JP4891652B2 - Constant velocity joint - Google Patents

Constant velocity joint Download PDF

Info

Publication number
JP4891652B2
JP4891652B2 JP2006133532A JP2006133532A JP4891652B2 JP 4891652 B2 JP4891652 B2 JP 4891652B2 JP 2006133532 A JP2006133532 A JP 2006133532A JP 2006133532 A JP2006133532 A JP 2006133532A JP 4891652 B2 JP4891652 B2 JP 4891652B2
Authority
JP
Japan
Prior art keywords
trunnion
roller
spherical
spherical surface
constant velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006133532A
Other languages
Japanese (ja)
Other versions
JP2007303579A (en
Inventor
勉 川勝
直人 柴田
友紀 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006133532A priority Critical patent/JP4891652B2/en
Publication of JP2007303579A publication Critical patent/JP2007303579A/en
Application granted granted Critical
Publication of JP4891652B2 publication Critical patent/JP4891652B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/202Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints
    • F16D3/205Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints the pins extending radially outwardly from the coupling part
    • F16D3/2055Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints the pins extending radially outwardly from the coupling part having three pins, i.e. true tripod joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/202Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints
    • F16D2003/2026Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints with trunnion rings, i.e. with tripod joints having rollers supported by a ring on the trunnion

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Friction Gearing (AREA)

Description

本発明は、例えば、自動車の駆動力伝達部において、一方の伝達軸と他方の伝達軸とを連結させる等速ジョイントに関する。   The present invention relates to, for example, a constant velocity joint that connects one transmission shaft and the other transmission shaft in a driving force transmission unit of an automobile.

従来より、自動車の駆動力伝達部では、一方の伝達軸と他方の伝達軸とを連結し回転力を各車軸へと伝達する等速ジョイントが用いられている。   Conventionally, in a driving force transmission unit of an automobile, a constant velocity joint that connects one transmission shaft and the other transmission shaft and transmits a rotational force to each axle is used.

この種の等速ジョイントに関し、本出願人は、一方の伝達軸が傾動してトラニオンが案内溝に沿って変位する際に発生するスライド抵抗を低減させることにより誘起スラスト性能を向上させ、しかも耐久性を向上させることが可能な等速ジョイントを提案している(特許文献1、2参照)。   With regard to this type of constant velocity joint, the present applicant has improved the induced thrust performance by reducing the sliding resistance that occurs when one of the transmission shafts tilts and the trunnion is displaced along the guide groove, and is durable. The constant velocity joint which can improve the property is proposed (see Patent Documents 1 and 2).

例えば、特許文献1、2には、それぞれ、周方向に沿って球面部が設けられたトラニオンと、内周面に前記球面部に対応して面接触する球面状の凹部(内球面)が形成された内側ローラとを有し、前記トラニオンに対して内側ローラを組み付けるために、前記内側ローラの内周面に断面円弧状の相互に対向する一対の切欠部が形成された等速ジョイントを提案している。   For example, in Patent Documents 1 and 2, a trunnion provided with a spherical portion along the circumferential direction and a spherical concave portion (inner spherical surface) in contact with the inner circumferential surface corresponding to the spherical portion are formed. In order to assemble the inner roller to the trunnion, a constant velocity joint is proposed in which a pair of mutually facing notches having a circular arc shape are formed on the inner peripheral surface of the inner roller. is doing.

特開2000−170784号公報JP 2000-170784 A 特開2000−192984号公報JP 2000-192984 A

ところで、前記等速ジョイントでは、トラニオンに対して内側ローラを組み付けるために、内側ローラの内球面が前記一対の切欠部が形成されることにより部分球面となっている。このため、回転駆動力が伝達される高負荷時において、トラニオンの球面部と、内側ローラの内球面における球面と非球面との境界部分(稜線部)とが接触してエッジロードが発生する可能性がある。   By the way, in the constant velocity joint, in order to assemble the inner roller to the trunnion, the inner spherical surface of the inner roller becomes a partial spherical surface by forming the pair of notches. For this reason, at the time of high load to which the rotational driving force is transmitted, the trunnion spherical surface portion and the boundary portion (ridge line portion) between the spherical surface and the aspheric surface of the inner spherical surface of the inner roller may come into contact with each other to generate an edge load. There is sex.

本発明は、前記の点に鑑みてなされたものであり、トラニオン及び内側ローラの球面同士の接触面の稜線接触部におけるエッジロードの発生を回避し又は緩和することにより、耐久性を向上させると共に、スライド抵抗を低減させることが可能な等速ジョイントを提供することを目的とする。   The present invention has been made in view of the above points, and improves durability by avoiding or mitigating the occurrence of edge load at the ridge line contact portion of the contact surface between the spherical surfaces of the trunnion and the inner roller. An object of the present invention is to provide a constant velocity joint capable of reducing slide resistance.

前記の目的を達成するために、本発明は、所定間隔離間し軸線方向に沿って延在する複数の案内溝が内周面に設けられ一方の伝達軸に連結される筒状のアウタ部材と、前記アウタ部材の開口する内空部内に挿入されて他方の伝達軸に連結されるインナ部材とを有する等速ジョイントにおいて、
前記案内溝に向かって膨出し、周回する球面部を有する複数のトラニオンと、
内周面に相互に対向する一対の断面円弧状の切欠部が形成されると共に、前記球面部に対応する内球面が形成された内側ローラと、
転動体を介して前記内側ローラに外嵌され、前記トラニオンの軸線方向に沿って前記内側ローラと相対的に変位自在に設けられた外側ローラと、
を備え、
前記トラニオンの球面部は、前記内側ローラの内球面と比較して、トラニオン軸方向の曲率が大きい円環形状からなることを特徴とする。
In order to achieve the above object, the present invention provides a cylindrical outer member that is provided with a plurality of guide grooves that are spaced apart from each other and extend along the axial direction, and that is provided on an inner peripheral surface and connected to one transmission shaft. In the constant velocity joint having an inner member that is inserted into the inner space where the outer member opens and is connected to the other transmission shaft,
A plurality of trunnions having a spherical surface that bulges and circulates toward the guide groove;
A pair of arc-shaped cutout portions facing each other on the inner peripheral surface, and an inner roller formed with an inner spherical surface corresponding to the spherical portion;
An outer roller that is externally fitted to the inner roller via a rolling element, and is provided so as to be relatively displaceable from the inner roller along the axial direction of the trunnion;
With
The spherical surface portion of the trunnion has an annular shape having a larger curvature in the trunnion axis direction than the inner spherical surface of the inner roller.

この場合、前記トラニオンの球面部と前記内側ローラの内球面との接触部分であるヘルツの接触楕円の短軸の長さが、該トラニオンの球面部におけるトルク伝達面幅よりも小さく設定されるとよい。また、前記トラニオンの球面部におけるトルク非伝達面が面取り形成されるとよい。   In this case, when the length of the short axis of the contact ellipse of Hertz, which is the contact portion between the spherical portion of the trunnion and the inner spherical surface of the inner roller, is set to be smaller than the torque transmission surface width in the spherical portion of the trunnion. Good. Further, the torque non-transmission surface in the spherical portion of the trunnion may be chamfered.

また、本発明は、所定間隔離間し軸線方向に沿って延在する複数の案内溝が内周面に設けられ一方の伝達軸に連結される筒状のアウタ部材と、前記アウタ部材の開口する内空部内に挿入されて他方の伝達軸に連結されるインナ部材とを有する等速ジョイントにおいて、
前記案内溝に向かって膨出し、周回する球面部を有する複数のトラニオンと、
内周面に相互に対向する一対の断面円弧状の切欠部が形成されると共に、前記球面部に対応する内球面が形成された内側ローラと、
転動体を介して前記内側ローラに外嵌され、前記トラニオンの軸線方向に沿って前記内側ローラと相対的に変位自在に設けられた外側ローラと、
を備え、
前記内側ローラの内球面は、前記トラニオンの球面部と比較して、ローラ軸方向の曲率が小さい円環形状からなることを特徴とする。
Further, the present invention provides a cylindrical outer member that is provided on the inner peripheral surface with a plurality of guide grooves that are spaced apart by a predetermined distance and extend along the axial direction, and an opening of the outer member. In the constant velocity joint having an inner member inserted into the inner space and connected to the other transmission shaft,
A plurality of trunnions having a spherical surface that bulges and circulates toward the guide groove;
A pair of arc-shaped cutout portions facing each other on the inner peripheral surface, and an inner roller formed with an inner spherical surface corresponding to the spherical portion;
An outer roller that is externally fitted to the inner roller via a rolling element, and is provided so as to be relatively displaceable from the inner roller along the axial direction of the trunnion;
With
The inner spherical surface of the inner roller has an annular shape with a smaller curvature in the roller axial direction than the trunnion spherical portion.

さらに、本発明は、所定間隔離間し軸線方向に沿って延在する複数の案内溝が内周面に設けられ一方の伝達軸に連結される筒状のアウタ部材と、前記アウタ部材の開口する内空部内に挿入されて他方の伝達軸に連結されるインナ部材とを有する等速ジョイントにおいて、
前記案内溝に向かって膨出し、周回する球面部を有する複数のトラニオンと、
内周面に相互に対向する一対の断面円弧状の切欠部が形成されると共に、前記球面部に対応する内球面が形成された内側ローラと、
転動体を介して前記内側ローラに外嵌され、前記トラニオンの軸線方向に沿って前記内側ローラと相対的に変位自在に設けられた外側ローラと、
を備え、
前記トラニオンの球面部は、前記内側ローラの内球面と比較して、トラニオン軸方向の曲率が大きい円環形状からなり、且つ、前記内側ローラの内球面は、前記トラニオンの球面部と比較して、ローラ軸方向の曲率が小さい円環形状からなることを特徴とする。
Furthermore, the present invention provides a cylindrical outer member having a plurality of guide grooves spaced apart from each other at a predetermined interval and extending along the axial direction and connected to one transmission shaft, and an opening of the outer member. In the constant velocity joint having an inner member inserted into the inner space and connected to the other transmission shaft,
A plurality of trunnions having a spherical surface that bulges and circulates toward the guide groove;
A pair of arc-shaped cutout portions facing each other on the inner peripheral surface, and an inner roller formed with an inner spherical surface corresponding to the spherical portion;
An outer roller that is externally fitted to the inner roller via a rolling element, and is provided so as to be relatively displaceable from the inner roller along the axial direction of the trunnion;
With
The spherical surface portion of the trunnion has an annular shape with a larger curvature in the trunnion axis direction than the inner spherical surface of the inner roller, and the inner spherical surface of the inner roller is in comparison with the spherical surface portion of the trunnion. It is characterized by an annular shape having a small curvature in the roller axial direction.

本発明によれば、トラニオンの球面部を、トラニオン軸方向の曲率が大きい円環形状に設定することにより、内側ローラの内球面とトラニオンの球面部との接触部分が楕円形状(ヘルツの接触楕円)となる。この場合、内側ローラの内球面とトラニオンの球面部との接触部分は、内側ローラの円周方向に長く(長軸)、内側ローラの軸方向に短い(短軸)形状からなる楕円形状となるため、トラニオン側の稜線接触部との接触を回避してエッジロードを抑制することができる。   According to the present invention, by setting the spherical portion of the trunnion to an annular shape having a large curvature in the trunnion axis direction, the contact portion between the inner spherical surface of the inner roller and the spherical portion of the trunnion has an elliptical shape (a Hertzian contact ellipse). ) In this case, the contact portion between the inner spherical surface of the inner roller and the spherical surface portion of the trunnion has an elliptical shape that is long in the circumferential direction of the inner roller (long axis) and short in the axial direction of the inner roller (short axis). Therefore, contact with the ridge line contact portion on the trunnion side can be avoided to suppress edge loading.

この結果、本発明では、稜線接触部における接触面圧が抑制されてエッジロードの発生が回避又は緩和されることにより、耐久性が向上し、スライド抵抗を低減することができる。   As a result, in the present invention, the contact surface pressure at the ridge line contact portion is suppressed, and the occurrence of edge load is avoided or alleviated, whereby durability is improved and slide resistance can be reduced.

トラニオン及び内側ローラの球面同士の接触面の稜線接触部におけるエッジロードの発生を回避し又は緩和することにより、耐久性を向上させると共に、スライド抵抗を低減させることができる。   By avoiding or mitigating the occurrence of edge loading at the ridge line contact portion of the contact surface between the spherical surfaces of the trunnion and the inner roller, durability can be improved and slide resistance can be reduced.

本発明に係る等速ジョイントについて好適な実施の形態を挙げ、添付の図面を参照しながら以下詳細に説明する。   Preferred embodiments of the constant velocity joint according to the present invention will be described below and described in detail with reference to the accompanying drawings.

図1において参照符号10は、本発明の実施の形態に係る等速ジョイントを示し、この等速ジョイント10は、一方の伝達軸である図示しない第1軸の一端部に一体的に連結されて開口部を有する筒状のアウタカップ(アウタ部材)12と、他方の伝達軸である第2軸14の一端部に固着されてアウタカップ12の孔部内に収納されるインナ部材16とから基本的に構成される。   1, reference numeral 10 indicates a constant velocity joint according to an embodiment of the present invention, and this constant velocity joint 10 is integrally connected to one end portion of a first shaft (not shown) which is one transmission shaft. Basically composed of a cylindrical outer cup (outer member) 12 having an opening and an inner member 16 fixed to one end of the second shaft 14 which is the other transmission shaft and housed in the hole of the outer cup 12. Is done.

前記アウタカップ12の内壁面には、図1に示されるように、軸線方向に沿って延在し、軸心の回りにそれぞれ120度の間隔をおいて3本の案内溝18a〜18cが形成される(但し、案内溝18b、18cは図示するのを省略している)。前記案内溝18a〜18cは、断面が緩やかな曲線状に形成された天井部20と、前記天井部20の両側に相互に対向し断面円弧状に形成された摺動部22a、22bとから構成される。   As shown in FIG. 1, three guide grooves 18 a to 18 c are formed on the inner wall surface of the outer cup 12. The three guide grooves 18 a to 18 c extend along the axial direction and are spaced by 120 degrees around the axis. (However, the guide grooves 18b and 18c are not shown). The guide grooves 18a to 18c are composed of a ceiling portion 20 formed in a curved shape having a gentle cross section, and sliding portions 22a and 22b formed in a circular arc shape facing each other on both sides of the ceiling portion 20. Is done.

第2軸14にはリング状のスパイダボス24が外嵌され、前記スパイダボス24の外周面には、それぞれ案内溝18a〜18cに向かって膨出し軸心の回りに120度の間隔をおいて3本のトラニオン26a〜26cが一体的に形成される(但し、トラニオン26b、26cは、図示するのを省略している)。   A ring-shaped spider boss 24 is externally fitted to the second shaft 14, and three spider bosses 24 are protruded toward the guide grooves 18 a to 18 c on the outer peripheral surface of the spider boss 24 at intervals of 120 degrees around the axis. Trunnions 26a to 26c are integrally formed (however, trunnions 26b and 26c are not shown).

各トラニオン26a(26b、26c)は、リング状のスパイダボス24から半径外方向に向かって膨出する首部28と、前記首部28と一体的に形成され周方向に沿った円環状の部分球面からなる球面部30が形成された頭部32とから構成される。   Each trunnion 26a (26b, 26c) includes a neck portion 28 that bulges radially outward from a ring-shaped spider boss 24, and an annular partial spherical surface that is formed integrally with the neck portion 28 and extends in the circumferential direction. The head portion 32 is formed with a spherical portion 30.

前記頭部32の上面には、アウタカップ12の軸線方向から見ると所定の曲率からなる円弧状に形成され(図1参照)、且つアウタカップ12の軸線と直交する方向から見ると直線状に形成された第1曲面34aが設けられている(図2参照)。また、前記頭部32の下面には、前記第1曲面34aと同様な第2曲面34bが首部28と連続するように形成されている。さらに、前記頭部32には、前記第1曲面34aと前記第2曲面34bとの間の外周面に周方向に沿って形成された球面部30を有する(図3参照)。   When viewed from the axial direction of the outer cup 12, the upper surface of the head 32 is formed in an arc shape having a predetermined curvature (see FIG. 1), and is formed linearly when viewed from the direction orthogonal to the axial line of the outer cup 12. Further, a first curved surface 34a is provided (see FIG. 2). A second curved surface 34 b similar to the first curved surface 34 a is formed on the lower surface of the head 32 so as to be continuous with the neck portion 28. Furthermore, the head portion 32 has a spherical portion 30 formed along the circumferential direction on the outer peripheral surface between the first curved surface 34a and the second curved surface 34b (see FIG. 3).

トラニオン26a(26b、26c)の外周部には、リング体からなる内側ローラ36が外嵌される。前記内側ローラ36の内壁には、前記トラニオン26a(26b、26c)の球面部30に略対応する球面状の凹部からなる内球面38が形成される。前記内側ローラ36の外周面には、複数のニードルベアリング40を介して前記内側ローラ36よりも大なる直径を有するリング体によって構成された外側ローラ42が外嵌される。   An inner roller 36 formed of a ring body is fitted on the outer periphery of the trunnion 26a (26b, 26c). On the inner wall of the inner roller 36, an inner spherical surface 38 is formed which is a spherical concave portion substantially corresponding to the spherical portion 30 of the trunnion 26a (26b, 26c). An outer roller 42 constituted by a ring body having a diameter larger than that of the inner roller 36 is fitted on the outer peripheral surface of the inner roller 36 via a plurality of needle bearings 40.

なお、前記複数のニードルベアリング40は、転動体として機能するものであり、外側ローラ42の内周面に形成された環状の凹部内に転動自在に装着されて脱落しないように組み込まれている。   The plurality of needle bearings 40 function as rolling elements, and are rotatably mounted in an annular recess formed on the inner peripheral surface of the outer roller 42 so as not to fall off. .

さらに、前記内側ローラ36には、図6〜図9に示されるように、球面部30を有するトラニオン26a(26b、26c)と内側ローラ36の内球面38とを容易に組み付けるために、その上面部44と円形状の開口部46の内壁面との境界部分に相互に対向する一対の断面円弧状の切欠部48a、48bが形成されている。   Further, as shown in FIGS. 6 to 9, the inner roller 36 has an upper surface for easily assembling a trunnion 26a (26b, 26c) having a spherical portion 30 and an inner spherical surface 38 of the inner roller 36. A pair of arcuate cutout portions 48a and 48b are formed opposite to each other at the boundary between the portion 44 and the inner wall surface of the circular opening 46.

この場合、図4及び図5に示されるように、トラニオン26a(26b、26c)の球面部30は、トラニオン軸方向における内側ローラ36の内球面38の曲率(1/r1)と同一ではなく、内側ローラ36の内球面38と比較して、トラニオン軸方向の曲率(1/r2)のみが大きい円環形状に設定されている。なお、トラニオン26a(26b、26c)の球面部30における周方向の曲率は、内側ローラ36の内球面38の曲率(1/r1)と同一に設定されている。この場合、r1は内側ローラ36の内球面38の曲率半径、r2はトラニオン軸方向の曲率半径をそれぞれ示している。   In this case, as shown in FIGS. 4 and 5, the spherical portion 30 of the trunnion 26a (26b, 26c) is not the same as the curvature (1 / r1) of the inner spherical surface 38 of the inner roller 36 in the trunnion axis direction. Compared to the inner spherical surface 38 of the inner roller 36, only the curvature (1 / r2) in the trunnion axis direction is set to a large annular shape. The circumferential curvature of the spherical portion 30 of the trunnion 26a (26b, 26c) is set to be the same as the curvature (1 / r1) of the inner spherical surface 38 of the inner roller 36. In this case, r1 represents the radius of curvature of the inner spherical surface 38 of the inner roller 36, and r2 represents the radius of curvature in the trunnion axis direction.

従って、トラニオン軸方向に沿って内側ローラ36の内球面38とトラニオン26a(26b、26c)の球面部30の中間部位のみが接触すると共に、前記中間部位からトラニオン軸方向の上下部分においてトラニオン26a(26b、26c)の球面部30の外表面が内側ローラ36の内球面38から離間して微小なクリアランス50が形成されている。   Accordingly, only the intermediate portion of the inner spherical surface 38 of the inner roller 36 and the spherical portion 30 of the trunnion 26a (26b, 26c) are in contact with each other along the trunnion axis direction, and the trunnion 26a ( 26b and 26c), the outer surface of the spherical surface portion 30 is separated from the inner spherical surface 38 of the inner roller 36, and a minute clearance 50 is formed.

この結果、図4に示されるように、後述するヘルツの接触楕円(トラニオン26a、26b、26cの球面部30における曲面が無限のとき)52内には、ローラ側の稜線接触部54(太い実線参照)のみが含まれ、トラニオン側の稜線接触部56が前記ヘルツの接触楕円52の範囲外となる。   As a result, as shown in FIG. 4, a roller-side ridge line contact portion 54 (thick solid line) is placed in a Hertz contact ellipse (when the curved surface of the trunnions 26a, 26b, and 26c on the spherical portion 30 is infinite) 52, which will be described later. Only), and the ridge line contact portion 56 on the trunnion side is outside the range of the contact ellipse 52 of the Hertz.

なお、前記ローラ側の稜線接触部54とは、トラニオン26a(26b、26c)の球面部30との接触する、内側ローラ36の内壁に形成された内球面38(球面)と切欠部48a、48b(非球面)との境界部位をいい、一方、トラニオン側の稜線接触部56とは、内側ローラ36の内球面38と接触する、トラニオン26a(26b、26c)に形成された球面部30(球面)と頭部32の上面(非球面)との境界部位である第1曲面34a及び下面(非球面)との境界部位である第2曲面34bをいう。   The roller-side ridge line contact portion 54 refers to the inner spherical surface 38 (spherical surface) formed on the inner wall of the inner roller 36 and the notches 48a, 48b, which are in contact with the spherical surface portion 30 of the trunnion 26a (26b, 26c). The ridge line contact portion 56 on the trunnion side is in contact with the inner spherical surface 38 of the inner roller 36, and the spherical portion 30 (spherical surface) formed on the trunnion 26a (26b, 26c). ) And the upper surface (aspheric surface) of the head 32, and a first curved surface 34a that is a boundary portion between the lower surface (aspheric surface) and a second curved surface 34b.

また、外側ローラ42の内周面の上部(端部)には、半径内方向に所定長だけ突出して形成された第1環状フランジ部58aが設けられ、一方、前記第1環状フランジ部58aの下方側には、半径内方向に所定長だけ突出する第2環状フランジ部58bが形成される。   In addition, a first annular flange portion 58a formed by protruding a predetermined length in the radial inward direction is provided on the upper portion (end portion) of the inner peripheral surface of the outer roller 42, while the first annular flange portion 58a On the lower side, a second annular flange portion 58b that protrudes by a predetermined length in the radially inward direction is formed.

本実施の形態に係る等速ジョイント10は、基本的には以上のように構成されるものであり、次に、その動作並びに作用効果について説明する。   The constant velocity joint 10 according to the present embodiment is basically configured as described above. Next, the operation, action, and effect will be described.

図示しない第1軸が回転すると、その回転力はアウタカップ12を介してインナ部材16に伝達され、トラニオン26a〜26cを通じて第2軸14が所定方向に回転する。   When a first shaft (not shown) rotates, the rotational force is transmitted to the inner member 16 through the outer cup 12, and the second shaft 14 rotates in a predetermined direction through the trunnions 26a to 26c.

すなわち、アウタカップ12の回転力は、案内溝18a(18b、18c)の摺動部22a、22bに面接触する外側ローラ42及びニードルベアリング40を介して内側ローラ36に伝達され、さらに、前記内側ローラ36の内球面38に面接触する球面部30を介してトラニオン26a(26b、26c)に伝達されることにより、前記トラニオン26a(26b、26c)に係合する第2軸14が回転する。   That is, the rotational force of the outer cup 12 is transmitted to the inner roller 36 via the outer roller 42 and the needle bearing 40 that are in surface contact with the sliding portions 22a and 22b of the guide groove 18a (18b and 18c). The second shaft 14 that engages with the trunnion 26a (26b, 26c) is rotated by being transmitted to the trunnion 26a (26b, 26c) via the spherical surface portion 30 that is in surface contact with the inner spherical surface 38 of 36.

この場合、第1軸を有するアウタカップ12に対して第2軸14が所定角度傾斜すると、内側ローラ36に形成された内球面38に対してトラニオン26a(26b、26c)の球面部30が面接触した状態を保持しながら、前記トラニオン26a(26b、26c)は、その軸心(点O)を回動中心として矢印A方向に摺動変位し、あるいは、トラニオン26a(26b、26c)の軸線を回転中心として内球面38に沿って周方向(矢印B方向)に摺動変位する(図1参照)。   In this case, when the second shaft 14 is inclined at a predetermined angle with respect to the outer cup 12 having the first shaft, the spherical portion 30 of the trunnion 26a (26b, 26c) is in surface contact with the inner spherical surface 38 formed on the inner roller 36. The trunnion 26a (26b, 26c) is slidably displaced in the direction of the arrow A with its axis (point O) as the center of rotation, or the axis of the trunnion 26a (26b, 26c) is maintained. It slides and displaces in the circumferential direction (arrow B direction) along the inner spherical surface 38 as a rotation center (see FIG. 1).

また、前記トラニオン26a(26b、26c)は、外側ローラ42に保持された複数本のニードルベアリング40に対して摺動する内側ローラ36と一体的に、該トラニオン26a(26b、26c)の軸線方向(矢印C方向)に沿って変位する(図1参照)。   Further, the trunnion 26a (26b, 26c) is integrally formed with the inner roller 36 that slides with respect to the plurality of needle bearings 40 held by the outer roller 42, and the trunnion 26a (26b, 26c) is in the axial direction. It is displaced along (in the direction of arrow C) (see FIG. 1).

さらに、前記トラニオン26a(26b、26c)は、案内溝18a(18b、18c)に沿って摺動する外側ローラ42を介して、該トラニオン26a(26b、26c)の軸線と略直交する方向、すなわち、案内溝18a(18b、18c)の長手方向(図2の矢印D方向)に沿って変位する。   Further, the trunnion 26a (26b, 26c) is arranged in a direction substantially orthogonal to the axis of the trunnion 26a (26b, 26c) via an outer roller 42 that slides along the guide groove 18a (18b, 18c), that is, The guide groove 18a (18b, 18c) is displaced along the longitudinal direction (the direction of arrow D in FIG. 2).

このようにして、第1軸の回転運動(回転駆動力)は、アウタカップ12に対する第2軸14の傾斜角度に影響されることなく第2軸14に円滑に伝達される。   In this way, the rotational movement (rotational driving force) of the first shaft is smoothly transmitted to the second shaft 14 without being affected by the inclination angle of the second shaft 14 with respect to the outer cup 12.

ところで、本実施の形態では、内側ローラ36の内球面38とトラニオン26a(26b、26c)の球面部30との接触状態を適正化するために、トラニオン26a(26b、26c)の球面部30を、トラニオン軸方向の曲率(1/r2)が大きい円環形状に設定している(図4及び図5参照)。   By the way, in this embodiment, in order to optimize the contact state between the inner spherical surface 38 of the inner roller 36 and the spherical portion 30 of the trunnion 26a (26b, 26c), the spherical portion 30 of the trunnion 26a (26b, 26c) is changed. The ring shape has a large curvature (1 / r2) in the trunnion axis direction (see FIGS. 4 and 5).

なお、前記球面部30におけるトラニオン周方向の曲率は、内側ローラ36の内球面38の曲率(1/r1)と同一に設定されている。この場合、r1は内側ローラ36の内球面38の曲率半径、r2はトラニオン軸方向の曲率半径をそれぞれ示している。   The curvature of the spherical portion 30 in the trunnion circumferential direction is set to be the same as the curvature (1 / r1) of the inner spherical surface 38 of the inner roller 36. In this case, r1 represents the radius of curvature of the inner spherical surface 38 of the inner roller 36, and r2 represents the radius of curvature in the trunnion axis direction.

これに対し、内側ローラ36の内球面38及びトラニオン26a(26b、26c)の球面部30が共に真球である理想状態では、いわゆるヘルツの接触論によればその球面同士の接触範囲が円(正円)60となる。そこで、図18に示されるように、内側ローラ36の内球面38及びトラニオン26a(26b、26c)の球面部30が共に部分球面からなる比較例では、前記円60からなる接触範囲は実際の球面よりも大きくなり、つまり、稜線部分(太い実線参照)での接触が発生する。なお、図19に示されるように、比較例では、内側ローラ36の内球面38におけるトラニオン軸方向の曲率(1/r3)と、トラニオン26aの球面部30におけるトラニオン軸方向の曲率(1/r4)とが同一に設定されている(1/r3=1/r4)。   On the other hand, in the ideal state where the inner spherical surface 38 of the inner roller 36 and the spherical surface portion 30 of the trunnion 26a (26b, 26c) are both true spheres, the contact range between the spherical surfaces is a circle (according to the so-called Hertzian contact theory). 60). Therefore, as shown in FIG. 18, in the comparative example in which the inner spherical surface 38 of the inner roller 36 and the spherical surface portion 30 of the trunnion 26a (26b, 26c) are both partial spherical surfaces, the contact range formed by the circle 60 is an actual spherical surface. In other words, contact occurs at the ridge line portion (see thick solid line). As shown in FIG. 19, in the comparative example, the curvature (1 / r3) of the inner spherical surface 38 of the inner roller 36 in the trunnion axis direction and the curvature of the trunnion 26a in the trunnion axis direction (1 / r4). ) Are set to be the same (1 / r3 = 1 / r4).

この場合、図18に示されるように、ローラ側の稜線接触部54及びトラニオン側の稜線接触部56の両者が、それぞれ、ヘルツの接触範囲である円60内に含まれる(但し、曲面が無限であるとする)。   In this case, as shown in FIG. 18, both the ridge line contact portion 54 on the roller side and the ridge line contact portion 56 on the trunnion side are included in a circle 60 that is the Hertz contact range (however, the curved surface is infinite) ).

従って、図18及び図19に示される比較例では、回転駆動力が伝達される高負荷時において、トラニオン26a(26b、26c)の球面部30と、内側ローラ36の内球面38と非球面との境界部分(稜線接触部54、56)とが接触し、稜線接触部54、56における面圧が高くなってエッジロードが発生する可能性がある。   Accordingly, in the comparative example shown in FIGS. 18 and 19, the spherical portion 30 of the trunnion 26a (26b, 26c), the inner spherical surface 38, and the aspherical surface of the inner roller 36 at the time of a high load to which the rotational driving force is transmitted. May be in contact with the boundary portions (ridge line contact portions 54 and 56), resulting in an increase in surface pressure at the ridge line contact portions 54 and 56 and the occurrence of edge loading.

そこで、本実施の形態では、トラニオン26a(26b、26c)の球面部30を、トラニオン軸方向の曲率(1/r2)が大きい円環形状に設定することにより、内側ローラ36の内球面38及びトラニオン26a(26b、26c)の球面部30の接触範囲が円60から楕円形状(ヘルツの接触楕円52)に変化する。従って、図4に示されるヘルツの接触楕円52の形状は、内側ローラ36の円周方向に長く(長軸)、内側ローラ36の軸方向に短い(短軸)形状からなる楕円形状となるため、トラニオン側の稜線接触部56との接触を回避してエッジロードを抑制することができる。   Therefore, in the present embodiment, the spherical surface portion 30 of the trunnion 26a (26b, 26c) is set to an annular shape having a large curvature (1 / r2) in the trunnion axis direction, so that the inner spherical surface 38 of the inner roller 36 and The contact range of the spherical portion 30 of the trunnion 26a (26b, 26c) changes from a circle 60 to an elliptical shape (Hertz contact ellipse 52). Therefore, the shape of the Hertz contact ellipse 52 shown in FIG. 4 is an elliptical shape that is long in the circumferential direction of the inner roller 36 (long axis) and short in the axial direction of the inner roller 36 (short axis). The edge load can be suppressed by avoiding contact with the ridge line contact portion 56 on the trunnion side.

この結果、本実施の形態では、稜線接触部56における接触面圧が抑制されてエッジロードの発生が回避又は緩和されることにより、耐久性が向上し、スライド抵抗を低減することができる。   As a result, in the present embodiment, the contact surface pressure at the ridge line contact portion 56 is suppressed, and the occurrence of edge load is avoided or alleviated, thereby improving durability and reducing slide resistance.

この場合、ヘルツの接触論によるヘルツの接触楕円52は、以下のように表される。
a=f1(R1、R1′、R2、R2′、P)
b=f2(R1、R1′、R2、R2′、P)
なお、
R1;内側ローラ内径の周方向曲率
R1′;内側ローラ内径の軸方向曲率
R2;トラニオン外径の周方向曲率
R2′;トラニオン外径の軸方向曲率
P;トルク伝達荷重
a;ヘルツの接触楕円の長軸(長径)
b;ヘルツの接触楕円の短軸(短径)
In this case, the Hertz contact ellipse 52 according to Hertz's contact theory is expressed as follows.
a = f1 (R1, R1 ′, R2, R2 ′, P)
b = f2 (R1, R1 ′, R2, R2 ′, P)
In addition,
R1; circumferential curvature of inner roller inner diameter R1 ′; axial curvature of inner roller inner diameter R2; circumferential curvature of trunnion outer diameter R2 ′; axial curvature of trunnion outer diameter P; torque transmission load a; Long axis (major axis)
b: minor axis (minor axis) of Hertz contact ellipse

この結果、本実施の形態では、ヘルツの接触楕円52がトラニオン26a(26b、26c)のトルク伝達面幅Sよりも小さくなるように、負荷条件、トラニオン26a(26b、26c)及び内側ローラ36の形状を考慮して設定されるとよい。なお、前記トルク伝達面幅Sとは、トラニオン26a(26b、26c)のトルク伝達面にあって第1曲面34aと第2曲面34bとの間の最小幅をいう。   As a result, in the present embodiment, the load condition, the trunnion 26a (26b, 26c), and the inner roller 36 are set so that the Hertz contact ellipse 52 is smaller than the torque transmission surface width S of the trunnion 26a (26b, 26c). It is good to set in consideration of the shape. The torque transmission surface width S is a minimum width between the first curved surface 34a and the second curved surface 34b on the torque transmission surface of the trunnion 26a (26b, 26c).

次に、本発明の他の実施の形態に係る等速ジョイント10aを図11〜図13に示す。   Next, a constant velocity joint 10a according to another embodiment of the present invention is shown in FIGS.

この他の実施の形態では、トラニオン26a(26b、26c)の球面部30におけるトルク非伝達面を面取り加工して平坦な面取り部62を形成することにより、前記実施の形態と相違している。   This other embodiment is different from the previous embodiment by chamfering the torque non-transmission surface of the spherical portion 30 of the trunnion 26a (26b, 26c) to form a flat chamfered portion 62.

内側ローラ36の内径部切欠形状は、トラニオン26a(26b、26c)の球面部形状の組み付け角度での投影形状である。内側ローラ36の内球面38が極小となるのは、トラニオン26a(26b、26c)のトルク非伝達面である。   The inner diameter portion notch shape of the inner roller 36 is a projection shape at the assembly angle of the spherical portion shape of the trunnion 26a (26b, 26c). The inner spherical surface 38 of the inner roller 36 is minimized on the torque non-transmission surface of the trunnion 26a (26b, 26c).

従って、トラニオン26a(26b、26c)のトルク非伝達面を球に対して凹形状とした面取り部62を形成し、内側ローラ36の内球面38を拡大することにより、図12に示される稜線接触部64a、64bにおける接触を回避又は抑制することができる。この結果、前記稜線接触部64a、64bにおけるエッジロードの発生を回避し又は緩和することができる。   Accordingly, the chamfered portion 62 in which the torque non-transmission surface of the trunnion 26a (26b, 26c) is concave with respect to the sphere is formed, and the inner spherical surface 38 of the inner roller 36 is enlarged, thereby making the ridge line contact shown in FIG. Contact in the parts 64a and 64b can be avoided or suppressed. As a result, the occurrence of edge loading at the ridge line contact portions 64a and 64b can be avoided or alleviated.

本発明のさらに他の実施の形態に係る等速ジョイント10bを図14及び図15に示す。   14 and 15 show a constant velocity joint 10b according to still another embodiment of the present invention.

このさらに他の実施の形態では、トラニオン26a(26b、26c)の球面部30のトラニオン軸方向の曲率(1/r5)と比較して、内側ローラ36の内球面38のローラ軸方向に沿った曲率(1/r6)を小さくした円環形状に設定する点で前記実施の形態と相違している(1/r5>1/r6)。   In this further embodiment, the curvature of the spherical surface portion 30 of the trunnion 26a (26b, 26c) in the trunnion axial direction (1 / r5) is set along the roller axial direction of the inner spherical surface 38 of the inner roller 36. The present embodiment is different from the above-described embodiment (1 / r5> 1 / r6) in that the curvature (1 / r6) is set to be an annular shape.

内側ローラ36とトラニオン26a(26b、26c)とのヘルツの接触楕円52は、前述したヘルツの式によって決定される。従って、トラニオン26a(26b、26c)の球面部30を真球とし、内側ローラ36の内球面38の軸方向曲率を大きくしても、前記と同様の効果が得られる。   The Hertzian contact ellipse 52 between the inner roller 36 and the trunnion 26a (26b, 26c) is determined by the Hertz equation described above. Therefore, even if the spherical portion 30 of the trunnion 26a (26b, 26c) is a true sphere and the axial curvature of the inner spherical surface 38 of the inner roller 36 is increased, the same effect as described above can be obtained.

なお、図16及び図17に示されるように、トラニオン26a(26b、26c)の球面部30を、トラニオン軸方向の曲率(1/r7)が大きい円環形状とし、且つ、内側ローラ36の内球面38を、ローラ軸方向の曲率(1/r8)が小さい円環形状に設定することにより、稜線接触部におけるエッジロードの発生を好適に回避し又は緩和することができる。   As shown in FIGS. 16 and 17, the spherical portion 30 of the trunnion 26a (26b, 26c) has an annular shape having a large curvature (1 / r7) in the trunnion axis direction, and the inner roller 36 has an inner radius. By setting the spherical surface 38 to have an annular shape with a small curvature (1 / r8) in the roller axis direction, it is possible to suitably avoid or alleviate the occurrence of edge loading at the ridge line contact portion.

本発明の実施の形態に係る等速ジョイントの軸線と直交する方向に沿った部分縦断面図である。It is a fragmentary longitudinal cross-sectional view along the direction orthogonal to the axis line of the constant velocity joint which concerns on embodiment of this invention. 図1のII−II線に沿った等速ジョイントの軸線方向の部分縦断面図である。It is a fragmentary longitudinal cross-sectional view of the axial direction of the constant velocity joint along the II-II line | wire of FIG. 図1に示す等速ジョイントのインナ部材の分解斜視図である。It is a disassembled perspective view of the inner member of the constant velocity joint shown in FIG. 図2に示す等速ジョイントの内側ローラとトラニオンとの拡大縦断面図である。FIG. 3 is an enlarged longitudinal sectional view of an inner roller and a trunnion of the constant velocity joint shown in FIG. 2. 図4の内側ローラとトラニオンとの接触部位における拡大縦断面図である。FIG. 5 is an enlarged longitudinal sectional view of a contact portion between an inner roller and a trunnion in FIG. 4. 図3に示す内側ローラの拡大斜視図である。It is an expansion perspective view of the inner side roller shown in FIG. 図6に示す内側ローラの平面図である。It is a top view of the inner side roller shown in FIG. 図7のVIII−VIII線に沿った縦断面図である。It is a longitudinal cross-sectional view along the VIII-VIII line of FIG. 図7のIX−IX線に沿った縦断面図である。It is a longitudinal cross-sectional view along the IX-IX line of FIG. 内側ローラとトラニオンとを組み付ける状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which assembles an inner side roller and a trunnion. 本発明の他の実施の形態に係る等速ジョイントの軸線と直交する部分縦断面図である。It is a fragmentary longitudinal cross-sectional view orthogonal to the axis of the constant velocity joint which concerns on other embodiment of this invention. 図11のXII−XII線に沿った縦断面図である。It is a longitudinal cross-sectional view along the XII-XII line of FIG. 図12に示す等速ジョイントの内側ローラとトラニオンとの接触部分における拡大縦断面図である。FIG. 13 is an enlarged longitudinal sectional view of a contact portion between an inner roller and a trunnion of the constant velocity joint shown in FIG. 12. 本発明のさらに他の実施の形態に係る等速ジョイントの軸線方向の部分縦断面図である。It is a fragmentary longitudinal cross-sectional view of the axial direction of the constant velocity joint which concerns on other embodiment of this invention. 図14に示す等速ジョイントの内側ローラとトラニオンとの接触部分における拡大縦断面図である。FIG. 15 is an enlarged longitudinal sectional view of a contact portion between an inner roller and a trunnion of the constant velocity joint illustrated in FIG. 14. 本発明のさらにまた他の実施の形態に係る等速ジョイントの軸線方向の部分縦断面図である。It is a fragmentary longitudinal cross-sectional view of the axial direction of the constant velocity joint which concerns on other embodiment of this invention. 図16に示す内側ローラとトラニオンとの接触部分における拡大縦断面図である。FIG. 17 is an enlarged longitudinal sectional view of a contact portion between an inner roller and a trunnion shown in FIG. 16. 比較例に係る等速ジョイントの軸線方向の部分縦断面図である。It is a fragmentary longitudinal cross-sectional view of the axial direction of the constant velocity joint which concerns on a comparative example. 図18に示す内側ローラとトラニオンとの接触部分における拡大縦断面図である。FIG. 19 is an enlarged longitudinal sectional view of a contact portion between the inner roller and the trunnion shown in FIG. 18.

符号の説明Explanation of symbols

10、10a〜10c…等速ジョイント 12…アウタカップ
16…インナ部材 18a〜18c…案内溝
20…天井部 24…スパイダボス
26a〜26c…トラニオン 28…首部
30…球面部 32…頭部
34a、34b…曲面 36…内側ローラ
38…内球面 40…ニードルベアリング
42…外側ローラ 44…上面部
46…開口部 48…切欠部
50…クリアランス 52…ヘルツの接触楕円
54、56、64a、64b…稜線接触部
58a、58b…環状フランジ部 62…面取り部
DESCRIPTION OF SYMBOLS 10, 10a-10c ... Constant velocity joint 12 ... Outer cup 16 ... Inner member 18a-18c ... Guide groove 20 ... Ceiling part 24 ... Spider boss 26a-26c ... Trunnion 28 ... Neck part 30 ... Spherical part 32 ... Head part 34a, 34b ... Curved surface 36 ... Inner roller 38 ... Inner spherical surface 40 ... Needle bearing 42 ... Outer roller 44 ... Upper surface part 46 ... Opening part 48 ... Notch part 50 ... Clearance 52 ... Hertz contact ellipse 54, 56, 64a, 64b ... Ridge line contact part 58a, 58b ... annular flange part 62 ... chamfered part

Claims (4)

所定間隔離間し軸線方向に沿って延在する複数の案内溝が内周面に設けられ一方の伝達軸に連結される筒状のアウタ部材と、前記アウタ部材の開口する内空部内に挿入されて他方の伝達軸に連結されるインナ部材とを有する等速ジョイントにおいて、
前記案内溝に向かって膨出し、周回する球面部を有する複数のトラニオンと、
内周面に相互に対向する一対の断面円弧状の切欠部が形成されると共に、前記球面部に対応する内球面が形成された内側ローラと、
転動体を介して前記内側ローラに外嵌され、前記トラニオンの軸線方向に沿って前記内側ローラと相対的に変位自在に設けられた外側ローラと、
を備え、
前記内側ローラの内球面は、真球形状であり、
前記トラニオンの球面部は、前記内側ローラの内球面と比較して、トラニオン軸方向の曲率が大きく、
且つトラニオン軸方向に直交するとともに前記内側ローラの内球面の中心を通る面でのトラニオン周方向の曲率が、同一面での前記内側ローラの内球面の周方向の曲率と等しい円環形状からなることを特徴とする等速ジョイント。
A plurality of guide grooves that are spaced apart by a predetermined distance and extend along the axial direction are provided on the inner peripheral surface, and are inserted into a cylindrical outer member that is connected to one of the transmission shafts, and an inner space that is opened by the outer member. And a constant velocity joint having an inner member connected to the other transmission shaft,
A plurality of trunnions having a spherical surface that bulges and circulates toward the guide groove;
A pair of arc-shaped cutout portions facing each other on the inner peripheral surface, and an inner roller formed with an inner spherical surface corresponding to the spherical portion;
An outer roller that is externally fitted to the inner roller via a rolling element, and is provided so as to be relatively displaceable from the inner roller along the axial direction of the trunnion;
With
The inner spherical surface of the inner roller has a true spherical shape,
The spherical portion of the trunnion has a larger curvature in the trunnion axis direction than the inner spherical surface of the inner roller,
In addition, the trunnion circumferential curvature in a plane orthogonal to the trunnion axis direction and passing through the center of the inner spherical surface of the inner roller is an annular shape equal to the circumferential curvature of the inner spherical surface of the inner roller on the same plane. A constant velocity joint.
請求項1記載の等速ジョイントにおいて、
前記トラニオンの球面部と前記内側ローラの内球面との接触部分であるヘルツの接触楕円の短軸の長さが、該トラニオンの球面部におけるトルク伝達面幅よりも小さく設定されることを特徴とする等速ジョイント。
The constant velocity joint according to claim 1,
A length of a short axis of a contact ellipse of Hertz, which is a contact portion between a spherical portion of the trunnion and an inner spherical surface of the inner roller, is set to be smaller than a torque transmission surface width in the spherical portion of the trunnion. Constant velocity joint.
請求項1記載の等速ジョイントにおいて、
前記トラニオンの球面部におけるトルク非伝達面が面取り形成されることを特徴とする等速ジョイント。
The constant velocity joint according to claim 1,
The constant velocity joint, wherein a torque non-transmission surface in a spherical portion of the trunnion is chamfered.
所定間隔離間し軸線方向に沿って延在する複数の案内溝が内周面に設けられ一方の伝達軸に連結される筒状のアウタ部材と、前記アウタ部材の開口する内空部内に挿入されて他方の伝達軸に連結されるインナ部材とを有する等速ジョイントにおいて、
前記案内溝に向かって膨出し、周回する球面部を有する複数のトラニオンと、
内周面に相互に対向する一対の断面円弧状の切欠部が形成されると共に、前記球面部に対応する内球面が形成された内側ローラと、
転動体を介して前記内側ローラに外嵌され、前記トラニオンの軸線方向に沿って前記内側ローラと相対的に変位自在に設けられた外側ローラと、
を備え、
前記トラニオンの球面部は、真球形状であり、
前記内側ローラの内球面は、前記トラニオンの球面部と比較して、ローラ軸方向の曲率が小さく、
且つローラ軸方向に直交するとともに前記トラニオンの球面部の中心を通る面でのローラ周方向の曲率が、同一面での前記トラニオンの球面部の周方向の曲率と等しい円環形状からなることを特徴とする等速ジョイント。
A plurality of guide grooves that are spaced apart by a predetermined distance and extend along the axial direction are provided on the inner peripheral surface, and are inserted into a cylindrical outer member that is connected to one of the transmission shafts, and an inner space that is opened by the outer member. And a constant velocity joint having an inner member connected to the other transmission shaft,
A plurality of trunnions having a spherical surface that bulges and circulates toward the guide groove;
A pair of arc-shaped cutout portions facing each other on the inner peripheral surface, and an inner roller formed with an inner spherical surface corresponding to the spherical portion;
An outer roller that is externally fitted to the inner roller via a rolling element, and is provided so as to be relatively displaceable from the inner roller along the axial direction of the trunnion;
With
The spherical portion of the trunnion has a true spherical shape,
The inner spherical surface of the inner roller has a smaller curvature in the roller axis direction than the spherical surface of the trunnion,
In addition, the curvature in the circumferential direction of the roller in a plane orthogonal to the roller axial direction and passing through the center of the spherical portion of the trunnion is an annular shape equal to the curvature in the circumferential direction of the spherical portion of the trunnion on the same plane. Characteristic constant velocity joint.
JP2006133532A 2006-05-12 2006-05-12 Constant velocity joint Expired - Fee Related JP4891652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006133532A JP4891652B2 (en) 2006-05-12 2006-05-12 Constant velocity joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006133532A JP4891652B2 (en) 2006-05-12 2006-05-12 Constant velocity joint

Publications (2)

Publication Number Publication Date
JP2007303579A JP2007303579A (en) 2007-11-22
JP4891652B2 true JP4891652B2 (en) 2012-03-07

Family

ID=38837681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006133532A Expired - Fee Related JP4891652B2 (en) 2006-05-12 2006-05-12 Constant velocity joint

Country Status (1)

Country Link
JP (1) JP4891652B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101595378B1 (en) * 2014-11-07 2016-02-18 이래오토모티브시스템 주식회사 Tripod constant velocity joint for a vehicle
JP2016161052A (en) * 2015-03-02 2016-09-05 株式会社ジェイテクト Slide type constant velocity joint

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11336784A (en) * 1998-05-22 1999-12-07 Toyota Motor Corp Universal uniform coupling
JP4827291B2 (en) * 2000-10-16 2011-11-30 ジーエム・グローバル・テクノロジー・オペレーションズ・インコーポレーテッド Tripod type constant velocity joint
JP4068812B2 (en) * 2001-03-29 2008-03-26 本田技研工業株式会社 How to assemble constant velocity joints
JP2002327773A (en) * 2001-05-07 2002-11-15 Ntn Corp Uniform universal coupling

Also Published As

Publication number Publication date
JP2007303579A (en) 2007-11-22

Similar Documents

Publication Publication Date Title
US10514080B2 (en) Torsional vibration reducing device
US7137895B2 (en) Tripod type constant velocity joint
JP4541203B2 (en) Tripod type constant velocity universal joint
JP2006283828A (en) Tripod type constant velocity universal joint
CN105782262B (en) Sliding type constant velocity joint
JP4109425B2 (en) Constant velocity joint
JP4891652B2 (en) Constant velocity joint
JP6309409B2 (en) Constant velocity joint
JP5515814B2 (en) Sliding tripod type constant velocity joint
WO2010146958A1 (en) Tripod-type constant velocity joint
JP2008121791A (en) Ball-shaped constant velocity joint
JP2007120667A (en) Tripod-type constant velocity universal joint
JP2004257418A (en) Tripod uniform velocity universal joint
JP2012007644A (en) Sliding tripod constant velocity joint
CN107120358B (en) Constant velocity joint
JP4255678B2 (en) Tripod type constant velocity universal joint
JP5240507B2 (en) Sliding tripod type constant velocity joint
JP4026679B2 (en) Constant velocity joint
US20160369848A1 (en) Sliding constant-velocity joint
WO2023047930A1 (en) Tripod-type constant-velocity universal joint
JP2007303578A (en) Constant speed joint
JP2001330050A (en) Tripod type constant velocity universal joint
JP2007263235A (en) Constant velocity universal joint
JP2008175373A (en) Sliding tripod-type constant velocity joint
JP2010014198A (en) Sliding type tripod constant velocity joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111216

R150 Certificate of patent or registration of utility model

Ref document number: 4891652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees