JP4892844B2 - Method for forming transparent conductive film, and transparent conductive substrate and organic EL element substrate using the same - Google Patents

Method for forming transparent conductive film, and transparent conductive substrate and organic EL element substrate using the same Download PDF

Info

Publication number
JP4892844B2
JP4892844B2 JP2005061840A JP2005061840A JP4892844B2 JP 4892844 B2 JP4892844 B2 JP 4892844B2 JP 2005061840 A JP2005061840 A JP 2005061840A JP 2005061840 A JP2005061840 A JP 2005061840A JP 4892844 B2 JP4892844 B2 JP 4892844B2
Authority
JP
Japan
Prior art keywords
transparent conductive
substrate
film
transparent
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005061840A
Other languages
Japanese (ja)
Other versions
JP2006244941A (en
Inventor
好弘 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2005061840A priority Critical patent/JP4892844B2/en
Publication of JP2006244941A publication Critical patent/JP2006244941A/en
Application granted granted Critical
Publication of JP4892844B2 publication Critical patent/JP4892844B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Electric Cables (AREA)

Description

本発明は、透明導電膜の形成方法に関し、さらに詳しくは、基板を曲げてもクラックが発生しにくい柔軟性に優れた透明導電膜の形成方法、並びにこれを用いた透明導電基板及び有機EL素子基板に関するものである。   The present invention relates to a method for forming a transparent conductive film, and more specifically, a method for forming a transparent conductive film excellent in flexibility that does not easily generate cracks even when the substrate is bent, and a transparent conductive substrate and an organic EL element using the same. It relates to a substrate.

本明細書において、配合を示す「比」、「部」、「%」などは特に断わらない限り質量基準であり、「EL」はエレクトロルミネセンス、「/」印は一体的に積層されていることを示す。   In the present specification, “ratio”, “part”, “%” and the like indicating the composition are based on mass unless otherwise specified, “EL” is electroluminescence, and “/” mark is integrally laminated. It shows that.

(主なる用途)本発明の透明導電膜の形成方法を用いた透明導電基板の主なる用途としては、ディスプレイ用基板、照明用基板、太陽電池用基板、サーキットボード用基板、半導体用途、電子ペーパー用途等である。従来の重くて割れ易いガラス基材の欠点を解消したもので、ガラス基材に代替することができる、薄くて、軽くて、曲げても割れない透明樹脂フィルム基材を用いたフレキシブルな透明導電基板であり、種々の電子機器に使用である。しかしながら、薄くて、軽くて、曲げても割れないフレキシブル性、透明導電性を必要とする用途であれば、特に電子機器に限定されるものではない。   (Main applications) The main applications of the transparent conductive substrate using the method for forming a transparent conductive film of the present invention include display substrates, illumination substrates, solar cell substrates, circuit board substrates, semiconductor applications, and electronic paper. Applications. It is a solution that eliminates the drawbacks of conventional heavy and fragile glass substrates, and can be used as a substitute for glass substrates. It is a substrate and is used for various electronic devices. However, it is not particularly limited to an electronic device as long as it is thin, light, flexible and does not break even when bent, and uses transparent conductivity.

(背景技術)従来、透明熱線反射体、透明面状発熱体、透明電極等には、基材としての高分子フィルム表面に透明導電層を設けた透明導電性積層体が広く用いられてきている。この透明導電性積層体に形成する透明導電層については、金(Au)、銀(Ag)、パラジウム(Pd)などの金属薄膜タイプ、インジウム酸化物(In23)、スズ酸化物(SnO2)、これらの混合物であるITO、亜鉛酸化物(ZnO)などの金属酸化物薄膜タイプ、さらにTiO2/Ag/TiO2などの金属/金属酸化物の多層薄膜タイプ等の各種のものが知られている。これらの中でもITO等の金属酸化物薄膜は、透光性、導電性がともに非常に良好で、その上エッチング特性にも優れており、電極のパターン化が容易であるという特長を有しているものである。このため、精細なパターンを必要とするディスプレイの透明電極などに好適に用いられている。
該導電性の金属酸化物薄膜は、真空蒸着法、スパッタリング法、イオンプレーティング法、あるいはCVD法などの各種の成膜方法により作成されている。透明電極をフレキシブルな基板上に形成することにより、フレキキシブル電極が作製される。それを用いたディスプレイ、照明、太陽電池、サーキットボード、半導体、電子ペーパー等、薄くて軽くて割れない、曲げられるフレキシブル電子機器が開発されている。
即ち、透明導電基板は、透明で導電性に優れ、薄くて、軽くて、フレキシブル性に富み割れにくく、曲げられる透明導電基板が求められている。しかしながら、例えば、透明導電膜がITO膜の場合、該ITO膜の結晶性を高めると、膜のフレキシビリティが劣り、膜クラックが生じて機能が保持できない。また、フレキシビリティを高めるために、結晶性が低め、非結晶性とすると、導電性が悪くなるので、結晶性が高く導電性に優れ、かつ、熱や曲げなどの機械的負荷が加わっても、導電性を維持できるフレキシビリティ性を有する透明導電膜の形成方法が求められている。
(Background Art) Conventionally, transparent conductive laminates in which a transparent conductive layer is provided on the surface of a polymer film as a substrate have been widely used for transparent heat ray reflectors, transparent sheet heating elements, transparent electrodes, and the like. . About the transparent conductive layer formed in this transparent conductive laminate, metal thin film type such as gold (Au), silver (Ag), palladium (Pd), indium oxide (In 2 O 3 ), tin oxide (SnO) 2 ) Various metal oxide thin film types such as ITO and zinc oxide (ZnO), which are mixtures thereof, and metal / metal oxide multilayer thin film types such as TiO 2 / Ag / TiO 2 are known. It has been. Among these, metal oxide thin films such as ITO have the characteristics that both translucency and conductivity are very good, and the etching characteristics are excellent, and the electrode patterning is easy. Is. For this reason, it is suitably used for a transparent electrode of a display that requires a fine pattern.
The conductive metal oxide thin film is formed by various film forming methods such as vacuum deposition, sputtering, ion plating, or CVD. A flexible electrode is manufactured by forming a transparent electrode on a flexible substrate. Thin, light, non-breakable flexible electronic devices such as displays, lighting, solar cells, circuit boards, semiconductors, and electronic paper using the same have been developed.
That is, the transparent conductive substrate is transparent, excellent in conductivity, thin, light, flexible, flexible and hardly cracked, and a transparent conductive substrate that can be bent is required. However, for example, in the case where the transparent conductive film is an ITO film, if the crystallinity of the ITO film is increased, the flexibility of the film is inferior, and film cracks occur and the function cannot be maintained. Also, in order to increase flexibility, if the crystallinity is low and non-crystalline, the conductivity becomes poor, so the crystallinity is high and the conductivity is excellent, and even if mechanical loads such as heat and bending are applied. Therefore, there is a demand for a method for forming a transparent conductive film having flexibility capable of maintaining conductivity.

