面に平行な水平方向に横振動させ、この際のレバーのねじれ振動振幅を検出することで摩擦力分布を測定するLM−FFM(横振動摩擦力顕微鏡:Lateral Force Modulation Friction Force Microscope)等が知られている。
特開2003−42931号公報
As this vibration mode SPM, for example, DFM (resonance mode measurement-atomic force microscope: Dynamic) that performs scanning while controlling the distance between the probe and the sample so that the vibration amplitude of the resonated lever becomes constant. During a Force Mode Microscope (AFM) or AFM (Atomic Force Mode) operation, the sample is periodically vibrated in the Z direction perpendicular to the sample surface or the lever is minutely vibrated in the Z direction perpendicular to the sample surface. VE-AFM (micro-viscoelasticity measurement-atomic force microscope: Viscoelastic AFM) that measures the viscoelasticity distribution by detecting the deflection amplitude, sin component, and cos component of the lever at this time, and AFM operation During this, the sample is vibrated in the horizontal direction parallel to the sample surface, or the lever is vibrated in the horizontal direction parallel to the sample surface, and the frictional force distribution is measured by detecting the torsional vibration amplitude of the lever. That LM-FFM (lateral vibration friction force microscope: Lateral Force Modulation Friction Force Microscope) and the like are known.
JP 2003-42931 A

ところで、上述した従来技術に係る走査型プローブ顕微鏡において、カンチレバーのレバーを振動させる加振源として圧電素子を用いた場合には、カンチレバーホルダに取り付けられた圧電素子に所定の交流電圧を印加して、圧電素子を周期的に伸縮させることで、カンチレバーを所定の振動数および振幅で振動させる。
しかしながら、圧電素子では、伸び方向に作用する力に比べて、縮み方向に作用する力が相対的に小さいことから、振動状態が不安定になる虞がある。特に、カンチレバーと、カンチレバーが載置されるレバー台とを圧電素子により振動させる際に、振動周波数が増大すると、振動に要する運動エネルギーが増大し、この運動エネルギーは、カンチレバーおよびレバー台の質量と、周波数および振幅の積の2乗に比例する加速度との積に比例して増大することから、伸び方向の振幅と縮み方向の振幅との差異が増大すると、振動状態を安定化させることが困難となる虞がある。
By the way, in the above-described conventional scanning probe microscope, when a piezoelectric element is used as an excitation source for vibrating the lever of the cantilever, a predetermined AC voltage is applied to the piezoelectric element attached to the cantilever holder. The cantilever is vibrated at a predetermined frequency and amplitude by periodically expanding and contracting the piezoelectric element.
However, in the piezoelectric element, since the force acting in the contraction direction is relatively smaller than the force acting in the extension direction, the vibration state may become unstable. In particular, when the vibration frequency is increased when the cantilever and the lever base on which the cantilever is placed are vibrated by the piezoelectric element, the kinetic energy required for the vibration increases, and this kinetic energy is equal to the mass of the cantilever and the lever base. Since the frequency increases in proportion to the product of the acceleration proportional to the square of the product of frequency and amplitude, it becomes difficult to stabilize the vibration state when the difference between the amplitude in the extension direction and the amplitude in the contraction direction increases. There is a risk of becoming.

また、加振源の振動は、レバー以外の周辺構造物にも伝達することから、例えば周辺構造物の共振等の振動成分が、レバーの共振等の振動成分に重畳されてしまうと、レバーの振動特性を精度良く検出することが困難となり、振動特性の再現性が悪化したり、感度が低下してしまうという問題が生じる。   In addition, since the vibration of the excitation source is transmitted to peripheral structures other than the lever, for example, if a vibration component such as resonance of the peripheral structure is superimposed on a vibration component such as resonance of the lever, It becomes difficult to detect the vibration characteristics with high accuracy, resulting in problems that the reproducibility of the vibration characteristics deteriorates and the sensitivity decreases.

本発明は上記事情に鑑みてなされたもので、振動特性を向上させることが可能なレバー加振機構、及び該レバー加振機構を有する走査型プローブ顕微鏡を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a lever vibration mechanism capable of improving vibration characteristics and a scanning probe microscope having the lever vibration mechanism.

上記課題を解決して係る目的を達成するために、本発明のレバー加振機構は、基端側から先端側に向かう長手方向に延びたカンチレバー(例えば、実施の形態でのカンチレバー3)と、前記カンチレバーのレバー(例えば、実施の形態でのレバー3c)の先端部を自由端とし、前記レバーの基端部を片持ち状態で支持する支持部材(例えば、実施の形態での斜面ブロック10)と、前記支持部材を介して前記レバーを所定振動状態で振動させる圧電部材(例えば、実施の形態での加振源11)とを備え、前記支持部材は、前記圧電部材を振動方向の両側から挟み込んで固定する狭持部(例えば、実施の形態での切欠き溝部13、貫通孔15)を備え、前記狭持部は、前記圧電部材の振動方向の厚さに対して所定の締め代を有し、前記圧電部材は、前記狭持部によって前記振動方向に締まりばめされた状態で固定されている。   In order to solve the above problems and achieve the object, a lever vibration mechanism of the present invention includes a cantilever (for example, cantilever 3 in the embodiment) extending in the longitudinal direction from the base end side toward the tip end side, The cantilever lever (for example, the lever 3c in the embodiment) has a free end as a free end, and a support member that supports the base end of the lever in a cantilever state (for example, the slope block 10 in the embodiment). And a piezoelectric member (for example, the excitation source 11 in the embodiment) that vibrates the lever in a predetermined vibration state via the support member, and the support member moves the piezoelectric member from both sides in the vibration direction. A sandwiching portion (for example, the notch groove portion 13 and the through hole 15 in the embodiment) that is sandwiched and fixed is provided, and the sandwiching portion has a predetermined tightening margin with respect to the thickness of the piezoelectric member in the vibration direction. The piezoelectric member , And it is fixed in a state of interference fit in the vibration direction by the holding portion.

この発明のレバー加振機構によれば、レバーを所定振動状態で振動させる圧電部材は、狭持部によって振動方向に締まりばめされた状態で固定されていることから、圧電部材は縮み方向に加圧され、縮み方向に作用する力が補助されており、例えば相対的に高い周波数で周期的に伸縮する場合であっても、伸び方向の振幅と縮み方向の振幅との差異が増大することを抑制することができ、振動状態を安定化させることができる。   According to the lever oscillating mechanism of the present invention, the piezoelectric member that vibrates the lever in a predetermined vibration state is fixed in a state of being tightly fitted in the vibration direction by the holding portion, so that the piezoelectric member is in the contraction direction. Pressurized force acting in the shrinking direction is assisted, and for example, even when expanding and contracting periodically at a relatively high frequency, the difference between the amplitude in the stretching direction and the amplitude in the shrinking direction increases. Can be suppressed, and the vibration state can be stabilized.

さらに、本発明のレバー加振機構では、前記狭持部は、前記支持部材の前記長手方向の先端側の端面(例えば、実施の形態での先端側端面10b)上に設けられ、前記支持部材の前記振動方向および前記長手方向に略直交する方向の両端部に向かい延びる凹溝であって、前記凹溝は、前記支持部材の前記長手方向の基端側に設けられた底部(例えば、実施の形態での第1底面13dおよび第2底面13e、底面13g)を備え、少なくとも前記底部近傍の内壁面(例えば、実施の形態での内壁上面13aおよび基端側内壁下面13b、内壁上面13aおよび内壁下面13f)によって前記圧電部材の前記長手方向の基端部を前記振動方向の両側から挟み込んで固定する。   Furthermore, in the lever vibration mechanism according to the present invention, the holding portion is provided on an end surface on the distal end side in the longitudinal direction of the support member (for example, the distal end side end surface 10b in the embodiment), and the support member A groove extending toward both ends in a direction substantially perpendicular to the vibration direction and the longitudinal direction of the support member, wherein the groove is a bottom portion (for example, implemented) provided on the base end side of the support member in the longitudinal direction. The first bottom surface 13d, the second bottom surface 13e, and the bottom surface 13g in the form of, and at least the inner wall surface in the vicinity of the bottom portion (for example, the inner wall upper surface 13a and the proximal side inner wall lower surface 13b in the embodiment, the inner wall upper surface 13a and The longitudinal end of the piezoelectric member is sandwiched and fixed from both sides in the vibration direction by the inner wall lower surface 13f).

この発明のレバー加振機構によれば、圧電部材は支持部材に設けられた凹溝内に装着されることから、例えば圧電部材を振動方向の両側から加圧するための特別な新たな部材を付加する必要無しに圧電部材を固定することができる。これにより、例えば新たな部材が付加されることで、部品点数の増大に伴いレバー加振機構の構成に要する費用が増大してしまったり、レバー以外の周辺構造物の振動に起因する雑音成分が増大してしまったり、レバーの振動特性の再現性が悪化してしまう等の不具合が生じることを防止することができる。   According to the lever vibration mechanism of the present invention, since the piezoelectric member is mounted in the concave groove provided in the support member, for example, a special new member for pressing the piezoelectric member from both sides in the vibration direction is added. The piezoelectric member can be fixed without having to do this. As a result, for example, by adding a new member, the cost required for the configuration of the lever vibration mechanism increases with the increase in the number of parts, or noise components due to vibrations of peripheral structures other than the lever are generated. It is possible to prevent problems such as an increase or a deterioration in the reproducibility of the vibration characteristics of the lever.

