JP4882124B2 - Method for producing solar cell encapsulant - Google Patents

Method for producing solar cell encapsulant Download PDF

Info

Publication number
JP4882124B2
JP4882124B2 JP2004380509A JP2004380509A JP4882124B2 JP 4882124 B2 JP4882124 B2 JP 4882124B2 JP 2004380509 A JP2004380509 A JP 2004380509A JP 2004380509 A JP2004380509 A JP 2004380509A JP 4882124 B2 JP4882124 B2 JP 4882124B2
Authority
JP
Japan
Prior art keywords
solar cell
ethylene
crosslinking agent
thermoplastic resin
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004380509A
Other languages
Japanese (ja)
Other versions
JP2006186237A (en
Inventor
孝一 西嶋
学 川本
理絵 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Tohcello Inc
Dow Mitsui Polychemicals Co Ltd
Original Assignee
Du Pont Mitsui Polychemicals Co Ltd
Mitsui Chemicals Tohcello Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Mitsui Polychemicals Co Ltd, Mitsui Chemicals Tohcello Inc filed Critical Du Pont Mitsui Polychemicals Co Ltd
Priority to JP2004380509A priority Critical patent/JP4882124B2/en
Publication of JP2006186237A publication Critical patent/JP2006186237A/en
Application granted granted Critical
Publication of JP4882124B2 publication Critical patent/JP4882124B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10788Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing ethylene vinylacetate

Landscapes

  • Photovoltaic Devices (AREA)

Description

本発明は、ガラス、プラスチック等の表面材に太陽電池(太陽電池素子)を封止するのに好適な封止材の製造方法に関する。とりわけ複雑形状の太陽電池モジュールに使用される太陽電池封止材を効率的に製造することが可能な方法に関する。   The present invention relates to a method for producing a sealing material suitable for sealing a solar cell (solar cell element) to a surface material such as glass or plastic. In particular, the present invention relates to a method capable of efficiently producing a solar cell encapsulant used in a complex-shaped solar cell module.

近年の環境問題の高まりを背景に、クリーンなエネルギーとして水力発電、風力発電並びに太陽光発電が脚光を浴びている。このうち太陽光発電は、太陽電池モジュールの発電効率等の性能向上が著しい一方、価格の低下が進んだこと、国や自治体が住宅用太陽光発電システム導入促進事業を進めてきたことから、ここ数年その普及が著しく進んでいる。それにつれて太陽電池モジュールの設置箇所も多様化してきており、例えば建築用窓材、壁材、屋根材、道路標識等向けに合わせて、従来の単純な四角状の形状から、多角形、円形等種々の形状のモジュールが要求されるようになってきている。また二次元的な形状のみならず、曲面構造等の従来なかった三次元的形状のモジュールの要求も顕在化してきている。   Against the background of increasing environmental problems in recent years, hydroelectric power generation, wind power generation and solar power generation are attracting attention as clean energy. Among these, solar power generation is here because the power generation efficiency of solar cell modules has been significantly improved, but the price has declined, and the national and local governments have promoted the introduction of residential solar power generation systems. The spread has been remarkable for several years. Along with that, the installation locations of solar cell modules have also diversified. For example, in accordance with architectural window materials, wall materials, roofing materials, road signs, etc., conventional simple square shapes, polygons, circles, etc. Various shapes of modules have been required. In addition to the two-dimensional shape, the demand for a module having a three-dimensional shape such as a curved surface structure, which has not been heretofore, has become apparent.

太陽電池モジュールの最も典型的なものは、太陽光受光側から、保護ガラス、太陽電池封止材、太陽電池素子、太陽電池封止材、バックシートからなる構成となっている。このような構成の太陽電池モジュールは、例えばエチレン・酢酸ビニル共重合体のようなエチレン系共重合体と、架橋剤や他の添加剤を均一にブレンドした後、架橋剤が分解しない温度で、T−ダイシート成形法等により太陽電池封止材の原反シートを作製し、この原反をモジュールの形状に合わせて一定の寸法に切断し、保護ガラス、原反、太陽電池素子、原反、バックシートの順に積層し、真空ラミネータを用いて仮接着させた後、架橋炉を用いて、架橋、接着させることによって製造することができる(特許文献1)。   The most typical solar cell module is composed of a protective glass, a solar cell encapsulant, a solar cell element, a solar cell encapsulant, and a back sheet from the sunlight receiving side. The solar cell module having such a structure is obtained by uniformly blending an ethylene-based copolymer such as an ethylene / vinyl acetate copolymer with a crosslinking agent and other additives, and then at a temperature at which the crosslinking agent is not decomposed. A raw sheet of a solar cell encapsulating material is produced by a T-die sheet molding method, etc., and this original fabric is cut into a certain size according to the shape of the module, and a protective glass, an original fabric, a solar cell element, an original fabric, It can manufacture by laminating | stacking in order of a back sheet, temporarily bonding using a vacuum laminator, and bridge | crosslinking and adhere | attaching using a crosslinking furnace (patent document 1).

従来の太陽電池モジュールの形状は、正方形や長方形が主流であったため、上記方法におけるシート原反の切断も容易であったが、上述のように複雑な形状になると、サイズに合わせてシート原反を切断するという作業が極めて煩雑であった。また三次元的曲面構造を有する保護ガラスを用いる場合、その形状に合わせて封止層を形成するために、シート状の封止材を適当なサイズに切断し、何枚も重ねることで対応が可能であるが、著しく生産性が低下するという問題があった。   Since the shape of a conventional solar cell module is mainly a square or a rectangle, it is easy to cut the sheet material in the above method. However, when the shape becomes complicated as described above, the sheet material is matched to the size. The work of cutting the sheet was extremely complicated. In addition, when using protective glass with a three-dimensional curved surface structure, in order to form a sealing layer according to its shape, it is possible to cut the sheet-like sealing material to an appropriate size and stack several sheets Although possible, there was a problem that productivity was significantly reduced.

特公平2−40709号公報Japanese Examined Patent Publication No. 2-40709

上述した平面多角形構造等の変形太陽電池モジュールに対応する太陽電池封止材を作製するには、その形状に応じたプレス抜き型を用意し、プレス討ち抜き機で打ち抜くという方法が考えられる。しかしながら打ち抜き分以外のロスが極めて多くなり、シート原反作製時にその切り抜きロスをシート押出機中に投入することにより再生使用が可能であるにしても、製品収率が悪くなり、経済的デメリットが大きくなるという問題があった。またこうしたプレス打ち抜き法では、上述の三次元的曲面構造を有するガラス割れの問題には対応できず、割れが発生し易い隙間部位にさらにシート原反の小片を積層し、クッション性を高めるという煩雑な方法で対応せざるを得なかった。またこの場合において、隙間に滞留する気体を排出することは極めて困難であるため、製品に気泡が残り、製品価値を損なうという問題があった。   In order to produce a solar cell encapsulant corresponding to the above-described deformed solar cell module having a planar polygonal structure, a method of preparing a punching die corresponding to the shape and punching with a press punching machine is conceivable. However, the loss other than punching is extremely large, and even if it can be recycled by putting the cutting loss into the sheet extruder at the time of producing the original sheet, the product yield is deteriorated and there is an economic disadvantage. There was a problem of getting bigger. Further, such a press punching method cannot cope with the problem of glass cracking having the above-described three-dimensional curved surface structure, and it is troublesome to further stack small pieces of the original sheet of the sheet in a gap portion where cracking is likely to occur, thereby improving cushioning properties. I had to deal with this method. Further, in this case, since it is extremely difficult to discharge the gas staying in the gap, there is a problem that bubbles remain in the product and the product value is impaired.

本発明は、上記のような問題点を一挙に解決するためのものであって、その目的とするところは、太陽電池モジュールの構造が、三次元的曲面構造等の複雑な形状であっても適合することが可能な、太陽電池封止材の製造方法を提供することにある。   The present invention is intended to solve the above-mentioned problems all at once, and the object of the present invention is that even if the structure of the solar cell module is a complicated shape such as a three-dimensional curved surface structure. An object of the present invention is to provide a method for manufacturing a solar cell encapsulant that can be adapted.

上記目的を達成するため、本発明の太陽電池封止材の製造方法は、150〜250℃の温度で射出成形法によりエチレン・酢酸ビニル共重合体からなる熱可塑性樹脂を三次元的曲面体形状あるいは三角柱形状の所定形状に成形した後、架橋剤を含浸させることを特徴とする。 In order to achieve the above object, a method for producing a solar cell encapsulating material of the present invention comprises forming a three-dimensional curved body shape from a thermoplastic resin comprising an ethylene / vinyl acetate copolymer by an injection molding method at a temperature of 150 to 250 ° C. Or after shape | molding in the triangular prism shape predetermined shape, it is made to impregnate a crosslinking agent.

本発明の太陽電池封止材(太陽電池素子封止材)の製造方法によれば、射出成形法により三次元的曲面構造ガラスの形状等に合わせて任意の形状に成形できること、また必要に応じて肉厚部や肉薄部を設定できるため、上述のようなシートを積層する必要はなく、ガラスの破損を1ピースの封止材で防止することが可能となり、極めて合理的である。また射出成形時には熱可塑性樹脂中に架橋剤を含有させる必要がないから、架橋剤を含有することによる低温での成形を余儀なくされることはなく、樹脂の劣化温度を考慮した上限温度以下の任意の温度で成形できること、またランナー等の端材も架橋剤を含まないので、再生可能であるところから経済的メリットは大きい。例えば、架橋剤として、通常、分解温度が120℃以下のものが使用されるが、封止材材料として一般的なエチレン系共重合体であるエチレン・酢酸ビニル共重合体の分解開始温度は200℃であるので、架橋剤を含有するエチレン・酢酸ビニル共重合体の射出成形を行う場合は、120℃以下の温度で行う必要がある。このような条件では、射出成形金型中に樹脂が完全に行き渡らないなどの問題が発生する。しかしながら架橋剤を含まなければ、エチレン・酢酸ビニル共重合体は190℃の高温で射出成形することが可能であり、良好な外観の成形品を得ることが可能である。またかかる成形品に架橋剤を含浸により添加し、架橋処理することによって強度や長期耐久性を確保することができる。このようにして得られる太陽電池封止材は、太陽電池モジュールの多様な形状に適応でき、生産性、デザイン性、品質安定性に対する寄与は極めて大きい。とくに熱可塑性樹脂として、エチレン・酢酸ビニル共重合体を用いた場合には、これら特性に加え、耐候性、透明性、柔軟性、接着性等にも優れるので、高品質の太陽電池モジュールを得ることが可能である。   According to the method for producing a solar cell encapsulant (solar cell element encapsulant) of the present invention, it can be formed into an arbitrary shape according to the shape of the three-dimensional curved surface structured glass by an injection molding method, and if necessary. Since the thick and thin portions can be set, it is not necessary to stack the sheets as described above, and it is possible to prevent breakage of the glass with one piece of sealing material, which is extremely reasonable. In addition, since it is not necessary to include a crosslinking agent in the thermoplastic resin during injection molding, there is no necessity for molding at a low temperature due to the inclusion of the crosslinking agent, and an arbitrary temperature below the upper limit temperature considering the deterioration temperature of the resin. Since it can be molded at a temperature of 1 mm, and the end materials such as runners do not contain a crosslinking agent, the economic advantage is great because it can be regenerated. For example, a crosslinking agent having a decomposition temperature of 120 ° C. or lower is usually used, but the decomposition start temperature of an ethylene / vinyl acetate copolymer which is a general ethylene copolymer as a sealing material is 200. Since it is 0 degreeC, when performing the injection molding of the ethylene-vinyl acetate copolymer containing a crosslinking agent, it is necessary to carry out at the temperature of 120 degrees C or less. Under such conditions, problems such as the resin not completely spreading in the injection mold occur. However, if the crosslinking agent is not included, the ethylene / vinyl acetate copolymer can be injection-molded at a high temperature of 190 ° C., and a molded article having a good appearance can be obtained. Moreover, strength and long-term durability can be ensured by adding a crosslinking agent to such a molded article by impregnation and performing a crosslinking treatment. The solar cell encapsulant obtained in this way can be applied to various shapes of solar cell modules, and contributes greatly to productivity, design, and quality stability. In particular, when ethylene / vinyl acetate copolymer is used as a thermoplastic resin, in addition to these properties, it is excellent in weather resistance, transparency, flexibility, adhesiveness, etc., so a high-quality solar cell module is obtained. It is possible.