(先行技術)従来、レーザーアニールを施す多結晶薄膜の形成方法としては、大気圧または大気圧近傍の圧力下において、反応性ガスを含有するガスを電極間の放電空間に導入してプラズマ状態とし、基材を前記プラズマ状態のガスに晒し薄膜を形成した後、例えば、大気圧または大気圧近傍の圧力下において、水素、窒素、不活性ガスのうちの少なくとも1種類のガスを流通させた雰囲気下で、薄膜にレーザービームを照射する方法が知られている(例えば、特許文献1参照。)。しかしながら、レーザーの波長が紫外領域であり、また、薄膜の形成後のレーザービームの照射を連続して行わなければならないという欠点がある。   (Prior Art) Conventionally, as a method of forming a polycrystalline thin film to be subjected to laser annealing, a gas containing a reactive gas is introduced into a discharge space between electrodes under a pressure at or near atmospheric pressure to form a plasma state. After forming the thin film by exposing the substrate to the plasma state gas, for example, an atmosphere in which at least one of hydrogen, nitrogen, and an inert gas is circulated under atmospheric pressure or pressure near atmospheric pressure Below, a method of irradiating a thin film with a laser beam is known (for example, see Patent Document 1). However, there are drawbacks that the laser wavelength is in the ultraviolet region, and that laser beam irradiation after the formation of the thin film must be performed continuously.

特開2004−87846号公報JP 2004-87846 A

そこで、本発明はこのような問題点を解消するためになされたものである。その目的は、透明導電膜を形成した後に、可視域から赤外域の波長を有するレーザー光を照射して表面処理を施すことで、結晶性が高く導電性に優れ、かつ、熱や曲げなどの機械的負荷が加わっても、導電性を維持できるフレキシビリティ性を有する透明導電膜の形成方法を提供することである。該透明導電膜の形成方法で形成された透明導電膜を有する透明導電基板は、透明で導電性に優れ、薄くて、軽くて、フレキシブル性に富み割れにくく、曲げられることができる。   Accordingly, the present invention has been made to solve such problems. Its purpose is to form a transparent conductive film and then apply surface treatment by irradiating a laser beam having a wavelength from the visible range to the infrared range, so that the crystallinity is high and the conductivity is excellent. It is to provide a method for forming a transparent conductive film having flexibility that can maintain conductivity even when a mechanical load is applied. A transparent conductive substrate having a transparent conductive film formed by the method for forming the transparent conductive film is transparent and excellent in conductivity, thin and light, is flexible, is not easily cracked, and can be bent.

上記の課題を解決するために、請求項1の発明に係わる透明導電膜の形成方法は、可とう性の透明基板へ透明導電膜を形成した後に、該透明導電膜の表面へ、可視域から赤外域の波長を有するレーザー光を照射して表面処理を施すように、したものである。
請求項2の発明に係わる透明導電膜の形成方法は、上記レーザーが連続発振タイプであり、上記レーザー光の波長が400〜1200nmであるように、したものである。
請求項3の発明に係わる透明導電基板は、上記透明基板へ、請求項1〜2のいずれかに記載の透明導電膜の形成方法を用いて形成された透明導電膜を設けてなるように、したものである。
請求項4の発明に係わる透明導電基板は、透明導電基板の表面及び/又は層間へ、少なくとも1層のガスバリア性層を設けてなるように、したものである。
請求項5の発明に係わる透明導電基板は、160℃のオーブンで1時間保持した後に常温に戻す操作を3回繰返す熱サイクル試験においても、透明導電膜にクラックが発生しないように、したものである。
請求項6の発明に係わる有機EL素子基板は、請求項3〜4のいずれかに記載の透明導電基板を用いてなるように、したものである。
In order to solve the above-mentioned problems, a method for forming a transparent conductive film according to the invention of claim 1 includes forming a transparent conductive film on a flexible transparent substrate, and then moving the surface of the transparent conductive film from a visible range. A surface treatment is performed by irradiating a laser beam having a wavelength in the infrared region.
The method for forming a transparent conductive film according to the invention of claim 2 is such that the laser is a continuous oscillation type and the wavelength of the laser light is 400 to 1200 nm.
As for the transparent conductive substrate concerning invention of Claim 3, the transparent conductive film formed using the formation method of the transparent conductive film in any one of Claims 1-2 to the above-mentioned transparent substrate is provided, It is a thing.
The transparent conductive substrate according to the invention of claim 4 is such that at least one gas barrier layer is provided on the surface and / or interlayer of the transparent conductive substrate.
The transparent conductive substrate according to the invention of claim 5 is one in which cracks are not generated in the transparent conductive film even in a thermal cycle test in which the operation of returning to room temperature after being held in an oven at 160 ° C. for 1 hour is repeated three times. is there.
An organic EL element substrate according to the invention of claim 6 is formed by using the transparent conductive substrate according to any one of claims 3 to 4.

請求項1の本発明によれば、導電性に優れ、かつ、熱や曲げなどの機械的負荷が加わっても、導電性を維持できるフレキシビリティ性を有する透明導電膜の形成方法が提供される。
請求項2の本発明によれば、より安全性の高いレーザー波長を用いて、低コストな透明導電膜の形成方法が提供される。
請求項3の本発明によれば、導電性に優れ、かつ、熱や曲げなどの機械的負荷が加わっても、導電性を維持できるフレキシビリティ性を有し、その結果、透明で導電性に優れ、薄く、軽く、フレキシブル性に富み割れにくく、曲げられる透明導電基板が提供される。
請求項4の本発明によれば、請求項3の効果に加えて、超高度な酸素や水蒸気などのガスバリア性を有する透明導電基板が提供される。
請求項5の本発明によれば、請求項3〜4の効果に加えて、高熱や温度変化に対する耐久性が高い透明導電基板が提供される。
請求項6の本発明によれば、請求項3〜4の効果によって、気体が基板を透過しにくく、酸素などによる電子デバイスの劣化が極めて少なく、ディスプレイ寿命の長い有機EL素子基板が提供される。
According to the first aspect of the present invention, there is provided a method for forming a transparent conductive film having excellent conductivity and having flexibility that can maintain conductivity even when a mechanical load such as heat or bending is applied. .
According to the second aspect of the present invention, a low-cost method for forming a transparent conductive film is provided by using a safer laser wavelength.
According to the third aspect of the present invention, it is excellent in conductivity and has flexibility to maintain conductivity even when a mechanical load such as heat or bending is applied. As a result, it is transparent and conductive. Provided is a transparent conductive substrate that is excellent, thin, light, flexible, hardly cracked, and can be bent.
According to the fourth aspect of the present invention, in addition to the effect of the third aspect, a transparent conductive substrate having gas barrier properties such as ultra-high oxygen and water vapor is provided.
According to this invention of Claim 5, in addition to the effect of Claims 3-4, the transparent conductive substrate with high durability with respect to high heat or a temperature change is provided.
According to the sixth aspect of the present invention, the effect of the third to fourth aspects provides an organic EL element substrate that has a long display life because gas hardly permeates the substrate, the electronic device is hardly deteriorated by oxygen or the like. .

以下、本発明の実施形態について、図面を参照しながら、詳細に説明する。
図1は、本発明の1実施例を示す透明導電基板の断面図である。
図2は、本発明の1実施例を示す透明導電基板の断面図である。
図3は、本発明の1実施例を示す透明導電基板の断面図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a cross-sectional view of a transparent conductive substrate showing one embodiment of the present invention.
FIG. 2 is a cross-sectional view of a transparent conductive substrate showing one embodiment of the present invention.
FIG. 3 is a cross-sectional view of a transparent conductive substrate showing one embodiment of the present invention.

本発明の透明導電膜の形成方法は、可とう性の透明基板11へ透明導電層21を形成した後に、該透明導電層21の表面へ、可視域から赤外域の波長を有するレーザー光を照射して表面処理を施し、好ましくは、前記レーザーが連続発振タイプであり、レーザー光の波長が400〜1200nmである。
また、本発明の透明導電基板10は、図1に示すように、透明基板11へ、請求項1〜2のいずれかに記載の透明導電膜の形成方法を用いて形成された透明導電層21、及び必要に応じて補助電極層23からなる。
また、図2に示すように、該透明導電基板の表面及び/又は層間へ、少なくとも1層のガスバリア性層を設けてもよく、図2(A)のように、透明基板11の片面へガスバリア層13Aを、図2(B)のように、透明基板11の両面へガスバリア層13A及びガスバリア層13Bを設けてもよい。
さらに、図3に示すように、該透明導電基板の表面及び/又は層間へ他の層を設けてもよく、図3(A)のように、透明基板11の片面へ平坦化層15A、及びガスバリア層13Aを設けてもよく、図3(B)のように、透明基板11の片面へ、ガスバリア層13A、平坦化層15A、及びガスバリア層13Bを設けてもよく、図3(C)のように、透明導電層21と反対側の透明基板11の面へ、応力緩和層31を設けてもよい。
In the method for forming a transparent conductive film of the present invention, after forming the transparent conductive layer 21 on the flexible transparent substrate 11, the surface of the transparent conductive layer 21 is irradiated with laser light having a wavelength from the visible region to the infrared region. Then, the surface treatment is performed. Preferably, the laser is a continuous wave type, and the wavelength of the laser beam is 400 to 1200 nm.
Moreover, the transparent conductive substrate 10 of this invention is the transparent conductive layer 21 formed in the transparent substrate 11 using the formation method of the transparent conductive film in any one of Claims 1-2, as shown in FIG. And an auxiliary electrode layer 23 as required.
Further, as shown in FIG. 2, at least one gas barrier layer may be provided on the surface and / or interlayer of the transparent conductive substrate, and a gas barrier is provided on one side of the transparent substrate 11 as shown in FIG. The layer 13A may be provided with a gas barrier layer 13A and a gas barrier layer 13B on both surfaces of the transparent substrate 11 as shown in FIG.
Furthermore, as shown in FIG. 3, another layer may be provided on the surface and / or interlayer of the transparent conductive substrate. As shown in FIG. 3A, the planarizing layer 15A on one side of the transparent substrate 11, and A gas barrier layer 13A may be provided, and as shown in FIG. 3B, the gas barrier layer 13A, the planarization layer 15A, and the gas barrier layer 13B may be provided on one surface of the transparent substrate 11, as shown in FIG. As described above, the stress relaxation layer 31 may be provided on the surface of the transparent substrate 11 opposite to the transparent conductive layer 21.

(透明基板)透明基板としては、透明性及び可とう性(フレキシビリティ性)があれば、特に限定されるものではなく、薄硝子や天然又は合成樹脂が挙げられる。該樹脂のフィルムとしては、例えば、ポリエチレンテレフタレ−ト、ポリブチレンテレフタレ−ト、ポリエチレンナフタレ−ト、ポリエチレンテレフタレート−イソフタレート共重合体、又はテレフタル酸−シクロヘキサンジメタノール−エチレングリコール共重合体などのポリエステル系樹脂、ナイロン(商品名)6、ナイロン(商品名)66、ナイロン(商品名)610、又はナイロン(商品名)12などのポリアミド系樹脂、ポリエチレン、ポリプロピレン、ポリブテン、又はポリメチルペンテンなどのポリオレフィン系樹脂、ポリノルボネンなどの環状ポリオレフィン系樹脂、ポリ塩化ビニルなどのビニル系樹脂、ポリアクリレート、ポリメタアクリレート、又はポリメチルメタアクリレートなどの(メタ)アクリル系樹脂、ポリイミド、ポリアミドイミド、又はポリエーテルイミドなどのイミド系樹脂、ポリアリレ−ト、ポリスルホン、ポリエーテルスルホン、ポリフェニレンエ−テル、ポリフェニレンスルフィド(PPS)、ポリアラミド、ポリエーテルケトン、ポリエーテルニトリル、ポリエーテルエーテルケトン、又はポリエーテルサルファイトなどのエンジニアリング樹脂、ポリスチレン、高衝撃ポリスチレン、AS樹脂、又はABS樹脂などのスチレン系樹脂、ポリビニルアルコール樹脂、又はエチレン−ビニルアルコール共重合体等のポリビニルアルコール系樹脂、エチレン−四フッ化エチレン共重合体、三フッ化塩化エチレン、四フッ化エチレン−パーフルオロアルキルビニルエーテル共重合体、フッ化ビニリデン、フッ化ビニル、又はパーフルオロ−パーフロロプロピレン−パーフロロビニルエーテル共重合体等のフッ素系樹脂、セロファン、セルローストリアセテート、セルロースダイアセテート、又はニトロセルロースなどのセルロース系フィルム、ポリカーボネート、エチレン−酢酸ビニル共重合体ケン化物、ポリビニルブチラール樹脂、ポリ酢酸ビニル系樹脂、アセタール系樹脂、などがある。   (Transparent substrate) The transparent substrate is not particularly limited as long as it has transparency and flexibility (flexibility), and examples thereof include thin glass and natural or synthetic resins. Examples of the resin film include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyethylene terephthalate-isophthalate copolymer, or terephthalic acid-cyclohexanedimethanol-ethylene glycol copolymer. Polyester resins such as nylon (trade name) 6, nylon (trade name) 66, nylon (trade name) 610, nylon (trade name) 12, and other polyamide resins, polyethylene, polypropylene, polybutene, or polymethylpentene Polyolefin resins such as polynorbornene, cyclic polyolefin resins such as polynorbonene, vinyl resins such as polyvinyl chloride, (meth) acrylic resins such as polyacrylate, polymethacrylate, or polymethyl methacrylate, Imide resins such as polyamide, polyamideimide, or polyetherimide, polyarylate, polysulfone, polyethersulfone, polyphenylene ether, polyphenylene sulfide (PPS), polyaramid, polyetherketone, polyethernitrile, polyetheretherketone Or engineering resins such as polyether sulfite, styrene resins such as polystyrene, high impact polystyrene, AS resin, or ABS resin, polyvinyl alcohol resins, or polyvinyl alcohol resins such as ethylene-vinyl alcohol copolymers, ethylene Tetrafluoroethylene copolymer, ethylene trifluoride chloride, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, vinylidene fluoride, vinyl fluoride, or perfluoro-par Fluorine-based resin such as fluoropropylene-perfluorovinyl ether copolymer, cellophane, cellulose triacetate, cellulose diacetate, or cellulose film such as nitrocellulose, polycarbonate, saponified product of ethylene-vinyl acetate copolymer, polyvinyl butyral resin, poly There are vinyl acetate resin and acetal resin.