さらに、本発明のレバー加振機構は、前記凹溝の前記振動方向の内壁面のうち、前記レバーに近接する一方の内壁面は、前記圧電部材の前記長手方向の先端部に対して所定間隔を置いて配置される第1内壁面(例えば、実施の形態での先端側内壁下面13c)と、前記圧電部材の前記長手方向の基端部に当接する第2内壁面(例えば、実施の形態での基端側内壁下面13b)とを備える。   Furthermore, in the lever excitation mechanism of the present invention, of the inner walls in the vibration direction of the concave groove, one inner wall close to the lever has a predetermined interval with respect to the longitudinal end of the piezoelectric member. And a second inner wall surface (for example, the embodiment) that comes into contact with the longitudinal end of the piezoelectric member (for example, the embodiment) A proximal end inner wall lower surface 13b).

この発明のレバー加振機構によれば、凹溝内に装着された圧電部材は、圧電部材の基端部が振動方向の両側から加圧された状態で固定され、圧電部材の先端部は凹溝によって固定されていないことから、圧電部材の基端部での振動は、いわばてこの原理によって増幅されて支持部材の先端部およびレバーに伝達される。これにより、圧電部材の振動を増大させる必要無しに、圧電部材の振動に伴う周辺構造物の共振等の不要な振動成分が増大することを防止しつつ、支持部材の先端部およびレバーを所望の振動状態で加振させることができる。   According to the lever excitation mechanism of the present invention, the piezoelectric member mounted in the concave groove is fixed in a state where the proximal end portion of the piezoelectric member is pressurized from both sides in the vibration direction, and the distal end portion of the piezoelectric member is concave. Since it is not fixed by the groove, the vibration at the base end portion of the piezoelectric member is amplified by this principle and transmitted to the tip end portion and the lever of the support member. As a result, the front end portion of the support member and the lever can be set in a desired manner while preventing an unnecessary vibration component such as resonance of the surrounding structure from increasing due to the vibration of the piezoelectric member without increasing the vibration of the piezoelectric member. It can be vibrated in a vibrating state.

さらに、本発明のレバー加振機構では、前記狭持部は、前記支持部材の前記振動方向および前記長手方向に略直交する方向に貫通する貫通孔(例えば、実施の形態での貫通孔15)である。   Furthermore, in the lever vibration mechanism of the present invention, the holding portion penetrates in a direction substantially perpendicular to the vibration direction and the longitudinal direction of the support member (for example, the through hole 15 in the embodiment). It is.

この発明のレバー加振機構によれば、圧電部材は支持部材に設けられた貫通孔内に装着されることから、例えば圧電部材を振動方向の両側から加圧するための特別な新たな部材を付加する必要無しに圧電部材を固定することができる。これにより、例えば新たな部材が付加されることで、部品点数の増大に伴いレバー加振機構の構成に要する費用が増大してしまったり、レバー以外の周辺構造物の振動に起因する雑音成分が増大してしまったり、レバーの振動特性の再現性が悪化してしまう等の不具合が生じることを防止することができる。
この場合、例えば貫通孔の基端部の内径を先端部の内径よりも小さく設定し、貫通孔内に装着された圧電部材を、圧電部材の基端部が振動方向の両側から加圧された状態で固定されるように、かつ、圧電部材の先端部は貫通孔によって固定されないように設定することにより、圧電部材が高い剛性で支持され、高い周波数の振動も安定に先端部およびレバーに伝達される。これにより、圧電部材の振動に伴う周辺構造物の共振等の不要な周波数成分の増大を防止し、かつ支持部材の先端部およびレバーを高い周波数で振動状態で加振させることができる。
According to the lever vibration mechanism of the present invention, since the piezoelectric member is mounted in the through hole provided in the support member, for example, a special new member for pressurizing the piezoelectric member from both sides in the vibration direction is added. The piezoelectric member can be fixed without having to do this. As a result, for example, by adding a new member, the cost required for the configuration of the lever vibration mechanism increases with the increase in the number of parts, or noise components due to vibrations of peripheral structures other than the lever are generated. It is possible to prevent problems such as an increase or a deterioration in the reproducibility of the vibration characteristics of the lever.
In this case, for example, the inner diameter of the base end portion of the through hole is set to be smaller than the inner diameter of the front end portion, and the base end portion of the piezoelectric member is pressed from both sides in the vibration direction. By setting so that the tip of the piezoelectric member is fixed in a state and not fixed by the through hole, the piezoelectric member is supported with high rigidity, and high-frequency vibrations are also stably transmitted to the tip and the lever. Is done. Thereby, an increase in unnecessary frequency components such as resonance of the peripheral structure accompanying vibration of the piezoelectric member can be prevented, and the tip end portion and the lever of the support member can be vibrated at a high frequency in a vibrating state.

また、本発明の走査型プローブ顕微鏡は、上記本発明の何れか1つのレバー加振機構(例えば、実施の形態でのレバー加振機構1a)と、前記レバーの先端に設けられた探針(例えば、実施の形態での探針3a)と、前記探針に対向配置された試料(例えば、実施の形態での試料S)を載置するステージ(例えば、実施の形態でのステージ4)と、前記探針と前記試料とを、試料表面に平行な方向に相対的に走査させると共に、試料表面に垂直な方向に相対的に移動させる移動手段(例えば、実施の形態での移動手段5)と、前記レバーの振動状態の変位を検出する検出手段(例えば、実施の形態での測定手段6)と、前記検出手段による検出結果に基づき、前記走査時に前記探針と前記試料表面との距離を、前記レバーの振動状態が所定状態となるように前記移動手段により制御すると共に、前記試料の状態に係るデータを取得する制御手段(例えば、実施の形態での制御手段8)とを備える。   Further, the scanning probe microscope of the present invention includes any one of the lever excitation mechanisms of the present invention (for example, the lever excitation mechanism 1a in the embodiment) and a probe ( For example, the probe 3a) in the embodiment, and a stage (for example, the stage 4 in the embodiment) on which the sample (for example, the sample S in the embodiment) placed opposite to the probe is mounted. The moving means for moving the probe and the sample relatively in a direction parallel to the sample surface and moving the probe in a direction perpendicular to the sample surface (for example, moving means 5 in the embodiment) And a detecting means (for example, measuring means 6 in the embodiment) for detecting the displacement of the vibration state of the lever, and a distance between the probe and the sample surface during the scanning based on a detection result by the detecting means. The vibration state of the lever is in a predetermined state Controls by the moving means such that, and a control means for acquiring data relating to the state of the sample (e.g., the control means 8 in the embodiment).

この発明の走査型プローブ顕微鏡によれば、レバー加振機構において圧電部材は振動方向の両側から加圧された状態で支持部材に固定されていることにより、圧電部材は縮み方向に加圧され、縮み方向に作用する力が補助されており、例えば相対的に高い周波数で周期的に伸縮する場合であっても、伸び方向の振幅と縮み方向の振幅との差異が増大することを抑制することができ、振動状態を安定化させることができる。これにより、Qカーブ測定の際に、レバーの共振特性を精度良く識別することができ、レバーの振動周波数や振幅、位相等の振動特性に対して適切な設定を行うことができる。この結果、振動モードSPMでの測定を適切に行うことができ、測定精度を向上させることができると共に利便性を向上させることができる。   According to the scanning probe microscope of the present invention, in the lever vibration mechanism, the piezoelectric member is fixed to the support member in a state of being pressed from both sides in the vibration direction, so that the piezoelectric member is pressed in the contraction direction, The force acting in the contraction direction is assisted, and for example, even if the expansion and contraction is periodically performed at a relatively high frequency, the increase in the difference between the expansion direction amplitude and the contraction direction amplitude is suppressed. And the vibration state can be stabilized. Thereby, at the time of Q curve measurement, the resonance characteristic of the lever can be accurately identified, and appropriate settings can be made for the vibration characteristic such as the vibration frequency, amplitude, and phase of the lever. As a result, the measurement in the vibration mode SPM can be appropriately performed, the measurement accuracy can be improved, and the convenience can be improved.

本発明のレバー加振機構によれば、圧電部材は振動方向の両側から加圧された状態で支持部材に固定されていることにより、伸び方向の振幅と縮み方向の振幅との差異が増大することを抑制することができ、レバーの振動状態を安定化させることができる。
また、本発明の走査型プローブ顕微鏡によれば、レバー加振機構によってレバーの振動状態の安定性が向上させられることから、レバーの共振特性を精度良く識別することができ、振動モードSPMでの測定を適切に行うことができると共に、測定結果の信頼性を向上させることができる。
According to the lever excitation mechanism of the present invention, the piezoelectric member is fixed to the support member while being pressed from both sides in the vibration direction, so that the difference between the amplitude in the extension direction and the amplitude in the contraction direction increases. This can be suppressed, and the vibration state of the lever can be stabilized.
Further, according to the scanning probe microscope of the present invention, the lever vibration mechanism can improve the stability of the vibration state of the lever, so that the resonance characteristic of the lever can be accurately identified, and the vibration mode SPM Measurements can be performed appropriately and the reliability of the measurement results can be improved.

以下、本発明のレバー加振機構及び走査型プローブ顕微鏡の実施形態について添付図面を参照しながら説明する。
の実施形態によるレバー加振機構1aを有する走査型プローブ顕微鏡1は、例えば試料側を3次元方向に移動させる試料スキャン方式により測定を行うものであって、例えば図1に示すように、加振型カンチレバーホルダ2と、レバー3cの先端に探針3aを有すると共に基端側が本体部3bに片持ち状態に支持され、この本体部3bを介して加振型カンチレバーホルダ2に固定されるカンチレバー3と、探針3aに対向配置された試料Sを載置するステージ4と、探針3aと試料Sとを、試料表面S1に平行なXY方向に相対的に走査させると共に、試料表面S1に垂直なZ方向に相対的に移動させる移動手段5と、レバー3cの振動状態の変位を測定する測定手段6と、この測定手段6による測定結果に基づいて、走査時に探針3aと試料表面S1とを、レバー3cの振動状態が一定となるように移動手段5を制御すると共に、観測データを採取する制御手段8とを備えている。
なお、この実施形態では制御手段8が、レバー3cの振動振幅が一定となるように移動手段5を制御している。
It will be described below with reference to the accompanying drawings implementation form of the lever vibration mechanism and a scanning probe microscope of the present invention.
Scanning probe microscope 1 having the lever vibration mechanism 1a according implementation form of this is, for example, and performs measurement by sample scanning method for moving the sample-side three-dimensionally, for example, as shown in FIG. 1, The excitation type cantilever holder 2 has a probe 3a at the distal end of the lever 3c and the base end side is supported in a cantilevered state by the main body 3b, and is fixed to the excitation type cantilever holder 2 via the main body 3b. The cantilever 3, the stage 4 on which the sample S placed opposite to the probe 3a is placed, the probe 3a and the sample S are scanned relatively in the XY directions parallel to the sample surface S1, and the sample surface S1. Moving means 5 for moving in the Z direction perpendicular to the axis, measuring means 6 for measuring the displacement of the vibration state of the lever 3c, and the probe 3a during scanning based on the measurement result by the measuring means 6 A charge surface S1, which controls the moving means 5 so that the vibration state of the lever 3c is constant, and a control means 8 for collecting observation data.
In this embodiment, the control means 8 controls the moving means 5 so that the vibration amplitude of the lever 3c is constant.

加振型カンチレバーホルダ2は、例えば図2に示すように、カンチレバー3を試料Sに対して所定角度傾けた状態で本体部3bを載置面10aに載置して固定する斜面ブロック(載置台)10と、この斜面ブロック10の内部に固定され、所定の波形信号に応じた位相及び振幅で振動する加振源11と、この斜面ブロック10が固定されたホルダ本体12とを備えて構成されている。   For example, as shown in FIG. 2, the vibration type cantilever holder 2 is a slope block (mounting table) for mounting and fixing the main body 3b on the mounting surface 10a in a state where the cantilever 3 is inclined at a predetermined angle with respect to the sample S. ) 10, an excitation source 11 that is fixed inside the slope block 10 and vibrates with a phase and amplitude corresponding to a predetermined waveform signal, and a holder body 12 to which the slope block 10 is fixed. ing.

斜面ブロック10は、載置面10aを試料S側に向けた状態でホルダ本体12の下面12aに固定されている。
例えば試料表面S1に平行なXY方向において、レバー3cの略先端側から略基端側に向かう方向をX方向とし、このX方向に直交する方向をY方向として、斜面ブロック10のX方向の両端面10b,10cのうち、レバー3cの先端が突出する側の先端側端面10b上には、この先端側端面10bから基端側端面10cに向かうX方向に所定深さを有すると共にY方向に延びる切欠き溝部13が形成され、この切欠き溝部13には、例えば略長方形板状等であってZ方向に伸縮可能(つまり振動可能)な圧電素子からなる加振源11が装着されている。
そして、この実施の形態でのレバー加振機構1aは、斜面ブロック10および加振源11により構成されている。
The slope block 10 is fixed to the lower surface 12a of the holder body 12 with the placement surface 10a facing the sample S side.
For example, in the XY direction parallel to the sample surface S1, the direction from the substantially distal end side to the substantially proximal end side of the lever 3c is defined as the X direction, and the direction orthogonal to the X direction is defined as the Y direction. Of the surfaces 10b and 10c, on the distal end surface 10b on the side from which the distal end of the lever 3c projects, has a predetermined depth in the X direction from the distal end surface 10b toward the proximal end surface 10c and extends in the Y direction. A notch groove portion 13 is formed, and the notch groove portion 13 is mounted with a vibration source 11 made of a piezoelectric element that is, for example, a substantially rectangular plate shape and can be expanded and contracted in the Z direction (that is, can vibrate).
The lever excitation mechanism 1a in this embodiment is composed of the slope block 10 and the excitation source 11.

この切欠き溝部13は、例えば斜面ブロック10のY方向の両端面(図示略)上で開口し、加振源11の上面11aに当接する内壁上面13aと、加振源11の下面11bの基端部に当接する基端側内壁下面13bおよび加振源11の下面11bの先端部に対してY方向に所定間隔hを置いて配置された先端側内壁下面13cと、基端側内壁下面13bおよび先端側内壁下面13cに接続される第1底面13dと、内壁上面13aおよび基端側内壁下面13bに接続される第2底面13eとを備えて構成されている。   The notch grooves 13 are opened on both end surfaces (not shown) of the slope block 10 in the Y direction, for example, and are formed on the inner wall upper surface 13a contacting the upper surface 11a of the excitation source 11 and the lower surface 11b of the excitation source 11. A distal end side inner wall lower surface 13c disposed at a predetermined interval h in the Y direction with respect to the distal end portions of the proximal end inner wall lower surface 13b and the lower surface 11b of the vibration source 11 in contact with the end portions, and a proximal end inner wall lower surface 13b And a first bottom surface 13d connected to the front end side inner wall lower surface 13c, and a second bottom surface 13e connected to the inner wall upper surface 13a and the base end side inner wall lower surface 13b.

この切欠き溝部13のZ方向において、内壁上面13aと基端側内壁下面13bとの間の間隔は、加振源11のZ方向厚さWよりも僅かに小さな値とされ、切欠き溝部13に装着された加振源11は、加振源11の基端部が内壁上面13aと基端側内壁下面13bとによってZ方向の両側から挟み込まれ、締まり嵌めされた状態、つまり加振源11の伸縮方向に所定の圧力が加圧された状態で固定されている。   In the Z direction of the notch groove portion 13, the distance between the inner wall upper surface 13 a and the base end side inner wall lower surface 13 b is set to a value slightly smaller than the Z-direction thickness W of the vibration source 11. The vibration source 11 attached to the vibration source 11 is in a state where the base end portion of the vibration source 11 is sandwiched from both sides in the Z direction by the inner wall upper surface 13a and the base end side inner wall lower surface 13b and is tightly fitted, that is, the vibration source 11 It is fixed in a state where a predetermined pressure is applied in the expansion and contraction direction.

また、切欠き溝部13の第2底面13eは、例えば斜面ブロック10の基端側端面10cに対して所定角度だけ傾斜し、X方向における第2底面13eと基端側内壁下面13bとの間の間隔(つまり、斜面ブロック10のX方向厚さ)は、Z方向での上部から下部に向かい漸次、減少傾向に変化している。これにより、加振源11の基端側端面と切欠き溝部13の第2底面13eとの間には、Y方向に対する断面形状が略三角形となる空間部14が形成されている。   Further, the second bottom surface 13e of the notch groove portion 13 is inclined by a predetermined angle with respect to the base end side end surface 10c of the slope block 10, for example, and between the second bottom surface 13e and the base end side inner wall lower surface 13b in the X direction. The interval (that is, the thickness in the X direction of the slope block 10) is gradually decreasing from the upper part to the lower part in the Z direction. Thereby, a space portion 14 having a substantially triangular cross-sectional shape in the Y direction is formed between the base end side end surface of the vibration source 11 and the second bottom surface 13 e of the notch groove portion 13.

そして、加振源11は、例えば図1に示す加振電源7から入力された波形信号に基づいて、所定の位相及び振幅でZ方向に振動する。この振動に対して、斜面ブロック10には、加振源11の基端部を内壁上面13aと共にZ方向の両側から挟み込む基端側内壁下面13bの近傍に力点Rが設定され、切欠き溝部13の第2底面13eと斜面ブロック10の基端側端面10cとの間で斜面ブロック10のX方向厚さが最小となる位置近傍に支点Sが設定され、載置面10aの先端部近傍に作用点Tが設定される。これにより、作用点Tでの振動は、加振源11の振動が増幅された振動となり、この増幅された振動によってカンチレバー3のレバー3cが加振される。   The excitation source 11 vibrates in the Z direction with a predetermined phase and amplitude based on, for example, a waveform signal input from the excitation power supply 7 shown in FIG. In response to this vibration, a force point R is set in the slope block 10 in the vicinity of the base end side inner wall lower surface 13b that sandwiches the base end portion of the vibration source 11 together with the inner wall upper surface 13a from both sides in the Z direction. A fulcrum S is set in the vicinity of the position where the thickness in the X direction of the slope block 10 is minimized between the second bottom surface 13e of the slope block 10 and the base end side end face 10c of the slope block 10, and acts near the tip of the placement surface 10a. Point T is set. Thereby, the vibration at the action point T becomes a vibration obtained by amplifying the vibration of the vibration source 11, and the lever 3 c of the cantilever 3 is vibrated by the amplified vibration.

ホルダ本体12は、互いに対向する下面12a及び上面12bを有する平板状に形成されており、下面12aを試料S側に向けて配されている。また、ホルダ本体12には、固定されたカンチレバー3のレバー3cの反射面(図示略)に対して、後述するレーザ光Lを入射させると共に、反射面で反射したレーザ光Lを出射させる開口部12cが形成されている。   The holder body 12 is formed in a flat plate shape having a lower surface 12a and an upper surface 12b facing each other, and is arranged with the lower surface 12a facing the sample S side. The holder main body 12 has an opening for allowing a laser beam L (described later) to enter a reflecting surface (not shown) of the lever 3c of the fixed cantilever 3 and for emitting the laser beam L reflected by the reflecting surface. 12c is formed.

このように構成された加振型カンチレバーホルダ2は、図1に示すように、図示しない架台により試料Sの上方に固定されている。また、ステージ4は、XYスキャナ20上に載置されており、このXYスキャナ20はZスキャナ21上に載置されている。また、このZスキャナ21は、図示しない防振台上に載置されている。   The vibration type cantilever holder 2 configured in this way is fixed above the sample S by a gantry (not shown) as shown in FIG. The stage 4 is placed on the XY scanner 20, and the XY scanner 20 is placed on the Z scanner 21. The Z scanner 21 is placed on a vibration isolation table (not shown).

これらXYスキャナ20及びZスキャナ21は、例えば、ピエゾ素子であり、それぞれXY駆動部22及びZ駆動部23から電圧を印加されて、それぞれの方向に微小移動するようになっている。即ち、これらXYスキャナ20、Zスキャナ21、XY駆動部22及びZ駆動部23は、移動手段5を構成している。   The XY scanner 20 and the Z scanner 21 are, for example, piezo elements, and are applied with voltages from the XY drive unit 22 and the Z drive unit 23, respectively, so as to move minutely in the respective directions. That is, the XY scanner 20, the Z scanner 21, the XY drive unit 22, and the Z drive unit 23 constitute a moving unit 5.

また、加振型カンチレバーホルダ2の上方には、ミラー25を利用して、カンチレバー3のレバー3cの裏面に形成された反射面(図示略)に向けてレーザ光Lを照射する光照射部26と、ミラー27を利用して、反射面で反射されたレーザ光Lを受光する光検出部28とが設けられている。
なお、光照射部26から照射されたレーザ光Lは、ホルダ本体12の開口部12c内を通過しながら反射面に達し、反射面で反射された後、再度、開口部12c内を通過して光検出部28に入射するようになっている。
Further, above the vibration type cantilever holder 2, a light irradiation unit 26 that irradiates a laser beam L toward a reflection surface (not shown) formed on the back surface of the lever 3 c of the cantilever 3 using a mirror 25. And a light detection unit 28 that receives the laser light L reflected by the reflecting surface by using the mirror 27.
The laser beam L emitted from the light irradiation unit 26 reaches the reflection surface while passing through the opening 12c of the holder body 12, is reflected by the reflection surface, and then passes through the opening 12c again. The light is incident on the light detection unit 28.

また、光検出部28は、例えば、フォトディテクタであり、レーザ光Lの入射位置からレバー3cの振動状態(振幅)を検出する。そして、光検出部28は、検出したレバー3cの振動状態の変位をDIF信号としてプリアンプ29に出力している。即ち、これら光照射部26、ミラー25、27及び光検出部28は、測定手段6を構成している。   The light detection unit 28 is, for example, a photodetector, and detects the vibration state (amplitude) of the lever 3c from the incident position of the laser light L. The light detection unit 28 outputs the detected displacement of the lever 3c in the vibration state to the preamplifier 29 as a DIF signal. That is, the light irradiation unit 26, the mirrors 25 and 27, and the light detection unit 28 constitute the measuring unit 6.

また、光検出部28から出力されたDIF信号は、プリアンプ29によって増幅された後、交流−直流変換回路30に送られて直流変換され、Z電圧フィードバック回路31に送られる。Z電圧フィードバック回路31は、直流変換されたDIF信号が常に一定となるように、Z駆動部23をフィードバック制御する。
これにより、移動手段5により走査を行ったときに、探針3aと試料表面S1との距離を、レバー3cの振動状態が一定になるように、即ち、振幅が一定となるように制御することができる。
The DIF signal output from the light detection unit 28 is amplified by the preamplifier 29, sent to the AC-DC conversion circuit 30, converted to DC, and sent to the Z voltage feedback circuit 31. The Z voltage feedback circuit 31 feedback-controls the Z drive unit 23 so that the DC-converted DIF signal is always constant.
Thereby, when scanning is performed by the moving means 5, the distance between the probe 3a and the sample surface S1 is controlled so that the vibration state of the lever 3c is constant, that is, the amplitude is constant. Can do.

また、このZ電圧フィードバック回路31には、制御部32が接続されており、この制御部32が直流変換されたDIF信号に基づいて試料Sの表面形状を測定したり、位相の変化を検出して各種の物性情報(例えば、磁気力や電位等)を測定したりすることができるようになっている。
即ち、これらZ電圧フィードバック回路31、制御部32は、制御手段8を構成している。なお、この制御手段8は、制御手段8を構成する各構成要素を総合的に制御する機能を有している。
A control unit 32 is connected to the Z voltage feedback circuit 31. The control unit 32 measures the surface shape of the sample S based on the DIF signal that has been DC converted, and detects a change in phase. Various physical property information (for example, magnetic force, electric potential, etc.) can be measured.
That is, the Z voltage feedback circuit 31 and the control unit 32 constitute the control means 8. The control means 8 has a function of comprehensively controlling each component constituting the control means 8.

本実施の形態によるレバー加振機構1aを有する走査型プローブ顕微鏡1は上記構成を備えており、次に、この走査型プローブ顕微鏡1の動作、特に、試料Sを振動モードSPMの1つであるDFMで測定する方法について説明する。   The scanning probe microscope 1 having the lever oscillating mechanism 1a according to the present embodiment has the above-described configuration. Next, the operation of the scanning probe microscope 1, particularly, the sample S is one of the vibration modes SPM. A method for measuring by DFM will be described.

まず、はじめに、測定を行うための初期設定を行う。即ち、測定対象物である試料Sに応じて最適なカンチレバー3を選択し、このカンチレバー3を加振型カンチレバーホルダ2に固定する。次いで、ステージ4上に試料Sを載置した後、カンチレバー3のレバー3cの反射面に確実にレーザ光Lが入射するように、また、反射したレーザ光Lが光検出部28に確実に入射するように、光照射部26及び光検出部28の位置や、カンチレバー3の取付状態等を調整する。   First, initial settings for performing measurement are performed. That is, the optimum cantilever 3 is selected according to the sample S that is a measurement object, and the cantilever 3 is fixed to the vibration type cantilever holder 2. Next, after placing the sample S on the stage 4, the laser beam L is reliably incident on the reflecting surface of the lever 3 c of the cantilever 3, and the reflected laser beam L is incident on the light detector 28 without fail. As described above, the positions of the light irradiation unit 26 and the light detection unit 28, the attachment state of the cantilever 3, and the like are adjusted.

次に、加振電源7から加振源11に対して所定の波形信号を出力して、加振源11所定の振幅及び位相で振動させる。ここで、加振源11から発生した振動は、斜面ブロック10を介して増幅されてカンチレバー3に伝達されるので、このカンチレバー3のレバー3cを、加振源11からホルダ本体12等の周辺構造物に伝達される所定の波形信号に応じた振動よりも大きな振幅で振動させることができる。   Next, a predetermined waveform signal is output from the vibration power source 7 to the vibration source 11 to vibrate the vibration source 11 with a predetermined amplitude and phase. Here, the vibration generated from the vibration source 11 is amplified via the slope block 10 and transmitted to the cantilever 3, so that the lever 3c of the cantilever 3 is connected to the peripheral structure such as the holder main body 12 from the vibration source 11. It is possible to vibrate with a larger amplitude than the vibration corresponding to the predetermined waveform signal transmitted to the object.

次に、レバー3cを振動させた後、Qカーブの測定を行うと共に動作点(加振周波数の最適値)の設定を行う。この際、レバー3cの振動は増幅されているので、例えば図3(a)に示す実施例のように、図3(b)に示す比較例に比べて、レバー3cの共振成分A以外に副次的な共振成分Bが生じることを抑制することができる。これにより、レバー3cの共振特性を精度良く識別することができ、レバー3cの振動周波数や振幅、位相等の振動特性に対して、より正確な設定を行うことができる。   Next, after the lever 3c is vibrated, the Q curve is measured and the operating point (the optimum value of the excitation frequency) is set. At this time, since the vibration of the lever 3c is amplified, for example, as in the embodiment shown in FIG. 3A, compared to the comparative example shown in FIG. Generation of the next resonance component B can be suppressed. As a result, the resonance characteristics of the lever 3c can be accurately identified, and more accurate settings can be made for the vibration characteristics such as the vibration frequency, amplitude, and phase of the lever 3c.

なお、本実施の形態によるレバー加振機構1aを有する走査型プローブ顕微鏡1により得られるQカーブを図3(a)に示す実施例とし、この実施例に対して、加振源11の圧電素子を振動方向に加圧せず、かつ、斜面ブロック10において切欠き溝部13を省略して、加振源11の圧電素子をホルダ本体12の下面12aと斜面ブロック10との間に配置した場合に得られるQカーブを図3(b)に示す比較例とした。   The Q curve obtained by the scanning probe microscope 1 having the lever excitation mechanism 1a according to the present embodiment is an example shown in FIG. 3A, and the piezoelectric element of the excitation source 11 is compared with this example. Is not pressed in the vibration direction, and the notch groove portion 13 is omitted in the slope block 10 and the piezoelectric element of the excitation source 11 is disposed between the lower surface 12a of the holder body 12 and the slope block 10. The obtained Q curve was used as a comparative example shown in FIG.

そして、初期設定の処理が終了した後、試料Sの測定を行う。
即ち、試料Sの測定表面と、探針3aとの距離を、振幅が一定になるように制御した状態で、XY駆動部22よりXYスキャナ20を移動させて、試料Sの走査を行う。この際、試料表面S1の凹凸に応じてレバー3cの振幅が増減しようとするので、光検出部28に入射するレーザ光L(反射面で反射したレーザ光)の振幅が異なる。光検出部28は、この振幅に応じたDIF信号をプリアンプ29に出力する。出力されたDIF信号は、プリアンプ29によって増幅されると共に、交流−直流変換回路30によって直流変換された後、Z電圧フィードバック回路31に送られる。
Then, after the initial setting process is completed, the sample S is measured.
That is, while the distance between the measurement surface of the sample S and the probe 3a is controlled so that the amplitude is constant, the XY scanner 20 is moved from the XY drive unit 22 to scan the sample S. At this time, the amplitude of the lever 3c tends to increase or decrease in accordance with the unevenness of the sample surface S1, and therefore the amplitude of the laser beam L (laser beam reflected by the reflecting surface) incident on the light detection unit 28 is different. The light detection unit 28 outputs a DIF signal corresponding to the amplitude to the preamplifier 29. The output DIF signal is amplified by the preamplifier 29 and DC-converted by the AC-DC converter circuit 30 and then sent to the Z voltage feedback circuit 31.

Z電圧フィードバック回路31は、直流変換されたDIF信号が常に一定になるように(つまり、レバーの振幅が一定になるように)、Z駆動部23によりZスキャナ21をZ方向に微小移動させて、フィードバック制御を行う。これにより、試料Sの測定表面と、探針3aとの距離を、振幅が一定になるように制御した状態で走査を行うことができる。
また、制御部32は、Z電圧フィードバック回路31により上下させる信号に基づいて、試料Sの表面形状を測定する。
The Z voltage feedback circuit 31 moves the Z scanner 21 slightly in the Z direction by the Z drive unit 23 so that the DC-converted DIF signal is always constant (that is, the lever amplitude is constant). , Perform feedback control. Thereby, scanning can be performed in a state in which the distance between the measurement surface of the sample S and the probe 3a is controlled so that the amplitude is constant.
Further, the control unit 32 measures the surface shape of the sample S based on a signal that is moved up and down by the Z voltage feedback circuit 31.

上述したように、実施形態に係るレバー加振機構1aによれば、加振源11を加圧するための特別な構成要素を必要とせずに、装置構成に要する費用の増大を抑制しつつ、加振源11の圧電素子の縮み方向に作用する力を、切欠き溝部13による加圧によって補うことができ、相対的に高い周波数であっても、安定な振動特性を得ることができる。
しかも、このレバー加振機構1aによれば、いわばてこの原理によって、加振源11から斜面ブロック10を介してレバー3cに伝達される振動を増幅することができ、加振源11に必要とされる振動を相対的に小さくすることができる。
As described above, according to the lever vibration mechanism 1a according to the present embodiment, a special component for pressurizing the vibration source 11 is not required, and an increase in the cost required for the apparatus configuration is suppressed. The force acting in the direction of contraction of the piezoelectric element of the vibration source 11 can be compensated for by pressurization by the notch groove 13, and stable vibration characteristics can be obtained even at a relatively high frequency.
In addition, according to the lever excitation mechanism 1a, the vibration transmitted from the excitation source 11 to the lever 3c via the slope block 10 can be amplified by this principle, which is necessary for the excitation source 11. The vibration that is generated can be made relatively small.

そして、実施形態に係るレバー加振機構1aを有する走査型プローブ顕微鏡1によれば、レバー加振機構1aによってレバー3cの振動特性の安定性を向上させることができ、例えばQカーブ等の検出精度を容易に向上させることができ、試料Sの表面形状の測定精度を向上させることができる。
さらに、この走査型プローブ顕微鏡1によれば、加振源11からレバー3c以外の周辺構造物に伝達される振動を相対的に小さくすることができ、周辺構造物の共振等の不要な振動成分(例えば、図3(b)に示す共振成分B)がレバー3cの共振等の所望の振動成分(例えば、図3(a),(b)に示す共振成分A)に重畳されてしまうことを抑制し、レバー3cの振動特性を検出する際の雑音を低減し、検出感度および検出精度および検出結果の信頼性を向上させることができる。
According to the scanning probe microscope 1 having the lever vibration mechanism 1a according to the present embodiment, the stability of the vibration characteristics of the lever 3c can be improved by the lever vibration mechanism 1a, for example, detection of a Q curve or the like. The accuracy can be easily improved, and the measurement accuracy of the surface shape of the sample S can be improved.
Furthermore, according to the scanning probe microscope 1, vibration transmitted from the vibration source 11 to the peripheral structure other than the lever 3c can be relatively reduced, and unnecessary vibration components such as resonance of the peripheral structure are obtained. (For example, the resonance component B shown in FIG. 3B) is superimposed on a desired vibration component such as the resonance of the lever 3c (for example, the resonance component A shown in FIGS. 3A and 3B). It is possible to suppress the noise when detecting the vibration characteristic of the lever 3c, and to improve the detection sensitivity, the detection accuracy, and the reliability of the detection result.

なお、上述した実施の形態において、切欠き溝部13に装着された加振源11の基端部が内壁上面13aと基端側内壁下面13bとによって締まり嵌めされた状態で固定されるとしたが、これに限定されず、例えば図4に示す上述した実施の形態の第1変形例に係るレバー加振機構1aのように、加振源11の先端部から基端部に亘る全体が切欠き溝部13の内壁上面13aと内壁下面13fとによって締まり嵌めされた状態で固定されてもよい。   In the above-described embodiment, the base end portion of the vibration source 11 mounted in the notch groove portion 13 is fixed in a state of being tightly fitted by the inner wall upper surface 13a and the base end side inner wall lower surface 13b. However, the present invention is not limited to this. For example, as in the lever vibration mechanism 1a according to the first modification of the above-described embodiment shown in FIG. 4, the entire portion from the distal end portion to the proximal end portion of the vibration source 11 is notched. The groove 13 may be fixed in a state of being tightly fitted by the inner wall upper surface 13a and the inner wall lower surface 13f.

この第1変形例において、切欠き溝部13は、例えば斜面ブロック10のY方向の両端面(図示略)上で開口し、加振源11の上面11aに当接する内壁上面13aと、加振源11の下面11bに当接する内壁下面13fと、内壁上面13aおよび内壁下面13fに接続される底面13gとを備えて構成されている。   In the first modification, the notch groove 13 is opened on, for example, both end surfaces (not shown) in the Y direction of the slope block 10, and the inner wall upper surface 13 a that abuts on the upper surface 11 a of the vibration source 11, and the vibration source 11 is provided with an inner wall lower surface 13f that comes into contact with the lower surface 11b, and an inner wall upper surface 13a and a bottom surface 13g connected to the inner wall lower surface 13f.