本発明の太陽電池封止材に使用できる熱可塑性樹脂としては、ポリエチレン、ポリプロピレンで代表される汎用樹脂系のものあるいはポリアミドやポリアセタールなどで代表されるエンジニアリング樹脂系のものを挙げることできるが、太陽電池封止材として要求される透明性、柔軟性、長期耐久性などを考慮すると、とくにエチレン系共重合体が好ましい。   Examples of the thermoplastic resin that can be used for the solar cell encapsulant of the present invention include general-purpose resin-based materials represented by polyethylene and polypropylene, and engineering resin-based materials represented by polyamide and polyacetal. Considering the transparency, flexibility, long-term durability and the like required as a battery sealing material, an ethylene copolymer is particularly preferable.

エチレン系共重合体としては、エチレンと極性モノマーの共重合体及びエチレンと炭素数3以上のα−オレフィンの共重合体から選ばれる一種又は二種以上を例示することができる。具体的にエチレン・極性モノマー共重合体の極性モノマーとしては、酢酸ビニル、プロピオン酸ビニルのようなビニルエステル、アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸イソブチル、アクリル酸n−ブチル、アクリル酸イソオクチル、メタクリル酸メチル、メタクリル酸イソブチル、マレイン酸ジメチル等の不飽和カルボン酸エステル、アクリル酸、メタクリル酸、フマル酸、イタコン酸、マレイン酸モノメチル、マレイン酸モノエチル、無水マレイン酸、無水イタコン酸等の不飽和カルボン酸、これら不飽和カルボン酸の塩、一酸化炭素、二酸化硫黄などの一種又は二種以上などを例示することができる。不飽和カルボン酸の塩としては、リチウム、ナトリウム、カリウムなどの1価金属、マグネシウム、カルシウム、亜鉛などの多価金属の塩などを挙げることができる。また上記エチレンと炭素数3以上のα−オレフィンの共重合体における炭素数3以上のα−オレフィンとしては、プロピレン、1−ブテン、1−ヘキセン、1−オクテン、4−メチル−1−ペンテンなどを挙げることができる。   Examples of the ethylene copolymer include one or two or more selected from a copolymer of ethylene and a polar monomer and a copolymer of ethylene and an α-olefin having 3 or more carbon atoms. Specifically, as the polar monomer of the ethylene / polar monomer copolymer, vinyl acetate, vinyl ester such as vinyl propionate, methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, n-butyl acrylate, Unsaturated carboxylic acid esters such as isooctyl acrylate, methyl methacrylate, isobutyl methacrylate, dimethyl maleate, acrylic acid, methacrylic acid, fumaric acid, itaconic acid, monomethyl maleate, monoethyl maleate, maleic anhydride, itaconic anhydride Examples of unsaturated carboxylic acids such as these, salts of these unsaturated carboxylic acids, carbon monoxide, sulfur dioxide, and the like can be exemplified. Examples of the salt of the unsaturated carboxylic acid include salts of monovalent metals such as lithium, sodium and potassium, and salts of polyvalent metals such as magnesium, calcium and zinc. Examples of the α-olefin having 3 or more carbon atoms in the copolymer of ethylene and α-olefin having 3 or more carbon atoms include propylene, 1-butene, 1-hexene, 1-octene and 4-methyl-1-pentene. Can be mentioned.

これらエチレン系共重合体としては、透明性、柔軟性、耐ブロッキング性などを考慮すると、エチレン単位含有量が60〜85重量%、好ましくは65〜80重量%のものを使用するのが好ましい。すなわちエチレン単位含有量が上記範囲より少なくなると、太陽電池封止材同士のブロッキングが発生しやすくなり、作業性を阻害することがある。またエチレン単位含有量が上記範囲より少なくなると封止材が硬くなる傾向となり、保護材のガラスを損傷する恐れがある。エチレン系共重合体としてはまた射出成形性、機械的物性などを考慮すると、190℃、2160g荷重におけるメルトフローレート(JIS K7210−1999)が3〜100g/10分、とくに6〜100g/10分のものを使用するのが好ましい。すなわちメルトフローレートが前記範囲より小さくなると、射出成形時の流動性が不足しがちとなり、安定した品質の成形品が得られなくなる恐れが生じる。またメルトフローレートが前記範囲より大きくなると、射出成形時の流動性が良すぎるため、成形品にヒケやバリが発生しやすくなる。   As these ethylene-based copolymers, it is preferable to use those having an ethylene unit content of 60 to 85% by weight, preferably 65 to 80% by weight in consideration of transparency, flexibility, blocking resistance and the like. That is, when the ethylene unit content is less than the above range, blocking between solar cell encapsulants tends to occur, and workability may be hindered. On the other hand, when the ethylene unit content is less than the above range, the sealing material tends to be hard and the glass of the protective material may be damaged. In view of injection moldability, mechanical properties, etc., the ethylene copolymer has a melt flow rate (JIS K7210-1999) at 190 ° C. and a load of 2160 g of 3 to 100 g / 10 min, particularly 6 to 100 g / 10 min. Are preferably used. That is, when the melt flow rate is smaller than the above range, the fluidity at the time of injection molding tends to be insufficient, and there is a possibility that a molded product with stable quality cannot be obtained. On the other hand, when the melt flow rate is larger than the above range, the flowability at the time of injection molding is too good.

好適なエチレン系共重合体としてより具体的には、エチレン・酢酸ビニル共重合体のようなエチレン・ビニルエステル共重合体、エチレン・アクリル酸メチル共重合体、エチレン・アクリル酸エチル共重合体、エチレン・メタクリル酸メチル共重合体、エチレン・アクリル酸イソブチル共重合体、エチレン・アクリル酸n−ブチル共重合体のようなエチレン・不飽和カルボン酸エステル共重合体、エチレン・アクリル酸共重合体、エチレン・メタクリル酸共重合体、エチレン・アクリル酸イソブチル・メタクリル酸共重合体のようなエチレン・不飽和カルボン酸共重合体及びそのアイオノマーなどを代表例として例示することができる。これらの中では、エチレン・酢酸ビニル共重合体又はエチレン・アクリル酸エステル共重合体が好ましく、とりわけ易入手性、成形性、透明性、柔軟性、接着性、耐光性等の太陽電池封止材の要求物性に対する適合性や架橋剤の含浸性を考慮すると、エチレン・酢酸ビニル共重合体がとくに好ましい。   More specifically, suitable ethylene-based copolymers include ethylene / vinyl ester copolymers such as ethylene / vinyl acetate copolymers, ethylene / methyl acrylate copolymers, ethylene / ethyl acrylate copolymers, Ethylene / methyl methacrylate copolymer, ethylene / isobutyl acrylate copolymer, ethylene / unsaturated carboxylic acid ester copolymer such as ethylene / n-butyl acrylate copolymer, ethylene / acrylic acid copolymer, Representative examples include ethylene / methacrylic acid copolymers, ethylene / unsaturated carboxylic acid copolymers such as ethylene / isobutyl acrylate / methacrylic acid copolymers, and ionomers thereof. Among these, ethylene / vinyl acetate copolymer or ethylene / acrylic acid ester copolymer is preferable, and solar cell sealing materials such as availability, moldability, transparency, flexibility, adhesiveness, and light resistance are particularly preferable. In view of the compatibility with the required physical properties and the impregnation property of the crosslinking agent, an ethylene / vinyl acetate copolymer is particularly preferable.

本発明においては、上記熱可塑性樹脂を、射出成形により太陽電池モジュールに合わせた封止材形状に成形する。射出成形の温度は、熱可塑性樹脂の種類によって異なるが、上記エチレン系共重合体を使用する場合には、150〜250℃程度の範囲が好ましい。射出成形に際して、熱可塑性樹脂に、任意に配合することができる後記するような添加剤を配合しておくことができる。射出成形に際してこれら添加剤を配合する場合は、予め熱可塑性樹脂に一部又は全部の添加剤を、一軸押出機、二軸押出機、バンバリーミキサー、ニーダーなどを用いて溶融混合して得た樹脂組成物を使用することができる。その際、一部又は全部の添加剤は、マスターバッチの形で使用することができる。射出成形においてはまた、成形品の表面にエンボス処理を施すことによって、金型からの離型性を改良し、またラミネート時のガラスの割れを防止するために、表面エンボス形状を有する射出成形金型を用いて成形することが好ましい。エンボス形状は任意であり、例えば梨地状、ダイヤ格子状、連続した直線状、連続した曲線状、多数の凸部を有する突起状など各種形状のものが使用できる。   In this invention, the said thermoplastic resin is shape | molded in the sealing material shape match | combined with the solar cell module by injection molding. The temperature of injection molding varies depending on the type of thermoplastic resin, but when the ethylene copolymer is used, a range of about 150 to 250 ° C. is preferable. At the time of injection molding, an additive which can be optionally blended with the thermoplastic resin can be blended. When blending these additives during injection molding, a resin obtained by melting and mixing some or all of the additives in advance with a thermoplastic resin using a single screw extruder, twin screw extruder, Banbury mixer, kneader, etc. Compositions can be used. In this case, some or all of the additives can be used in the form of a masterbatch. In injection molding, the surface of the molded product is embossed to improve mold release from the mold and to prevent cracking of the glass during lamination. It is preferable to mold using a mold. The emboss shape is arbitrary, and various shapes such as a satin shape, a diamond lattice shape, a continuous linear shape, a continuous curved shape, and a protruding shape having a large number of convex portions can be used.

本発明においては、上記封止材形状に成形した射出成形品に架橋剤を含浸させることによって太陽電池封止材を作製するものである。射出成形品に架橋剤を含浸させる方法としては、例えば、液状の架橋剤をシャワー状であるいはスプレイを用いて射出成形品に噴射する方法、ハケなどを用いて液状の架橋剤を射出成形品に塗布する方法、架橋剤を充填した槽に射出成形品を浸漬する方法などによって行うことができる。これらの処理量及び時間を調整することによって、射出成形品中に架橋剤の所望量を含浸させることができる。またこれらの処理終了後、例えば自然風乾1日、あるいは50℃で3時間維持のように適当な温度で所定時間維持することによって、架橋剤を射出成形品中にほぼ均一に分散させることができる。   In the present invention, a solar cell encapsulant is produced by impregnating a cross-linking agent into an injection molded product molded into the above-mentioned encapsulant shape. Examples of the method of impregnating the injection molding product with the cross-linking agent include, for example, a method of injecting a liquid cross-linking agent into the injection molded product in a shower form or using a spray, a liquid cross-linking agent using a brush, etc. It can be performed by a method of coating, a method of immersing an injection molded product in a tank filled with a crosslinking agent, or the like. By adjusting these treatment amounts and time, the injection molding can be impregnated with a desired amount of the crosslinking agent. Further, after these treatments are completed, the crosslinking agent can be dispersed almost uniformly in the injection-molded product by maintaining it at a suitable temperature for a predetermined time such as natural air drying for one day or at 50 ° C. for 3 hours. .

使用可能な架橋剤としては、分解温度(半減期が1時間である温度)が70〜180℃、とくに90〜160℃の液状の有機過酸化物を用いるのが好ましい。このような有機過酸化物として、例えば、第3ブチルパーオキシイソプロピルカーボネート、第3ブチルパーオキシアセテート、第3ブチルパーオキシベンゾエート、ジクミルパーオキサイド、2,5−ジメチル−2,5−ビス(第3ブチルパーオキシ)ヘキサン、ジ第3ブチルパーオキサイド、2,5−ジメチル−2,5−ビス(第3ブチルパーオキシ)ヘキシン−3、1,1−ビス(第3ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(第3ブチルパーオキシ)シクロヘキサン、メチルエチルケトンパーオキサイド、2,5−ジメチルヘキシル−2,5−ビスパーオキシベンゾエート、第3ブチルハイドロパーオキサイド、p−メンタンハイドロパーオキサイド、ベンゾイルパーオキサイド、p−クロルベンゾイルパーオキサイド、第3ブチルパーオキシイソブチレート、ヒドロキシヘプチルパーオキサイド、ジクロヘキサノンパーオキサイドなどが挙げられる。架橋剤の好適な含浸量は、架橋剤の種類によっても異なるが、熱可塑性樹脂100重量部に対し、0.1〜5重量部、とくに0.5〜3重量部の割合とするのが効果的である。   As a usable crosslinking agent, it is preferable to use a liquid organic peroxide having a decomposition temperature (temperature at which the half-life is 1 hour) of 70 to 180 ° C., particularly 90 to 160 ° C. Examples of such organic peroxides include tertiary butyl peroxyisopropyl carbonate, tertiary butyl peroxyacetate, tertiary butyl peroxybenzoate, dicumyl peroxide, 2,5-dimethyl-2,5-bis ( Tert-butylperoxy) hexane, di-tert-butyl peroxide, 2,5-dimethyl-2,5-bis (tert-butylperoxy) hexyne-3, 1,1-bis (tert-butylperoxy)- 3,3,5-trimethylcyclohexane, 1,1-bis (tert-butylperoxy) cyclohexane, methyl ethyl ketone peroxide, 2,5-dimethylhexyl-2,5-bisperoxybenzoate, tert-butyl hydroperoxide, p-menthane hydroperoxide, benzoyl peroxide, p-chlorobe Benzoyl peroxide, tert-butylperoxy isobutyrate, hydroxyheptyl peroxide, and di cyclohexanone peroxide. Although the suitable amount of impregnation of the cross-linking agent varies depending on the type of the cross-linking agent, 0.1 to 5 parts by weight, particularly 0.5 to 3 parts by weight with respect to 100 parts by weight of the thermoplastic resin is effective. Is.

本発明の太陽電池封止材には、必要に応じ、その他種々の添加剤を含有せしめることができる。このような添加剤として具体的には、架橋助剤、シランカップリング剤、紫外線吸収剤、ヒンダードフェノール系やホスファイト系の酸化防止剤、ヒンダードアミン系の光安定剤、光拡散剤、難燃剤、変色防止剤などを例示することができる。架橋助剤は、架橋反応を促進させ、熱可塑性樹脂の架橋度を高めるのに有効であり、その具体例としては、ポリアリル化合物やポリ(メタ)アクリロキシ化合物のような多不飽和化合物を例示することができる。より具体的には、トリアリルイソシアヌレート、トリアリルシアヌレート、ジアリルフタレート、ジアリルフマレート、ジアリルマレエートのようなポリアリル化合物、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレートのようなポリ(メタ)アクリロキシ化合物、ジビニルベンゼンなどを挙げることができる。架橋助剤は熱可塑性樹脂100重量部に対し、0.5〜5重量部程度の割合で使用するのが効果的である。   The solar cell encapsulant of the present invention can contain other various additives as required. Specific examples of such additives include crosslinking aids, silane coupling agents, ultraviolet absorbers, hindered phenol and phosphite antioxidants, hindered amine light stabilizers, light diffusing agents, and flame retardants. Examples thereof include discoloration inhibitors. The crosslinking aid is effective for promoting the crosslinking reaction and increasing the degree of crosslinking of the thermoplastic resin. Specific examples thereof include polyunsaturated compounds such as polyallyl compounds and poly (meth) acryloxy compounds. be able to. More specifically, polyallyl compounds such as triallyl isocyanurate, triallyl cyanurate, diallyl phthalate, diallyl fumarate, diallyl maleate, ethylene glycol diacrylate, ethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, etc. Examples include poly (meth) acryloxy compounds and divinylbenzene. It is effective to use the crosslinking aid at a ratio of about 0.5 to 5 parts by weight with respect to 100 parts by weight of the thermoplastic resin.

シランカップリング剤は、保護材や太陽電池素子等に対する接着性を向上させるのに有用であり、その例としては、アミノ基又はエポキシ基とともに、アルコキシ基のような加水分解可能な基を有する化合物を挙げることができる。シランカップリング剤として具体的には、N−(β−アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルトリメトキシシランなどを例示することができる。シランカップリング剤は、熱可塑性樹脂100重量部に対し、0.1〜5重量部程度使用することが望ましい。   Silane coupling agents are useful for improving adhesion to protective materials, solar cell elements, and the like. Examples thereof include compounds having a hydrolyzable group such as an alkoxy group together with an amino group or an epoxy group. Can be mentioned. Specific examples of the silane coupling agent include N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane, N- (β-aminoethyl) -γ-aminopropylmethyldimethoxysilane, and γ-aminopropyltriethoxy. Examples include silane, γ-glycidoxypropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, and the like. The silane coupling agent is preferably used in an amount of about 0.1 to 5 parts by weight with respect to 100 parts by weight of the thermoplastic resin.

本発明の太陽電池封止材に添加することができる紫外線吸収剤としては、ベンゾフェノン系、ベンゾトリアゾール系、トリアジン系、サリチル酸エステル系など各種タイプのものを挙げることができる。ベンゾフェノン系紫外線吸収剤としては、例えば、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−2’−カルボキシベンゾフェノン、2−ヒドロキシ−4−オクトキシベンゾフェノン、2−ヒドロキシ−4−n−ドデシルオキシベンゾフェノン、2−ヒドロキシ−4−n−オクタデシルオキシベンゾフェノン、2−ヒドロキシ−4−ベンジルオキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホベンゾフェノン、2−ヒドロキシ−5−クロロベンゾフェノン、2,4−ジヒドロキシベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノンなどを挙げることができる。   Examples of the ultraviolet absorber that can be added to the solar cell encapsulant of the present invention include various types such as benzophenone-based, benzotriazole-based, triazine-based, and salicylic acid ester-based materials. Examples of the benzophenone-based UV absorber include 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-2′-carboxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-n. -Dodecyloxybenzophenone, 2-hydroxy-4-n-octadecyloxybenzophenone, 2-hydroxy-4-benzyloxybenzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone, 2-hydroxy-5-chlorobenzophenone, 2 , 4-dihydroxybenzophenone, 2,2′-dihydroxy-4-methoxybenzophenone, 2,2′-dihydroxy-4,4′-dimethoxybenzophenone, 2,2 ′, 4,4′-tetrahydroxybenzophenone, etc. It is possible.

ベンゾトリアゾール系紫外線吸収剤としては、ヒドロキシフェニル置換ベンゾトリアゾール化合物であって、例えば、2−(2−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−5−t−ブチルフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ジメチルフェニル)ベンゾトリアゾール、2−(2−メチル−4−ヒドロキシフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−3−メチル−5−t−ブチルフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ジ−t−ブチルフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−3、5−ジメチルフェニル)−5−メトキシベンゾトリアゾール、2−(2−ヒドロキシ−3−t−ブチル−5−メチルフェニル)−5−クロロベンゾトリアゾール、2−(2−ヒドロキシ−5−t−ブチルフェニル)−5−クロロベンゾトリアゾールなどを挙げることができる。またトリアジン系紫外線吸収剤としては、2−[4,6−ビス(2,4−ジメチルフェニル)−1,3,5−トリアジン−2−イル]−5−(オクチルオキシ)フェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−(ヘキシルオキシ)フェノールなどを挙げることができる。サリチル酸エステル系としては、フェニルサリチレート、p−オクチルフェニルサリチレートなどを挙げることができる。   The benzotriazole ultraviolet absorber is a hydroxyphenyl-substituted benzotriazole compound, for example, 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-5-t-butylphenyl) Benzotriazole, 2- (2-hydroxy-3,5-dimethylphenyl) benzotriazole, 2- (2-methyl-4-hydroxyphenyl) benzotriazole, 2- (2-hydroxy-3-methyl-5-t- Butylphenyl) benzotriazole, 2- (2-hydroxy-3,5-di-t-butylphenyl) benzotriazole, 2- (2-hydroxy-3,5-dimethylphenyl) -5-methoxybenzotriazole, 2- (2-Hydroxy-3-tert-butyl-5-methylphenyl) -5-chloro Benzotriazole, 2- (2-hydroxy -5-t-butylphenyl) -5-chloro-benzotriazole and the like. Examples of triazine ultraviolet absorbers include 2- [4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl] -5- (octyloxy) phenol, 2- ( And 4,6-diphenyl-1,3,5-triazin-2-yl) -5- (hexyloxy) phenol. Examples of salicylic acid esters include phenyl salicylate and p-octylphenyl salicylate.

これらの添加剤は、熱可塑性樹脂にドライブレンドして射出成形時する方法や、すでに述べたように事前に熱可塑性樹脂に溶融混合して射出成形する方法により、射出成形品成形品に含有させることができる。また所定形状に成形した熱可塑性樹脂の射出成形品に架橋剤を含浸させるときに、架橋剤と一緒に含浸させることができる。経済的、生産的観点からは、架橋剤を含浸させるときに、架橋剤と一緒に含浸させる方法を採用するのが好ましい。   These additives are contained in injection-molded articles by dry blending with thermoplastic resins and injection molding, or as previously described, melt-mixing with thermoplastic resins in advance and injection molding. be able to. Further, when the thermoplastic resin injection molded product is impregnated with the crosslinking agent, it can be impregnated together with the crosslinking agent. From the economical and production viewpoint, it is preferable to employ a method of impregnating with the crosslinking agent when impregnating the crosslinking agent.

所定形状の射出成形品に架橋剤を含浸させることによって得られる本発明の封止材を用い、太陽電池素子を上下の保護材で固定することにより太陽電池モジュールを製作することができる。このような太陽電池モジュールとしては、種々のタイプのものを例示することができる。例えば上部透明保護材/封止材/太陽電池素子/封止材/下部保護材のように太陽電池素子の両側から封止材で挟む構成のもの、下部基板保護材の内周面上に形成させた太陽電池素子上に封止材と上部透明保護材を形成させるような構成のもの、上部透明保護材の内周面上に形成させた太陽電池素子、例えばフッ素樹脂系透明保護材材上にアモルファス太陽電池素子をスパッタリング等で作成したものの上に封止材と下部保護材を形成させるような構成のものなどを挙げることができる。   Using the sealing material of the present invention obtained by impregnating a predetermined-shaped injection-molded product with a crosslinking agent, a solar cell module can be produced by fixing solar cell elements with upper and lower protective materials. Examples of such solar cell modules include various types. For example, the upper transparent protective material / encapsulant / solar cell element / encapsulant / lower protective material sandwiched between the solar cell elements from both sides, formed on the inner peripheral surface of the lower substrate protective material A solar cell element formed on the inner peripheral surface of the upper transparent protective material, such as a fluororesin-based transparent protective material In addition, a structure in which an encapsulant and a lower protective material are formed on an amorphous solar cell element formed by sputtering or the like can be used.

太陽電池素子としては、単結晶シリコン、多結晶シリコン、アモルファスシリコンなどのシリコン系、ガリウムー砒素、銅ーインジウムーセレン、カドミウムーテルルなどのIIIーV族やIIーVI族化合物半導体系等の各種太陽電池素子を用いることができる。   Solar cell elements include single-crystal silicon, polycrystalline silicon, amorphous silicon, and other silicon systems, and gallium-arsenic, copper-indium-selenium, cadmium-tellurium, and other III-V group and II-VI group compound semiconductor systems. Various solar cell elements can be used.

太陽電池モジュールを構成する上部保護材としては、ガラス、アクリル樹脂、ポリカーボネート、ポリエステル、フッ素含有樹脂などを例示することができる。下部保護材としては、金属や各種熱可塑性樹脂フイルムなどの単体もしくは多層のシートであり、例えば、錫、アルミ、ステンレススチールなどの金属、ガラス等の無機材料、ポリエステル、無機物蒸着ポリエステル、フッ素含有樹脂、ポリオレフィンなどの1層もしくは多層の保護材を例示することができる。本発明で得られる太陽電池封止材は、これらの上部又は下部保護材に対して良好な接着性を示す。   Examples of the upper protective material constituting the solar cell module include glass, acrylic resin, polycarbonate, polyester, and fluorine-containing resin. The lower protective material is a single or multi-layer sheet of metal or various thermoplastic resin films, for example, metals such as tin, aluminum, stainless steel, inorganic materials such as glass, polyester, inorganic vapor-deposited polyester, fluorine-containing resin And a single-layer or multilayer protective material such as polyolefin. The solar cell encapsulant obtained in the present invention exhibits good adhesion to these upper or lower protective materials.

太陽電池モジュールの製造は、架橋剤が実質的に分解せず、かつ本発明の上記封止材が溶融するような温度で、太陽電池素子や保護材に該封止材を仮接着し、次いで昇温して充分な接着と封止材の架橋を行えばよい。最終的には耐熱性良好な太陽電池モジュールを得るために、封止材層におけるゲル分率(試料1gをキシレン100mlに浸漬し、110℃、24時間加熱した後、20メッシュ金網で濾過し未溶融分の質量分率を測定)が、好ましくは70〜98%、とくに好ましくは80〜95%程度になるように熱可塑性樹脂を架橋するのがよい。したがってこれら諸条件を満足できるような添加剤処方を選べばよく、例えば架橋剤等の種類及び含浸量を選択すればよい。   The solar cell module is manufactured by temporarily adhering the sealing material to the solar cell element or the protective material at a temperature at which the crosslinking agent does not substantially decompose and the sealing material of the present invention melts. The temperature may be raised and sufficient adhesion and crosslinking of the sealing material may be performed. Finally, in order to obtain a solar cell module with good heat resistance, the gel fraction in the encapsulant layer (1 g of sample was immersed in 100 ml of xylene, heated at 110 ° C. for 24 hours, filtered through a 20-mesh wire mesh, The thermoplastic resin should be cross-linked so that the mass fraction of the melt is measured) is preferably about 70 to 98%, particularly preferably about 80 to 95%. Therefore, an additive formulation that can satisfy these conditions may be selected. For example, the type of the crosslinking agent and the amount of impregnation may be selected.

以下、実施例により本発明をさらに詳細に説明する。尚、実施例で用いる原料を以下に示す。
1.原料
(1)EVA樹脂:エチレン・酢酸ビニル共重合体(酢酸ビニル含量:28重量%、MFR:15g/10分)
(2)架橋剤:2,5−ジメチル−2,5−ビス(第3ブチルパーオキシ)ヘキサン、商品名:ルパゾール101、アトフィナ吉富(株)製、1時間半減期温度:140℃
(3)架橋助剤:トリアリルシアヌレート
(4)シランカップリング剤:γ−メタクリロキシプロピルトリメトキシシラン、商品名:KBM503、信越化学(株)製
Hereinafter, the present invention will be described in more detail with reference to examples. The raw materials used in the examples are shown below.
1. Raw material (1) EVA resin: ethylene / vinyl acetate copolymer (vinyl acetate content: 28 wt%, MFR: 15 g / 10 min)
(2) Crosslinking agent: 2,5-dimethyl-2,5-bis (tert-butylperoxy) hexane, trade name: Lupazole 101, manufactured by Atofina Yoshitomi, 1 hour half-life temperature: 140 ° C.
(3) Crosslinking aid: triallyl cyanurate (4) Silane coupling agent: γ-methacryloxypropyltrimethoxysilane, trade name: KBM503, manufactured by Shin-Etsu Chemical Co., Ltd.

[実施例1]
上記EVA樹脂を、射出成形機(東芝機械(株)製IS−100E)にて温度200℃で、直径30cm、厚さ1mmのシートを成形した。金型の片面に離型性の向上とモジュール作成時の泡抜け性を考慮して、エンボスを施した。僅かなバリが発生したが、ほとんどロスはなく、10枚のシートを得た。
上記架橋剤、架橋助剤及びシランカップリング剤を1.2:2:0.1の割合で混合し、1枚のシート66.4gに混合した溶液2.2gを取り、バーコーターNo20を用いて塗布した。溶液は、塗布後5分程度でシート中に含浸された。混合溶液は適量採取可能であり、残りは冷蔵庫保管することで、次試験に使用可能であった。
塗布後、1週間程度で溶液はシート中に均一に拡散し、モジュールへの貼り合わせへの使用が可能であった。
[比較例1]
上記EVA樹脂5000g、架橋剤60g、架橋助剤100g及びシランカップリング剤5gを混合し、含浸のため一昼夜放置した。得られた含浸ペレットを、押出機(L/D=26、フルフライトスクリュー、圧縮比2.6)を用いて、加工温度100℃にて混練および厚み1mm、幅35cmでシート化した。
得られたシート長310cm(約1012g)から直径30cmの形状のシートを10枚打ち抜いた。この段階で約355gのロスが発生した。このロスには、高コストの添加剤が含まれている。
[Example 1]
A sheet having a diameter of 30 cm and a thickness of 1 mm was molded from the EVA resin with an injection molding machine (IS-100E manufactured by Toshiba Machine Co., Ltd.) at a temperature of 200 ° C. Embossing was performed on one side of the mold in consideration of the improvement of mold release and foam removal at the time of module creation. Slight burrs occurred, but there was almost no loss, and 10 sheets were obtained.
The above crosslinking agent, crosslinking assistant and silane coupling agent were mixed at a ratio of 1.2: 2: 0.1, and 2.2 g of the solution mixed with 66.4 g of one sheet was taken, and bar coater No20 was used. And applied. The solution was impregnated in the sheet about 5 minutes after application. An appropriate amount of the mixed solution could be collected, and the rest could be used in the next test by storing in the refrigerator.
In about one week after application, the solution was uniformly diffused in the sheet and could be used for attaching to the module.
[Comparative Example 1]
5000 g of the above EVA resin, 60 g of the crosslinking agent, 100 g of the crosslinking aid and 5 g of the silane coupling agent were mixed and left for a whole day and night for impregnation. The obtained impregnated pellets were kneaded at a processing temperature of 100 ° C. and formed into a sheet having a thickness of 1 mm and a width of 35 cm using an extruder (L / D = 26, full flight screw, compression ratio 2.6).
Ten sheets having a diameter of 30 cm were punched out from the obtained sheet length of 310 cm (about 1012 g). At this stage, a loss of about 355 g occurred. This loss includes high cost additives.

Claims (2)

150〜250℃の温度で射出成形法によりエチレン・酢酸ビニル共重合体からなる熱可塑性樹脂を三次元的曲面体形状あるいは三角柱形状の所定形状に成形した後、架橋剤を含浸させることを特徴とする太陽電池封止材の製造方法。 A thermoplastic resin composed of an ethylene / vinyl acetate copolymer is molded into a predetermined shape of a three-dimensional curved surface or a triangular prism by an injection molding method at a temperature of 150 to 250 ° C., and then impregnated with a crosslinking agent. A method for manufacturing a solar cell encapsulant. 上記熱可塑性樹脂が、エチレン単位含有量が60〜85重量%、190℃、2160g荷重におけるメルトフローレート(JIS K7210−1999)が3〜100g/10分のエチレン・酢酸ビニル共重合体である請求項1記載の太陽電池封止材の製造方法。 The thermoplastic resin is an ethylene / vinyl acetate copolymer having an ethylene unit content of 60 to 85% by weight, a melt flow rate (JIS K7210-1999) at 190 ° C. and a load of 2160 g of 3 to 100 g / 10 min. Item 10. A method for producing a solar cell encapsulant according to Item 1.
JP2004380509A 2004-12-28 2004-12-28 Method for producing solar cell encapsulant Active JP4882124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004380509A JP4882124B2 (en) 2004-12-28 2004-12-28 Method for producing solar cell encapsulant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004380509A JP4882124B2 (en) 2004-12-28 2004-12-28 Method for producing solar cell encapsulant

Publications (2)

Publication Number Publication Date
JP2006186237A JP2006186237A (en) 2006-07-13
JP4882124B2 true JP4882124B2 (en) 2012-02-22

Family

ID=36739110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004380509A Active JP4882124B2 (en) 2004-12-28 2004-12-28 Method for producing solar cell encapsulant

Country Status (1)

Country Link
JP (1) JP4882124B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7902452B2 (en) 2004-06-17 2011-03-08 E. I. Du Pont De Nemours And Company Multilayer ionomer films for use as encapsulant layers for photovoltaic cell modules
WO2006063223A2 (en) * 2004-12-07 2006-06-15 E.I. Dupont De Nemours And Company Multilayer composite films and articles prepared therefrom
US8350147B2 (en) * 2005-02-10 2013-01-08 Du Pont-Mitsui Polychemicals Co., Ltd. Process for producing encapsulating material for solar cell
US7851694B2 (en) 2006-07-21 2010-12-14 E. I. Du Pont De Nemours And Company Embossed high modulus encapsulant sheets for solar cells
US7847184B2 (en) 2006-07-28 2010-12-07 E. I. Du Pont De Nemours And Company Low modulus solar cell encapsulant sheets with enhanced stability and adhesion
US8772624B2 (en) 2006-07-28 2014-07-08 E I Du Pont De Nemours And Company Solar cell encapsulant layers with enhanced stability and adhesion
US8168885B2 (en) 2007-02-12 2012-05-01 E.I. Du Pont De Nemours And Company Low modulus solar cell encapsulant sheets with enhanced stability and adhesion
US8691372B2 (en) 2007-02-15 2014-04-08 E I Du Pont De Nemours And Company Articles comprising high melt flow ionomeric compositions
US20080196760A1 (en) 2007-02-15 2008-08-21 Richard Allen Hayes Articles such as safety laminates and solar cell modules containing high melt flow acid copolymer compositions
US8080726B2 (en) 2007-04-30 2011-12-20 E. I. Du Pont De Nemours And Company Solar cell modules comprising compositionally distinct encapsulant layers
US8637150B2 (en) 2007-10-01 2014-01-28 E I Du Pont De Nemours And Company Multilayer acid terpolymer encapsulant layers and interlayers and laminates therefrom
US8319094B2 (en) 2007-11-16 2012-11-27 E I Du Pont De Nemours And Company Multilayer terionomer encapsulant layers and solar cell laminates comprising the same
JP5152986B2 (en) * 2008-09-29 2013-02-27 積水フイルム株式会社 Solar cell sealing sheet
EP2342239B1 (en) 2008-10-31 2020-04-15 Performance Materials NA, Inc. High-clarity ionomer compositions and articles comprising the same
US8080727B2 (en) 2008-11-24 2011-12-20 E. I. Du Pont De Nemours And Company Solar cell modules comprising an encapsulant sheet of a blend of ethylene copolymers
CN102325813B (en) 2008-12-30 2015-03-18 纳幕尔杜邦公司 High-clarity blended ionomer compositions and articles comprising the same
BRPI0918690A2 (en) 2008-12-31 2017-05-30 Du Pont composition and article prepared with injection molding
US20120024376A1 (en) * 2009-08-07 2012-02-02 Toyochem Co., Ltd. Method for producing resin composition for solar cell sealing material, resin composition for solar cell sealing material, solar cell sealing material, and solar cell module
JP5528232B2 (en) * 2010-06-28 2014-06-25 三井化学東セロ株式会社 Manufacturing method of solar cell module
JP6335677B2 (en) * 2014-06-23 2018-05-30 三菱電機株式会社 Solar cell module manufacturing equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59138234A (en) * 1983-01-28 1984-08-08 Du Pont Mitsui Polychem Co Ltd Preparation of crosslinked sheet
JPH08283696A (en) * 1995-04-14 1996-10-29 Haishiito Kogyo Kk Sheet for sealing solar cell and its production
JP2001332754A (en) * 2000-05-23 2001-11-30 Fujimori Kogyo Co Ltd Sealing member for ultraviolet hardening solar cell and solar cell
JP4336442B2 (en) * 2000-05-23 2009-09-30 キヤノン株式会社 Solar cell module
JP2002083992A (en) * 2000-09-07 2002-03-22 Nissan Motor Co Ltd Solar cell panel and its manufacturing method
JP2003046104A (en) * 2001-08-02 2003-02-14 Dainippon Printing Co Ltd Solar battery module

Also Published As

Publication number Publication date
JP2006186237A (en) 2006-07-13

Similar Documents

Publication Publication Date Title
JP4882124B2 (en) Method for producing solar cell encapsulant
JP5219504B2 (en) Method for producing solar cell encapsulant
US8053086B2 (en) Encapsulating material for solar cell
JP2006190865A (en) Solar cell sealing material
JP2006190867A (en) Solar cell sealing material
JP2006210906A (en) Material for sealing solar cells
JPWO2007094445A1 (en) Solar cell encapsulant
JP6152099B2 (en) Solar cell module
CN101087842A (en) Encapsulating material for solar cell
JP4912122B2 (en) Crosslinkable ethylene copolymer composition, sheet for sealing solar cell element comprising the copolymer composition, and solar cell module using the same
JP2006303233A (en) Adhesive sheet for solar cell
JP6172158B2 (en) Resin composition for solar cell encapsulant
JP2006186233A (en) Solar cell sealing material
JP4977111B2 (en) Method for separating and collecting solar cell modules
JPH06299125A (en) Adhesive sheet for solar cell
JP5041888B2 (en) Sheet for solar cell encapsulant
JP4526022B2 (en) Laminate and its use
JP2010153609A (en) Solar cell sealing sheet, method of manufacturing the same and use thereof
JP6107369B2 (en) Laminate for solar cell and solar cell module produced using the same
JP6163396B2 (en) Solar cell encapsulant sheet and solar cell module
KR101126600B1 (en) Cmposition for solar battery, adhesive sheet and solar battery using the same
JP5484494B2 (en) Solar cell encapsulant
JP6117582B2 (en) Solar cell encapsulant sheet and solar cell module
JP2014062174A (en) Adhesive sheet and solar cell using the same
KR20100079901A (en) An ethylene-vinylacetate film and a solar cell module comprising the ethylene-vinylacetate film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20111118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4882124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250