該基材11は、これら樹脂を主成分とする共重合樹脂、または、混合体(アロイでを含む)、若しくは複数層からなる積層体であっても良い。また、該基材11は、延伸フィルムでも、未延伸フィルムでも良いが、強度を向上させる目的で、一軸方向または二軸方向に延伸したフィルムが好ましい。該基材11は、これら樹脂の少なくとも1層からなるフィルム状、シート状、ボード状、板状、又はレンズなどの立体状でもよい。また、上記のフィルム状の基材の厚さとしては、フレキシビリティを有する透明な基材であれば特に制限はない。高分子樹脂フィルムの厚さについても特に制限はないが、可とう性及び形態保持性の点から、例えば10μm〜1000μm程度、好ましくは50〜400μmが好ましい。   The substrate 11 may be a copolymer resin containing these resins as a main component, a mixture (including an alloy), or a laminate composed of a plurality of layers. The substrate 11 may be a stretched film or an unstretched film, but a film stretched in a uniaxial direction or a biaxial direction is preferable for the purpose of improving the strength. The substrate 11 may have a three-dimensional shape such as a film shape, a sheet shape, a board shape, a plate shape, or a lens composed of at least one layer of these resins. Further, the thickness of the film-like substrate is not particularly limited as long as it is a transparent substrate having flexibility. Although there is no restriction | limiting in particular also about the thickness of a polymer resin film, From the point of a flexibility and a form retainability, it is about 10 micrometers-about 1000 micrometers, for example, Preferably it is 50-400 micrometers.

(他の層)また、該基材11は、層を形成する面側に、層間の密着力を向上させるために、必要に応じてプライマ層13、またはコロナ放電処理、プラズマ処理、オゾンガス処理、フレーム処理、予熱処理、除塵埃処理、アルカリ処理などなどの易接着処理を施してもよい。さらに、該基材11には、ガスバリア層、平坦化層、応力緩和層、ハードコート層、帯電防止層、防眩層などの他の層を設けてもよい。表示装置用の透明導電基板に用いる場合には、ガスバリア層が好適に設けられる。   (Other layers) Further, the base material 11 has a primer layer 13 or corona discharge treatment, plasma treatment, ozone gas treatment, if necessary, in order to improve the adhesion between the layers on the side on which the layer is formed. Easy adhesion treatment such as frame treatment, pre-heat treatment, dust removal treatment, alkali treatment and the like may be performed. Further, the substrate 11 may be provided with other layers such as a gas barrier layer, a planarization layer, a stress relaxation layer, a hard coat layer, an antistatic layer, and an antiglare layer. When used for a transparent conductive substrate for a display device, a gas barrier layer is suitably provided.

(透明導電層)透明基材11上に形成する透明導電層21としては、インジウム酸化物(In23)やスズ酸化物(SnO2)、AZO(酸化亜鉛と酸化アルミニウム)やIZO(酸化インジウムと酸化亜鉛)のような組合材料でもよい。インジウム酸化物(In23)またはこれにスズ酸化物(SnO2)を3〜15重量%混合したITOの単独層とするのが好適である。その厚さは、たとえば1000〜10000Åが好ましく、この範囲以内であれば表面抵抗を100Ω/cm2、さらには50Ω/cm2以下にすることができる。この範囲を越えると透光性が低下したり、この範囲未満では導電性等の特性が不十分となる。透明導電層21の形成は、1回の成膜であっても、複数回に分けて積層して構成しても構わない。好ましくは、単独層とすることにより、多層構造に比べてエッチング性が向上し高精細な回路とすることができ、さらに層間での剥離も発生しにくい。 (Transparent conductive layer) As the transparent conductive layer 21 formed on the transparent substrate 11, indium oxide (In 2 O 3 ), tin oxide (SnO 2 ), AZO (zinc oxide and aluminum oxide), IZO (oxidized oxide) A combination material such as indium and zinc oxide may be used. It is preferable to use an indium oxide (In 2 O 3 ) or ITO single layer in which 3 to 15 wt% of tin oxide (SnO 2 ) is mixed. The thickness is preferably, for example, 1000 to 10,000 mm, and within this range, the surface resistance can be 100 Ω / cm 2 , or even 50 Ω / cm 2 or less. If this range is exceeded, the translucency decreases, and if it is less than this range, the properties such as conductivity become insufficient. The transparent conductive layer 21 may be formed once or may be laminated by being divided into a plurality of times. Preferably, by using a single layer, the etching property is improved as compared with the multilayer structure, a high-definition circuit can be obtained, and peeling between layers hardly occurs.

(レーザー照射)従来から、透明導電層21の1つであるITO膜については、ITO膜を成膜した後に、あるいはITO成膜中にレーザーを照射することは知られている。しかしながら、いずれも紫外域(例えば波長308nm、247nm、193nm)波長のレーザーであった。これら紫外域の波長では、そのエネルギーが強過ぎるため、ITOが結晶化するもののフレキシビリティに劣った硬い膜となり、二次工程、例えば加熱工程などにおいてクラックが生じてしまう。特に、例えば160℃下で1時間保持した後に常温に戻されるような加熱−冷却が繰り返される熱サイクルでは、透明導電膜にクラックが発生し易かった。透明導電膜にクラックが入っていると、短絡の原因となり透明電極として使用できず、また、耐熱性が低く、曲げられず加工適性が悪く、外観も悪いので、透明電極としての利用ができなくなる問題がある。   (Laser Irradiation) Conventionally, it is known that an ITO film which is one of the transparent conductive layers 21 is irradiated with a laser after the ITO film is formed or during the ITO film formation. However, all were lasers in the ultraviolet region (for example, wavelengths of 308 nm, 247 nm, and 193 nm). At these ultraviolet wavelengths, the energy is too strong, so that ITO is crystallized but becomes a hard film with poor flexibility, and cracks occur in the secondary process, for example, the heating process. In particular, in a thermal cycle in which heating and cooling are repeated such that, for example, the temperature is maintained at 160 ° C. for 1 hour and then returned to room temperature, cracks are likely to occur in the transparent conductive film. If the transparent conductive film is cracked, it may cause a short circuit and cannot be used as a transparent electrode. Also, since it has low heat resistance, is not bent, has poor processability, and has a poor appearance, it cannot be used as a transparent electrode. There's a problem.

紫外域波長のレーザーでもITOが結晶化するが、結晶が成長し過ぎるためか、フレキシビリティに欠け、曲げや熱サイクルでクラックが発生しやすいと推測される。
可視域から赤外域の波長のレーザーを照射することで、結晶の大きさや、結晶間の非晶が適度となり、フレキシビリティに優れ、曲げや熱サイクルでもクラックが発生しにくく、導電性が保持されるものと推測される。そこで、透明導電層21を形成した後に、可視域から赤外域の波長を有するレーザーを照射することで、160℃下で1時間保持した後に常温に戻す操作を3回繰返すような熱−冷却の熱サイクルの厳しい負荷においても、クラックの生じにくく、導電性が低下しない膜を作製することができた。
ITO is crystallized even with a laser having an ultraviolet wavelength, but it is presumed that the crystal grows too much or lacks flexibility, and cracks are likely to occur during bending and thermal cycling.
By irradiating laser with wavelengths from visible to infrared, the crystal size and the amorphousness between the crystals become appropriate, and it has excellent flexibility and is not easily cracked even during bending and thermal cycling, maintaining its conductivity. Presumed to be. Therefore, after the transparent conductive layer 21 is formed, a laser having a wavelength from the visible range to the infrared range is irradiated, so that the operation of returning to room temperature after holding at 160 ° C. for 1 hour is repeated three times. It was possible to produce a film in which cracks are difficult to occur and the conductivity does not decrease even under severe heat cycle loads.

該膜は結晶性の膜なので、導電性に優れ、かつ、フレキシビリティを有しているので、高熱や曲げなどの機械的負荷が加わっても、クラックなどの透明導電膜の劣化がなく、優れた導電性を維持し、短絡を発生しにくい。即ち、耐熱性が高く、耐湾曲性にも優れるので、加工適性や外観もよく、曲げることのできる透明電極としての利用ができる透明導電層21とすることができる。   Since the film is a crystalline film, it has excellent conductivity and flexibility, so even if a mechanical load such as high heat or bending is applied, the transparent conductive film such as cracks is not deteriorated and is excellent. High conductivity is maintained and short circuit is difficult to occur. That is, since it has high heat resistance and excellent bending resistance, the processability and appearance are good, and the transparent conductive layer 21 can be used as a bendable transparent electrode.

(レーザー装置)該レーザーを発振する装置としては特に限定されないが、例えば、連続発振固体レーザー、パルス発振固体レーザーなどがある。好ましくは、コストメリットの点から連続発振タイプのほうが好ましい。パルス発振タイプは装置価格が高く、高コストである。レーザーの照射量はITOが結晶化する程度のパワーを適宜選定すればよく、おおよそ10〜10000mj/cm2である。該レーザーの波長域としては、可視域で405、460、488、532、635nmなどが、また、赤外域では1064nmなどの波長を好ましく用いることができる。レーザーの照射は、透明導電層21を成膜した後でもよく、もちろん、成膜に引き続いて行ってもよい。 (Laser apparatus) The apparatus for oscillating the laser is not particularly limited, and examples thereof include a continuous wave solid laser and a pulsed solid laser. Preferably, the continuous oscillation type is preferable from the viewpoint of cost merit. The pulse oscillation type is expensive and expensive. The amount of laser irradiation may be selected as appropriate so that the ITO is crystallized, and is approximately 10 to 10,000 mj / cm 2 . The wavelength range of the laser is preferably 405, 460, 488, 532, 635 nm or the like in the visible range, and 1064 nm or the like in the infrared range. The laser irradiation may be performed after the transparent conductive layer 21 is formed or, of course, may be performed subsequent to the film formation.

(ガスバリア層)本発明の透明導電基板10には、用途により必要性能が異なるので他の層を設けてもよい。ガスバリア性を必要とする用途に関しては、透明基材上に酸素や水蒸気の進入を遮断するガスバリア性の層を設けるのが良い。例えば、有機EL素子として使用する場合には、0.01g/m2/day以下の透湿度が必要であり、1又は複数層のガスバリア層13(ガスバリア性層13A、ガスバリア層13Bとをガスバリア層13と総称する)を設ける。   (Gas barrier layer) The transparent conductive substrate 10 of the present invention may be provided with other layers because the required performance differs depending on the application. For applications that require gas barrier properties, it is desirable to provide a gas barrier layer on the transparent substrate that blocks the entry of oxygen and water vapor. For example, when used as an organic EL element, the moisture permeability of 0.01 g / m 2 / day or less is required, and one or a plurality of gas barrier layers 13 (the gas barrier layer 13A and the gas barrier layer 13B are combined with the gas barrier layer 13). Generically).

該透明導電基板10の表面及び/又は層間へ設けるガスバリア性層13Aとしては、酸化珪素、窒化珪素、炭化珪素、酸化アルミニウム、窒化アルミニウム、酸化インジウム、酸化錫、酸化亜鉛等の透明無機化合物あるいはその混合化合物からなるものを、真空蒸着法、スパッタリング法、イオンプレーティング法、あるいはCVD法などの各種の成膜方法を用いることにより作製することができる。特に、本発明の場合、可視域から赤外域の波長のレーザー照射を行うため、その波長範囲において吸収の少ない材料が好ましく、酸化珪素、窒化珪素、炭化珪素、酸化アルミニウム、あるいはそれらの混合物からなるものが好ましい。   The gas barrier layer 13A provided between the surface and / or interlayer of the transparent conductive substrate 10 may be a transparent inorganic compound such as silicon oxide, silicon nitride, silicon carbide, aluminum oxide, aluminum nitride, indium oxide, tin oxide, zinc oxide, or the like What consists of a mixed compound can be produced using various film-forming methods, such as a vacuum evaporation method, sputtering method, an ion plating method, or CVD method. In particular, in the case of the present invention, since laser irradiation with a wavelength in the visible range to the infrared range is performed, a material having low absorption in the wavelength range is preferable, and is made of silicon oxide, silicon nitride, silicon carbide, aluminum oxide, or a mixture thereof. Those are preferred.

(ディスプレイ)本発明の透明導電基板10をディスプレイの基板として用いる場合には、各々のディスプレイの方式において必要な層を表裏のいずれか、又は層間に積層してもよい。ディスプレイとしては、上記のディスプレイ基板を用いたものであればよく、プラズマディスプレイパネル(PDP)、液晶ディスプレイ(LCD)、有機又は無機エレクトロルミネセンスディスプレイ(ELD)、フィールドエミッションディスプレイ(FED)などの奥行きの少ない薄型に好適に適用できる。   (Display) When the transparent conductive substrate 10 of the present invention is used as a display substrate, layers necessary for each display method may be laminated either on the front or back or between the layers. The display may be any display using the above-described display substrate. Depth of a plasma display panel (PDP), liquid crystal display (LCD), organic or inorganic electroluminescence display (ELD), field emission display (FED), etc. Therefore, it can be suitably applied to a thin type with a small amount.

(LCD)液晶ディスプレイは、二枚のガラス基板に、いずれも内側に透明電極を配置し、配向層等を伴なった間に液晶が挟まれ、周囲がシールされたものであり、カラー化するためのカラーフィルターを伴なう。このような液晶ディスプレイのガラス基板の外側に、本発明の透明導電基板10を適用することができ、全体がフレキシブルなディスプレイとすることができる。   (LCD) A liquid crystal display is one in which transparent electrodes are placed on the inside of two glass substrates, liquid crystal is sandwiched between alignment layers and the surroundings are sealed, and the surroundings are colored. With a color filter for. The transparent conductive substrate 10 of the present invention can be applied to the outside of the glass substrate of such a liquid crystal display, and the entire display can be made flexible.

(有機EL)有機ELディスプレイは、やはり、二枚の基板に、いずれも内側に透明電極を配置し、間に、例えば、(a)注入機能、(b)輸送機能、および(c)発光機能の各機能を持つ層を積層した複合層等からなる有機EL素子層が挟まれ、周囲がシールされたものである。基本構成としては、基材/ガスバリア層/平滑化層/透明導電層/正孔注入層/正孔輸送層/有機発光層/電子注入層/陰極であるが、この構成に限定されるものではない。また、本発明の透明導電基板10をカラー化するためのカラーフィルタ層を設けて、カラーフィルタとしてもよい。特に、有機EL素子は、蛍光発光を利用するために化学的に不安定であり、また、湿気に極度に弱いため、製品となった後の高度な水蒸気バリア性が望まれ、ガスバリア性を有する透明導電基板10が好ましい。   (Organic EL) The organic EL display also has a transparent electrode on the inside of two substrates, and, for example, (a) an injection function, (b) a transport function, and (c) a light emission function. The organic EL element layer which consists of a composite layer etc. which laminated | stacked the layer which has each function of these is pinched | interposed and the circumference | surroundings are sealed. The basic configuration is substrate / gas barrier layer / smoothing layer / transparent conductive layer / hole injection layer / hole transport layer / organic light emitting layer / electron injection layer / cathode, but is not limited to this configuration. Absent. In addition, a color filter layer for coloring the transparent conductive substrate 10 of the present invention may be provided to form a color filter. In particular, organic EL elements are chemically unstable due to the use of fluorescence, and are extremely vulnerable to moisture, so that a high water vapor barrier property after the product is desired and has a gas barrier property. The transparent conductive substrate 10 is preferable.

以下、実施例及び比較例により、本発明を更に詳細に説明するが、これに限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, it is not limited to this.

(実施例1)透明基板11として、厚さ200μmのアクリレート樹脂(三菱化学製)を用いて、50mm×50mm角の大きさシート状とし、160℃のオーブンで1時間乾燥させた後に、両面にスパッタリング法で膜厚100nmの酸化窒化珪素膜(ガスバリア層13Aである)を形成して、まずガスバリア性フィルムを得た。該ガスバリア性フィルムの透湿度を測定したところ、測定限界以下の値(0.0050g/m2/day以下)であった。
該ガスバリア性フィルムの片面の酸化窒化珪素膜(ガスバリア層13A)面へ、スパッタリング法で膜厚150nmのITO膜(透明導電層21に相当する)を形成し、フレキシブルな透明導電基板を得た。該ITO膜面をXRDにて測定したところ、ITOピークはなく非晶質であった。
次に、該ITO膜(透明導電層21)面へ、連続発振タイプ固体レーザー(米国、コヒーレント社製、VERDI共振器:波長532nm)を用いて、2000mj照射して表面処理を行って、透明導電基板10を得た。このITO膜面をXRDにて測定したところ、立方晶のITO結晶ピークが確認され、結晶化が確認できた。
(評価)該透明導電基板10を、160℃のオーブンで1時間保持した後に常温に戻す操作を3回繰返す熱サイクル試験においても、透明導電膜にクラックが認められず、その表面抵抗は35Ω/cm2と良好であった。該ガスバリア性フィルムの透湿度を測定したところ、測定限界以下の値(0.0050g/m2/day以下)が保持されていた。全光線透過率も76%と良好であった。
(Example 1) As a transparent substrate 11, a 200 mm thick acrylate resin (manufactured by Mitsubishi Chemical) was used to form a sheet of 50 mm x 50 mm square, and after drying in an oven at 160 ° C for 1 hour, A silicon oxynitride film (gas barrier layer 13A) having a thickness of 100 nm was formed by a sputtering method, and a gas barrier film was first obtained. When the moisture permeability of the gas barrier film was measured, it was a value below the measurement limit (0.0050 g / m 2 / day or less).
An ITO film having a film thickness of 150 nm (corresponding to the transparent conductive layer 21) was formed by sputtering on one surface of the gas barrier film on the silicon oxynitride film (gas barrier layer 13A) to obtain a flexible transparent conductive substrate. When the ITO film surface was measured by XRD, there was no ITO peak and it was amorphous.
Next, surface treatment is performed by irradiating the ITO film (transparent conductive layer 21) with 2000 mj using a continuous wave solid state laser (manufactured by Coherent, USA, VERDI resonator: wavelength 532 nm) to obtain a transparent conductive layer. A substrate 10 was obtained. When the ITO film surface was measured by XRD, a cubic ITO crystal peak was confirmed, and crystallization was confirmed.
(Evaluation) In the heat cycle test in which the transparent conductive substrate 10 was kept in an oven at 160 ° C. for 1 hour and then returned to room temperature and repeated three times, no crack was observed in the transparent conductive film, and the surface resistance was 35Ω / It was as good as cm 2 . When the moisture permeability of the gas barrier film was measured, a value below the measurement limit (0.0050 g / m 2 / day or less) was maintained. The total light transmittance was also good at 76%.

(評価方法)なお、評価方法は、次のように行った。
クラックは、160℃のオーブンで1時間保持した後に常温に戻す操作を3回繰返す熱サイクル試験後、評価は、光学顕微鏡にて観察した。
透湿度は、JIS−K−7129に準拠し、温度37.8℃、湿度100%RHの条件で、米国、モコン(MOCON)社製の測定機〔機種名、パ−マトラン(PERMATRAN3/31)〕を使用して測定した。
表面抵抗はJIS−K−6911に準拠し、全光線透過率はJIS−K7361−1に準拠して測定した。
(Evaluation method) The evaluation method was as follows.
The crack was evaluated in an optical microscope after a heat cycle test in which an operation of returning to room temperature after being held in an oven at 160 ° C. for 1 hour was repeated three times.
Moisture permeability is in accordance with JIS-K-7129, at a temperature of 37.8 ° C. and a humidity of 100% RH, a measuring machine manufactured by MOCON, USA [model name, PERMATRAN 3/31] ] Was used to measure.
The surface resistance was measured according to JIS-K-6911, and the total light transmittance was measured according to JIS-K7361-1.

(実施例2)透明基板11として、厚さ200μmのアクリレート樹脂(三菱化学製)を用いて、50mm×50mm角の大きさシート状とし、160℃のオーブンで1時間乾燥させた後に、基板の片面へスパッタリング法で膜厚150nmのITO膜(透明導電層21に相当する)を形成し、フレキシブルな透明導電基板を得た。該ITO膜面をXRDにて測定したところ、ITOピークはなく非晶質であった。
次に、該ITO膜(透明導電層21)面へ、連続発振タイプ固体レーザー(米国、コヒーレント社製、VERDI共振器:波長532nm)を用いて、3000mj照射して表面処理を行って、透明導電基板10を得た。このITO膜面をXRDにて測定したところ、立方晶のITO結晶ピークが確認され、結晶化が確認できた。
(評価)該透明導電基板10を、160℃のオーブンで1時間保持した後に常温に戻す操作を3回繰返す熱サイクル試験においても、透明導電膜にクラックが認められず、その表面抵抗は32Ω/cm2と良好であった。全光線透過率も78%と良好であった。
(Example 2) As a transparent substrate 11, a 200 mm thick acrylate resin (manufactured by Mitsubishi Chemical Corporation) was used to form a sheet of 50 mm x 50 mm square size and dried in an oven at 160 ° C for 1 hour. An ITO film having a thickness of 150 nm (corresponding to the transparent conductive layer 21) was formed on one surface by a sputtering method to obtain a flexible transparent conductive substrate. When the ITO film surface was measured by XRD, there was no ITO peak and it was amorphous.
Next, the surface of the ITO film (transparent conductive layer 21) is irradiated with 3000 mj using a continuous wave solid laser (manufactured by Coherent, USA, VERDI resonator: wavelength 532 nm) to perform surface treatment. A substrate 10 was obtained. When the ITO film surface was measured by XRD, a cubic ITO crystal peak was confirmed, and crystallization was confirmed.
(Evaluation) In the thermal cycle test in which the transparent conductive substrate 10 was held in an oven at 160 ° C. for 1 hour and then returned to room temperature, the transparent conductive film was not cracked, and the surface resistance was 32Ω / It was as good as cm 2 . The total light transmittance was as good as 78%.

(比較例1)透明基板11として、厚さ200μmのアクリレート樹脂(三菱化学製)を用いて、50mm×50mm角の大きさシート状とし、160℃のオーブンで1時間乾燥させた後に、両面にスパッタリング法で膜厚100nmの酸化窒化珪素膜(ガスバリア層13Aである)を形成して、まずガスバリア性フィルムを得た。該ガスバリア性フィルムの酸素ガス透過度を測定したところ、測定限界以下の値(0.0050g/m2/day以下)であった。
該ガスバリア性フィルムの片面の酸化窒化珪素膜(ガスバリア層13A)面へ、スパッタリング法で膜厚150nmのITO膜(透明導電層21に相当する)を形成し、フレキシブルな透明導電基板を得た。該ITO膜面をXRDにて測定したところ、ITOピークはなく非晶質であった。
次に、該ITO膜(透明導電層21)面へ、連続発振タイプアルゴンガスレーザー(INOVA共振器:363nm)を用いて紫外域のレーザーを2000mj照射した。ITO膜面をXRDにて測定したところ、立方晶のITO結晶ピークが確認され、結晶化されていたが、この電極基板を160℃のオーブンで1時間保持した後に常温に戻す操作を3回繰返す熱サイクル試験に行ったところ、透明導電膜にクラックが認められ、フレキシビリティ性に欠けていた。
(Comparative Example 1) As a transparent substrate 11, a 200 mm thick acrylate resin (manufactured by Mitsubishi Chemical) was used to form a sheet of 50 mm × 50 mm square, dried in an oven at 160 ° C. for 1 hour, A silicon oxynitride film (gas barrier layer 13A) having a thickness of 100 nm was formed by a sputtering method, and a gas barrier film was first obtained. When the oxygen gas permeability of the gas barrier film was measured, it was a value below the measurement limit (0.0050 g / m 2 / day or less).
An ITO film having a film thickness of 150 nm (corresponding to the transparent conductive layer 21) was formed by sputtering on one surface of the gas barrier film on the silicon oxynitride film (gas barrier layer 13A) to obtain a flexible transparent conductive substrate. When the ITO film surface was measured by XRD, there was no ITO peak and it was amorphous.
Next, the surface of the ITO film (transparent conductive layer 21) was irradiated with 2000 mj of ultraviolet laser using a continuous wave type argon gas laser (INOVA resonator: 363 nm). When the ITO film surface was measured by XRD, a cubic ITO crystal peak was confirmed and crystallized, but this electrode substrate was held in an oven at 160 ° C. for 1 hour and then returned to normal temperature three times. When the thermal cycle test was performed, cracks were observed in the transparent conductive film, and the flexibility was lacking.

本発明の1実施例を示す透明導電基板の断面図である。It is sectional drawing of the transparent conductive substrate which shows one Example of this invention. 本発明の1実施例を示す透明導電基板の断面図である。It is sectional drawing of the transparent conductive substrate which shows one Example of this invention. 本発明の1実施例を示す透明導電基板の断面図である。It is sectional drawing of the transparent conductive substrate which shows one Example of this invention.

符号の説明Explanation of symbols

10:透明導電基板
11:透明基板
13、13A、13B:ガスバリア層
15A:平滑化層
21:透明導電層
23:補助電極層
31:応力緩和層
10: Transparent conductive substrate 11: Transparent substrate 13, 13A, 13B: Gas barrier layer 15A: Smoothing layer 21: Transparent conductive layer 23: Auxiliary electrode layer 31: Stress relaxation layer

Claims (1)

可とう性を有する透明基板上に酸化インジウム錫からなる透明導電膜が形成されてなり、  A transparent conductive film made of indium tin oxide is formed on a flexible transparent substrate,
前記透明導電膜が、160℃のオーブンで1時間保持した後に常温に戻す操作を3回繰返す熱サイクル試験後に、前記透明導電膜にクラックが発生しない透明導電膜である透明導電基板を形成する透明導電基板の形成方法であって、  Transparent forming a transparent conductive substrate, which is a transparent conductive film in which cracks do not occur in the transparent conductive film, after a heat cycle test in which the transparent conductive film is held in an oven at 160 ° C. for 1 hour and then returned to room temperature three times. A method for forming a conductive substrate, comprising:
前記透明基板表面に前記透明導電膜を形成した後に、前記透明導電膜の表面へ、波長が405、460、488、532、635、または1064nmの連続発振タイプの固体レーザーを、2000〜3000mJ照射して表面処理を施すことを特徴とする透明導電基板の形成方法。  After forming the transparent conductive film on the surface of the transparent substrate, the surface of the transparent conductive film is irradiated with 2000 to 3000 mJ of a continuous oscillation type solid laser having a wavelength of 405, 460, 488, 532, 635, or 1064 nm. And forming a transparent conductive substrate.
JP2005061840A 2005-03-07 2005-03-07 Method for forming transparent conductive film, and transparent conductive substrate and organic EL element substrate using the same Expired - Fee Related JP4892844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005061840A JP4892844B2 (en) 2005-03-07 2005-03-07 Method for forming transparent conductive film, and transparent conductive substrate and organic EL element substrate using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005061840A JP4892844B2 (en) 2005-03-07 2005-03-07 Method for forming transparent conductive film, and transparent conductive substrate and organic EL element substrate using the same

Publications (2)

Publication Number Publication Date
JP2006244941A JP2006244941A (en) 2006-09-14
JP4892844B2 true JP4892844B2 (en) 2012-03-07

Family

ID=37051135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005061840A Expired - Fee Related JP4892844B2 (en) 2005-03-07 2005-03-07 Method for forming transparent conductive film, and transparent conductive substrate and organic EL element substrate using the same

Country Status (1)

Country Link
JP (1) JP4892844B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2378671C2 (en) * 2006-09-22 2010-01-10 Самсунг Электроникс Ко., Лтд Liquid-crystal display element with conducting layers treated with surface electromagnetic waves
KR100886115B1 (en) 2007-05-22 2009-02-27 네오뷰코오롱 주식회사 Flexible Substrate, Fabrication Method of the Same and Flexible Display Device by using the Same
WO2008146572A1 (en) * 2007-05-30 2008-12-04 Konica Minolta Holdings, Inc. Transparent conductive film pattern forming method and organic electroluminescence transparent conductive film resin substrate
JP5218460B2 (en) 2010-03-26 2013-06-26 セイコーエプソン株式会社 Pyroelectric detector, pyroelectric detector and electronic device
JP5582962B2 (en) * 2010-10-25 2014-09-03 東海旅客鉄道株式会社 Method for forming transparent conductive film
JP5240373B2 (en) * 2012-01-26 2013-07-17 セイコーエプソン株式会社 Pyroelectric detector, pyroelectric detector, and electronic device
JP6110188B2 (en) * 2013-04-05 2017-04-05 リンテック株式会社 Transparent conductive film, electronic device, and method for producing transparent conductive film
JP7406722B2 (en) * 2020-01-21 2023-12-28 ウシオ電機株式会社 Flexible substrate manufacturing method and flexible substrate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031463A (en) * 1998-03-23 2000-01-28 Hoya Corp Formation of transparent electrode
JP2000285752A (en) * 1999-03-30 2000-10-13 Hoya Corp Transparent electrode and forming method therefor
JP3600207B2 (en) * 2001-12-10 2004-12-15 日東電工株式会社 Method for selectively etching metal oxide film, metal oxide film selectively etched by the method, optical element, and conductive film
JP2005019286A (en) * 2003-06-27 2005-01-20 Toppan Printing Co Ltd Gas-barrier film having transparent electrode layer

Also Published As

Publication number Publication date
JP2006244941A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
JP4892844B2 (en) Method for forming transparent conductive film, and transparent conductive substrate and organic EL element substrate using the same
JP5436640B2 (en) Smooth layer and barrier layer on Tg substrate
EP1720175B1 (en) Transparent conductive film and transparent conductive base material utilizing the same
KR101863610B1 (en) Gas barrier laminate and circularly polarizing plate
JPWO2005100014A1 (en) Transparent gas barrier laminate film
JP6650770B2 (en) Conductive laminated film
JP2011161893A (en) Gas-barrier film with transparent conductive film
JP2010055894A (en) Sealing film for light-emitting element
KR101700884B1 (en) Maganese tin oxide Transparent Conducting Oxide and transparent conductive film using the same and method for fabricating transparent conductive film
JP2014198423A (en) Transparent electrode-fitted substrate
WO2017170757A1 (en) Electrochromic dimming member, light-transmissive conductive film, and electrochromic dimming element
JP3313306B2 (en) Antistatic film
KR101892542B1 (en) Transparent electrode
EP1759563A1 (en) Composite optical destructive electrode for high contrast electroluminescent devices
JP2006049327A (en) Conductive layered product
JP2011161892A (en) Gas-barrier film with transparent conductive film
JP6356520B2 (en) Substrate with transparent electrode and method for manufacturing the same
JPH10296899A (en) Antistatic film
JPS62217506A (en) Transparent conductive film
JP7228223B2 (en) Transparent conductive gas barrier film and manufacturing method thereof
KR102018336B1 (en) conductive stacked film and manufacturing method thereof
JP2005114876A (en) Antireflection film
KR101991047B1 (en) Conductive laminate, method for manufacturing thereof, transparent electrode comprising thereof and electronic device comprising thereof
KR20170021619A (en) Transparent electrode with AZO/Ag/AZO mulilayered structure and method for preparing the same
KR20230157437A (en) Transparent conductive piezoelectric laminated film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100427

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees