JP4884324B2 - Discharge surface treatment electrode, discharge surface treatment method and discharge surface treatment apparatus - Google Patents

Discharge surface treatment electrode, discharge surface treatment method and discharge surface treatment apparatus Download PDF

Info

Publication number
JP4884324B2
JP4884324B2 JP2007177506A JP2007177506A JP4884324B2 JP 4884324 B2 JP4884324 B2 JP 4884324B2 JP 2007177506 A JP2007177506 A JP 2007177506A JP 2007177506 A JP2007177506 A JP 2007177506A JP 4884324 B2 JP4884324 B2 JP 4884324B2
Authority
JP
Japan
Prior art keywords
surface treatment
discharge surface
electrode
discharge
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007177506A
Other languages
Japanese (ja)
Other versions
JP2009013476A (en
Inventor
正裕 岡根
昭弘 後藤
和司 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007177506A priority Critical patent/JP4884324B2/en
Publication of JP2009013476A publication Critical patent/JP2009013476A/en
Application granted granted Critical
Publication of JP4884324B2 publication Critical patent/JP4884324B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Description

この発明は、放電エネルギを利用して、被加工物に対して被膜を形成する放電表面処理方法および放電表面処理装置に関するものである。また、その放電表面処理方法で使用する放電表面処理用電極にも関するものである。   The present invention relates to a discharge surface treatment method and a discharge surface treatment apparatus that use discharge energy to form a film on a workpiece. The present invention also relates to a discharge surface treatment electrode used in the discharge surface treatment method.

被加工物の表面に硬質被膜を形成する技術として、放電表面処理方法が知られている。この放電表面処理方法は、金属粉末もしくは金属の化合物の粉末、またはセラミックスの粉末を圧縮成型した圧紛体電極または金属電極を放電電極として、この放電電極と加工液中で所定の放電ギャップをおいて対向して配置される被加工物との間にパルス状の放電を発生させ、その放電エネルギによって被加工物表面に、放電電極の材料またはその反応物質からなる硬質被膜を形成するものである。   A discharge surface treatment method is known as a technique for forming a hard film on the surface of a workpiece. This discharge surface treatment method uses a powder electrode or metal electrode formed by compression molding a metal powder, a metal compound powder, or a ceramic powder as a discharge electrode, with a predetermined discharge gap in the discharge electrode and the working fluid. A pulsed discharge is generated between the workpieces arranged opposite to each other, and a hard film made of a material of the discharge electrode or a reaction material thereof is formed on the workpiece surface by the discharge energy.

この放電表面処理方法において、放電電極の被加工物に対向する面の面積が、被加工物の被処理部よりも小さい場合には、電極を走査して処理を行い、被処理部全面に被膜を形成している(たとえば、特許文献1参照)。   In this discharge surface treatment method, when the area of the surface of the discharge electrode facing the workpiece is smaller than the treated portion of the workpiece, the electrode is scanned to perform treatment, and the entire surface of the treated portion is coated. (For example, refer to Patent Document 1).

特開2006−247761号公報JP 2006-247761 A

ところで、従来の放電表面処理方法で、被加工物の表面に円環形状に被膜を形成したい場合には、放電電極を被加工物の表面を円環状に走査して、所定の位置に円環形状の被膜を形成することになる。このとき、放電電極として、被加工物に対向する面の形状が矩形状のものを用いた場合には、形成した円環形状の中心に近い部分の走査速度は、中心から遠い部分の走査速度に比べて遅いため、被膜の厚さは、円環形状の中心に近い部分ほど厚くなり、中心から離れるほど薄くなってしまい、被膜を均一に形成することができなかった。特に、中心から離れる部分では、放電が発生せず、被膜が形成されない部分もある。   By the way, when it is desired to form a ring-shaped film on the surface of the workpiece by the conventional discharge surface treatment method, the discharge electrode is scanned in a ring shape on the surface of the workpiece, and the ring is placed at a predetermined position. A film having a shape is formed. At this time, when a discharge electrode having a rectangular shape facing the workpiece is used, the scanning speed of the portion close to the center of the formed annular shape is the scanning speed of the portion far from the center. Therefore, the thickness of the coating becomes thicker as it approaches the center of the ring shape, and becomes thinner as it moves away from the center, and the coating cannot be formed uniformly. In particular, in a portion away from the center, there is a portion where no discharge occurs and no film is formed.

また、従来の放電表面処理方法で、被加工物の表面に直線状に被膜を形成する場合では、形成した被膜の厚さまたは被膜の粗密は、どの部分でも同じであった。そのため、放電電極の走査方向に垂直な方向で、所望の割合で厚さまたは粗密を変化させた被膜を形成したいという要望には応えることができなかった。   Further, in the case where a film is formed linearly on the surface of the workpiece by the conventional discharge surface treatment method, the thickness of the formed film or the density of the film is the same in any part. For this reason, it has not been possible to meet the demand for forming a film whose thickness or density is changed at a desired ratio in a direction perpendicular to the scanning direction of the discharge electrode.

つまり、従来の放電表面処理方法においては、放電電極の走査方向に垂直な方向の被膜の厚さ(または被膜の粗密)を任意に変化させることができないという問題点があった。   That is, the conventional discharge surface treatment method has a problem that the thickness of the coating (or the density of the coating) in the direction perpendicular to the scanning direction of the discharge electrode cannot be arbitrarily changed.

この発明は、上記に鑑みてなされたもので、放電表面処理において、電極の走査方向に垂直な方向に沿った被膜の厚さ(被膜の粗密)を任意に変えることができる放電表面処理用電極、放電表面処理方法および放電表面処理装置を得ることを目的とする。   The present invention has been made in view of the above. In discharge surface treatment, an electrode for discharge surface treatment that can arbitrarily change the thickness (coating density) of the coating along the direction perpendicular to the scanning direction of the electrode. An object is to obtain a discharge surface treatment method and a discharge surface treatment apparatus.

上記目的を達成するため、この発明にかかる放電表面処理用電極は、金属、金属化合物またはセラミックスを主成分とする粉末から成型した成型体を放電表面処理用電極とし、加工液中で、前記放電表面処理用電極を被加工物と所定の距離をおいて対向させて相対的に走査しながら、前記放電表面処理用電極と前記被加工物との間に電圧を印加して放電を発生させ、この放電時の熱エネルギによって放出された前記放電表面処理用電極の構成材料またはこの構成材料の反応物質が、前記被加工物の表面に被膜を形成する放電表面処理方法に使用される放電表面処理用電極において、前記放電表面処理用電極は、前記被加工物に対向して配置される加工面が円でない形状を有し、前記放電表面処理用電極における走査方向の長さが、前記走査方向に垂直な方向に沿った位置ごとに異なることを特徴とする。 In order to achieve the above object, the discharge surface treatment electrode according to the present invention is a discharge surface treatment electrode formed from a powder mainly composed of a metal, a metal compound or ceramics, and the discharge surface treatment electrode While relatively scanning the surface treatment electrode facing the workpiece at a predetermined distance, a voltage is applied between the discharge surface treatment electrode and the workpiece to generate a discharge, Discharge surface treatment used in the discharge surface treatment method in which the constituent material of the discharge surface treatment electrode released by the thermal energy at the time of discharge or the reactant of the constituent material forms a film on the surface of the workpiece. in use the electrode, the electrode for discharge surface treatment, the processing surface arranged to face the workpiece has a shape not circular shape, the length of the scanning direction in the discharge surface treatment is, the scanning Wherein the different for each position along the direction perpendicular to the direction.

この発明によれば、放電表面処理用電極の走査方向の長さを、形成したい被膜の厚さに応じて変化させるようにしたので、被加工物の表面に形成される、走査方向に垂直な方向に沿った被膜の形成状態(厚さまたは粗密)を、所望の分布にすることができるという効果を有する。   According to the present invention, the length of the discharge surface treatment electrode in the scanning direction is changed in accordance with the thickness of the coating film to be formed. Therefore, the discharge surface treatment electrode is formed on the surface of the workpiece and is perpendicular to the scanning direction. There is an effect that the formation state (thickness or density) of the film along the direction can be set to a desired distribution.

以下に添付図面を参照して、この発明にかかる放電表面処理用電極、放電表面処理方法および放電表面処理装置の好適な実施の形態を詳細に説明する。なお、これらの実施の形態によりこの発明が限定されるものではない。   Exemplary embodiments of a discharge surface treatment electrode, a discharge surface treatment method, and a discharge surface treatment apparatus according to the present invention will be explained below in detail with reference to the accompanying drawings. Note that the present invention is not limited to these embodiments.

実施の形態1.
図1−1は、この発明にかかる放電表面処理用電極の実施の形態1の構造の一例を示す斜視図であり、図1−2は、図1−1の放電表面処理用電極の上面図である。なお、この明細書において、放電表面処理用電極の走査方向(進行方向)の寸法を長さといい、走査方向に垂直な方向の寸法を幅といい、これらの方向に垂直な方向の寸法を高さという。
Embodiment 1 FIG.
1-1 is a perspective view showing an example of the structure of Embodiment 1 of an electrode for discharge surface treatment according to the present invention, and FIG. 1-2 is a top view of the electrode for discharge surface treatment of FIG. 1-1. It is. In this specification, the dimension of the discharge surface treatment electrode in the scanning direction (traveling direction) is called the length, the dimension in the direction perpendicular to the scanning direction is called the width, and the dimension in the direction perpendicular to these directions is increased. That ’s it.

この実施の形態1の放電表面処理用電極11では、その長さを場所によって異ならせることを特徴とする。ただし、被加工物に対向する加工面の形状が円形の放電表面処理用電極は除くものとする。これらの図の例では、走査方向の長さが、放電表面処理用電極11の左端L1から右端L2(L1<L2)へと直線的に変化している場合が示されている。放電頻度は、各位置での移動速度が同じである場合には、放電表面処理用電極11の長さに比例するので、放電頻度を高くしたい領域、すなわち被膜の厚さを厚くしたい領域では、放電表面処理用電極11の長さを長くし、放電頻度を低くしたい領域、すなわち被膜の厚さを薄くしたい領域では、長さを短くすればよい。そして、この長さの比は、成膜する被膜の厚さの比となるように決定される。なお、この明細書で、放電頻度とは、単位時間当たりに生じる放電の回数のことをいい、さらに具体的には、放電表面処理用電極11の走査方向に垂直な方向の各位置の長さ全体で、単位時間当たりに生じる放電回数のことをいう。   The discharge surface treatment electrode 11 of the first embodiment is characterized in that its length varies depending on the location. However, the discharge surface treatment electrode whose work surface facing the workpiece has a circular shape is excluded. In the examples of these drawings, the case where the length in the scanning direction linearly changes from the left end L1 of the discharge surface treatment electrode 11 to the right end L2 (L1 <L2) is shown. Since the discharge frequency is proportional to the length of the discharge surface treatment electrode 11 when the moving speed at each position is the same, in the region where the discharge frequency is to be increased, that is, in the region where the thickness of the coating is to be increased, In the region where the length of the discharge surface treatment electrode 11 is increased and the discharge frequency is desired to be lowered, that is, the region where the thickness of the coating is desired to be reduced, the length may be shortened. The length ratio is determined so as to be the ratio of the thickness of the film to be formed. In this specification, the discharge frequency means the number of discharges generated per unit time, and more specifically, the length of each position in the direction perpendicular to the scanning direction of the discharge surface treatment electrode 11. Overall, it refers to the number of discharges that occur per unit time.

このように走査方向に垂直な方向にそって放電表面処理用電極11の長さを変化させることによって、放電表面処理中における放電頻度を変えることが可能なる。つまり、放電頻度は長さに比例するので、放電表面処理用電極11の各位置での移動速度が同じであれば、長さが長いところほど放電頻度が高くなり、その結果形成される被膜の厚さが厚くなる。   Thus, by changing the length of the discharge surface treatment electrode 11 along the direction perpendicular to the scanning direction, the discharge frequency during the discharge surface treatment can be changed. That is, since the discharge frequency is proportional to the length, if the moving speed at each position of the discharge surface treatment electrode 11 is the same, the longer the length, the higher the discharge frequency. Thickness increases.

図2は、図1−1〜図1−2に示される放電表面処理用電極を長さ方向に直線的に走査した場合の様子を模式的に示す図である。この図に示されるように、長さが走査方向(進行方向)に垂直な方向に沿って異なる(図の左端から右端に行くほど長さが長くなる)放電表面処理用電極11を等速度で直線的に走査して放電表面処理を行うと、放電表面処理用電極11の長さの長い右端に行くほど、放電頻度が高くなり、その結果生成される被膜の厚さも厚くなる。逆に、放電表面処理用電極11の長さの短い左端に行くほど、放電頻度が低くなり、その結果生成される被膜の厚さが薄くなる。   FIG. 2 is a diagram schematically showing a state in which the discharge surface treatment electrodes shown in FIGS. 1-1 to 1-2 are linearly scanned in the length direction. As shown in this figure, the discharge surface treatment electrodes 11 having different lengths along the direction perpendicular to the scanning direction (traveling direction) (the length increases from the left end to the right end in the figure) at a constant speed. When the discharge surface treatment is performed by scanning linearly, the discharge frequency increases as the length of the discharge surface treatment electrode 11 increases, and the thickness of the resulting coating also increases. On the contrary, the discharge frequency decreases as the length of the discharge surface treatment electrode 11 decreases to the left end, and the thickness of the resulting coating decreases.

図3は、図1−1〜図1−2に示される放電表面処理用電極を円環状に走査した場合の様子を模式的に示す図である。放電表面処理用電極11を円環状(円弧状)に走査して、厚さの均一な円環形状の被膜を形成する場合、回転速度は、円の中心からの距離に反比例するので、すなわち、回転速度は、円の中心に近いほど速く、円の中心から離れるほど遅くなるので、図3に示されるように、長さの短い方を円の中心側に向くように放電表面処理用電極11を配置する。また、放電表面処理用電極11の走査方向に垂直な方向に沿った長さを、放電表面処理用電極11が走査される円の中心からの距離に比例して決定する。つまり、放電表面処理用電極11の2つの位置での長さLi,Lj(Li≠Lj)は、放電表面処理用電極11の走査によって形成される円の中心からのその位置までの長さ(距離)Ri,Rj(Ri≠Rj)とすると、Li:Lj=Ri:Rjとなるように、放電表面処理用電極11の長さが決定される。そのため、図3に示されるように、放電表面処理用電極11の走査によって形成される円の中心側の辺の長さがL1で、この辺に対向する辺の長さがL2(L1<L2)である台形の形状が、放電表面処理用電極11の被加工物に対向する面(底面)の形状となる。   FIG. 3 is a diagram schematically showing a state in which the discharge surface treatment electrodes shown in FIGS. 1-1 to 1-2 are scanned in an annular shape. When the discharge surface treatment electrode 11 is scanned in an annular shape (arc shape) to form an annular film having a uniform thickness, the rotational speed is inversely proportional to the distance from the center of the circle. The rotation speed is faster as it is closer to the center of the circle, and is slower as it is farther from the center of the circle. Therefore, as shown in FIG. Place. The length of the discharge surface treatment electrode 11 along the direction perpendicular to the scanning direction is determined in proportion to the distance from the center of the circle where the discharge surface treatment electrode 11 is scanned. That is, the lengths Li and Lj (Li ≠ Lj) at the two positions of the discharge surface treatment electrode 11 are the lengths from the center of the circle formed by scanning the discharge surface treatment electrode 11 to that position ( If the distance is Ri, Rj (Ri ≠ Rj), the length of the discharge surface treatment electrode 11 is determined so that Li: Lj = Ri: Rj. Therefore, as shown in FIG. 3, the length of the side on the center side of the circle formed by scanning the discharge surface treatment electrode 11 is L1, and the length of the side facing this side is L2 (L1 <L2). The trapezoidal shape is the shape of the surface (bottom surface) facing the workpiece of the discharge surface treatment electrode 11.

このような形状の放電表面処理用電極11の短い辺を内周側に向けて配置して円環状(円弧状)に走査することで、厚さの均一な円環状(円弧状)の被膜を形成することができる。   By disposing the short side of the discharge surface treatment electrode 11 having such a shape toward the inner peripheral side and scanning in an annular shape (arc shape), an annular (arc shape) film having a uniform thickness is formed. Can be formed.

なお、このような放電表面処理用電極11は、長さ方向の寸法が異なるように孔が形成されたダイと、この孔に密着して挿入可能に形成されたパンチとを用いて、通常の圧紛体電極の製造プロセスによって、形成することができる。   In addition, such a discharge surface treatment electrode 11 uses a die formed with holes so that the dimensions in the length direction are different, and a punch formed so as to be inserted in close contact with the holes. It can be formed by the manufacturing process of the compacted body electrode.

つぎに、このような放電表面処理用電極11を用いた放電表面処理方法および放電表面処理装置について説明する。図4は、この発明にかかる放電表面処理装置の実施の形態1の構成を模式的に示す図である。なお、この図4において、紙面の左右方向をY軸方向とし、紙面の上下方向をZ軸方向とし、これらのY軸とZ軸の両方に垂直な方向(すなわち、紙面に垂直な方向)をX軸とする。   Next, a discharge surface treatment method and a discharge surface treatment apparatus using such a discharge surface treatment electrode 11 will be described. FIG. 4 is a diagram schematically showing the configuration of the first embodiment of the discharge surface treatment apparatus according to the present invention. In FIG. 4, the left-right direction of the paper surface is the Y-axis direction, the vertical direction of the paper surface is the Z-axis direction, and a direction perpendicular to both the Y-axis and the Z-axis (that is, a direction perpendicular to the paper surface). The X axis is assumed.

図4に示されるように、被加工物50は、油などの加工液22が満たされた加工槽21内のステージ23上に載置される。この被加工物50に対向して、上述した放電表面処理用電極11が配置される。放電表面処理用電極11は、金属もしくは金属の化合物またはセラミックスを主成分とする粉末から成型した成型体である。   As shown in FIG. 4, the workpiece 50 is placed on a stage 23 in a processing tank 21 filled with a processing liquid 22 such as oil. The above-described discharge surface treatment electrode 11 is disposed opposite to the workpiece 50. The discharge surface treatment electrode 11 is a molded body formed from a metal, a metal compound, or a powder mainly composed of ceramics.

放電表面処理用電極11は、電極支持部材30で支持され、ステージ23上の任意の位置に移動されるとともに、Z軸方向に回転される。電極支持部材30は、放電表面処理用電極11を保持する電極保持部31と、放電表面処理用電極11を駆動機構によって駆動させる駆動部32と、を備える。駆動部32は、電極保持部31に接続するZ軸に並行な回転軸33(以下、C軸ともいう)と、回転軸33(C軸)を介して電極保持部31を回転させるモータ34と、を有する。また、駆動部32は、X軸駆動機構35−1、Y軸駆動機構35−2、Z軸駆動機構35−3とも接続され、各軸方向に移動制御される。   The discharge surface treatment electrode 11 is supported by the electrode support member 30, moved to an arbitrary position on the stage 23, and rotated in the Z-axis direction. The electrode support member 30 includes an electrode holding unit 31 that holds the discharge surface treatment electrode 11 and a drive unit 32 that drives the discharge surface treatment electrode 11 by a drive mechanism. The drive unit 32 includes a rotation shaft 33 (hereinafter also referred to as a C axis) connected to the electrode holding unit 31 and a motor 34 that rotates the electrode holding unit 31 via the rotation shaft 33 (C axis). Have. The drive unit 32 is also connected to the X-axis drive mechanism 35-1, the Y-axis drive mechanism 35-2, and the Z-axis drive mechanism 35-3, and is controlled to move in the respective axial directions.

駆動部32のモータ34、X軸駆動機構35−1、Y軸駆動機構35−2およびZ軸駆動機構35−3は、それぞれ制御部41に接続される。制御部41は、CPU(Central Processing Unit)やメモリを備え、予め作成されたプログラムにしたがって、モータ34やX軸駆動機構35−1、Y軸駆動機構35−2およびZ軸駆動機構35−3を制御して、駆動部32を介して放電表面処理用電極11の位置に移動させたり回転させたりする。また、放電表面処理用電極11と被加工物50との間に放電を発生させるための電源部42が設けられ、電源部42は放電表面処理用電極11と被加工物50とに接続される。この電源部42は、制御部41にも接続され、制御部41に対しても電源を供給する。   The motor 34, the X-axis drive mechanism 35-1, the Y-axis drive mechanism 35-2, and the Z-axis drive mechanism 35-3 of the drive unit 32 are each connected to the control unit 41. The control unit 41 includes a CPU (Central Processing Unit) and a memory, and according to a program created in advance, the motor 34, the X-axis drive mechanism 35-1, the Y-axis drive mechanism 35-2, and the Z-axis drive mechanism 35-3. Is controlled to move or rotate to the position of the discharge surface treatment electrode 11 via the drive unit 32. Further, a power supply unit 42 for generating a discharge is provided between the discharge surface treatment electrode 11 and the workpiece 50, and the power supply unit 42 is connected to the discharge surface treatment electrode 11 and the workpiece 50. . The power supply unit 42 is also connected to the control unit 41 and supplies power to the control unit 41.

ここで、このような構成の放電表面処理装置を用いた放電表面処理方法について説明する。まず、電極支持部材30の電極保持部31に、上述した走査方向に垂直な方向に沿って長さが異なる放電表面処理用電極11を装着し、また、加工液22を満たした加工槽21内のステージ23上に被加工物50を載置する。   Here, a discharge surface treatment method using such a discharge surface treatment apparatus will be described. First, the discharge surface treatment electrode 11 having a different length along the direction perpendicular to the scanning direction described above is attached to the electrode holding portion 31 of the electrode support member 30, and the inside of the processing tank 21 filled with the processing liquid 22. The workpiece 50 is placed on the stage 23.

ついで、電極支持部材30を駆動して、放電表面処理用電極11と被加工物50との間の距離が所定の放電間隙となるようにした後、加工液22中で、被加工物50と放電表面処理用電極11との間に電源部42から電力を供給して、両者間にパルス状の放電を発生させる。放電表面処理用電極11と被加工物50との間に放電が発生すると、この放電の熱により被加工物50および放電表面処理用電極11の一部は溶融される。このとき、放電による爆風や静電気力によって溶融した放電表面処理用電極11の一部(以下、電極粒子という)が放電表面処理用電極11から引き離され、被加工物50表面に向かって移動する。そして、電極粒子が被加工物50表面に到達すると、再凝固し被膜51となる。また、引き離された電極粒子の一部が加工液22中の成分と反応したものも被加工物50表面で被膜51を形成する。このようにして、被加工物50表面に被膜51が形成される。   Next, after the electrode support member 30 is driven so that the distance between the discharge surface treatment electrode 11 and the workpiece 50 becomes a predetermined discharge gap, the workpiece 50 is Power is supplied from the power supply unit 42 to the discharge surface treatment electrode 11 to generate a pulsed discharge therebetween. When a discharge occurs between the discharge surface treatment electrode 11 and the workpiece 50, the workpiece 50 and a part of the discharge surface treatment electrode 11 are melted by the heat of the discharge. At this time, a part of the discharge surface treatment electrode 11 (hereinafter referred to as electrode particles) melted by the blast or electrostatic force generated by the discharge is separated from the discharge surface treatment electrode 11 and moves toward the surface of the workpiece 50. Then, when the electrode particles reach the surface of the workpiece 50, the electrode particles are re-solidified and become a coating 51. In addition, a part of the separated electrode particles that reacts with a component in the machining liquid 22 also forms the coating 51 on the surface of the workpiece 50. In this way, the film 51 is formed on the surface of the workpiece 50.

直線上の被膜51を被加工物50上に形成したい場合には、放電表面処理用電極11と被加工物50との間を所定の放電間隙となるように制御しながら、電極支持部材30がXY平面状の所定の方向に所定の速度で移動される。なお、このとき、図2に示されるように、放電表面処理用電極11の長さ方向が移動方向(走査方向)と一致するように走査される。   When it is desired to form a straight film 51 on the workpiece 50, the electrode support member 30 is controlled while controlling the discharge surface treatment electrode 11 and the workpiece 50 to have a predetermined discharge gap. It is moved at a predetermined speed in a predetermined direction on the XY plane. At this time, as shown in FIG. 2, scanning is performed such that the length direction of the discharge surface treatment electrode 11 coincides with the moving direction (scanning direction).

円環形状の厚さの一様な被膜51を被加工物50上に形成したい場合には、図3の位置Aのように、被膜を形成する領域である被処理部51Rの内周に長さの短い方(以下、短辺部という)を合わせ、被処理部の外周に長さの長い方を合わせるように放電表面処理用電極11を配置する。そして、放電表面処理用電極11の短辺部が、被処理部51Rの内周に沿うように電極支持部材30のXY軸を相対移動させつつ、XY軸が一周する間に回転軸33(C軸)が360度回転するように制御を行う。つまり、放電表面処理用電極11が、被加工物50上の点Rを中心として、1回転するように制御を行う。たとえば、状態Bは、状態Aから点Rを中心に、右回りに90度回転させた状態となっているが、これは、放電表面処理用電極11を、右回りに90度回転させるとともに、放電表面処理用電極11の位置を状態Aから状態BへとX軸とY軸の移動制御によって、移動させている。また、このXY平面内での移動と回転が行われる際に、放電表面処理用電極11が消耗した分、Z軸方向に送られる。このとき、360度回転する間の速度は一定とする。   When it is desired to form the annular coating 51 having a uniform thickness on the workpiece 50, as shown at position A in FIG. 3, the coating 51 is long on the inner periphery of the portion 51R to be processed. The discharge surface treatment electrode 11 is arranged so that the shorter one (hereinafter referred to as the short side portion) is aligned and the longer one is aligned with the outer periphery of the processing target portion. Then, while the XY axis of the electrode support member 30 is relatively moved so that the short side portion of the discharge surface treatment electrode 11 is along the inner periphery of the processing target 51R, the rotating shaft 33 (C Control is performed so that the shaft rotates 360 degrees. That is, control is performed so that the discharge surface treatment electrode 11 makes one rotation around the point R on the workpiece 50. For example, in the state B, the state A is rotated 90 degrees clockwise around the point R from the state A. This is because the discharge surface treatment electrode 11 is rotated 90 degrees clockwise, The position of the discharge surface treatment electrode 11 is moved from the state A to the state B by movement control of the X axis and the Y axis. Further, when the movement and rotation in the XY plane are performed, the discharge surface treatment electrode 11 is consumed in the Z-axis direction as much as it is consumed. At this time, the speed while rotating 360 degrees is constant.

図5−1〜図5−2は、この実施の形態1による放電表面処理用電極を用いて形成した円環形状の被膜の様子を示す写真である。図5−1は、図3の被処理部の内周側の表面の様子を示す写真であり、図5−2は、図3の被処理部の外周側の表面の様子を示す写真である。これらの図に示されるように、被処理部51Rの内周側の表面も外周側の表面も同様に、一様な被膜51が形成されていることが確認された。   FIGS. 5-1 to 5-2 are photographs showing the state of a ring-shaped film formed using the discharge surface treatment electrode according to the first embodiment. FIG. 5A is a photograph showing the state of the surface on the inner peripheral side of the processing target portion in FIG. 3, and FIG. 5B is a photograph showing the state of the outer peripheral side surface of the processing target portion in FIG. . As shown in these drawings, it was confirmed that the uniform coating 51 was formed on the inner peripheral surface and the outer peripheral surface of the processing target 51R.

ここで、比較のために従来の方法によって形成した被膜の状態について示す。図6は、従来の放電表面処理用電極を用いた円環形状の被膜の形成の様子を模式的に示す図であり、図7−1〜図7−2は、従来の放電表面処理用電極を用いて形成した円環形状の被膜の様子を示す写真である。図7−1は、図6の被処理部の内周側の表面の様子を示す写真であり、図7−2は、図6の被処理部の外周側の表面の様子を示す写真である。   Here, the state of the film formed by the conventional method is shown for comparison. FIG. 6 is a diagram schematically showing the formation of a ring-shaped film using a conventional discharge surface treatment electrode, and FIGS. 7-1 to 7-2 show conventional discharge surface treatment electrodes. It is a photograph which shows the mode of the annular | circular shaped film formed using. FIG. 7-1 is a photograph showing a state of the inner peripheral surface of the processing target part in FIG. 6, and FIG. 7-2 is a photograph showing a state of the outer peripheral side surface of the processing target part in FIG. .

図6に示されるように、底面形状が矩形の放電表面処理用電極11を用いて、被加工物50上に円環形状の被膜51を形成した。その結果、被処理部の内周側の表面は、図7−1に示されるように密に被膜51が形成されているが、被処理部の外周側の表面は、図7−2に示されるように被加工物50の表面が露出している領域があり、しっかりと被覆されていない。つまり、従来の方法では、一様な厚さを有する円環形状の被膜51を形成することができなかった。   As shown in FIG. 6, an annular coating 51 was formed on the workpiece 50 using the discharge surface treatment electrode 11 having a rectangular bottom shape. As a result, the coating 51 is densely formed on the inner peripheral surface of the processed portion as shown in FIG. 7A, but the outer peripheral surface of the processed portion is shown in FIG. 7-2. As shown, there is an area where the surface of the work piece 50 is exposed, and it is not firmly covered. That is, in the conventional method, the annular film 51 having a uniform thickness could not be formed.

なお、上述した説明では、放電表面処理用電極11をXY平面内で移動させ、C軸によって回転させていたが、これに代えて、被加工物50(ステージ23)を移動および回転させることも可能である。また、上述した説明では、平面状の被加工物50に被膜51を形成する場合を例に挙げて説明したが、これに限られる趣旨ではなく、たとえば円錐形状または円錐台形状の被加工物50の同じ高さの位置に被膜51を形成する場合などにもこの実施の形態1を適用することができる。   In the above description, the discharge surface treatment electrode 11 is moved in the XY plane and rotated by the C axis. Alternatively, the workpiece 50 (stage 23) may be moved and rotated. Is possible. In the above description, the case where the coating 51 is formed on the planar workpiece 50 has been described as an example. However, the present invention is not limited to this, and for example, the workpiece 50 having a conical shape or a truncated cone shape is used. The first embodiment can also be applied to the case where the coating 51 is formed at the same height position.

この実施の形態1によれば、放電表面処理用電極11の長さを、走査方向に垂直な方向に沿って変化させることで、所望する膜厚の被膜51を得ることができるという効果を有する。たとえば、場所によって厚さの異なる被膜51や一様な厚さの円環形状の被膜51を形成することが可能になる。   According to the first embodiment, it is possible to obtain the coating film 51 having a desired film thickness by changing the length of the discharge surface treatment electrode 11 along the direction perpendicular to the scanning direction. . For example, it is possible to form the coating 51 having a different thickness depending on the location or the annular-shaped coating 51 having a uniform thickness.

実施の形態2.
図8は、この発明にかかる放電表面処理用電極の実施の形態2の構成を模式的に示す図である。この放電表面処理用電極11は、走査方向に垂直な方向に沿って、異なる粉末の密度分布を有している。つまり、放電頻度を多くしたい部分では、密度を高くし、放電頻度を低くしたい部分では密度を低くするように放電表面処理用電極11を成型している。なお、この図面を含めて以下の密度を異なるようにした放電表面処理用電極11の図において、密度の違いを視覚的にわかりやすくするように、実際とは異なるように密度の状態を極端に描いている。
Embodiment 2. FIG.
FIG. 8 is a diagram schematically showing the configuration of the second embodiment of the electrode for discharge surface treatment according to the present invention. The discharge surface treatment electrode 11 has different powder density distributions along a direction perpendicular to the scanning direction. That is, the discharge surface treatment electrode 11 is molded so that the density is increased in the portion where the discharge frequency is desired to be increased and the density is decreased in the portion where the discharge frequency is desired to be decreased. In addition, in the drawing of the discharge surface treatment electrode 11 with the following different densities, including this drawing, the density state is extremely different from the actual so as to make the difference in density visually easy to understand. I'm drawing.

図9は、図8に示される放電表面処理用電極を長さ方向に直線的に走査した場合の様子を模式的に示す図である。この図に示されるように、走査方向(進行方向)に垂直な方向に沿って密度が異なる放電表面処理用電極11を等速度で直線的に走査して放電表面処理を行うと、放電表面処理用電極11の密度の高い右端に行くほど、放電頻度が高くなり、その結果生成される被膜51の厚さも厚くなるが、逆に密度の低い左端に行くほど、放電頻度が低くなり、その結果生成される被膜51の厚さが薄くなる。   FIG. 9 is a diagram schematically showing a state in which the discharge surface treatment electrode shown in FIG. 8 is linearly scanned in the length direction. As shown in this figure, when the discharge surface treatment is performed by linearly scanning the discharge surface treatment electrodes 11 having different densities along the direction perpendicular to the scanning direction (traveling direction) at a constant speed, the discharge surface treatment is performed. As the density of the electrode 11 increases, the discharge frequency increases, and as a result, the thickness of the coating 51 generated increases, but conversely, the discharge frequency decreases as the density decreases to the left end. The thickness of the generated coating 51 is reduced.

図10は、図8に示される放電表面処理用電極を円環状に走査した場合の様子を模式的に示す図である。放電表面処理用電極11を円環状(円弧状)に走査して、円環形状(円弧状)の厚さの均一な被膜51を形成する場合、回転速度は、円の中心からの距離に反比例するので、図10に示されるように、密度の低い方が円の中心側に向くように放電表面処理用電極11を配置する。また、放電表面処理用電極11の密度を、放電表面処理用電極11が走査される形状の円の中心からの距離に比例して決定する。つまり、放電表面処理用電極11の2つの位置の密度Ni,Nj(Ni≠Nj)は、放電表面処理用電極11の走査によって形成される円の中心からのその位置までの長さRi,Rj(Ri≠Rj)とすると、Ni:Nj=Ri:Rjとなるように、放電表面処理用電極11の走査方向に垂直な方向に沿った各位置での密度が決定される。   FIG. 10 is a diagram schematically showing a state in which the discharge surface treatment electrode shown in FIG. 8 is scanned in an annular shape. When the discharge surface treatment electrode 11 is scanned in an annular shape (arc shape) to form a uniform film 51 having an annular shape (arc shape), the rotational speed is inversely proportional to the distance from the center of the circle. Therefore, as shown in FIG. 10, the discharge surface treatment electrode 11 is arranged so that the lower density is directed toward the center of the circle. Further, the density of the discharge surface treatment electrode 11 is determined in proportion to the distance from the center of the circle of the shape in which the discharge surface treatment electrode 11 is scanned. That is, the densities Ni and Nj (Ni ≠ Nj) at the two positions of the discharge surface treatment electrode 11 are the lengths Ri and Rj from the center of the circle formed by scanning the discharge surface treatment electrode 11 to the positions. If (Ri ≠ Rj), the density at each position along the direction perpendicular to the scanning direction of the discharge surface treatment electrode 11 is determined so that Ni: Nj = Ri: Rj.

つぎに、このような放電表面処理用電極11の製造方法について説明する。図11−1〜図11−2は、放電表面処理用電極の製造方法の概要を示す図である。図11−1に示されるように、上面が水平面に対して傾斜を有する下側のパンチ61aをダイ62の下側から挿入し、下側のパンチ61aとダイ62によって形成される空間に、放電表面処理用電極11を構成する粉末63を充填する。その後、下面が下側のパンチ61aの上面と平行な傾斜を有する上側のパンチ61bを、下面が下側のパンチ61aの上面と平行になるように挿入し、上下のパンチ61a,61b間に圧力をかけてプレス成型し、圧紛体を形成する。これによって、水平方向に密度の異なる圧紛体が形成される。その後、図11−2に示されるように圧紛体11aをパンチ61a,61bとダイ62から取り出し、傾斜のついた上端部と下端部を、水平方向に密度分布が形成された面が露出するように切取って、図8に示される放電表面処理用電極11が完成する。   Next, a method for producing such a discharge surface treatment electrode 11 will be described. FIGS. 11A to 11B are diagrams illustrating an outline of a method for manufacturing the electrode for discharge surface treatment. As shown in FIG. 11A, the lower punch 61 a whose upper surface is inclined with respect to the horizontal plane is inserted from the lower side of the die 62, and discharge is performed in the space formed by the lower punch 61 a and the die 62. The powder 63 constituting the surface treatment electrode 11 is filled. Thereafter, an upper punch 61b whose lower surface is inclined parallel to the upper surface of the lower punch 61a is inserted so that the lower surface is parallel to the upper surface of the lower punch 61a, and pressure is applied between the upper and lower punches 61a and 61b. And press-molding to form a compact. As a result, compacts having different densities in the horizontal direction are formed. After that, as shown in FIG. 11-2, the compact 11a is taken out from the punches 61a and 61b and the die 62 so that the inclined upper and lower ends are exposed on the surface where the density distribution is formed in the horizontal direction. And the discharge surface treatment electrode 11 shown in FIG. 8 is completed.

なお、この密度分布は、パンチ61a,61bの傾斜を変えることによって、変えることが可能である。一様な膜厚を有する円環形状の被膜51を形成する場合には、半径に比例して密度を高めるようにすればよい。ただし、あまり密度を高めて硬くしてしまうと、放電表面処理を行えなくなるので、最大でも放電表面処理を行うことができる硬さとすることが望ましい。   This density distribution can be changed by changing the inclination of the punches 61a and 61b. When the annular film 51 having a uniform thickness is formed, the density may be increased in proportion to the radius. However, if the density is too high and hardened, the discharge surface treatment cannot be performed. Therefore, it is desirable that the hardness be such that the discharge surface treatment can be performed at the maximum.

このような電極を用いた放電表面処理方法は、実施の形態1で説明したものと同じであるので、その詳細な説明を省略する。また、上述した説明では、平面状の被加工物50に被膜51を形成する場合を例に挙げて説明したが、これに限られる趣旨ではなく、たとえば円錐形状または円錐台形状の被加工物50の同じ高さの位置に被膜51を形成する場合などにもこの実施の形態2を適用することができる。   Since the discharge surface treatment method using such an electrode is the same as that described in the first embodiment, a detailed description thereof will be omitted. In the above description, the case where the coating 51 is formed on the planar workpiece 50 has been described as an example. However, the present invention is not limited to this. The second embodiment can also be applied when the coating 51 is formed at the same height position.

この実施の形態2によれば、放電表面処理用電極11の形状を工夫しなくても、放電表面処理用電極11内の粉末の密度分布を変えることによって、被膜51の形成状態(厚さ)を所望の分布にすることができるという効果を有する。   According to the second embodiment, even if the shape of the discharge surface treatment electrode 11 is not devised, the formation state (thickness) of the film 51 is changed by changing the powder density distribution in the discharge surface treatment electrode 11. Can be made to have a desired distribution.

実施の形態3.
図12は、この発明にかかる放電表面処理装置の実施の形態3の構成を模式的に示す図である。なお、この図12において、紙面の左右方向をY軸方向とし、紙面の上下方向をZ軸方向とし、これらのY軸とZ軸の両方に垂直な方向(すなわち、紙面に垂直な方向)をX軸とする。
Embodiment 3 FIG.
FIG. 12 is a diagram schematically showing the configuration of the discharge surface treatment apparatus according to the third embodiment of the present invention. In FIG. 12, the left-right direction of the paper surface is the Y-axis direction, the vertical direction of the paper surface is the Z-axis direction, and a direction perpendicular to both the Y-axis and the Z-axis (that is, a direction perpendicular to the paper surface). The X axis is assumed.

被加工物50は、油などの加工液22が満たされた加工槽21内のステージ23上に載置される。ステージ23は、回転軸24を介してモータ25に連結され、このモータ25の回転によってXY面内で回転する。この被加工物50に対向して、放電表面処理用電極11が配置される。   The workpiece 50 is placed on a stage 23 in a processing tank 21 filled with a processing liquid 22 such as oil. The stage 23 is connected to a motor 25 via a rotary shaft 24, and rotates in the XY plane by the rotation of the motor 25. The discharge surface treatment electrode 11 is disposed opposite to the workpiece 50.

放電表面処理用電極11は、電極支持部材30で支持される。電極支持部材30は、放電表面処理用電極11を保持する電極保持部31と、放電表面処理用電極11を駆動機構によって駆動させる駆動部32と、を備える。駆動部32は、X軸駆動機構35−1、Y軸駆動機構35−2、Z軸駆動機構35−3とも接続され、各軸方向に移動制御される。   The discharge surface treatment electrode 11 is supported by an electrode support member 30. The electrode support member 30 includes an electrode holding unit 31 that holds the discharge surface treatment electrode 11 and a drive unit 32 that drives the discharge surface treatment electrode 11 by a drive mechanism. The drive unit 32 is also connected to the X-axis drive mechanism 35-1, the Y-axis drive mechanism 35-2, and the Z-axis drive mechanism 35-3, and is controlled to move in each axial direction.

ステージ23に連結されるモータ25、電極支持部材30に接続されるX軸駆動機構35−1、Y軸駆動機構35−2およびZ軸駆動機構35−3は、それぞれ制御部41に接続される。また、放電表面処理用電極11と被加工物50との間に放電を発生させるための電源部42が設けられ、電源部42は放電表面処理用電極11と被加工物50とに接続される。この電源部42は、制御部41にも接続され、制御部41に対して電源を供給する。   The motor 25 coupled to the stage 23, the X-axis drive mechanism 35-1, the Y-axis drive mechanism 35-2, and the Z-axis drive mechanism 35-3 connected to the electrode support member 30 are each connected to the control unit 41. . Further, a power supply unit 42 for generating a discharge is provided between the discharge surface treatment electrode 11 and the workpiece 50, and the power supply unit 42 is connected to the discharge surface treatment electrode 11 and the workpiece 50. . The power supply unit 42 is also connected to the control unit 41 and supplies power to the control unit 41.

制御部41は、予め作成されたプログラムにしたがって、ステージ23に連結されるモータ25、電極支持部材30に接続されるX軸駆動機構35−1、Y軸駆動機構35−2およびZ軸駆動機構35−3を駆動制御し、ステージ23を回転させたり、電極支持部材30を移動させたりする。   The control unit 41 includes a motor 25 coupled to the stage 23, an X-axis drive mechanism 35-1, a Y-axis drive mechanism 35-2, and a Z-axis drive mechanism connected to the electrode support member 30 in accordance with a program created in advance. 35-3 is driven and controlled, the stage 23 is rotated, and the electrode support member 30 is moved.

この実施の形態3で使用される放電表面処理用電極11は、従来使用されていた通常の形状と構造を有する。つまり、実施の形態1で説明したような走査方向に垂直な方向に沿って、長さが異なるような形状のものや、実施の形態2で説明したような走査方向に垂直な方向に沿って、密度が異なるような構造のものを使用する必要はなく、底面が矩形状で、密度が均一のものを用いることができる。ただし、放電表面処理用電極11の底面(被加工物50に対向する面)が、被処理部よりも小さい電極である必要がある。この放電表面処理用電極11は、金属またはセラミックスを主成分とする粉末から成型した成型体である。   The discharge surface treatment electrode 11 used in the third embodiment has a normal shape and structure conventionally used. That is, a shape having a different length along the direction perpendicular to the scanning direction as described in the first embodiment, or along a direction perpendicular to the scanning direction as described in the second embodiment. It is not necessary to use a structure with a different density, and a bottom having a rectangular shape and a uniform density can be used. However, the bottom surface of the discharge surface treatment electrode 11 (the surface facing the workpiece 50) needs to be an electrode smaller than the portion to be treated. The discharge surface treatment electrode 11 is a molded body molded from a powder containing metal or ceramic as a main component.

ここで、被膜51を形成する際に、放電表面処理用電極11の処理面を被処理部に比して小さくすることで、走査経路が細かく区切られる。この細かく区切られた走査経路ごとに、処理条件、具体的には移動速度を変えるようにプログラムを設定することで、走査方向に垂直な方向で被膜の厚さを任意に設定することが可能となる。   Here, when the coating 51 is formed, the scanning path is finely divided by making the treatment surface of the discharge surface treatment electrode 11 smaller than the portion to be treated. It is possible to arbitrarily set the film thickness in the direction perpendicular to the scanning direction by setting a program to change the processing conditions, specifically the moving speed, for each finely divided scanning path. Become.

つぎに、この放電表面処理装置での放電表面処理方法について説明する。図13は、この実施の形態3による放電表面処理方法の一例を示す図である。ここでは、厚さが均一の円環形状の被膜51を形成する場合を例に挙げて説明する。   Next, a discharge surface treatment method using this discharge surface treatment apparatus will be described. FIG. 13 is a diagram showing an example of the discharge surface treatment method according to the third embodiment. Here, a case where an annular film 51 having a uniform thickness is formed will be described as an example.

まず、被加工物50をステージ23上に載せ、固定する。このとき、円環形状の被処理部51Rの中心を、ステージ23の回転軸24に合わせる。ついで、放電表面処理用電極11を、被処理部51Rの最も内周側の位置に配置し、被加工物50との間に所定の放電間隙となるように、制御部41はX軸駆動機構35−1、Y軸駆動機構35−2およびZ軸駆動機構35−3を介して駆動部32を移動させる。このときの放電表面処理用電極11の円環形状の被処理部51Rの中心R(ステージ23の回転軸24)からの距離をR1とする。その後、加工液22中で、放電表面処理用電極11と被加工物50との間に電源部42から電力を供給して両者間にパルス状の放電を発生させ、被加工物50への被膜51の形成を開始する。制御部41は、ステージ23を所定の回転速度ω1で回転させるようにモータ25を制御する。   First, the workpiece 50 is placed on the stage 23 and fixed. At this time, the center of the to-be-processed part 51 </ b> R having an annular shape is aligned with the rotation shaft 24 of the stage 23. Next, the control unit 41 is arranged in an X-axis drive mechanism so that the discharge surface treatment electrode 11 is disposed at the innermost peripheral position of the processed portion 51R and a predetermined discharge gap is formed between the processed surface 50 and the workpiece 50. The drive unit 32 is moved via the 35-1, Y-axis drive mechanism 35-2, and Z-axis drive mechanism 35-3. At this time, the distance from the center R (rotation axis 24 of the stage 23) of the to-be-processed portion 51R of the annular surface of the discharge surface treatment electrode 11 is R1. Thereafter, power is supplied from the power source 42 between the discharge surface treatment electrode 11 and the workpiece 50 in the machining liquid 22 to generate a pulsed discharge therebetween, and the coating on the workpiece 50 51 is started. The control unit 41 controls the motor 25 so as to rotate the stage 23 at a predetermined rotation speed ω1.

ステージ23が所定の数回転して、加工開始点に戻ると、制御部41は放電表面処理用電極11の位置を外周方向に向けて、ほぼ放電表面処理用電極11の面積分だけ移動させる。このときの放電表面処理用電極11の円環形状の被処理部51Rの中心R(ステージ23の回転軸24)からの距離をR2とする。このとき、制御部41は、放電表面処理用電極11の移動速度が、距離R1のときと同じになるように、回転速度ω2を調整する。具体的には、回転速度が放電表面処理用電極11の円環形状の被処理部51Rの中心Rからの距離に反比例するように、回転速度ω2を調整する。ここでは、ω2=R1・ω1/R2となり、距離R1での回転速度ω1よりも遅い回転速度ω2でステージ23を回転させる。ステージ23が所定の数回転するまで、この放電表面処理用電極11の位置がステージ23の回転軸24から距離R2で放電表面処理を行う。その後、放電表面処理用電極11が被処理部51Rの外周部に到達するまで、同様の処理を繰り返し実行する。以上の処理によって、被処理部51Rに形成される被膜51の厚さは均一となる。   When the stage 23 rotates a predetermined number of times and returns to the processing start point, the control unit 41 moves the position of the discharge surface treatment electrode 11 toward the outer peripheral direction by approximately the area of the discharge surface treatment electrode 11. At this time, the distance from the center R (rotation axis 24 of the stage 23) of the to-be-processed part 51R of the annular surface of the discharge surface treatment electrode 11 is R2. At this time, the control unit 41 adjusts the rotational speed ω2 so that the moving speed of the discharge surface treatment electrode 11 is the same as that at the distance R1. Specifically, the rotational speed ω2 is adjusted so that the rotational speed is inversely proportional to the distance from the center R of the to-be-processed portion 51R of the discharge surface treatment electrode 11. Here, ω2 = R1 · ω1 / R2, and the stage 23 is rotated at a rotational speed ω2 that is slower than the rotational speed ω1 at the distance R1. Until the stage 23 rotates a predetermined number of times, the surface of the discharge surface treatment electrode 11 is subjected to discharge surface treatment at a distance R2 from the rotation axis 24 of the stage 23. Thereafter, the same processing is repeatedly performed until the discharge surface treatment electrode 11 reaches the outer peripheral portion of the processing target 51R. With the above processing, the thickness of the coating 51 formed on the processing target 51R becomes uniform.

なお、ここでは、厚さの一様な円環形状の被膜51を被加工物50に形成する場合を例に挙げて説明したが、任意の厚さの被膜51を被加工物50に形成する場合についても同様にして処理を行うことができる。   Here, the case where the annular-shaped coating 51 having a uniform thickness is formed on the workpiece 50 has been described as an example, but the coating 51 having an arbitrary thickness is formed on the workpiece 50. The processing can be performed in the same manner for cases.

この実施の形態3によれば、被処理部51Rの幅よりも狭い幅の放電表面処理用電極11を用いることで、走査領域を細かに区切られ、その結果、被処理部51Rに形成される被膜51の厚さを任意に制御することができるという効果を有する。   According to the third embodiment, by using the discharge surface treatment electrode 11 having a width narrower than the width of the processing target 51R, the scanning region is finely divided, and as a result, formed in the processing target 51R. There is an effect that the thickness of the film 51 can be arbitrarily controlled.

以上のように、この発明にかかる放電表面処理用電極は、厚さを任意に変えた被膜を形成する放電表面処理方法に有用である。   As described above, the electrode for discharge surface treatment according to the present invention is useful for a discharge surface treatment method for forming a film having an arbitrarily changed thickness.

この発明による放電表面処理用電極の実施の形態1の構造の一例を示す斜視図である。It is a perspective view which shows an example of the structure of Embodiment 1 of the electrode for discharge surface treatment by this invention. 図1−1の放電表面処理用電極の上面図である。It is a top view of the electrode for discharge surface treatment of FIG. 1-1. 図1−1〜図1−2に示される放電表面処理用電極を長さ方向に直線的に走査した場合の様子を模式的に示す図である。It is a figure which shows typically a mode at the time of linearly scanning the electrode for discharge surface treatment shown to FIGS. 1-1 to 1-2 by the length direction. 図1−1〜図1−2に示される放電表面処理用電極を円環状に走査した場合の様子を模式的に示す図である。It is a figure which shows typically a mode at the time of scanning the electrode for discharge surface treatment shown by FIGS. この発明による放電表面処理装置の実施の形態1の構成を模式的に示す図である。It is a figure which shows typically the structure of Embodiment 1 of the discharge surface treatment apparatus by this invention. 図3の被処理部の内周側の表面の様子を示す写真である。It is a photograph which shows the mode of the surface of the inner peripheral side of the to-be-processed part of FIG. 図3の被処理部の外周側の表面の様子を示す写真である。It is a photograph which shows the mode of the surface of the outer peripheral side of the to-be-processed part of FIG. 従来の放電表面処理用電極を用いた円環形状の被膜の形成の様子を模式的に示す図である。It is a figure which shows typically the mode of formation of the annular | circular shaped film using the conventional electrode for discharge surface treatment. 図6の被処理部の内周側の表面の様子を示す写真である。It is a photograph which shows the mode of the surface of the inner peripheral side of the to-be-processed part of FIG. 図6の被処理部の外周側の表面の様子を示す写真である。It is a photograph which shows the mode of the surface of the outer peripheral side of the to-be-processed part of FIG. この発明による放電表面処理用電極の実施の形態2の構成を模式的に示す図である。It is a figure which shows typically the structure of Embodiment 2 of the electrode for discharge surface treatment by this invention. 図8に示される放電表面処理用電極を長さ方向に直線的に走査した場合の様子を模式的に示す図である。It is a figure which shows typically a mode at the time of linearly scanning the electrode for discharge surface treatment shown by FIG. 8 in the length direction. 図8に示される放電表面処理用電極を円環状に走査した場合の様子を模式的に示す図である。It is a figure which shows typically a mode at the time of scanning the electrode for discharge surface treatment shown in FIG. 放電表面処理用電極の製造方法の概要を示す図である(その1)。It is a figure which shows the outline | summary of the manufacturing method of the electrode for discharge surface treatment (the 1). 放電表面処理用電極の製造方法の概要を示す図である(その2)。It is a figure which shows the outline | summary of the manufacturing method of the electrode for discharge surface treatment (the 2). この発明による放電表面処理装置の実施の形態3の構成を模式的に示す図である。It is a figure which shows typically the structure of Embodiment 3 of the discharge surface treatment apparatus by this invention. この実施の形態3による放電表面処理方法の一例を示す図である。It is a figure which shows an example of the discharge surface treatment method by this Embodiment 3. FIG.

符号の説明Explanation of symbols

11 放電表面処理用電極
11a 圧紛体
21 加工槽
22 加工液
23 ステージ
24 回転軸
25,34 モータ
30 電極支持部材
31 電極保持部
32 駆動部
33 回転軸
35−1 X軸駆動機構
35−2 Y軸駆動機構
35−3 Z軸駆動機構
41 制御部
42 電源部
50 被加工物
51 被膜
51R 被処理部
61a,61b パンチ
62 ダイ
63 粉末
DESCRIPTION OF SYMBOLS 11 Discharge surface treatment electrode 11a Compact body 21 Processing tank 22 Processing liquid 23 Stage 24 Rotating shafts 25 and 34 Motor 30 Electrode support member 31 Electrode holding unit 32 Driving unit 33 Rotating shaft 35-1 X-axis driving mechanism 35-2 Y-axis Drive mechanism 35-3 Z-axis drive mechanism 41 Control unit 42 Power supply unit 50 Work piece 51 Coating 51R Processed portion 61a, 61b Punch 62 Die 63 Powder

Claims (14)

金属、金属化合物またはセラミックスを主成分とする粉末から成型した成型体を放電表面処理用電極とし、加工液中で、前記放電表面処理用電極を被加工物と所定の距離をおいて対向させて相対的に走査しながら、前記放電表面処理用電極と前記被加工物との間に電圧を印加して放電を発生させ、この放電時の熱エネルギによって放出された前記放電表面処理用電極の構成材料またはこの構成材料の反応物質が、前記被加工物の表面に被膜を形成する放電表面処理方法に使用される放電表面処理用電極において、
前記放電表面処理用電極は、前記被加工物に対向して配置される加工面が円でない形状を有し、前記放電表面処理用電極における走査方向の長さが、前記走査方向に垂直な方向に沿った位置ごとに異なることを特徴とする放電表面処理用電極。
A molded body molded from a powder containing metal, metal compound or ceramic as a main component is used as a discharge surface treatment electrode, and the discharge surface treatment electrode is opposed to a workpiece at a predetermined distance in a machining liquid. The discharge surface treatment electrode is configured to generate a discharge by applying a voltage between the discharge surface treatment electrode and the workpiece while relatively scanning, and discharged by thermal energy at the time of the discharge. In the electrode for discharge surface treatment used in the discharge surface treatment method in which the material or the reactant of this constituent material forms a film on the surface of the workpiece,
The electrode for discharge surface treatment has a shaping surface disposed to face the workpiece is not circular shaped, the length of the scanning direction in the discharge surface treatment is, perpendicular to the scanning direction An electrode for discharge surface treatment, which is different for each position along the direction.
前記走査方向に垂直な方向に沿った各位置における長さは、形成したい前記被膜の厚さと当該放電表面処理用電極の走査方法とに応じて決定されることを特徴とする請求項1に記載の放電表面処理用電極。   The length at each position along the direction perpendicular to the scanning direction is determined according to the thickness of the coating film to be formed and the scanning method of the discharge surface treatment electrode. Electrode for discharge surface treatment. 前記放電表面処理用電極を前記被加工物に対して円環状または円弧状に走査して均一な被膜を形成する場合に、前記放電表面処理用電極の前記走査方向に垂直な方向に沿った各位置における長さは、走査する円または円弧の中心となる位置からの距離に比例して長くなることを特徴とする請求項2に記載の放電表面処理用電極。   When the discharge surface treatment electrode is scanned in an annular shape or an arc shape with respect to the workpiece to form a uniform film, each of the discharge surface treatment electrodes along the direction perpendicular to the scanning direction is formed. 3. The discharge surface treatment electrode according to claim 2, wherein the length at the position becomes longer in proportion to the distance from the center of the circle or arc to be scanned. 金属、金属化合物またはセラミックスを主成分とする粉末から成型した成型体を放電表面処理用電極とし、加工液中で、前記放電表面処理用電極を被加工物と所定の距離をおいて対向させて相対的に走査しながら、前記放電表面処理用電極と前記被加工物との間に電圧を印加して放電を発生させ、この放電時の熱エネルギによって放出された前記放電表面処理用電極の構成材料またはこの構成材料の反応物質が、前記被加工物の表面に被膜を形成する放電表面処理方法に使用される放電表面処理用電極において、
前記放電表面処理用電極における前記粉末の密度が、前記走査方向に垂直な方向に沿った位置ごとに異なることを特徴とする放電表面処理用電極。
A molded body molded from a powder containing metal, metal compound or ceramic as a main component is used as a discharge surface treatment electrode, and the discharge surface treatment electrode is opposed to a workpiece at a predetermined distance in a machining liquid. The discharge surface treatment electrode is configured to generate a discharge by applying a voltage between the discharge surface treatment electrode and the workpiece while relatively scanning, and discharged by thermal energy at the time of the discharge. In the electrode for discharge surface treatment used in the discharge surface treatment method in which the material or the reactant of this constituent material forms a film on the surface of the workpiece,
The discharge surface treatment electrode, wherein the density of the powder in the discharge surface treatment electrode is different for each position along a direction perpendicular to the scanning direction.
前記走査方向に垂直な方向に沿った前記粉末の密度は、形成したい前記被膜の厚さと当該放電表面処理用電極の走査方法とに応じて決定されることを特徴とする請求項4に記載の放電表面処理用電極。   The density of the powder along a direction perpendicular to the scanning direction is determined according to a thickness of the coating film to be formed and a scanning method of the discharge surface treatment electrode. Electrode for discharge surface treatment. 前記放電表面処理用電極を前記被加工物に対して円環状または円弧状に走査して均一な被膜を形成する場合には、前記放電表面処理用電極の前記走査方向に垂直な方向に沿った各位置における密度は、走査する円または円弧の中心となる位置からの距離に比例して大きくなることを特徴とする請求項5に記載の放電表面処理用電極。   When the discharge surface treatment electrode is scanned in an annular shape or an arc shape with respect to the workpiece to form a uniform film, the discharge surface treatment electrode is along a direction perpendicular to the scanning direction of the discharge surface treatment electrode. 6. The discharge surface treatment electrode according to claim 5, wherein the density at each position is increased in proportion to the distance from the center of the circle or arc to be scanned. 金属、金属化合物またはセラミックスを主成分とする粉末から成型した成型体を放電表面処理用電極とし、加工液中で、前記放電表面処理用電極を被加工物と所定の距離をおいて対向させて相対的に走査しながら、前記放電表面処理用電極と前記被加工物との間に電圧を印加して放電を発生させ、この放電時の熱エネルギによって放出された前記放電表面処理用電極の構成材料またはこの構成材料の反応物質が、前記被加工物の表面に被膜を形成する放電表面処理方法において、
前記放電表面処理用電極における走査方向に垂直な方向の各位置において、その位置の放電頻度が異なるように形成された放電表面処理用電極を走査して、前記放電表面処理用電極の前記走査方向に垂直な方向の各位置における前記放電頻度とその位置での速度に対応した厚さの被膜を前記被加工物上に形成することを特徴とする放電表面処理方法。
A molded body molded from a powder containing metal, metal compound or ceramic as a main component is used as a discharge surface treatment electrode, and the discharge surface treatment electrode is opposed to a workpiece at a predetermined distance in a machining liquid. The discharge surface treatment electrode is configured to generate a discharge by applying a voltage between the discharge surface treatment electrode and the workpiece while relatively scanning, and discharged by thermal energy at the time of the discharge. In the discharge surface treatment method in which the material or the reactant of this constituent material forms a film on the surface of the workpiece,
At each position in the direction perpendicular to the scanning direction of the discharge surface treatment electrode, the discharge surface treatment electrode formed so that the discharge frequency at that position is different is scanned, and the scan direction of the discharge surface treatment electrode A discharge surface treatment method comprising: forming a coating film having a thickness corresponding to the discharge frequency and the speed at each position in a direction perpendicular to the workpiece on the workpiece.
前記放電表面処理用電極は、前記走査方向に垂直な方向の各位置での前記走査方向の長さによって前記放電頻度を調整したものであることを特徴とする請求項7に記載の放電表面処理方法。   The discharge surface treatment according to claim 7, wherein the discharge surface treatment electrode is obtained by adjusting the discharge frequency according to a length in the scanning direction at each position in a direction perpendicular to the scanning direction. Method. 一方の端部から対向する端部に向けて長さが長くなる形状を有する前記放電表面処理用電極と前記被加工物とを相対的に、前記被加工物上の所定の一点を中心に、前記放電表面処理用電極の短い方の端部を前記被加工物上の一点に向けて回転させつつ、被膜を形成することを特徴とする請求項8に記載の放電表面処理方法。   Relative to the discharge surface treatment electrode and the workpiece having a shape that increases in length from one end to the opposite end, with a predetermined point on the workpiece as a center, The discharge surface treatment method according to claim 8, wherein the coating is formed while rotating the shorter end portion of the discharge surface treatment electrode toward one point on the workpiece. 前記放電表面処理用電極は、前記走査方向に垂直な方向の各位置における前記粉末の密度によって前記放電頻度を調整したものであることを特徴とする請求項7に記載の放電表面処理方法。   The discharge surface treatment method according to claim 7, wherein the discharge surface treatment electrode has the discharge frequency adjusted by the density of the powder at each position in a direction perpendicular to the scanning direction. 一方の端部から対向する端部に向けて密度が大きくなる構造を有する前記放電表面処理用電極と前記被加工物とを相対的に、前記被加工物上の所定の一点を中心に、前記放電表面処理用電極の密度の小さい方の端部を前記被加工物上の一点に向けて回転させつつ、被膜を形成することを特徴とする請求項10に記載の放電表面処理方法。   The discharge surface treatment electrode having a structure in which the density increases from one end toward the opposite end, and the workpiece are relatively centered on a predetermined point on the workpiece. The discharge surface treatment method according to claim 10, wherein the coating is formed while rotating an end portion having a smaller density of the discharge surface treatment electrode toward one point on the workpiece. 被加工物を載置するステージと、
金属、金属化合物またはセラミックスを主成分とする粉末から成型した成型体からなる放電表面処理用電極と、
前記被加工物と前記放電表面処理用電極との間にパルス電圧を印加する電源部と、
前記放電表面処理用電極を回転可能に保持する電極支持部材と、
前記電極支持部材と前記ステージとの間の位置関係を相対的に変化させる、前記電極支持部材または前記ステージの少なくともいずれかに設けられる駆動機構と、
プログラムにしたがって、前記電源部を制御して前記被加工物と前記放電表面処理用電極との間にパルス電圧を印加するとともに、前記駆動機構を制御して前記電極支持部材と前記被加工物との位置関係を相対的に変化させ、前記電極支持部材を回転させる制御部と、
を備える放電表面処理装置において、
前記放電表面処理用電極は、一方の端部から対向する端部に向けて放電頻度が高くなるように形成され、
前記制御部は、前記放電表面処理用電極と前記被加工物とを相対的に、前記被加工物上の所定の一点を中心に、前記放電表面処理用電極の放電頻度の低い方の端部を前記被加工物上の一点に向けて回転させつつ、放電表面処理を行うことを特徴とする放電表面処理装置。
A stage for placing the workpiece;
An electrode for discharge surface treatment comprising a molded body molded from a powder mainly composed of metal, metal compound or ceramics;
A power supply for applying a pulse voltage between the workpiece and the discharge surface treatment electrode;
An electrode support member for rotatably holding the discharge surface treatment electrode;
A drive mechanism provided in at least one of the electrode support member or the stage, which relatively changes a positional relationship between the electrode support member and the stage;
According to a program, the power supply unit is controlled to apply a pulse voltage between the workpiece and the discharge surface treatment electrode, and the drive mechanism is controlled to control the electrode support member and the workpiece. A control unit that relatively changes the positional relationship of and rotates the electrode support member;
In a discharge surface treatment apparatus comprising:
The discharge surface treatment electrode is formed so that the discharge frequency increases from one end to the opposite end,
The control unit is configured to relatively end the discharge surface treatment electrode and the workpiece, with the discharge surface treatment electrode having a lower discharge frequency around a predetermined point on the workpiece. The discharge surface treatment apparatus is characterized in that the discharge surface treatment is performed while rotating toward a point on the workpiece.
前記放電表面処理用電極は、一方の端部から対向する端部に向けて長さを長くする形状によって、前記放電頻度を高くすることを特徴とする請求項12に記載の放電表面処理装置。   13. The discharge surface treatment apparatus according to claim 12, wherein the discharge surface treatment electrode increases the discharge frequency by a shape in which the length is increased from one end portion toward an opposite end portion. 前記放電表面処理用電極は、一方の端部から対向する端部に向けて密度を大きくする構造によって、前記放電頻度を高くすることを特徴とする請求項12に記載の放電表面処理装置。   The discharge surface treatment apparatus according to claim 12, wherein the discharge surface treatment electrode increases the discharge frequency by a structure in which a density is increased from one end portion toward an opposite end portion.
JP2007177506A 2007-07-05 2007-07-05 Discharge surface treatment electrode, discharge surface treatment method and discharge surface treatment apparatus Active JP4884324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007177506A JP4884324B2 (en) 2007-07-05 2007-07-05 Discharge surface treatment electrode, discharge surface treatment method and discharge surface treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007177506A JP4884324B2 (en) 2007-07-05 2007-07-05 Discharge surface treatment electrode, discharge surface treatment method and discharge surface treatment apparatus

Publications (2)

Publication Number Publication Date
JP2009013476A JP2009013476A (en) 2009-01-22
JP4884324B2 true JP4884324B2 (en) 2012-02-29

Family

ID=40354740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007177506A Active JP4884324B2 (en) 2007-07-05 2007-07-05 Discharge surface treatment electrode, discharge surface treatment method and discharge surface treatment apparatus

Country Status (1)

Country Link
JP (1) JP4884324B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH695188A5 (en) * 1998-05-13 2006-01-13 Mitsubishi Electric Corp Electrode for Funkenerosionsoberflochenbehanlung, processes for preparing them, methods of and apparatus Funkenerosionsoberflochenbehandlung hierfur.
US6521301B1 (en) * 1999-11-08 2003-02-18 Mitsubishi Denki Kabushiki Kaisha Discharge surface processing method
JP3852583B2 (en) * 2002-05-14 2006-11-29 三菱電機株式会社 Discharge surface treatment apparatus and discharge surface treatment method
JP2006206964A (en) * 2005-01-28 2006-08-10 Mitsubishi Electric Corp Electrode for discharging surface treatment and discharging surface treatment method
JP5066797B2 (en) * 2005-07-08 2012-11-07 三菱電機株式会社 A film forming method and a method for producing a film forming work.
JP2005330590A (en) * 2005-07-15 2005-12-02 Mitsubishi Electric Corp Surface treatment method by discharge and surface treatment apparatus by discharge

Also Published As

Publication number Publication date
JP2009013476A (en) 2009-01-22

Similar Documents

Publication Publication Date Title
JP6797642B2 (en) Raw material powder processing method and three-dimensional model manufacturing method
JP3138815B2 (en) Three-dimensional object manufacturing apparatus and three-dimensional object manufacturing method
KR100673964B1 (en) Eletric discharge machining for turbine blade and eletric discharge machine adapted for the same
JPH07112329A (en) Surface treatment method by electric discharge machining and device thereof
US5976347A (en) Micro cutting method and system
JP3662595B2 (en) Tool surface treatment method and apparatus
JP7196918B2 (en) 3D printer
JP2013176820A (en) Electric discharge machining method and electric discharge machining device for tapered hole
JP4884324B2 (en) Discharge surface treatment electrode, discharge surface treatment method and discharge surface treatment apparatus
CN105058549A (en) Method for preparing piezoelectric ceramics based on femtosecond lasers and 3D printing
JP4014982B2 (en) Rod target for arc evaporation source, manufacturing method thereof, and arc evaporation apparatus
JP2012045581A (en) Laser processing method
KR101531908B1 (en) Eccentric Electrode For Electric Discharging And Manufacturing Method Thereof And Electric Discharging Micro Apparatus Comprising The Same
JP2000071126A (en) Discarge surface processing method, and its device
JP2006035263A (en) Electron beam surface treatment method and electron beam surface treatment device
JPH11229158A (en) Electric discharge surface treatment and device therefor
JPH10202757A (en) Microstructure, and manufacture and device therefor
JP3716504B2 (en) Method and apparatus for manufacturing microstructure
JP6171139B2 (en) Coating method
US20230014614A1 (en) Three-Dimensional Powder Bed Fusion Additive Manufacturing Apparatus and Three-Dimensional Powder Bed Fusion Additive Manufacturing Method
JP2006026660A (en) Surface smoothing device using electron beam, and method for treating surface of metal mold
US20210394275A1 (en) Machining method and machining apparatus
WO2022254606A1 (en) Shaping apparatus and shaping method
KR102193163B1 (en) Hybrid printing system for lamination of high viscosity liquid materials
JP2001252830A (en) Machining method and device with wire electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4884324

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250