JP4889266B2 - Three-dimensional shaped object and manufacturing method thereof - Google Patents

Three-dimensional shaped object and manufacturing method thereof Download PDF

Info

Publication number
JP4889266B2
JP4889266B2 JP2005255781A JP2005255781A JP4889266B2 JP 4889266 B2 JP4889266 B2 JP 4889266B2 JP 2005255781 A JP2005255781 A JP 2005255781A JP 2005255781 A JP2005255781 A JP 2005255781A JP 4889266 B2 JP4889266 B2 JP 4889266B2
Authority
JP
Japan
Prior art keywords
density region
sintered
base
low density
dimensional shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005255781A
Other languages
Japanese (ja)
Other versions
JP2007070655A (en
Inventor
愼一 篠原
知実 田中
崇 鶴田
賢二 西谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005255781A priority Critical patent/JP4889266B2/en
Publication of JP2007070655A publication Critical patent/JP2007070655A/en
Application granted granted Critical
Publication of JP4889266B2 publication Critical patent/JP4889266B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3842Manufacturing moulds, e.g. shaping the mould surface by machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/60Planarisation devices; Compression devices
    • B22F12/67Blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Plasma & Fusion (AREA)
  • Ceramic Engineering (AREA)
  • Optics & Photonics (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は粉末材料の選択的焼結によって形成される3次元形状造形物およびその製造方法に関するものである。   The present invention relates to a three-dimensional shaped article formed by selective sintering of a powder material and a method for producing the same.

3次元形状造形物の製造方法としては、例えば特許文献1に記載されているものがある。この方法は、図4(a)(b)(c)に示すように、焼結用テーブル600に下部構成材となる基台100を設置し、この基台100上に無機質あるいは有機質の粉末材料102からなる粉末層103を形成し、その所定部に光ビーム(レーザービーム)Lを照射して焼結することで焼結部101aを形成し、その後に、新たな粉末層103を形成し、その所定部に光ビームLを照射して焼結することで、先の焼結部101aと一体となった焼結部101bを形成する、というステップを繰り返すことにより、粉末材料102から焼結部101を一層ずつ積層的に形成して3次元形状造形物を製造するもので、複雑な3次元形状造形物も短時間で製造することができる。   As a manufacturing method of a three-dimensional shaped object, for example, there is one described in Patent Document 1. In this method, as shown in FIGS. 4 (a), (b), and (c), a base 100 as a lower constituent material is installed on a sintering table 600, and an inorganic or organic powder material is formed on the base 100. A powder layer 103 made of 102 is formed, and a predetermined portion thereof is irradiated with a light beam (laser beam) L and sintered to form a sintered portion 101a. Thereafter, a new powder layer 103 is formed, By repeating the step of forming the sintered part 101b integrated with the previous sintered part 101a by irradiating the predetermined part with the light beam L and sintering, the sintered part is made from the powder material 102. 101 is formed one layer at a time to produce a three-dimensional shaped object, and a complicated three-dimensional shaped object can also be produced in a short time.

強度を確保するために焼結密度を高くするとガス焼けなどの問題が発生するため、ガス抜き機能を付加したものもある。図5に示すように、基台100に予め、焼結部101で覆われる表面で開口するガス抜き穴100aなどを加工して内部を多孔質材料で埋め込んでおき、焼結部101を形成する際に、ガス抜き穴101a上の下層の焼結部101はそれ以外の部分よりも焼結密度を低くして多孔質材料に似せることで、ガス抜き構造が形成されている。
特開2003‐001715公報
If the sintering density is increased to ensure strength, problems such as gas burning will occur, and some have added a degassing function. As shown in FIG. 5, the base 100 is previously processed with a gas vent hole 100 a opened on the surface covered with the sintered portion 101, and the inside is filled with a porous material, thereby forming the sintered portion 101. At this time, the lower portion of the sintered portion 101 on the vent hole 101a has a lower sintering density than the other portions so as to resemble a porous material, thereby forming a vent structure.
JP 2003-001715 A

しかしながら、ガス抜き機能を付加した3次元形状造形物は、上記したようにガス抜き部分の焼結密度を低くして多孔質材料に似せていることから、そのガス抜き部分の強度が他の部分より劣る。そのため射出成形金型の入子として用いるには剛性や耐久性が不十分なことがあり、成形ショット数の多い金型には金型部品として活用しにくいという問題がある。   However, since the three-dimensional shaped object to which the degassing function is added is similar to the porous material by lowering the sintering density of the degassing part as described above, the strength of the degassing part is different from that of the other part. Inferior. Therefore, there is a problem that rigidity and durability are insufficient for use as an insert of an injection mold, and it is difficult to use as a mold part for a mold having a large number of molding shots.

本発明は上記問題を解決するもので、ガス抜き機能を有しつつ、成形ショット数の多い金型にも金型部品として活用できる強度を有した3次元形状造形物を形成することを目的とする。   The present invention solves the above-described problem, and has an object to form a three-dimensional shaped article having a strength that can be used as a mold part even in a mold having a large number of molding shots while having a gas venting function. To do.

上記課題を解決するために本発明は、基台上で、無機質あるいは有機質の粉末材料の層を形成し、その粉末材料の層の所定部を光ビームの照射によって焼結させてその面内に焼結密度が高い高密度領域と、それよりも低い焼結密度を有する多孔質な低密度領域とを設けた焼結層を形成することを繰り返すことにより、複数の焼結層を一体化させて3次元形状造形物を製造する方法であって、ガス抜き部分を設けた前記基台の上に、前記ガス抜き部分を覆うように設けられた前記低密度領域と前記高密度領域とを有する前記基台側の焼結層を複数形成し、前記基台側の複数の焼結層の上に隣接して、高密度領域と低密度領域とを有する前記基台と反対側の焼結層を複数形成し、隣接する前記焼結層の内、前記基台側の焼結層における低密度領域の面積は、前記基台と反対側の焼結層の低密度領域の面積より大きいものである。低密度領域を分散させることで、同一面積をたとえば1箇所に集中させる場合に較べて強度が高まるので、ガス抜き機能、強度を併せ持たせ得るだけでなく、ガス抜きの範囲や輪郭は1つの低密度領域を基本に自由に設定できるようになり、これにより光ビームの照射時間の短縮を図ることも可能となる。 In order to solve the above-mentioned problems, the present invention forms a layer of an inorganic or organic powder material on a base, and sinters a predetermined portion of the powder material layer by irradiation with a light beam so as to be in the plane. By repeating the formation of a sintered layer provided with a high density region having a high sintered density and a porous low density region having a lower sintered density, a plurality of sintered layers can be integrated. A method for manufacturing a three-dimensional shaped object comprising the low density region and the high density region provided on the base on which the gas venting portion is provided so as to cover the gas venting portion. A plurality of sintered layers on the base side are formed, and adjacent to the plurality of sintered layers on the base side, a sintered layer on the side opposite to the base having a high density region and a low density region. the forming a plurality, of the sintered layer adjacent the low density region in the sintering layer of the base side Area, is greater than the area of the low density region of the opposite side of the sintered layer and the base. By dispersing the low density region, the strength is increased as compared with the case where the same area is concentrated in one place, for example. Based on the low density region, it can be freely set, and this makes it possible to shorten the irradiation time of the light beam.

隣接する焼結層の内、焼結用テーブル側の焼結層に、焼結用テーブルと反対側の焼結層の低密度領域の面積より面積が大きい低密度領域を設けてもよく、これにより、光ビームの照射時間のさらなる短縮を図ることができる。   Of the adjacent sintered layers, the sintered layer on the side of the sintering table may be provided with a low density region having a larger area than the area of the low density region of the sintered layer on the opposite side of the sintering table. Thus, the irradiation time of the light beam can be further shortened.

上記方法により製造される3次元形状造形物、すなわち、高密度領域とガス抜き部分を覆うように形成された低密度領域とを備えたガス抜き部分を設けた基台側の複数の焼結層と、前記基台側の複数の焼結層の上に隣接して形成されて前記高密度領域と前記低密度領域とを備えた前記基台と反対側の複数の焼結層とで構成し、隣接する前記焼結層の内、前記基台側の焼結層における低密度領域の面積は、前記基台と反対側の焼結層の低密度領域の面積より大きい3次元形状造形物も本発明を構成する。 A plurality of three-dimensional shaped objects manufactured by the above method, that is, a plurality of sintered layers on the base side provided with a degassing portion provided with a high-density region and a low-density region formed so as to cover the degassing portion And a plurality of sintered layers on the side opposite to the base, which is formed adjacent to the plurality of sintered layers on the base side and includes the high density region and the low density region. Among the adjacent sintered layers, the area of the low density region in the sintered layer on the base side is larger than the area of the low density region of the sintered layer on the opposite side of the base, This constitutes the present invention.

本発明方法によれば、ガス抜き機能と、ショット数の多い射出成形金型の金型部品などとしても使用可能な強度とを併せ持つ3次元形状造形物が得られる。ガス抜きの設定範囲や輪郭は、1つの低密度領域の大きさを基準に自由に設定することができる。低密度領域を多くすることで光ビームの照射時間を短縮することもできる。   According to the method of the present invention, a three-dimensional shaped object having both a gas venting function and a strength that can be used as a mold part of an injection mold having a large number of shots can be obtained. The degassing setting range and contour can be freely set based on the size of one low density region. By increasing the low density region, the irradiation time of the light beam can be shortened.

以下に本発明を実施する為の最良の形態について、図面を参照しながら説明する。
図1は本発明の一実施形態における3次元形状造形物の外観斜視図である。基台100と、それを覆った焼結部101とで構成されている。焼結部101は、複数の焼結層が一体化された積層構造(後述する)を有するとともに、強度を確保するための高密度領域401とガス抜きのための多孔質な低密度領域402とが表面に格子状に、つまり縦横に複数個ずつ、分布している。
The best mode for carrying out the present invention will be described below with reference to the drawings.
FIG. 1 is an external perspective view of a three-dimensional shaped object in one embodiment of the present invention. It comprises a base 100 and a sintered part 101 covering it. The sintered portion 101 has a laminated structure (to be described later) in which a plurality of sintered layers are integrated, a high-density region 401 for ensuring strength, and a porous low-density region 402 for degassing. Are distributed in a lattice pattern on the surface, that is, a plurality of vertical and horizontal.

図2はこの3次元形状造形物を製造するための製造装置の一例を示しており、焼結用テーブル600と、この焼結用テーブル600を昇降させる昇降台601、焼結用テーブル600上に粉末材料を供給する粉末供給装置602、焼結用テーブル600上に偏光装置603を介して照射する光ビームLを発生する光ビーム照射装置604、これらを制御する制御装置605で構成されている。粉末供給装置602はブレード606を有している。   FIG. 2 shows an example of a manufacturing apparatus for manufacturing the three-dimensional shaped object. On the sintering table 600, a lifting table 601 for raising and lowering the sintering table 600, and the sintering table 600. It comprises a powder supply device 602 for supplying a powder material, a light beam irradiation device 604 for generating a light beam L to be irradiated on a sintering table 600 via a polarizing device 603, and a control device 605 for controlling them. The powder supply device 602 has a blade 606.

上記した3次元形状造形物を製造する方法を説明する。
図3(a)に示すように、3次元形状造形物における下部構造の全てもしくは一部となる基台100を焼結用テーブル600上にセットする。この基台100はその表面上で粉末材料を焼結させる時に焼結物と一体化するものであれば、どのような材料で形成されたものであってもよいが、予め所要の加工を済ませたものを用いる。ここでは焼結部101で覆われる表面で開口したガス抜き穴100aを加工したものを用いた。ガス抜き穴100aは多孔質材料で埋め込んでもよい。
A method for manufacturing the above-described three-dimensional shaped object will be described.
As shown in FIG. 3A, the base 100 that is all or part of the lower structure in the three-dimensional shaped object is set on the sintering table 600. The base 100 may be formed of any material as long as it is integrated with the sintered product when the powder material is sintered on the surface thereof, but the necessary processing is completed in advance. Use the same thing. Here, what processed the vent hole 100a opened on the surface covered with the sintered part 101 was used. The vent hole 100a may be filled with a porous material.

次に、図3(b)に示すように、焼結用テーブル600上に粉末材料102を供給しつつその表面をブレード606によってならして、基台100上にΔtの厚みの粉末層103を形成する。次に、図3(c)に示すように、光ビームLを所定の領域に対して照射して粉末層103を焼結させ、基台100と一体化した焼結部101aを形成する。その際には光ビーム照射装置604からの光ビームLは偏光装置603により偏光して粉末層103に照射する。またその際に制御装置605によって偏光装置603を制御することで光ビームLの照射位置を移動させる。粉末材料102は、金属、プラスチック、重合体、セラミックス、またはこれらが複合された無機質あるいは有機質の粉末材料であってよい。   Next, as shown in FIG. 3B, while supplying the powder material 102 onto the sintering table 600, the surface thereof is leveled by the blade 606, and the powder layer 103 having a thickness of Δt is formed on the base 100. Form. Next, as shown in FIG. 3C, the light layer L is irradiated to a predetermined region to sinter the powder layer 103, thereby forming a sintered portion 101 a integrated with the base 100. At that time, the light beam L from the light beam irradiation device 604 is polarized by the polarizing device 603 and applied to the powder layer 103. At that time, the irradiation position of the light beam L is moved by controlling the polarizing device 603 by the control device 605. The powder material 102 may be a metal, plastic, polymer, ceramic, or an inorganic or organic powder material in which these are combined.

その後に、図3(d)に示すように、さらに粉末層103を形成し、その粉末層103を焼結して下層の焼結部101aと一体化した焼結部101bを形成する、ということを繰り返して順次に積層していき、所望の3次元形状に近づけていく。その際には、順次に形成される焼結部101a,101b,・・・の所定範囲の表面形状に沿うように光ビームLの照射位置を移動させる。   After that, as shown in FIG. 3D, the powder layer 103 is further formed, and the powder layer 103 is sintered to form a sintered portion 101b integrated with the lower sintered portion 101a. Are repeatedly stacked in order to bring it closer to the desired three-dimensional shape. At that time, the irradiation position of the light beam L is moved so as to follow the surface shape of a predetermined range of the sintered portions 101a, 101b,.

なお焼結の際に、焼結部101a,101b,・・・の面内(基台100の表面方向)における焼結密度を調整する。これは、制御装置605より、光ビーム照射装置604の出力を制御して光ビームLの強度を変更するか、あるいは偏光装置603の動作を制御して光ビームLの走査速度(照射位置の移動速度)を変更することによる。光ビームLの強度が大きいほど、また光ビームLの走査速度が遅いほど、焼結密度が大きくなる。ここでは、光ビーム照射装置604の出力は一定に保ち、偏光装置603を通じて光ビームLの走査速度を変更することにより、気孔率0.1%という高密度領域と、気孔率10%という多孔質な低密度領域とが形成される条件を設定する。このように条件を設定した上で焼結を開始する。   During sintering, the sintering density in the plane of the sintered portions 101a, 101b,... (Surface direction of the base 100) is adjusted. This is because the controller 605 controls the output of the light beam irradiation device 604 to change the intensity of the light beam L, or controls the operation of the polarizing device 603 to control the scanning speed of the light beam L (movement of the irradiation position). By changing the (speed). The greater the intensity of the light beam L and the slower the scanning speed of the light beam L, the greater the sintering density. Here, the output of the light beam irradiation device 604 is kept constant, and by changing the scanning speed of the light beam L through the polarizing device 603, a high-density region with a porosity of 0.1% and a porous material with a porosity of 10%. A condition for forming a low density region is set. Sintering is started after setting the conditions in this way.

焼結による積層の初期の段階では、ガス抜きを設定する範囲(上述した低密度領域の分布範囲)の全体に対して光ビームLの走査速度を速くすることで、図3(e)に示すように、当該範囲にわたる低密度領域402を形成し、それ以外の部分は高密度領域401とする。ここでは低密度領域402を、基台100のガス抜き穴101aを覆うように中央に大きく矩形に形成し、それ以外の部分、すなわち周縁部のみに高密度領域401を配置している。このことにより、面積の広い低密度領域402が一般に用いられている多孔質材料に似ることになり、ガス抜き性能が向上する。また光ビームLの照射時間についても、最初から高密度領域401と低密度領域402とを格子状に形成するのを目指すのに比べて、光ビームの走査速度が速い低密度領域402を広くとれることから、照射時間を短縮することができる。   In the initial stage of lamination by sintering, the scanning speed of the light beam L is increased with respect to the entire range in which gas venting is set (the above-described distribution range of the low density region), as shown in FIG. As described above, the low density region 402 over the range is formed, and the other part is the high density region 401. Here, the low-density region 402 is formed in a large rectangle at the center so as to cover the gas vent hole 101a of the base 100, and the high-density region 401 is disposed only at the other portion, that is, the peripheral portion. As a result, the low-density region 402 having a large area resembles a commonly used porous material, and the gas venting performance is improved. Also, with respect to the irradiation time of the light beam L, the low-density region 402 having a high scanning speed of the light beam can be widened as compared to aiming to form the high-density region 401 and the low-density region 402 in a lattice shape from the beginning. Therefore, the irradiation time can be shortened.

ある程度の厚みまで積層されたら、光ビームLの走査速度を制御装置605と偏光装置603により切り替えて、図3(f)に示すように、高密度領域401と複数の低密度領域402とを混在させる。ここでは、低密度領域402を線状かつ並列に形成し、それ以外は高密度領域401としたものを図示しているが、上述した高密度領域401と低密度領域402とが格子状に配置されたものを簡略化して示したものである(もちろん、図示したような線状の分布を有するものであってもよい)。低密度領域402は先に形成した低密度領域402の上に配置する。焼結部101の最終的な厚みは、3次元形状造形物に要求される強度を、先に周縁部のみに形成した高密度領域401とここで形成した高密度領域401とによって確保できる厚みとする。これはシミュレーションによって決定する。   When the layers are laminated to a certain thickness, the scanning speed of the light beam L is switched by the control device 605 and the polarizing device 603, and as shown in FIG. 3 (f), the high density region 401 and a plurality of low density regions 402 are mixed. Let Here, the low-density region 402 is formed linearly and in parallel, and the other is a high-density region 401, but the high-density region 401 and the low-density region 402 described above are arranged in a lattice pattern. This is a simplified illustration (of course, it may have a linear distribution as shown). The low density region 402 is disposed on the previously formed low density region 402. The final thickness of the sintered portion 101 is a thickness that can ensure the strength required for the three-dimensional shaped object by the high-density region 401 formed only in the peripheral portion and the high-density region 401 formed here. To do. This is determined by simulation.

所定の厚みの焼結部101が形成されたら、焼結用テーブル600から基台100を取り外すとともに未焼結で残った粉末材料102を除去することにより、目的とした3次元形状造形物を得る。   When the sintered portion 101 having a predetermined thickness is formed, the target 100 is removed by removing the base 100 from the sintering table 600 and removing the unsintered powder material 102. .

以上のようにして、基台100を下部構造とし、積層された焼結部101を上部構造とし、かつ焼結部101の表面にガス抜きの為の低密度領域402と高密度領域401とが格子状等に形成された3次元形状造形物を得ることができる。かかる3次元形状造形物を、粉末材料102として、鉄系粉末を50質量%以上含み、残部がニッケルおよびニッケル系合金からなる粉末合金である粉末材料を用いて、家電製品の筐体を形成する樹脂射出成型金型、その金型部品のなかでも可動側の入子として製造したところ、強度、ガス抜き機能とも、良好な結果が得られた。   As described above, the base 100 has a lower structure, the laminated sintered portion 101 has an upper structure, and a low density region 402 and a high density region 401 for degassing are formed on the surface of the sintered portion 101. A three-dimensional shaped article formed in a lattice shape or the like can be obtained. Using such a three-dimensional shaped object as a powder material 102, a housing for home appliances is formed using a powder material containing 50 mass% or more of iron-based powder and the balance being a powder alloy made of nickel and a nickel-based alloy. When a resin injection mold and its mold parts were manufactured as a movable side insert, good results were obtained in both strength and degassing function.

なおこの3次元形状造形物では、上述したように内部(下層)に低密度領域402を1箇所のみ、強度が確保できる限界まで広く設けることで照射時間の短縮を図ったが、内部も高密度領域401と低密度領域402とを格子状等に形成するようにしても構わない。   In this three-dimensional shaped object, as described above, the irradiation time was shortened by providing only one low density region 402 in the inside (lower layer) to the limit where the strength can be secured. The region 401 and the low density region 402 may be formed in a lattice shape or the like.

また基台100にて下部構造を構成したが、全構造を焼結部101にて構成してもよく、その場合も同様の効果を得ることができる。
また高密度領域401および低密度領域402の形状を長方形またはそれが繋がった枠状等の形状とすることで、3次元形状造形物と光ビームLの制御プログラムの製作負荷の軽減を図ったが、どのような形でも同様の効果を得ることはできる。ガス抜きの設定範囲や輪郭は、1つの低密度領域402の大きさを基準に自由に設定することができる。
Moreover, although the lower structure was comprised in the base 100, the whole structure may be comprised in the sintered part 101, and the same effect can be acquired also in that case.
In addition, the load of the control program for the three-dimensional shaped object and the light beam L has been reduced by making the shape of the high-density region 401 and the low-density region 402 a shape such as a rectangle or a frame shape connected to the rectangle. The same effect can be obtained in any form. The degassing setting range and contour can be freely set based on the size of one low density region 402.

本発明方法によれば、ガス抜き機能と強度とを併せ持った3次元形状造形物を製造することができ、ショット数の多い射出成形金型の金型部品などの製造にも有用である。   According to the method of the present invention, it is possible to produce a three-dimensional shaped article having both a gas venting function and strength, and it is also useful for producing a mold part of an injection mold having a large number of shots.

本発明の一実施形態における3次元形状造形物の外観斜視図External perspective view of three-dimensional shaped object in one embodiment of the present invention 図1の3次元形状造形物を製造するための従来よりある製造装置の構造図Structural drawing of a conventional manufacturing apparatus for manufacturing the three-dimensional shaped object of FIG. 図1の3次元形状造形物の製造方法を説明する工程断面図Process sectional drawing explaining the manufacturing method of the three-dimensional shape molded article of FIG. 従来の3次元形状造形物の製造方法を説明する工程断面図Process sectional drawing explaining the manufacturing method of the conventional three-dimensional shape molded article ガス抜き機能を付加した3次元形状造形物の製造方法を示す断面図Sectional drawing which shows the manufacturing method of the three-dimensional shape modeling thing which added the gas venting function

符号の説明Explanation of symbols

100 基台
100a ガス抜き用穴
101 焼結部
102 粉末材料
103 粉末層
401 高密度領域
402 低密度領域
600 焼結用テーブル
L 光ビーム
DESCRIPTION OF SYMBOLS 100 Base 100a Degassing hole 101 Sintering part 102 Powder material 103 Powder layer 401 High density area 402 Low density area 600 Sintering table L Light beam

Claims (4)

基台上で、無機質あるいは有機質の粉末材料の層を形成し、
その粉末材料の層の所定部を光ビームの照射によって焼結させてその面内に焼結密度が高い高密度領域と、それよりも低い焼結密度を有する多孔質な低密度領域とを設けた焼結層を形成することを繰り返すことにより、複数の焼結層を一体化させて3次元形状造形物を製造する方法であって、
ガス抜き部分を設けた前記基台の上に、前記ガス抜き部分を覆うように設けられた前記低密度領域と前記高密度領域とを有する前記基台側の焼結層を複数形成し、
前記基台側の複数の焼結層の上に隣接して、高密度領域と低密度領域とを有する前記基台と反対側の焼結層を複数形成し、
隣接する前記焼結層の内、前記基台側の焼結層における低密度領域の面積は、前記基台と反対側の焼結層の低密度領域の面積より大きい
3次元形状造形物の製造方法。
Form a layer of inorganic or organic powder material on the base,
A predetermined portion of the powder material layer is sintered by irradiation with a light beam to provide a high density region having a high sintering density and a porous low density region having a lower sintering density in the plane. A method of manufacturing a three-dimensional shaped object by integrating a plurality of sintered layers by repeating forming a sintered layer,
A plurality of the base-side sintered layers having the low density region and the high density region provided so as to cover the gas vent portion are formed on the base having the gas vent portion,
Adjacent on the plurality of sintered layers on the base side, forming a plurality of sintered layers on the side opposite to the base having a high density region and a low density region,
Production of a three-dimensional shaped object in which the area of the low density region in the sintered layer on the base side among the adjacent sintered layers is larger than the area of the low density region in the sintered layer on the side opposite to the base Method.
前記基台と反対側の焼結層は、高密度領域と低密度領域とが格子状に分布されるように形成される
請求項1記載の3次元形状造形物の製造方法。
The method for producing a three-dimensional shaped article according to claim 1, wherein the sintered layer on the side opposite to the base is formed so that the high density region and the low density region are distributed in a lattice shape.
前記基台の前記ガス抜き部分は複数であり、
前記基台側の焼結層の低密度領域は、前記複数のガス抜き部分を覆い、繋がった一つの低密度領域である
請求項1または請求項2のいずれかに記載の3次元形状造形物の製造方法。
The gas vent portion of the base is plural,
3. The three-dimensional shaped object according to claim 1, wherein the low-density region of the sintered layer on the base side is one low-density region that covers and connects the plurality of gas vent portions. Manufacturing method.
複数の焼結層が一体化されてなる積層構造を有し、前記焼結層の面内に焼結密度が高い高密度領域とそれよりも低い焼結密度を有する多孔質な低密度領域とを備えた3次元形状造形物であって、
前記高密度領域とガス抜き部分を覆うように形成された前記低密度領域とを備えたガス抜き部分を設けた基台側の複数の焼結層と、
前記基台側の複数の焼結層の上に隣接して形成されて前記高密度領域と前記低密度領域とを備えた前記基台と反対側の複数の焼結層とで構成し、
隣接する前記焼結層の内、前記基台側の焼結層における低密度領域の面積は、前記基台と反対側の焼結層の低密度領域の面積より大きい
3次元形状造形物。
A laminated structure in which a plurality of sintered layers are integrated, and a high density region having a high sintered density and a porous low density region having a sintered density lower than that in the plane of the sintered layer; A three-dimensional shaped object comprising
A plurality of sintered layers on the base side provided with a degassing portion comprising the high density region and the low density region formed so as to cover the degassing portion;
A plurality of sintered layers on the opposite side of the base including the high-density region and the low-density region formed adjacent to the plurality of sintered layers on the base side,
Among the adjacent sintered layers, a three-dimensional shaped article in which the area of the low density region in the sintered layer on the base side is larger than the area of the low density region in the sintered layer on the side opposite to the base .
JP2005255781A 2005-09-05 2005-09-05 Three-dimensional shaped object and manufacturing method thereof Expired - Fee Related JP4889266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005255781A JP4889266B2 (en) 2005-09-05 2005-09-05 Three-dimensional shaped object and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005255781A JP4889266B2 (en) 2005-09-05 2005-09-05 Three-dimensional shaped object and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007070655A JP2007070655A (en) 2007-03-22
JP4889266B2 true JP4889266B2 (en) 2012-03-07

Family

ID=37932374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005255781A Expired - Fee Related JP4889266B2 (en) 2005-09-05 2005-09-05 Three-dimensional shaped object and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4889266B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4867790B2 (en) * 2007-05-24 2012-02-01 パナソニック電工株式会社 Manufacturing method of three-dimensional shaped object
DE102007059865A1 (en) * 2007-12-12 2009-06-18 Bayerische Motoren Werke Aktiengesellschaft Producing a mold body by structuring powder forming metallic material in layered manner, comprises subjecting layers one upon the other and melting each powder layer before bringing the powder layer with a wave like high energy radiation
JP5575374B2 (en) * 2008-03-26 2014-08-20 パナソニック株式会社 Resin injection mold
JP2010017908A (en) * 2008-07-09 2010-01-28 Opm Laboratory Co Ltd Air-pressure molding die
JP5250338B2 (en) * 2008-08-22 2013-07-31 パナソニック株式会社 Manufacturing method of three-dimensional shaped object, manufacturing apparatus thereof, and three-dimensional shaped object
JP2010121187A (en) * 2008-11-20 2010-06-03 Panasonic Electric Works Co Ltd Three-dimensional shaped article and method for producing the same
JP5555222B2 (en) * 2009-02-24 2014-07-23 パナソニック株式会社 Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
JP5653657B2 (en) * 2010-06-09 2015-01-14 パナソニック株式会社 Method for producing three-dimensional shaped object, three-dimensional shaped object to be obtained, and method for producing molded product
EP2402096A1 (en) * 2010-07-01 2012-01-04 Siemens Aktiengesellschaft Porous beam structure
WO2012124828A1 (en) * 2011-03-17 2012-09-20 パナソニック株式会社 Production method for three-dimensionally shaped object and three-dimensionally shaped object
CN103480843A (en) * 2013-09-18 2014-01-01 华南理工大学 3D printing method of composite parts based on three-cylinder former
JP2014031018A (en) * 2013-10-02 2014-02-20 Panasonic Corp Mold for resin injection molding, and injection molding method using mold
JP6146294B2 (en) * 2013-12-25 2017-06-14 トヨタ自動車株式会社 Manufacturing method of three-dimensional shaped object
JP6807554B2 (en) * 2017-04-24 2021-01-06 パナソニックIpマネジメント株式会社 Manufacturing method of 3D shape model and 3D shape model
DE102019116503A1 (en) * 2019-06-18 2020-12-24 SLM Solutions Group AG Method and device for manufacturing a multi-material workpiece
JP7272989B2 (en) 2020-03-31 2023-05-12 三菱重工業株式会社 Method for manufacturing gas turbine combustor and burner parts

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3446748B2 (en) * 2001-04-24 2003-09-16 松下電工株式会社 Manufacturing method of three-dimensional shaped object and molding die
JP3599056B2 (en) * 2002-09-30 2004-12-08 松下電工株式会社 Manufacturing method of three-dimensional shaped object

Also Published As

Publication number Publication date
JP2007070655A (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP4889266B2 (en) Three-dimensional shaped object and manufacturing method thereof
CN104972118B (en) The manufacturing method of three-dimensional moulding device and three dimensional structure
US10618111B2 (en) Heat treatment to anneal residual stresses during additive manufacturing
EP3541606B1 (en) Method for additive manufacturing
JP2005171299A (en) Method for manufacturing three-dimensionally formed article
CA2538358A1 (en) Layered manufactured articles having small-width fluid conduction vents and methods of making same
US10919114B2 (en) Methods and support structures leveraging grown build envelope
US11155072B2 (en) Methods for fine feature detail for additive manufacturing
JP2007106108A (en) High density performance process
JP2002066844A (en) Method of manufacturing discharge machining electrode using metal powder sintering type laminated molding
JP2021000827A (en) Method of operating additive manufacturing apparatus of three-dimensional object
JP2016002698A (en) Writing ball formed by powder sintering laminate shaping method, and writing instrument having the same
JP2004124201A (en) Method of laser beam lithography using metal powder
JP2004168610A (en) Manufacturing method of three dimensional sintered body and three dimensional sintered body
KR102476579B1 (en) Printer for manufacturing three-dimensional object
EP3444051B1 (en) Movable wall for additive powder bed
JP2008231490A (en) Method for designing structure by lamination molding process using powder material
JP6643643B2 (en) Manufacturing method of three-dimensional shaped object
KR102127648B1 (en) Method of manufacturing salt core
JP7024328B2 (en) Method of manufacturing metal members
JP3601535B1 (en) Manufacturing method of three-dimensional shaped object
CN101985175A (en) Laser energy controllable method for preparing heterogeneous material components based on SLS prototyping
JP2019171772A (en) Shaping data generating system and shaping data generating method
JP4131230B2 (en) Mold as stereolithography
JP6887926B2 (en) Manufacturing method of three-dimensional structure and manufacturing equipment of three-dimensional structure

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees