JP4871499B2 - Solid-state imaging device and imaging system using the solid-state imaging device - Google Patents

Solid-state imaging device and imaging system using the solid-state imaging device Download PDF

Info

Publication number
JP4871499B2
JP4871499B2 JP2004257254A JP2004257254A JP4871499B2 JP 4871499 B2 JP4871499 B2 JP 4871499B2 JP 2004257254 A JP2004257254 A JP 2004257254A JP 2004257254 A JP2004257254 A JP 2004257254A JP 4871499 B2 JP4871499 B2 JP 4871499B2
Authority
JP
Japan
Prior art keywords
film
solid
imaging device
state imaging
disposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004257254A
Other languages
Japanese (ja)
Other versions
JP2006073882A5 (en
JP2006073882A (en
Inventor
哲也 板野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2004257254A priority Critical patent/JP4871499B2/en
Application filed by Canon Inc filed Critical Canon Inc
Priority to US11/219,007 priority patent/US7453109B2/en
Publication of JP2006073882A publication Critical patent/JP2006073882A/en
Priority to US12/250,282 priority patent/US7745247B2/en
Priority to US12/780,811 priority patent/US8252614B2/en
Publication of JP2006073882A5 publication Critical patent/JP2006073882A5/ja
Application granted granted Critical
Publication of JP4871499B2 publication Critical patent/JP4871499B2/en
Priority to US13/555,355 priority patent/US20120288979A1/en
Priority to US14/067,817 priority patent/US8878268B2/en
Priority to US14/495,745 priority patent/US9269738B2/en
Priority to US14/992,922 priority patent/US9450011B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Light Receiving Elements (AREA)

Description

本発明は光電変換装置にかかわるものであって、特に層内レンズ構造を有する装置に関するものである。   The present invention relates to a photoelectric conversion device, and more particularly to a device having an in-layer lens structure.

近年、光電変換装置の画素数の増加や、イメージサイズの縮小がすすんでいる。このような光電変換装置においては、オンチップレンズを形成し、受光部へ光を集光させる構成が用いられている(特許文献1)。オンチップレンズを設けることによって、入射光を光電変換素子の受光部に集光させることが可能となり、光電変換に寄与する光が増加する。   In recent years, an increase in the number of pixels of a photoelectric conversion device and a reduction in image size have been promoted. In such a photoelectric conversion device, a configuration in which an on-chip lens is formed and light is condensed on a light receiving unit is used (Patent Document 1). By providing the on-chip lens, incident light can be condensed on the light receiving portion of the photoelectric conversion element, and light contributing to photoelectric conversion increases.

しかしながら、更に有効画素領域が大きくなった場合や画素面積の減少に伴い、オンチップレンズを設けた構成においても、受光領域の位置によって光の入射角度が異なり、それが、周辺画素の受光光量の低減につながる場合がある。更に、1つの画素が受光できる光量が光電変換素子の面積の減少に伴い減少し、また、画素周期の縮小に伴って斜め入射光に対する感度の低下が著しくなる。図1は撮像装置の画素領域を示しており、図2は単位画素の断面図を示している。単位画素は、半導体基板内に形成された光電変換素子と、本例ではメタル層(第1の配線層)1、メタル層(第2の配線層)2、最上メタル層(第3の配線層)3、および第1の絶縁層4、平坦化のために設けられた有機材料層5とカラーフィルタ層6、オンチップレンズ7から構成される。ここで、図1中のA点(受光領域の中央部)、B点(受光領域の周辺部)における画素に光が入射する様子を図3A、図3Bに模式的に示す。図3Bでは中心部に比べて光軸が角度をもっているため、オンチップレンズが画素に対して偏心されている。ここでは図中に示される光軸に平行な入射光成分を示しているが実際には光軸に対して角度をもった入射光成分も存在し、入射光の角度分布を考慮した偏心量が決定されている。ここで、図3A、図3Bの比較により、図3Bでは入射光を光電変換素子の受光領域に集光できず、感度が低下する。これは、撮像装置の画素領域において中央部の画素は感度が高く、端部の画素は感度が低い、すなわち周辺光量低下という問題となる。   However, when the effective pixel area is further increased or the pixel area is decreased, the incident angle of light differs depending on the position of the light receiving area even in the configuration in which the on-chip lens is provided. May lead to reduction. Furthermore, the amount of light that can be received by one pixel decreases as the area of the photoelectric conversion element decreases, and the sensitivity to obliquely incident light decreases significantly as the pixel period decreases. FIG. 1 shows a pixel region of the imaging device, and FIG. 2 shows a cross-sectional view of a unit pixel. The unit pixel includes a photoelectric conversion element formed in a semiconductor substrate, and in this example, a metal layer (first wiring layer) 1, a metal layer (second wiring layer) 2, and an uppermost metal layer (third wiring layer). 3), a first insulating layer 4, an organic material layer 5 provided for planarization, a color filter layer 6, and an on-chip lens 7. Here, FIG. 3A and FIG. 3B schematically show how light enters the pixels at point A (the center of the light receiving region) and point B (the peripheral portion of the light receiving region) in FIG. In FIG. 3B, since the optical axis has an angle as compared with the center portion, the on-chip lens is decentered with respect to the pixel. Here, the incident light component parallel to the optical axis shown in the figure is shown, but actually there is also an incident light component having an angle with respect to the optical axis, and the amount of eccentricity considering the angular distribution of the incident light is It has been decided. Here, by comparing FIG. 3A and FIG. 3B, in FIG. 3B, incident light cannot be condensed on the light receiving region of the photoelectric conversion element, and sensitivity is lowered. This is a problem that in the pixel region of the imaging device, the central pixel has high sensitivity and the end pixel has low sensitivity, that is, the peripheral light amount is reduced.

この問題点を改善するために光電変換装置表面に形成する光電変換素子上に層内レンズを形成した光電変換装置が特許文献2,3に開示されている。   In order to improve this problem, Patent Documents 2 and 3 disclose a photoelectric conversion apparatus in which an in-layer lens is formed on a photoelectric conversion element formed on the surface of the photoelectric conversion apparatus.

ここで、本明細中において、“層内レンズ”とは、“光電変換装置表面(受光面を有する半導体基板表面)と空気界面の間にあり、層間膜中にあるレンズ構造”と定義する。カラーフィルタに接して設けられていてもよい。   Here, in this specification, the “in-layer lens” is defined as “a lens structure that is between the photoelectric conversion device surface (the surface of the semiconductor substrate having the light receiving surface) and the air interface and is in the interlayer film”. It may be provided in contact with the color filter.

従来の層内レンズを有する光電変換装置の例を特許文献2を引用して図4に示す。401が層内レンズである。図4に示した構造とすることにより、図1中のA点、B点における画素に光が入射する様子は図5A、図5Bのようになる。図5Bと図3Bとの比較において、図5Bでは層内レンズ構造により半導体基板とレンズ間の距離を小さくすることができ、斜め入射光に対する感度落ちを低減させる、すなわち撮像装置の周辺光量落ちを低減することが可能である。
特開平04−044267号公報 特開平11−040787号公報 アメリカ合衆国特許公報6221687
An example of a conventional photoelectric conversion device having an intralayer lens is shown in FIG. Reference numeral 401 denotes an in-layer lens. With the structure shown in FIG. 4, the state in which light is incident on the pixels at points A and B in FIG. 1 is as shown in FIGS. 5A and 5B. In comparison between FIG. 5B and FIG. 3B, in FIG. 5B, the distance between the semiconductor substrate and the lens can be reduced by the intra-layer lens structure, and the sensitivity loss against obliquely incident light is reduced, that is, the peripheral light amount of the imaging device is reduced. It is possible to reduce.
Japanese Patent Laid-Open No. 04-044267 JP-A-11-040787 United States Patent Publication 6221687

ここで、層内レンズに要求される条件として、次のような項目が挙げられる。層内レンズが集光能力を有するためには、層内レンズの屈折率は層内レンズの直上層の屈折率と異なる必要がある。屈折率1.4〜1.7の有機材料で形成されることが多く、層内レンズの材料としては、これらに対して十分な屈折率差を有するシリコン窒化膜(屈折率2程度)が好適に用いられる。   Here, the following items are listed as conditions required for the in-layer lens. In order for the in-layer lens to have a light collecting ability, the refractive index of the in-layer lens needs to be different from the refractive index of the layer immediately above the in-layer lens. It is often formed of an organic material having a refractive index of 1.4 to 1.7, and a silicon nitride film (with a refractive index of about 2) having a sufficient refractive index difference with respect to these is suitable as the material for the inner lens. Used for.

しかしながら、このように屈折率の大きな材質による層内レンズを形成する場合に、光の多重干渉による影響という問題がある。これは、半導体基板表面の反射光成分が層内レンズ下面において再反射することによって干渉成分となることによって生じるものであり、図6に示すように波長−透過率特性上でうねりをもつ。撮像装置のチップ内で半導体基板表面から層内レンズ下面までの距離が分布を持つことにより波長−透過率特性上のうねりがチップ内で分布を持つこととなる。これは、すなわちイメージセンサの特性としては、チップ内において色にムラが生じる。特に、第1の絶縁層4をCMP(Chemical Mechanical Polishing)で平坦化を行ったときに第1の絶縁層4の厚さがチップ内で分布をもつ場合があり、特に問題が顕著となることがあることを見出した。   However, in the case of forming an inner lens made of a material having a large refractive index as described above, there is a problem of an influence due to multiple interference of light. This occurs because the reflected light component on the surface of the semiconductor substrate is re-reflected on the lower surface of the in-layer lens and becomes an interference component, and as shown in FIG. Since the distance from the surface of the semiconductor substrate to the lower surface of the in-layer lens has a distribution in the chip of the imaging device, the undulation on the wavelength-transmittance characteristic has a distribution in the chip. In other words, as a characteristic of the image sensor, color unevenness occurs in the chip. In particular, when the first insulating layer 4 is flattened by CMP (Chemical Mechanical Polishing), the thickness of the first insulating layer 4 may have a distribution in the chip, and the problem becomes particularly noticeable. Found that there is.

本発明は上記課題を解決するためになされたものであり、光電変換素子を有する半導体基板と、半導体基板の上に配された配線層と、配線層の上に配され、CMPによって平坦化が施された絶縁層と、絶縁層の上に配され、絶縁層よりも高い屈折率を有する絶縁膜と、を有する固体撮像装置において、絶縁層の上面に接し、絶縁膜の下面に接して配された第1の反射防止膜と、半導体基板の上に、半導体基板に接して配された第2の反射防止膜と、を有することを特徴とする。また、本発明は、光電変換素子を有する半導体基板と、半導体基板の上に配された配線層と、配線層の上に配され、CMPによって平坦化が施されたシリコン酸化膜と、シリコン酸化膜の上に配された第1のシリコン窒化膜と、を有する固体撮像装置において、シリコン酸化膜の上面に接して、第1のシリコン窒化膜の下面に接して配されたシリコン酸窒化膜と、半導体基板の表面に接して配されたシリコン酸化膜と、シリコン酸化膜の上面に接して配された第2のシリコン窒化膜と、を有することを特徴とする。 The present invention has been made to solve the above-described problems. A semiconductor substrate having a photoelectric conversion element, a wiring layer disposed on the semiconductor substrate, a wiring layer disposed on the wiring layer, and planarized by CMP. In a solid-state imaging device having an applied insulating layer and an insulating film disposed on the insulating layer and having a higher refractive index than the insulating layer, the insulating layer is in contact with the upper surface of the insulating layer and in contact with the lower surface of the insulating film. And a second antireflection film disposed on and in contact with the semiconductor substrate on the semiconductor substrate. The present invention also includes a semiconductor substrate having a photoelectric conversion element, a wiring layer disposed on the semiconductor substrate, a silicon oxide film disposed on the wiring layer and planarized by CMP, and silicon oxide. And a silicon oxynitride film disposed in contact with the upper surface of the silicon oxide film and in contact with the lower surface of the first silicon nitride film, in the solid-state imaging device having the first silicon nitride film disposed on the film. And a silicon oxide film disposed in contact with the surface of the semiconductor substrate and a second silicon nitride film disposed in contact with the upper surface of the silicon oxide film.

本発明によれば、屈折率の大きな材質による層内レンズを形成した場合に顕著となる波長−透過率特性上のうねりを軽減することが可能となり、撮像装置の色ムラ特性を悪化させることなく層内レンズ構造による光学特性の向上を得ることが可能となる。   According to the present invention, it is possible to reduce the waviness on the wavelength-transmittance characteristic that becomes noticeable when an intralayer lens is formed of a material having a large refractive index, and without deteriorating the color unevenness characteristic of the imaging apparatus. It is possible to obtain an improvement in optical characteristics due to the in-layer lens structure.

上述したように層内レンズとは、光電変換装置表面、つまり光電変換装置と空気界面よりも半導体基板側に形成されたレンズ構造と定義する。具体的には、光電変換をなす受光部の直上において層間膜中に形成される集光機能を有する部材である。   As described above, the in-layer lens is defined as a lens structure formed on the surface of the photoelectric conversion device, that is, on the semiconductor substrate side with respect to the photoelectric conversion device and the air interface. Specifically, it is a member having a light condensing function formed in the interlayer film immediately above the light receiving portion that performs photoelectric conversion.

本発明の特徴とする構成は、層内レンズと最上配線層の間に配された絶縁層との界面で起こる反射が小さくなるように、この層内レンズと絶縁層の間に界面における反射を低減させるための反射防止膜を設けるものである。特に、通常用いられる光電変換素子が光電変換可能な入射波長に対して、好適に界面での反射を低減させるために、その膜厚を0.05〜1.0μmとしたものである。以下具体的に実施例をあげて本発明の特徴となる構成を詳細に説明する。なお本発明において、配線、層の位置関係の説明で“上”、“下”とした場合には、下とはその構造体に対して半導体基板側の方向を示し、上とはその構造体に対して半導体基板から離れていく方向を示す。以下実施例において配線層の数は全て3層で説明するが、これに限られるものではなく、センサの形態に応じて、単層や更に配線を増やすことも可能である。   The feature of the present invention is that the reflection at the interface between the inner lens and the insulating layer is reduced so that the reflection occurring at the interface between the inner lens and the insulating layer disposed between the uppermost wiring layer is reduced. An antireflection film for reducing the thickness is provided. In particular, the film thickness is set to 0.05 to 1.0 μm in order to suitably reduce reflection at the interface with respect to an incident wavelength at which a commonly used photoelectric conversion element can perform photoelectric conversion. In the following, the configuration that characterizes the present invention will be described in detail with specific examples. In the present invention, when “upper” and “lower” are used in the description of the positional relationship between wirings and layers, the lower indicates the direction of the semiconductor substrate with respect to the structure, and the upper indicates the structure. Indicates a direction away from the semiconductor substrate. In the following embodiments, the number of wiring layers will be described as all three. However, the number of wiring layers is not limited to this, and it is possible to increase the number of single layers or further wiring according to the form of the sensor.

[実施例1]
本発明の第1の実施例を図7にて説明する。背景技術において説明した、図2の構成と同様の機能を有する場合には、同様の符号を付し説明は省く。本図は単位画素の断面図である。半導体基板上に形成された光電変換素子と、第1の配線層1、第2の配線層2、および最上配線(第3の配線)層とを有し、最上配線層3上に、層間絶縁層としてのシリコン酸化膜4(屈折率1.4〜1.5)、シリコン窒化膜からなる層内レンズ10(屈折率1.9〜2.1)を有し、層内レンズとシリコン酸化膜間に界面での反射を低減させるための反射防止膜9を配している。層内レンズ10の直上にシリコン酸化膜と異なる屈折率を有する平坦化膜として形成される有機材料層5、該有機材料と同一の屈折率を有する有機材料より成るカラーフィルタ6、更に同一の屈折率を有する平坦層7とオンチップレンズ8により構成される光電変換装置である。そして、反射防止層の膜厚が0.05μm〜1.0μmである。ここで反射防止層とは、近接する膜と異なる屈折率を有し、膜と膜の界面で起こる反射を低減させることを目的として用いられるものである。
[Example 1]
A first embodiment of the present invention will be described with reference to FIG. 2 having the same function as the configuration of FIG. 2 described in the background art, the same reference numerals are given and description thereof is omitted. This figure is a sectional view of a unit pixel. A photoelectric conversion element formed on a semiconductor substrate, a first wiring layer 1, a second wiring layer 2, and an uppermost wiring (third wiring) layer are provided. Interlayer insulation is provided on the uppermost wiring layer 3. It has a silicon oxide film 4 (refractive index: 1.4 to 1.5) as a layer and an inner lens 10 (refractive index: 1.9 to 2.1) made of a silicon nitride film. An antireflection film 9 for reducing reflection at the interface is disposed therebetween. An organic material layer 5 formed as a planarizing film having a refractive index different from that of the silicon oxide film immediately above the intralayer lens 10, a color filter 6 made of an organic material having the same refractive index as the organic material, and the same refraction This is a photoelectric conversion device composed of a flat layer 7 having a refractive index and an on-chip lens 8. And the film thickness of an antireflection layer is 0.05 micrometer-1.0 micrometer. Here, the antireflection layer has a refractive index different from that of the adjacent film, and is used for the purpose of reducing reflection occurring at the interface between the films.

本実施例においては、発明の基本構成、すなわち層内レンズと、該層内レンズと最上配線層上に設けられた層間絶縁層としてのシリコン酸化膜間に設けられた絶縁層(酸窒化シリコン膜)を有する構成に、更に層内レンズ上にカラーフィルタを形成する際の平坦化膜としての有機材料膜、カラーフィルタ、オンチップレンズを形成する際の平坦化膜、オンチップレンズを含んだ構成となっている。   In this embodiment, the basic structure of the invention, that is, an in-layer lens and an insulating layer (silicon oxynitride film) provided between the in-layer lens and a silicon oxide film as an interlayer insulating layer provided on the uppermost wiring layer ), An organic material film as a planarizing film when forming a color filter on the inner lens, a color filter, a planarizing film when forming an on-chip lens, and an on-chip lens It has become.

ここで、特許文献3においては、シリコン窒化膜より成る層内レンズ構造を形成するとともに、層内レンズの下に応力によるストレスの緩和層として酸窒化シリコン膜が2.5μm〜3.5μmの膜厚で形成される。   Here, in Patent Document 3, an intra-layer lens structure made of a silicon nitride film is formed, and a silicon oxynitride film is a film having a thickness of 2.5 μm to 3.5 μm as a stress relaxation layer under the intra-layer lens. Formed with thickness.

しかし、半導体基板から層内レンズの距離を小さくすることが光学特性向上の要点となることを考慮するに、層内レンズの下に形成する膜は可能な限り薄いことが望ましい。   However, considering that reducing the distance from the semiconductor substrate to the inner lens is a key point for improving the optical characteristics, it is desirable that the film formed under the inner lens is as thin as possible.

本発明で反射防止層として用いられる酸窒化シリコン膜の膜厚Dの条件は、
2・n・D=λ/2・(2・k−1)
(λ:波長,n:酸窒化シリコン膜の屈折率,k:任意の自然数)
の反射防止条件を満たす膜厚Dである。酸窒化シリコン膜の屈折率が1.6〜1.8程度であり、波長が可視光のおよそ0.4μm〜0.8μmであることを考慮すると、反射防止条件を満たす最低膜厚(上式でk=1に対応)は、およそ0.05μm〜0.1μm程度となる。光学特性、反射防止条件、製造ばらつきを考慮することにより、反射防止層として用いられる酸窒化シリコン膜の膜厚は0.05μm〜1.0μmに設定することが望ましい。
The condition of the film thickness D of the silicon oxynitride film used as the antireflection layer in the present invention is as follows:
2 · n · D = λ / 2 · (2 · k-1)
(Λ: wavelength, n: refractive index of silicon oxynitride film, k: arbitrary natural number)
The film thickness D satisfies the antireflection condition. Considering that the refractive index of the silicon oxynitride film is about 1.6 to 1.8 and the wavelength is about 0.4 μm to 0.8 μm of visible light, the minimum film thickness that satisfies the antireflection condition (the above formula Corresponds to k = 1) is approximately 0.05 μm to 0.1 μm. In consideration of optical characteristics, antireflection conditions, and manufacturing variations, the thickness of the silicon oxynitride film used as the antireflection layer is preferably set to 0.05 μm to 1.0 μm.

本例では反射防止層の膜厚は波長−透過率特性上のうねりが大きく、かつ撮像装置の特性上重要である波長0.7μm付近で反射防止条件を満足する0.1μm、0.3μm、あるいは0.5μm程度とした。この場合の波長−透過率特性を図8に示す。図6と比較して波長−透過率特性上のうねりが軽減されていることが確認される。本例においては波長0.7μm付近での反射防止条件を満足するよう設定されているが、本発明は撮像装置の用途、あるいは半導体基板内の分光感度特性により他の波長での最適化も考えられるものであり、層内レンズと最上配線上の絶縁層との界面における反射を低減するものであればよい。   In this example, the film thickness of the antireflection layer is 0.1 μm, 0.3 μm, which satisfies the antireflection conditions in the vicinity of a wavelength of 0.7 μm, which has a large wave in the wavelength-transmittance characteristics and is important in the characteristics of the imaging device. Or about 0.5 μm. The wavelength-transmittance characteristics in this case are shown in FIG. It is confirmed that the undulation on the wavelength-transmittance characteristic is reduced as compared with FIG. In this example, it is set so as to satisfy the antireflection condition near the wavelength of 0.7 μm. However, the present invention considers optimization at other wavelengths depending on the use of the imaging device or the spectral sensitivity characteristics in the semiconductor substrate. What is necessary is just to reduce the reflection at the interface between the in-layer lens and the insulating layer on the uppermost wiring.

[実施例2]
本発明の第2の実施例を図9にて説明する。本図は単位画素の断面図である。第1の実施例との差異は表面にオンチップレンズが形成されていない本図で示される構造においても本発明は有効である。
[Example 2]
A second embodiment of the present invention will be described with reference to FIG. This figure is a sectional view of a unit pixel. The difference from the first embodiment is that the present invention is effective even in the structure shown in this figure in which no on-chip lens is formed on the surface.

[実施例3]
本発明の第3の実施例を図10にて説明する。本図は単位画素の断面図である。第1の実施例と異なる点は、更に、半導体基板表面に第2の反射防止膜が形成されている点である。本例では、半導体基板にシリコンが用いられる。第2の反射防止膜はシリコン基板表面のシリコン酸化物およびシリコン酸化物上に形成されるシリコン窒化物より成る。その膜厚は各々およそ5nm〜100nmの範囲となっている。この第2の反射防止膜により半導体基板表面の反射光成分すなわち干渉成分を低減することができ、さらに波長−透過率特性上のうねりを軽減することが可能となる。ただし、ここで用いられる反射防止膜は、層内レンズ下に用いられる第1の反射防止膜とは異なる層構成となっている。これは、第1の反射防止膜は、入射光及び第1の反射防止膜を透過した後に、第1の反射防止膜よりも下層の界面によって反射された反射光に対しても反射防止の機能を有している必要があり、第2の反射防止膜は、該第2の反射防止膜を透過した後には、半導体基板内の受光部等により、光は吸収されて光電変換されるため、第2の反射防止膜よりも下層(半導体基板)からの反射光を考慮する必要がないためである。すなわち、第一の反射防止膜は図6で示したような波長−透過率特性を改善するために設けられており、第2の反射防止膜はこの必要がないために構造が異なるのである。本発明は他の構成の反射防止膜にも適用されるものである。
[Example 3]
A third embodiment of the present invention will be described with reference to FIG. This figure is a sectional view of a unit pixel. The difference from the first embodiment is that a second antireflection film is further formed on the surface of the semiconductor substrate. In this example, silicon is used for the semiconductor substrate. The second antireflection film is made of silicon oxide on the surface of the silicon substrate and silicon nitride formed on the silicon oxide. The film thicknesses are each in the range of approximately 5 nm to 100 nm. The second antireflection film can reduce the reflected light component, that is, the interference component on the surface of the semiconductor substrate, and can further reduce the undulation in the wavelength-transmittance characteristics. However, the antireflection film used here has a layer structure different from that of the first antireflection film used under the inner lens. This is because the first antireflection film functions to prevent the reflection of light reflected by the lower layer interface of the first antireflection film after passing through the incident light and the first antireflection film. After the second antireflection film has passed through the second antireflection film, the light is absorbed and photoelectrically converted by the light receiving portion in the semiconductor substrate, etc. This is because it is not necessary to consider the reflected light from the lower layer (semiconductor substrate) than the second antireflection film. That is, the first antireflection film is provided in order to improve the wavelength-transmittance characteristics as shown in FIG. 6, and the second antireflection film does not need this, so the structure is different. The present invention is also applicable to antireflection films having other configurations.

(デジタルカメラへの応用)
図11は、本発明による固体撮像装置をカメラに応用する場合の回路ブロックの例を示したものである。撮影レンズ1002の手前にはシャッター1001があり、露出を制御する。絞り1003により必要に応じ光量を制御し、固体撮像装置1004に結像させる。固体撮像装置1004から出力された信号は信号処理回路1005で処理され、A/D変換器1006によりアナログ信号からディジタル信号に変換される。出力されるディジタル信号はさらに信号処理部1007で演算処理される。処理されたディジタル信号はメモリ1010に蓄えられたり、外部I/F1013を通して外部の機器に送られる。固体撮像装置1004、撮像信号処理回路1005、A/D変換器1006、信号処理部1007はタイミング発生部1008により制御される他、システム全体は全体制御部・演算部1009で制御される。記録媒体1012に画像を記録するために、出力ディジタル信号は全体制御部・演算部で制御される記録媒体制御I/F部1011を通して、記録される。
(Application to digital cameras)
FIG. 11 shows an example of a circuit block when the solid-state imaging device according to the present invention is applied to a camera. A shutter 1001 is provided in front of the taking lens 1002 and controls exposure. The amount of light is controlled by the diaphragm 1003 as necessary, and an image is formed on the solid-state imaging device 1004. A signal output from the solid-state imaging device 1004 is processed by a signal processing circuit 1005 and converted from an analog signal to a digital signal by an A / D converter 1006. The output digital signal is further processed by a signal processing unit 1007. The processed digital signal is stored in the memory 1010 or sent to an external device through the external I / F 1013. The solid-state imaging device 1004, the imaging signal processing circuit 1005, the A / D converter 1006, and the signal processing unit 1007 are controlled by a timing generation unit 1008, and the entire system is controlled by an overall control unit / arithmetic unit 1009. In order to record an image on the recording medium 1012, the output digital signal is recorded through a recording medium control I / F unit 1011 controlled by the overall control unit / arithmetic unit.

イメージセンサの画素領域を示す概念図である。It is a conceptual diagram which shows the pixel area | region of an image sensor. 単位画素の断面図である。It is sectional drawing of a unit pixel. 図2の単位画素に光が入射する様子を示した概念図である。It is the conceptual diagram which showed a mode that light injects into the unit pixel of FIG. 層内レンズを有する単位画素の断面図である。It is sectional drawing of the unit pixel which has an in-layer lens. 図3の単位画素に光が入射する様子を示した概念図である。It is the conceptual diagram which showed a mode that light injects into the unit pixel of FIG. 従来技術における入射光の波長と透過率との関係を示したグラフである。It is the graph which showed the relationship between the wavelength of the incident light in the prior art, and the transmittance | permeability. 本発明の第一の実施例を説明する単位画素の断面図である。It is sectional drawing of the unit pixel explaining the 1st Example of this invention. 本発明の入射光の波長と透過率との関係を示したグラフである。It is the graph which showed the relationship between the wavelength of the incident light of this invention, and the transmittance | permeability. 本発明の第二の実施例を説明する単位画素の断面図である。It is sectional drawing of the unit pixel explaining the 2nd Example of this invention. 本発明の第三の実施例を説明する単位画素の断面図である。It is sectional drawing of the unit pixel explaining the 3rd Example of this invention. 第一〜第三の実施例の光電変換装置を用いた撮像システムを示すブロック図である。It is a block diagram which shows the imaging system using the photoelectric conversion apparatus of the 1st-3rd Example.

符号の説明Explanation of symbols

1 第一の配線層
2 第二の配線層
3 第三の配線層
4 絶縁層
5 第一の平坦化層
6 カラーフィルタ
7 第二の平坦化層
8 オンチップレンズ
9 反射防止膜
10、401 層内レンズ
1001 シャッター
1002 撮影レンズ
1003 絞り
1004 固体撮像装置
1005 信号処理回路
1006 A/D変換器
1007 信号処理部
1008 タイミング発生部
1009 制御部・演算部
1010 メモリ部
1011 インターフェース部
1012 記録媒体
DESCRIPTION OF SYMBOLS 1 1st wiring layer 2 2nd wiring layer 3 3rd wiring layer 4 Insulating layer 5 1st planarization layer 6 Color filter 7 2nd planarization layer 8 On-chip lens 9 Antireflection film 10,401 layer Inner lens 1001 Shutter 1002 Shooting lens 1003 Aperture 1004 Solid-state imaging device 1005 Signal processing circuit 1006 A / D converter 1007 Signal processing unit 1008 Timing generation unit 1009 Control unit / calculation unit 1010 Memory unit 1011 Interface unit 1012 Recording medium

Claims (17)

光電変換素子を有する半導体基板と、
前記半導体基板の上に配された配線層と、
前記配線層の上に配され、CMPによって平坦化が施された絶縁層と、
前記絶縁層の上に配され、前記絶縁層よりも高い屈折率を有する絶縁膜と、を有する固体撮像装置において、
前記絶縁層の上面に接し、前記絶縁膜の下面に接して配された第1の反射防止膜と、
前記半導体基板の上に、前記半導体基板に接して配された第2の反射防止膜と、を有することを特徴とする固体撮像装置。
A semiconductor substrate having a photoelectric conversion element;
A wiring layer disposed on the semiconductor substrate;
An insulating layer disposed on the wiring layer and planarized by CMP ;
In a solid-state imaging device having an insulating film disposed on the insulating layer and having a higher refractive index than the insulating layer ,
A first antireflection film disposed in contact with the upper surface of the insulating layer and in contact with the lower surface of the insulating film ;
A solid-state imaging device , comprising: a second antireflection film disposed on and in contact with the semiconductor substrate .
前記絶縁膜は、層内レンズであることを特徴とする請求項1に記載の固体撮像装置。The solid-state imaging device according to claim 1, wherein the insulating film is an in-layer lens. 前記層内レンズは上に凸の形状を有することを特徴とする請求項2に記載の固体撮像装置。The solid-state imaging device according to claim 2, wherein the intralayer lens has a convex shape upward. 前記第2の反射防止膜は、前記半導体基板に接して配されたシリコン酸化膜と、前記シリコン酸化膜の上に配され、前記シリコン酸化膜に接して配されたシリコン窒化膜と、を含む請求項1乃至3のいずれか1項に記載の固体撮像装置。 The second anti-reflection film includes a silicon oxide film disposed in contact with said semiconductor substrate, disposed on the silicon oxide film, a silicon nitride film disposed in contact with the silicon oxide film The solid-state imaging device according to any one of claims 1 to 3 . 前記絶縁膜がシリコン窒化膜であり、前記絶縁層がシリコン酸化膜であり、前記第1の反射防止層が酸窒化シリコン膜である請求項1乃至のいずれか1項に記載の固体撮像装置。 Wherein the insulating film is a silicon nitride film, the insulating layer is a silicon oxide film, a solid-state imaging device according to any one of claims 1 to 4 wherein the first antireflective layer is a silicon oxynitride film . 前記酸窒化シリコン膜の屈折率は1.6〜1.8である請求項に記載の固体撮像装置。 The solid-state imaging device according to claim 5 , wherein the silicon oxynitride film has a refractive index of 1.6 to 1.8. 前記酸窒化シリコン膜の膜厚は0.05μm〜1.0μmである請求項あるいは6のいずれかに記載の固体撮像装置。 The solid-state imaging device according to claim 5 or 6 the thickness of the silicon oxynitride film is 0.05Myuemu~1.0Myuemu. 前記絶縁膜の上にカラーフィルタを有する請求項1乃至7のいずれか1項に記載の固体撮像装置。 The solid-state imaging device according to claim 1, further comprising a color filter on the insulating film . 前記絶縁膜の上にオンチップレンズを有する請求項1乃至8のいずれか1項に記載の固体撮像装置。 The solid-state imaging device according to claim 1, further comprising an on-chip lens on the insulating film . 前記絶縁膜は、上に凸型の層内レンズであり、
前記絶縁膜の上に配された平坦化膜と、前記平坦化膜の上に配されたカラーフィルタと、前記カラーフィルタの上に配された平坦化層と、を有する請求項1乃至9のいずれか1項に記載の固体撮像装置。
The insulating film is an upwardly convex inner lens,
The planarizing film disposed on the insulating film , a color filter disposed on the planarizing film, and a planarizing layer disposed on the color filter. The solid-state imaging device according to any one of the above.
前記平坦化層の上に配されたオンチップレンズを有する請求項10に記載の固体撮像装置。   The solid-state imaging device according to claim 10, further comprising an on-chip lens disposed on the planarizing layer. 前記配線層と前記第2の反射防止膜との間に、別の配線層を有する請求項1乃至11のいずれか1項に記載の固体撮像装置。The solid-state imaging device according to claim 1, further comprising another wiring layer between the wiring layer and the second antireflection film. 光電変換素子を有する半導体基板と、
前記半導体基板の上に配された配線層と、
前記配線層の上に配され、CMPによって平坦化が施されたシリコン酸化膜と、
前記シリコン酸化膜の上に配された第1のシリコン窒化膜と、を有する固体撮像装置において、
前記シリコン酸化膜の上面に接して、前記第1のシリコン窒化膜の下面に接して配されたシリコン酸窒化膜と、
前記半導体基板の表面に接して配されたシリコン酸化膜と、
前記シリコン酸化膜の上面に接して配された第2のシリコン窒化膜と、を有することを特徴とする固体撮像装置
A semiconductor substrate having a photoelectric conversion element;
A wiring layer disposed on the semiconductor substrate;
A silicon oxide film disposed on the wiring layer and planarized by CMP ;
In a solid-state imaging device having a first silicon nitride film disposed on the silicon oxide film ,
A silicon oxynitride film disposed in contact with an upper surface of the silicon oxide film and in contact with a lower surface of the first silicon nitride film ;
A silicon oxide film disposed in contact with the surface of the semiconductor substrate;
A solid-state imaging apparatus characterized by having, a second silicon nitride film disposed in contact with an upper surface of the silicon oxide film.
前記第1のシリコン窒化膜は層内レンズである請求項13に記載の固体撮像装置。The solid-state imaging device according to claim 13, wherein the first silicon nitride film is an in-layer lens. 前記第1のシリコン窒化膜は、上に凸型の層内レンズであり、
前記第1のシリコン窒化膜の上に配された平坦化膜と、前記平坦化膜の上に配されたカラーフィルタと、前記カラーフィルタの上に配された平坦化層と、前記平坦化層の上に配されたオンチップレンズと、を有する請求項13あるいは14のいずれかに記載の固体撮像装置。
The first silicon nitride film is a convex inner lens;
A planarizing film disposed on the first silicon nitride film , a color filter disposed on the planarizing film, a planarizing layer disposed on the color filter, and the planarizing layer The solid-state imaging device according to claim 13 , further comprising an on-chip lens disposed on the top.
前記配線層と前記第2のシリコン窒化膜との間に、別の配線層を有する請求項13乃至15のいずれか1項に記載の固体撮像装置。The solid-state imaging device according to claim 13, further comprising another wiring layer between the wiring layer and the second silicon nitride film. 請求項1乃至16のいずれか1項に記載の固体撮像装置と、該固体撮像装置からの信号を処理する信号処理部とを有することを特徴とする撮像システム。 Imaging system comprising: the solid-state imaging device according to any one of claims 1 to 16, and a signal processing unit for processing a signal from the solid-state imaging device.
JP2004257254A 2004-09-03 2004-09-03 Solid-state imaging device and imaging system using the solid-state imaging device Active JP4871499B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2004257254A JP4871499B2 (en) 2004-09-03 2004-09-03 Solid-state imaging device and imaging system using the solid-state imaging device
US11/219,007 US7453109B2 (en) 2004-09-03 2005-09-01 Solid-state image sensor and imaging system
US12/250,282 US7745247B2 (en) 2004-09-03 2008-10-13 Solid-state image sensor and imaging system
US12/780,811 US8252614B2 (en) 2004-09-03 2010-05-14 Solid-state image sensor and imaging system
US13/555,355 US20120288979A1 (en) 2004-09-03 2012-07-23 Solid-state image sensor and imaging system
US14/067,817 US8878268B2 (en) 2004-09-03 2013-10-30 Solid-state image sensor and imaging system
US14/495,745 US9269738B2 (en) 2004-09-03 2014-09-24 Solid-state image sensor and imaging system
US14/992,922 US9450011B2 (en) 2004-09-03 2016-01-11 Solid-state image sensor and imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004257254A JP4871499B2 (en) 2004-09-03 2004-09-03 Solid-state imaging device and imaging system using the solid-state imaging device

Publications (3)

Publication Number Publication Date
JP2006073882A JP2006073882A (en) 2006-03-16
JP2006073882A5 JP2006073882A5 (en) 2011-09-15
JP4871499B2 true JP4871499B2 (en) 2012-02-08

Family

ID=36154150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004257254A Active JP4871499B2 (en) 2004-09-03 2004-09-03 Solid-state imaging device and imaging system using the solid-state imaging device

Country Status (1)

Country Link
JP (1) JP4871499B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5159120B2 (en) * 2007-02-23 2013-03-06 キヤノン株式会社 Photoelectric conversion device and manufacturing method thereof
JP5288823B2 (en) 2008-02-18 2013-09-11 キヤノン株式会社 Photoelectric conversion device and method for manufacturing photoelectric conversion device
JP6039530B2 (en) * 2011-02-09 2016-12-07 キヤノン株式会社 Photoelectric conversion device and imaging system using the same
JP5713971B2 (en) * 2012-08-22 2015-05-07 株式会社東芝 Solid-state imaging device
JP5825398B2 (en) * 2014-05-19 2015-12-02 ソニー株式会社 Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic apparatus
JP6479519B2 (en) * 2015-03-19 2019-03-06 三菱電機株式会社 Photoelectric conversion element and manufacturing method thereof
CN108604590A (en) * 2016-01-29 2018-09-28 Towerjazz松下半导体有限公司 Solid-state imaging apparatus
KR102472276B1 (en) * 2016-03-24 2022-11-29 에스케이하이닉스 주식회사 Image sensor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11103036A (en) * 1997-09-29 1999-04-13 Sony Corp Solid-state image-pickup element
JP3620237B2 (en) * 1997-09-29 2005-02-16 ソニー株式会社 Solid-state image sensor
JP2002314057A (en) * 2001-04-16 2002-10-25 Canon Inc Manufacturing method of solid-state image sensing device and solid-state image sensing system
JP2003204050A (en) * 2002-01-08 2003-07-18 Canon Inc Solid state imaging device
JP2003229553A (en) * 2002-02-05 2003-08-15 Sharp Corp Semiconductor device and its manufacturing method
JP2003332547A (en) * 2002-05-16 2003-11-21 Fuji Film Microdevices Co Ltd Solid-state image pickup element and method of manufacturing the same
JP2006013522A (en) * 2004-06-28 2006-01-12 Samsung Electronics Co Ltd Image sensor and method of manufacturing it

Also Published As

Publication number Publication date
JP2006073882A (en) 2006-03-16

Similar Documents

Publication Publication Date Title
US9450011B2 (en) Solid-state image sensor and imaging system
JP4806197B2 (en) Solid-state imaging device
JP4193870B2 (en) Solid-state imaging device, imaging device
JP5082855B2 (en) Solid-state imaging device having antireflection film, display device, and manufacturing method thereof
US7732884B2 (en) Photoelectric conversion device and method of manufacturing the same
TWI427780B (en) Solid-state imaging device, method of manufacturing the same, and electronic apparatus
JP2009021379A (en) Solid-state imaging apparatus and camera equipped with the same, and manufacturing method of solid-state imaging apparatus
JP2007242697A (en) Image pickup device and image pickup system
JP2008091771A (en) Solid-state image pickup device and its manufacturing method
CN101414614A (en) Image sensor device and fabrication method thereof
JP2008091643A (en) Solid-state image pick-up device
JP2005158940A (en) Photoelectric transfer device and image pickup system
JP4871499B2 (en) Solid-state imaging device and imaging system using the solid-state imaging device
JP5409087B2 (en) Solid-state image sensor
JP2012186396A (en) Solid state image pickup device and manufacturing method of the same
JP5518231B2 (en) Method for manufacturing solid-state imaging device
JP4878117B2 (en) Solid-state imaging device and imaging system
JPH11103036A (en) Solid-state image-pickup element
JP4774649B2 (en) Solid-state imaging device and manufacturing method thereof
US8946843B2 (en) Solid-state image sensing device
JP2005340498A (en) Solid-state imaging device
JP4136374B2 (en) Solid-state imaging device and imaging system
JP2008053530A (en) Solid-state imaging device and manufacturing method thereof
CN111524920B (en) Forming method of front-illuminated CMOS image sensor
JPH10294446A (en) Solid-state image pickup element

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070903

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070903

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100201

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110803

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110803

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111121

R151 Written notification of patent or utility model registration

Ref document number: 4871499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3