そして、この切欠き溝部13のZ方向において、内壁上面13aと内壁下面13fとの間の間隔は、加振源11のZ方向厚さWよりも僅かに小さな値とされ、切欠き溝部13に装着された加振源11は、内壁上面13aと内壁下面13fとによってZ方向の両側から挟み込まれ、締まり嵌めされた状態、つまり加振源11の伸縮方向に所定の圧力が加圧された状態で固定されている。
なお、この第1変形例において、加振源11の基端側端面は切欠き溝部13の底面13gに当接してもよいし、加振源11の基端側端面と切欠き溝部13の底面13gとの間に適宜の間隔が設けられてもよい。
In the Z direction of the notch groove portion 13, the distance between the inner wall upper surface 13 a and the inner wall lower surface 13 f is set to a value slightly smaller than the thickness W of the vibration source 11 in the Z direction. The mounted vibration source 11 is sandwiched between the inner wall upper surface 13a and the inner wall lower surface 13f from both sides in the Z direction and is tightly fitted, that is, a state in which a predetermined pressure is applied in the expansion / contraction direction of the vibration source 11 It is fixed with.
In the first modification, the base end side end surface of the vibration source 11 may abut on the bottom surface 13 g of the notch groove portion 13, or the base end side end surface of the vibration source 11 and the bottom surface of the notch groove portion 13. An appropriate interval may be provided between 13g.

の実施形態の第1変形例に係るレバー加振機構1aによれば、加振源11を加圧するための特別な構成要素を必要とせずに、装置構成に要する費用の増大を抑制しつつ、加振源11の圧電素子の縮み方向に作用する力を、切欠き溝部13による加圧によって補うことができ、相対的に高い周波数であっても、安定な振動特性を得ることができる。
そして、この第1変形例に係るレバー加振機構1aを有する走査型プローブ顕微鏡1によれば、レバー加振機構1aによってレバー3cの振動特性の安定性を向上させることができ、試料Sの表面形状の測定精度を向上させることができる。
According to the implementation lever vibration mechanism 1a according to a first modification of the embodiment of this, without the need for special components for pressurizing the vibration source 11, suppressing an increase in the cost of equipment construction On the other hand, the force acting in the contraction direction of the piezoelectric element of the excitation source 11 can be supplemented by the pressurization by the notch groove portion 13, and stable vibration characteristics can be obtained even at a relatively high frequency. .
According to the scanning probe microscope 1 having the lever vibration mechanism 1a according to the first modification, the stability of the vibration characteristics of the lever 3c can be improved by the lever vibration mechanism 1a, and the surface of the sample S The shape measurement accuracy can be improved.

なお、上述した実施の形態において、斜面ブロック10の切欠き溝部13に加振源11を装着するとしたが、これに限定されず、例えば図5に示す上述した実施の形態の第2変形例に係るレバー加振機構1aのように、斜面ブロック10の貫通孔15に加振源11を装着してもよい。
この第2変形例において、例えばY方向に伸びる貫通孔15は斜面ブロック10のY方向の両端面(図示略)上で開口し、Y方向に対する断面形状が略長方形状とされ、少なくとも、加振源11の上面11aに当接する内壁上面15aと、加振源11の下面11bに当接する内壁下面15bとを備えて構成されている。
そして、この貫通孔15のZ方向において、内壁上面15aと内壁下面15bとの間の間隔は、加振源11のZ方向厚さWよりも僅かに小さな値とされ、貫通孔15に装着された加振源11は、内壁上面15aと内壁下面15bとによってZ方向の両側から挟み込まれ、締まり嵌めされた状態、つまり加振源11の伸縮方向に所定の圧力が加圧された状態で固定されている。
In the above-described embodiment, the vibration source 11 is attached to the notch groove portion 13 of the slope block 10. However, the present invention is not limited to this. For example, the second modification of the above-described embodiment shown in FIG. Like the lever excitation mechanism 1a, the excitation source 11 may be mounted in the through hole 15 of the slope block 10.
In this second modification, for example, the through-hole 15 extending in the Y direction opens on both end surfaces (not shown) of the slope block 10 in the Y direction, the cross-sectional shape in the Y direction is substantially rectangular, and at least the excitation The inner wall upper surface 15a is in contact with the upper surface 11a of the source 11, and the inner wall lower surface 15b is in contact with the lower surface 11b of the vibration source 11.
In the Z direction of the through hole 15, the distance between the inner wall upper surface 15 a and the inner wall lower surface 15 b is set to a value slightly smaller than the thickness W of the vibration source 11 in the Z direction. The vibration source 11 is sandwiched between the inner wall upper surface 15a and the inner wall lower surface 15b from both sides in the Z direction, and is fixed in a state of being tightly fitted, that is, a predetermined pressure is applied in the expansion / contraction direction of the vibration source 11. Has been.

の実施形態の第2変形例に係るレバー加振機構1aによれば、加振源11を加圧するための特別な構成要素を必要とせずに、装置構成に要する費用の増大を抑制しつつ、加振源11の圧電素子の縮み方向に作用する力を、貫通孔15による加圧によって補うことができ、相対的に高い周波数であっても、安定な振動特性を得ることができる。
そして、この第2変形例に係るレバー加振機構1aを有する走査型プローブ顕微鏡1によれば、レバー加振機構1aによってレバー3cの振動特性の安定性を向上させることができ、試料Sの表面形状の測定精度を向上させることができる。
According to the implementation second modification lever vibration mechanism 1a according to an example embodiment of this, without the need for special components for pressurizing the vibration source 11, suppressing an increase in the cost of equipment construction On the other hand, the force acting in the contraction direction of the piezoelectric element of the vibration source 11 can be supplemented by pressurization by the through-hole 15, and stable vibration characteristics can be obtained even at a relatively high frequency.
According to the scanning probe microscope 1 having the lever vibration mechanism 1a according to the second modification, the stability of the vibration characteristics of the lever 3c can be improved by the lever vibration mechanism 1a, and the surface of the sample S can be improved. The shape measurement accuracy can be improved.

以下、本発明のレバー加振機構及び走査型プローブ顕微鏡の参考例について添付図面を参照しながら説明する。
なお、この参考例において、上述した実施形態と異なる点は、加振型カンチレバーホルダ2のホルダ本体12に固定されると共にカンチレバー3を保持するレバー加振機構1aの構成である。
つまり、この参考例によるレバー加振機構1aは、例えば図6および図7に示すように、斜面ブロック10と、加振源11と、加圧部材16とを備えて構成されている。
Hereinafter, reference examples of the lever vibration mechanism and the scanning probe microscope of the present invention will be described with reference to the accompanying drawings.
Incidentally, in this reference example is different from the implementation described above, the configuration of the lever vibration mechanism 1a for holding the cantilever 3 is fixed to the holder body 12 of the vibration-type cantilever holder 2.
That is, the lever oscillating mechanism 1a according to this reference example includes the slope block 10, the oscillating source 11, and the pressure member 16, as shown in FIGS. 6 and 7, for example.

加振源11はホルダ本体12の下面12aに固定され、斜面ブロック10は載置面10aを試料S側に向けた状態で加振源11の下面11bに固定されている。そして、この載置面10aにカンチレバー3の本体部3bが載置されている。
加圧部材16は、例えば伸縮性を有する材質(例えば、ゴム、高分子化合物、ばね材等)からなるベルト状に形成され、X軸周りに斜面ブロック10および加振源11に巻き掛けられ、加振源11をZ方向の両側から所定圧力で加圧する。
The excitation source 11 is fixed to the lower surface 12a of the holder body 12, and the slope block 10 is fixed to the lower surface 11b of the excitation source 11 with the mounting surface 10a facing the sample S side. The main body portion 3b of the cantilever 3 is placed on the mounting surface 10a.
The pressure member 16 is formed in a belt shape made of, for example, a stretchable material (for example, rubber, polymer compound, spring material, etc.), wound around the slope block 10 and the vibration source 11 around the X axis, The vibration source 11 is pressurized at a predetermined pressure from both sides in the Z direction.

この参考例に係るレバー加振機構1aによれば、加振源11の圧電素子の縮み方向に作用する力を、加圧部材16による加圧によって補うことができ、相対的に高い周波数であっても、安定な振動特性を得ることができる。
しかも、ベルト状の加圧部材16は、斜面ブロック10および加振源11に巻き掛けられるだけであり、例えばカンチレバー3の本体部3bに加圧部材16が巻き掛けられることによって本体部3bに過剰な圧力が作用してしまうことは防止されており、加振源11に対して所望の圧力を適切に加圧することができる。
そして、この参考例に係るレバー加振機構1aを有する走査型プローブ顕微鏡1によれば、レバー加振機構1aによってレバー3cの振動特性の安定性を向上させることができ、試料Sの表面形状の測定精度を向上させることができる。
According to the lever oscillating mechanism 1a according to this reference example , the force acting in the contraction direction of the piezoelectric element of the oscillating source 11 can be compensated by the pressurization by the pressurizing member 16, and the frequency is relatively high. However, stable vibration characteristics can be obtained.
Moreover, a belt-like pressure member 16 is only wound around the slant block 10 and the vibration source 11, over the main body portion 3b by the pressure member 16 wound around the body portion 3b of example the cantilever 3 Therefore, it is possible to appropriately pressurize the vibration source 11 with a desired pressure.
According to the scanning probe microscope 1 having the lever excitation mechanism 1a according to this reference example , the stability of the vibration characteristics of the lever 3c can be improved by the lever excitation mechanism 1a, and the surface shape of the sample S can be improved. Measurement accuracy can be improved.

なお、本発明の技術範囲は、上述した各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、種々の変更を加えることが可能である。
例えば上述した各実施形態によるレバー加振機構1aを、適宜のレバーの振動状態を検出するセンサを振動させる振動機構として適用してもよい。
The technical scope of the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.
For example, the lever vibration mechanism 1a according to each of the above-described embodiments may be applied as a vibration mechanism that vibrates a sensor that detects an appropriate vibration state of the lever.

また、上述した各実施形態では、ホルダ本体12に形成された開口部12cを介して、カンチレバー3のレバー3cにレーザ光Lを入射させると共に反射したレーザ光Lを出射させる構成としたが、これに限定されず、例えばホルダ本体12を光学的に透明な材料(例えば、ガラス等)で構成して開口部12cを省略してもよい。
この場合には、光照射部26から照射されたレーザ光Lは、ホルダ本体12の上面12bに垂直に入射してカンチレバー3のレバー3cの反射面(図示略)に入射する。そして、この反射面で反射したレーザ光Lは、ホルダ本体12の下面12aに斜めに入射して、屈折を繰り返しながら光検出部28に向けて出射する。このように、光学的に透明な材料でホルダ本体12を構成することで、開口部12cを省略することができるので、開口部12cを形成する手間を省くことができる。
In each of the above-described embodiments, the laser beam L is incident on the lever 3c of the cantilever 3 and the reflected laser beam L is emitted through the opening 12c formed in the holder main body 12. For example, the holder main body 12 may be made of an optically transparent material (for example, glass) and the opening 12c may be omitted.
In this case, the laser light L emitted from the light irradiation unit 26 is incident on the upper surface 12b of the holder body 12 perpendicularly and is incident on the reflecting surface (not shown) of the lever 3c of the cantilever 3. The laser beam L reflected by the reflecting surface is incident on the lower surface 12a of the holder body 12 at an angle, and is emitted toward the light detection unit 28 while being refracted repeatedly. Thus, since the opening part 12c can be abbreviate | omitted by comprising the holder main body 12 with an optically transparent material, the effort which forms the opening part 12c can be saved.

また、上述した各実施形態では、走査時において、レバー3cの振動振幅が一定になるように、探針3aと試料Sとの距離を制御したが、これに限定されず、レバー3cの振動状態、例えば周波数や角度等が一定になるように制御してもよい。   In each of the above-described embodiments, the distance between the probe 3a and the sample S is controlled so that the vibration amplitude of the lever 3c is constant during scanning. However, the present invention is not limited to this, and the vibration state of the lever 3c is not limited thereto. For example, the frequency and angle may be controlled to be constant.

また、上述した各実施形態では、試料側を3次元方向に移動させる試料スキャン方式を例にして説明したが、この方式に限定されず、例えばカンチレバー側を3次元方向に移動させるカンチレバースキャン方式であってもよいし、試料側及びカンチレバー側を共に3次元方向に移動可能としてもよい。   In each of the above-described embodiments, the sample scanning method in which the sample side is moved in the three-dimensional direction has been described as an example. However, the present invention is not limited to this method, and for example, a cantilever scanning method in which the cantilever side is moved in the three-dimensional direction. Alternatively, both the sample side and the cantilever side may be movable in a three-dimensional direction.

また、上述した各実施形態では、振動モードSPMの一例として、DFM測定を行う場合を例にしたが、これに限定されず、例えば磁気を検知できる探針を有するカンチレバー3のレバー3cを同様に振動させ、この際のレバー3cの撓み振幅や位相を検出することで磁気試料の磁気分布や磁区構造等の測定を行うMFM(Magnetic Force Microscope:磁気力顕微鏡)においても同等の作用効果を奏することができる。   In each of the above-described embodiments, as an example of the vibration mode SPM, the case of performing DFM measurement is taken as an example. However, the present invention is not limited to this. For example, the lever 3c of the cantilever 3 having a probe capable of detecting magnetism is similarly used. The same effect can be achieved in an MFM (Magnetic Force Microscope) that measures the magnetic distribution and magnetic domain structure of the magnetic sample by vibrating and detecting the deflection amplitude and phase of the lever 3c at this time. Can do.

更に、上述したMFMに限定されず、例えば導電性探針(カンチレバー3)と試料との間に、ACバイアス電圧を印加し、探針と試料との静電結合によってレバー3cを振動させ、この際のレバー3cの撓み振幅を検知することで試料の表面電位分布等の測定を行うKFM(Kelvin Prove Force Microscope:ケルビンプローブフォース顕微鏡)やSMM(Scanning Maxwell-stress Microscope:走査型マクスウェル応力顕微鏡)等のSPMにおいても同等の作用効果を奏することができる。   Further, the present invention is not limited to the above-described MFM. For example, an AC bias voltage is applied between the conductive probe (cantilever 3) and the sample, and the lever 3c is vibrated by electrostatic coupling between the probe and the sample. KFM (Kelvin Probe Force Microscope), SMM (Scanning Maxwell-stress Microscope), etc. that measure the surface potential distribution of the sample by detecting the deflection amplitude of the lever 3c at the time The same effect can be achieved even in the SPM.

更には、AFM動作中に、試料を試料表面に平行な水平方向に横振動させ、又はレバー3cを試料表面に平行な水平方向に横振動させ、この際のレバー3cのねじれ振動振幅を検出することで摩擦力分布を測定するLM−FFM(Lateral Force Modulation Friction Force Microscope:横振動摩擦力顕微鏡)や、AFM動作中に、試料Sを試料表面S1に垂直なZ方向に微小振動させて、又は、レバー3cを試料表面に垂直なZ方向に微小移動させて、周期的な力を加え、この際のレバー3cの撓み振幅や、sin成分、cos成分を検出することで粘弾性分布を測定するVE−AFM(Viscoelastic AFM:マイクロ粘弾性測定−原子間力顕微鏡)等においても同様の作用効果を奏することができる。   Further, during the AFM operation, the sample is laterally vibrated in the horizontal direction parallel to the sample surface, or the lever 3c is laterally vibrated in the horizontal direction parallel to the sample surface, and the torsional vibration amplitude of the lever 3c at this time is detected. During LM-FFM (Lateral Force Modulation Friction Force Microscope) or AFM operation for measuring the frictional force distribution, the sample S is vibrated in the Z direction perpendicular to the sample surface S1, or The lever 3c is moved slightly in the Z direction perpendicular to the sample surface, a periodic force is applied, and the viscoelasticity distribution is measured by detecting the deflection amplitude, sin component, and cos component of the lever 3c at this time. Similar effects can be achieved in VE-AFM (Viscoelastic AFM: micro viscoelasticity measurement-atomic force microscope) or the like.

また、上述した実施の形態では、測定手段6が光てこ方式によりレバー3cの変位検出を行ったが、これに限定されず、例えばカンチレバー3自身に変位検出機能(例えば、ピエゾ抵抗素子等)を設けた自己検知方式を採用してもよい。   In the above-described embodiment, the measuring means 6 detects the displacement of the lever 3c by the optical lever method. However, the present invention is not limited to this. For example, the cantilever 3 itself has a displacement detection function (for example, a piezoresistive element). The provided self-detection method may be adopted.

本発明の実施形態に係る走査型プローブ顕微鏡の構成図である。It is a configuration diagram of a scanning probe microscope according to the implementation embodiments of the present invention. 本発明の実施形態に係るレバー加振機構の構成図である。It is a structural view of the lever vibration mechanism according to implementation embodiments of the present invention. 本発明の実施形態の実施例および比較例に係るレバー加振機構によるレバーの共振特性を示す図である。Is a diagram showing a resonance characteristic of the implementation form of examples and comparative lever by a lever oscillating mechanism according to the embodiment of the present invention. 本発明の実施形態の第1変形例に係るレバー加振機構の構成図である。It is a block diagram of implementation first modification lever vibration according to a mechanism of the present invention. 本発明の実施形態の第2変形例に係るレバー加振機構の構成図である。It is a structural view of the lever vibration mechanism according to a second modification of the implementation of the invention. 本発明の参考例に係る走査型プローブ顕微鏡の構成図である。It is a block diagram of the scanning probe microscope which concerns on the reference example of this invention. 本発明の参考例に係るレバー加振機構の構成図である。It is a block diagram of the lever vibration mechanism which concerns on the reference example of this invention.

符号の説明Explanation of symbols

S試料 1aレバー加振機構 3カンチレバー(レバー) 3a探針 3cレバー 4ステージ 5移動手段 6測定手段 8制御手段 10斜面ブロック(支持部材) 10b先端側端面(端面) 11加振源(圧電部材) 13切欠き溝部(狭持部) 13a内壁上面(内壁面) 13b基端側内壁下面(内壁面、第2内壁面) 13c先端側内壁下面(第1内壁面) 13d第1底面(底部) 13e第2底面(底部) 13f内壁下面(内壁面) 13g底面(底部) 15貫通孔(狭持部) 16加圧部材   S sample 1a lever excitation mechanism 3 cantilever (lever) 3a probe 3c lever 4 stage 5 moving means 6 measuring means 8 control means 10 slope block (support member) 10b end side end face (end face) 11 excitation source (piezoelectric member) 13 notch groove portion (clamping portion) 13a inner wall upper surface (inner wall surface) 13b base end side inner wall lower surface (inner wall surface, second inner wall surface) 13c distal end side inner wall lower surface (first inner wall surface) 13d first bottom surface (bottom portion) 13e Second bottom surface (bottom portion) 13f Inner wall lower surface (inner wall surface) 13g Bottom surface (bottom portion) 15 Through hole (clamping portion) 16 Pressure member

Claims (5)

基端側から先端側に向かう長手方向に延びたカンチレバーと、
前記カンチレバーのレバーの先端部を自由端とし、前記レバーの基端部を片持ち状態で支持する支持部材と、
前記支持部材を介して前記レバーを所定振動状態で振動させる圧電部材とを備え、
前記支持部材は、前記圧電部材を振動方向の両側から挟み込んで固定する狭持部を備え、
前記狭持部は、前記圧電部材の振動方向の厚さに対して所定の締め代を有し、
前記圧電部材は、前記狭持部によって前記振動方向に締まりばめされた状態で固定されていることを特徴とするレバー加振機構。
A cantilever extending in the longitudinal direction from the proximal side to the distal side,
A support member that supports a distal end portion of the lever of the cantilever as a free end, and supports a proximal end portion of the lever in a cantilever state;
A piezoelectric member that vibrates the lever in a predetermined vibration state via the support member,
The support member includes a sandwiching portion that sandwiches and fixes the piezoelectric member from both sides in a vibration direction,
The holding portion has a predetermined interference with respect to the thickness in the vibration direction of the piezoelectric member,
The lever excitation mechanism according to claim 1, wherein the piezoelectric member is fixed in a state of being tightly fitted in the vibration direction by the holding portion.
前記狭持部は、前記支持部材の前記長手方向の先端側の端面上に設けられ、前記支持部材の前記振動方向および前記長手方向に略直交する方向の両端部に向かい延びる凹溝であって、
前記凹溝は、前記支持部材の前記長手方向の基端側に設けられた底部を備え、
少なくとも前記底部近傍の内壁面によって前記圧電部材の前記長手方向の基端部を前記振動方向の両側から挟み込んで固定することを特徴とする請求項1に記載のレバー加振機構。
The holding portion is a groove provided on an end surface of the support member on the distal end side in the longitudinal direction and extending toward both ends of the support member in a direction substantially perpendicular to the vibration direction and the longitudinal direction. ,
The concave groove includes a bottom portion provided on the base end side in the longitudinal direction of the support member,
2. The lever excitation mechanism according to claim 1, wherein the longitudinal base end portion of the piezoelectric member is sandwiched and fixed from both sides in the vibration direction by at least an inner wall surface in the vicinity of the bottom portion.
前記凹溝の前記振動方向の内壁面のうち、前記レバーに近接する一方の内壁面は、前記圧電部材の前記長手方向の先端部に対して所定間隔を置いて配置される第1内壁面と、前記圧電部材の前記長手方向の基端部に当接する第2内壁面とを備えることを特徴とする請求項2に記載のレバー加振機構。 Of the inner wall surfaces in the vibration direction of the concave groove, one inner wall surface close to the lever is a first inner wall surface disposed at a predetermined interval with respect to the longitudinal end portion of the piezoelectric member. The lever vibration mechanism according to claim 2, further comprising: a second inner wall surface that contacts the proximal end portion of the piezoelectric member in the longitudinal direction. 前記狭持部は、前記支持部材の前記振動方向および前記長手方向に略直交する方向に貫通する貫通孔であることを特徴とする請求項1に記載のレバー加振機構。 2. The lever excitation mechanism according to claim 1, wherein the holding portion is a through-hole penetrating in a direction substantially orthogonal to the vibration direction and the longitudinal direction of the support member. 請求項1から請求項の何れか1つに記載のレバー加振機構と、
前記レバーの先端に設けられた探針と、
前記探針に対向配置された試料を載置するステージと、
前記探針と前記試料とを、試料表面に平行な方向に相対的に走査させると共に、試料表面に垂直な方向に相対的に移動させる移動手段と、
前記レバーの振動状態の変位を検出する検出手段と、
前記検出手段による検出結果に基づき、前記走査時に前記探針と前記試料表面との距離を、前記レバーの振動状態が所定状態となるように前記移動手段により制御すると共に、前記試料の状態に係るデータを取得する制御手段とを備えることを特徴とする走査型プローブ顕微鏡。
The lever vibration mechanism according to any one of claims 1 to 4 ,
A probe provided at the tip of the lever;
A stage on which a sample placed opposite to the probe is placed;
Moving the probe and the sample relative to each other in a direction parallel to the sample surface and moving in a direction perpendicular to the sample surface;
Detecting means for detecting a displacement of a vibration state of the lever;
Based on the detection result by the detection means, the distance between the probe and the sample surface during the scanning is controlled by the moving means so that the vibration state of the lever becomes a predetermined state, and the distance between the probe and the sample surface is controlled. A scanning probe microscope comprising: control means for acquiring data.
JP2007038813A 2007-02-20 2007-02-20 Lever excitation mechanism and scanning probe microscope Expired - Fee Related JP4895379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007038813A JP4895379B2 (en) 2007-02-20 2007-02-20 Lever excitation mechanism and scanning probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007038813A JP4895379B2 (en) 2007-02-20 2007-02-20 Lever excitation mechanism and scanning probe microscope

Publications (2)

Publication Number Publication Date
JP2008203058A JP2008203058A (en) 2008-09-04
JP4895379B2 true JP4895379B2 (en) 2012-03-14

Family

ID=39780733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007038813A Expired - Fee Related JP4895379B2 (en) 2007-02-20 2007-02-20 Lever excitation mechanism and scanning probe microscope

Country Status (1)

Country Link
JP (1) JP4895379B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016256A1 (en) * 2009-08-06 2011-02-10 国立大学法人 金沢大学 Cantilever excitation device and scanning probe microscope

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3318085B2 (en) * 1993-12-09 2002-08-26 オリンパス光学工業株式会社 Cantilever tip holder
JP3539867B2 (en) * 1998-05-28 2004-07-07 セイコーインスツルメンツ株式会社 Scanning probe microscope
JP4646049B2 (en) * 2001-07-30 2011-03-09 国立大学法人金沢大学 Scanning probe microscope
JP2004020221A (en) * 2002-06-12 2004-01-22 Olympus Corp Cantilever holder
JP2006184079A (en) * 2004-12-27 2006-07-13 Tohoku Univ Atomic force microscope

Also Published As

Publication number Publication date
JP2008203058A (en) 2008-09-04

Similar Documents

Publication Publication Date Title
JP5654477B2 (en) Dynamic probe detection system
JP5580296B2 (en) Probe detection system
US8037762B2 (en) Whispering gallery mode ultrasonically coupled scanning probe microscopy
JP5000076B2 (en) Force scanning probe microscope
US8220318B2 (en) Fast microscale actuators for probe microscopy
JP4732903B2 (en) Cantilever holder and scanning probe microscope
JP5187839B2 (en) Cantilever system and scanning probe microscope
JP4688643B2 (en) Excitation cantilever holder and scanning probe microscope
US7861577B2 (en) Electric potential difference detection method and scanning probe microscope
JP5813966B2 (en) Displacement detection mechanism and scanning probe microscope using the same
WO2007072706A1 (en) Scan type probe microscope
JP2008107358A (en) Optical fiber homodyne laser interferometer
JP4895379B2 (en) Lever excitation mechanism and scanning probe microscope
JP2012093325A (en) Cantilever for atomic force microscope, atomic force microscope, and method of measuring interatomic force
US7423264B2 (en) Atomic force microscope
JP6001728B2 (en) Displacement detection mechanism and scanning probe microscope using the same
WO2004012201A2 (en) Method of and apparatus for calibrating cantilevers
KR102204809B1 (en) Scanning probe microscope and method for increasing the scanning speed of scanning probe microscope in step-in scanning mode
JP4891838B2 (en) Scanning probe microscope
JP2009537840A (en) Controlled atomic force microscope
Lindfors et al. High-sensitivity piezoelectric tube sensor for shear-force detection in scanning near-field optical microscopy
JP3054509B2 (en) Scanning force microscope, electrometer, potential and shape measuring instrument
CN117260647A (en) Vibration reduction holder applied to nano measurement/processing and nano measurement/processing system
JP3167287B2 (en) Micro vibration applying device, micro vibration applying method and surface state detecting device
JP2006194678A (en) Scanner and scanning probe microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20111219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111219

R150 Certificate of patent or registration of utility model

Ref document number: 4895379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees